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School of Mathematical Sciences,

Dublin Institute of Technology,

Kevin Street, Dublin 8, Ireland

29-th September, 2014

Abstract

We consider quadratic bundles related to Hermitian symmetric spaces of
the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the cor-
responding integrable hierarchy is given by a multi-component Kaup-Newell
derivative nonlinear Schrödinger equation which serves as a motivational exam-
ple for our general considerations. We extensively discuss how one can apply
Zakharov-Shabat’s dressing procedure to derive reflectionless potentials obeying
zero boundary conditions. Those could be used for one to construct fast decay-
ing solutions to any nonlinear equation belonging to the same hierarchy. One
can distinguish between generic soliton type solutions and rational solutions.

1 Introduction

A classical example of a completely integrable nonlinear evolution equation (NLEE)
is derivative nonlinear Schrödinger equation (DNLS ” ± ”)

iqt + qxx ± i
(

q2q∗
)

x
= 0, (1)

where the subscripts denote partial differentiation in variables t and x and ∗ stands
for complex conjugation. DNLS finds applications in plasma physics[14, 19, 22, 23].
It was Kaup and Newell [15] who has shown DNLS has a Lax pair of the form:

L(λ) = i∂x + λQ(x, t) − λ2σ3 (2)

A(λ) = i∂t +

3
∑

k=1

Ak(x, t)λk − 2λ4σ3 (3)

∗On leave of the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of

Sciences, 72 Tsarigradsko chaussee Blvd., 1784 Sofia, Bulgaria,
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where λ ∈ C is spectral parameter and

Q =

(

0 q
±q∗ 0

)

, σ3 =

(

1 0
0 −1

)

, A3 = 2Q

A2 = ±|q|2σ3, A1 =
i

2
[σ3, Qx] ± |q|2Q.

DNLS is tightly related to three other integrable NLEEs. These are Chen-Lee-Liu’s
equation [11]

iqt + qxx + iqq∗qx = 0, (4)

Gerdjikov-Ivanov’s equation [10]

iqt + qxx + iq2q∗x +
1

2
|q|4q = 0 (5)

and 2-dimensional Thirring model [16]

(i∂σγ
σ −m)ψ ± gγνψψ†γ0γνψ = 0, σ, ν = 0, 1 (6)

γ0 =

(

0 1
1 0

)

, γ1 =

(

0 −1
1 0

)

(7)

where ψ : R
2 → C

2 is a smooth spinor field, g is a bonding constant and † means Her-
mitian conjugation (Einstein’s rule of summation over repeated indices holds above).

Due to their similarity with DNLS, (4) and (5) are sometimes termed DNLS II
and DNLS III respectively. All the three DNLS versions along with the 2-dimensional
Thirring model correspond to certain Mikhailov type of reductions of the generic
quadratic bundle operator [10, 16]:

L(λ) = i∂x + U0(x, t) + λU1(x, t) − λ2σ3 (8)

where U1(x, t) is an off-diagonal 2 × 2 matrix and U0(x, t) being a traceless 2 × 2
matrix otherwise arbitrary.

One very fruitful trend in theory of integrable systems is search and study of multi-
component counterparts of scalar completely integrable equations[2, 6, 27, 28, 29].
Fordy and Kulish [6] proposed a natural way to relate to each Hermitian symmetric
space a multi-component nonlinear Schrödinger equation. Later Fordy[5] managed
to find similar connection between Hermitian symmetric spaces and multi-component
versions of DNLS (1). For example, the equation

iqt + qxx +
2mi

m+ n

(

qq†q
)

x
= 0 (9)

where q is a smooth n × m matrix-valued function is related to symmetric space
SU(m+n)/S(U(m)×U(n)). Similarly, Tsuchida and Wadati [26] proved the complete
integrability of a matrix generalization of Chen-Lee-Liu equation.
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We aim here at demonstrating how one can adapt Zakharov-Shabat’s dressing
method [30, 33] to incomplete quadratic bundles of the type

L(λ) = i∂x + λQ(x, t) − λ2J (10)

Q(x, t) =

(

0 qT (x, t)
Enq∗(x, t)Em 0

)

, J =

(

n
m

11m 0
0 −11n

)

where Em is a diagonal matrix of dimension m respectively with diagonal entries equal
to ±1 while 11m is the unit matrix of dimension m. This operator is tightly related
to symmetric spaces of the form SU(m + n)/S(U(m) × U(n)) and its quadratic flow
produces equation

iqt + qxx +
2mi

m+ n

(

qEmq†Enq
)

x
= 0 (11)

which generalizes Fordy’s equation (9). We shall restrict ourselves with potentials
obeying zero boundary condition

lim
x→±∞

Q(x, t) = 0. (12)

Those give rise to fast decaying solutions to NLEEs belonging to the integrable hier-
archy generated by (10).

The paper is structured as follows. Second section is preliminary in nature. It
contains a brief summary of some basic properties of the quadratic bundles related to
symmetric spaces of the type A.III and the auxiliary linear problem associated with
it. The following two sections contain our main results. Section 3 contains general
considerations of Zakharov-Shabat’s dressing method. We show how one can adapt
the dressing method for quadratic bundles of the afore-mentioned type. This allows
one to obtain reflectionless potentials and thus generate special types of solutions on
a trivial (zero) background in a purely algebraic manner. We shall see there are two
different types of solutions: generic soliton type solutions and rational solutions. The
soliton type solutions are associated with dressing factors whose poles are generic
while the rational solutions correspond to factors whose poles lie on the continuous
spectrum of (10). In section 4 we explicitly construct reflectionless potentials and
particular solutions of either of the afore-mentioned types. The latter can be reduced
to well-known solutions to the scalar DNLS ”±” as a very special case. Last section
contains summary of our results and some additional remarks.

2 Quadratic bundles and symmetric spaces of the
type A.III

In this section we shall introduce some basic notions of direct scattering problem for
quadratic bundles related to symmetric spaces of the type SU(m+n)/S(U(m)×U(n)),
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and sketch some of their properties. In doing this we are going to use some results
and conventions from [9, 28, 31].

Let us consider the following Lax pair:

L(λ) = i∂x + λQ(x, t) − λ2J, (13)

A(λ) = i∂t +

2N
∑

k=1

λkAk(x, t) (14)

where λ ∈ C is spectral parameter while Q(x, t), J and Ak(x, t) are (m+n)× (m+n)
matrices. Further we shall denote by Mm,n[C] linear space of all m×n matrices with
complex entries. All coefficients are assumed to be traceless matrices to satisfy the
following Mikhailov type reduction conditions [17, 18]

EQ†E = Q, EJ†E = J, (15)

EA†
kE = Ak, E = diag (ǫ1, . . . , ǫm+n), (16)

for ǫ21 = . . . = ǫ2m+n = 1. To relate the Lax pair (13) and (14) with a symmetric space
of the type of A.III, L and A are required to obey the following constraints:

CL(−λ)C = L(λ), CA(−λ)C = A(λ). (17)

The constant matrix C = diag (11m,−11n) is connected to Cartan’s involution [12]
defining Hermitian symmetric space SU(m + n)/S(U(m) × U(n)). It induces a Z2

grading in Lie algebra sl(m+ n,C), namely we have:

sl(m+ n) = sl
0(m+ n) + sl

1(m+ n) (18)

where
sl

σ(m+ n) = {X ∈ sl(m+ n)| CXC = (−1)σX}, σ = 0, 1

are eigen subspaces of the adjoint action of C. Due to (17) Q acquires block off-
diagonal structure:

Q =

(

0 qT

Enq∗Em 0

)

, Em = diag (ǫ1, . . . , ǫm) (19)

En = diag (ǫm+1, . . . , ǫm+n)

for q : R
2 → Mn,m[C] while J is a block-diagonal matrix. Similarly, A2l−1 and A2l

for l = 1, . . . , N acquire the block form

A2l−1 =

(

0 aT
2l−1

Ena∗
2l−1Em 0

)

, (20)

A2l =

(

a2l

0 b2l

)

(21)
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where a2l−1 : R
2 → Mn,m[C], a2l : R

2 → Mm,m[C] and b2l : R
2 → Mn,n[C]. In

addition, a2l and b2l obey the symmetries:

Ema†
2lEm = a2l, Enb†

2lEn = b2l. (22)

For convenience we shall pick up the constant matrix J in the form

J =

(

n
m

11m 0
0 −11n

)

. (23)

Its centralizer coincides with sl
0(m+ n).

The quadratic flow, that is N = 2, for the Lax pair (13) and (14) produces the
following multi-component DNLS

iqt + qxx +
2mi

m+ n

(

qEmq†Enq
)

x
= 0. (24)

Clearly, equation (24) represents a natural generalization of Fordy’s equation (9) for
it includes DNLS ”-” as a special scalar case.

Let us now consider the auxiliary linear problem

L(λ)Ψ(x, t, λ) = i∂xΨ + λ(Q− λJ)Ψ = 0 (25)

where Ψ is a fundamental set of solutions (fundamental solution for short) hence
det Ψ(x, t, λ) 6= 0 for any x, t and λ in its domain. We shall assume from now on that
Q is infinitely smooth and obeys the boundary condition

lim
x→±∞

Q(x, t) = 0.

Following [28] one defines Jost fundamental solutions Ψ+ and Ψ− as follows:

lim
x→±∞

Ψ±(x, t, λ)eiλ2Jx = 11. (26)

The transition matrix

T (t, λ) = Ψ̂+(x, t, λ)Ψ−(x, t, λ), Ψ̂ ≡ Ψ−1

between the Jost solutions defines scattering matrix. Since [L,A] = 0 any fundamental
solution also fulfills linear system

i∂tΨ +
2N
∑

k=1

λkAkΨ = Ψf (27)

where polynomial

f(λ) = lim
x→±∞

2N
∑

k=1

λkAk(x, t)
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is dispersion law of NLEE and it carries all its essential characteristics. It can be
proven [28] that the scattering matrix evolves with time according to:

T (t, λ) = eif(λ)tT (0, λ)e−if(λ)t.

For convenience we shall omit variables x and t where this does not lead to confusion.
The Jost solutions are defined for real and imaginary values of λ only. Starting

from the Jost solutions, however, one is able to construct another pair of solutions
of (25) to have analytic properties in upper half plane and the lower half plane in
λ2-plane. More specifically, the following theorem holds true [9, 31]:

Theorem 1 (Gerdjikov&Ivanov, 1983) There exists a pair of solutions X+ and
X− analytic in domains Ω+ = {λ ∈ C| Imλ2 ≥ 0} (i.e. the first and the third
quadrant in the λ-plane) and Ω− = {λ ∈ C| Imλ2 ≤ 0} (the second and the forth
quadrants resp.). X+ and X− can be constructed from the Jost solutions as follows:

X±(λ) =

{

Ψ−(λ)S±(λ)
Ψ+(λ)T∓(λ)D±(λ)

. (28)

where matrices S±(λ), T±(λ) and D±(λ) are given by

S+(λ) =

(

11m sT
+(λ)

0 11n

)

, T+(λ) =

(

11m tT
+(λ)

0 11n

)

S−(λ) =

(

11m 0
s−(λ) 11n

)

, T−(λ) =

(

11m 0
t−(λ) 11n

)

D±(λ) =

(

d±m(λ) 0
0 d±n (λ)

)

.

The latter are involved in block LDU decomposition

T (λ) = T∓(λ)D±(λ)Ŝ±(λ)) (29)

of the scattering matrix. The decomposition (29) respects the splitting (18), i.e. d±n (λ)
are n× n matrices, while s±(λ) and t±(λ) are n×m matrices.

The reductions imposed on the Lax operators yield to certain constraints on the
values of the Jost solutions, scattering matrix and fundamental analytic solutions
[17, 18], namely we have:

Ψ̂†
±(λ∗) = Ψ±(λ), CΨ±(−λ)C = Ψ±(λ)

T̂ †(λ∗) = T (λ), CT (−λ)C = T (λ)
[

X+(λ∗)
]†

= X̂−(λ), CX±(−λ)C = X±(λ).

(30)
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It follows from (28) the fundamental analytic solutionsX+ andX− are interrelated
through:

X+(λ) = X−(λ)G(λ), λ2 ∈ R (31)

for some sewing function G(λ) = Ŝ−(λ)S+(λ). This means that they can be viewed as
solutions to a local Riemann-Hilbert problem [9, 28, 30] with boundary given by the
real and imaginary lines in the λ-plane. More precisely, solutions to a local Riemann-
Hilbert problem are functions Υ± = X± exp(iλ2Jx) satisfying the linear system

i∂xΥ± + λQΥ± − λ2[J,Υ±] = 0. (32)

More detailed analysis of (32) shows that Υ+ and Υ− are normalized as follows:

lim
λ→ 0

Υ±(x, λ) = 11, (33)

that is the Riemann-Hilbert problem is normalized at λ = 0.
The fundamental analytic solutions can be used to describe the spectrum of the

scattering operator [7, 28]. More specifically, one can prove [9, 31] the following
theorem holds true.

Theorem 2 The spectrum of L(λ) comprises a continuous and discrete part. The
continuous part of spectrum is determined by the condition:

Imλ2J = 0, (34)

i.e. it coincides with the real and the imaginary lines in the λ-plane. The discrete
spectrum belongs to (discrete) orbits of the reduction group Z2 × Z2, i.e. all discrete
eigenvalues go together in quadruples of points {±µ,±µ∗} located symmetrically to
the real and imaginary lines. �

3 Dressing method

In this section we are going to demonstrate how one can construct special solutions
to any member of the integrable hierarchy generated by Lax operator (13). For that
purpose we shall employ Zakharov-Shabat’s dressing method adapted for quadratic
bundles of the type discussed in the previous section. Let us start with a few general
remarks.

Zakharov-Shabat’s dressing method is an indirect way of integration of S-integrable
equations [28, 30, 33], i.e. it generates new solutions to a given NLEE starting from
a known one. Its application is substantially determined by the existence and form
of the Lax representation associated with the NLEE. Suppose Ψ0 is a fundamental
solution to the system

L0(λ)Ψ0 = i∂xΨ0 + λ
(

Q(0) − λJ
)

Ψ0 = 0 (35)

A0(λ)Ψ0 = i∂tΨ0 +
2N
∑

k=1

λkA
(0)
k Ψ0 = Ψ0f(λ) (36)
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to be referred to further on as bare system. The matrix coefficients above, having the
same structure as in (19), (21), are assumed to be known. Let us now apply a gauge
(dressing) transform Ψ0 → Ψ1 = gΨ0 such that the auxiliary linear systems remain
covariant, i.e. Ψ1 must satisfy

L1(λ)Ψ1 = i∂xΨ1 + λ
(

Q(1) − λJ
)

Ψ1 = 0 (37)

A1(λ)Ψ1 = i∂tΨ1 +

2N
∑

k=1

λkA
(1)
k Ψ1 = Ψ1f(λ) (38)

for some new, unknown coefficients Q(1), A
(1)
k of the same form as those in (35) and

(36). After comparing the bare system (35), (36) with the dressed one (37), (38) we
see that the dressing factor g is a solution to the following pair of PDEs:

i∂xg + λQ(1) g − λgQ(0) − λ2[J, g] = 0 (39)

i∂tg +
2N
∑

k=1

λkA
(1)
k g − g

2N
∑

k=1

λkA
(0)
k = 0. (40)

In order to determine possible forms of g regarding the spectral parameter λ we
analyze equations (39) and (40). Suppose g does not depend on λ then it is straight-
forward from (39) and (40) that it is simply a constant matrix, that is trivial. Thus
to obtain a non-trivial result we shall require that g does depend on the spectral
parameter.

Further, we recall that bare fundamental solutions Υ±
0 and their dressed counter-

parts Υ±
1 satisfy a Riemann-Hilbert problem with a normalization at λ = 0. This

implies that g is also normalized at λ = 0, i.e. we have:

g(λ = 0) = 11. (41)

On the other hand, due to constraints (30) the dressing factor obeys the symmetry
conditions:

Eg†(λ∗)E = ĝ(λ) (42)

Cg(−λ)C = g(λ). (43)

A simple choice for the dressing factor to respect (41)–(43) is the following one:

g(x, t, λ) = 11 +

r
∑

j=1

λ

µj

(

Bj(x, t)

λ− µj

+
CBj(x, t)C

λ+ µj

)

. (44)

Equation (39) allows one to find a simple interrelation between the bare potential
Q0 and the dressed one Q1. Indeed, after dividing both hand-sides of (39) by λ,
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setting |λ| → ∞ and taking into account the form of g and relation (42) we obtain:

Q(1) = Q(0) +
r
∑

i=1

[J,Bi − CBiC]Eg†∞E (45)

where
g∞(x, t) = lim

|λ|→∞
g(x, t, λ). (46)

Thus to obtain a new solution we need to know the residues of the dressing factor. As
it turns out the latter can be expressed in terms of the bare fundamental solution Ψ0

(and its first λ-derivative). This fact constitutes the power of the dressing method.
In order to find the residues of g one analyzes the identity gĝ = 11 and PDEs (39)

and (40). In what follows we shall distinguish between two different cases:

1. generic case, that is the poles of g lie outside of the continuous spectrum of L;

2. degenerate case, i.e. the poles of g lie on the continuous spectrum (µ2
j ∈ R).

3.1 Generic case

Let us consider first the case when the poles of g and its inverse represent distinct
points in λ-plane symmetrically located with respect to the real and imaginary lines.
Then after evaluating the residue of gĝ at λ = µi, i = 1, . . . , r we obtain the following
algebraic relations:

Bi



11 +

r
∑

j=1

µi

µ∗
j

(

EB†
jE

µi − µ∗
j

+
ECB†

jCE

µi + µ∗
j

)



 = 0. (47)

To ensure the result is nontrivial one needs to assume the residues are degenerate
matrices [31], i.e. they obey decomposition

Bi = XiF
T
i (48)

for some rectangular matrices Xi(x, t) and Fi(x, t). After substituting (48) into (47)
we obtain the following linear system

EF ∗
i =

r
∑

j=1

XjFji +
r
∑

j=1

CXjGji (49)

Fji =
µ∗

iF
T
j EF ∗

i

µj(µj − µ∗
i )
, Gji = −

µ∗
iF

T
j CEF ∗

i

µj(µj + µ∗
i )

(50)

for factors Xi. Solving it allows one to express the factor Xi through Fi.
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Example 1 This is especially easy to do when the dressing factor has a single pair
of poles (r = 1). We shall drop subscripts for the sake of convenience. Then linear
system (49) reduces to

EF ∗ =
µ∗

µ

(

X
FTEF ∗

µ− µ∗
− CX

FT CEF ∗

µ+ µ∗

)

· (51)

Whenever X and F are column-vectors the result for X reads:

X =
µ

µ∗

(

FTEF ∗

µ− µ∗
−
FT CEF ∗

µ+ µ∗
C

)−1

EF ∗. � (52)

The matrix factors Fi(x, t) can be expressed in terms of fundamental solutions to
the bare linear problem. Indeed [31], a more detailed analysis of (39) shows that the
following relation holds true:

FT
i (x, t) = FT

i,0Ψ̂0(x, t, µi) (53)

where FT
i,0 are constants of integration. Now we have all the information required to

construct the dressed solution at some initial moment of time t = 0. To recover its
time evolution we need to determine Fi,0 as functions of t. The latter are governed
by the linear equations

i∂tF
T
i,0 − FT

i,0f(µi) = 0 (54)

for f(λ) being the dispersion law of NLEE. Thus in order to recover the time evolution
of the dressed solution we can apply the following simple correspondence:

FT
i,0 → FT

i,0 e−if(µi)t. (55)

3.2 Degenerate case I (real poles)

Let us now assume the poles of the dressing factor lie on the continuous spectrum of
the operator L. We shall consider first the case when all poles are real, i.e. µ∗

i = µi

for i = 1, . . . , r. Then the identity g(λ)ĝ(λ) = 11 gives rise to the algebraic relations:

BiEB
†
i = 0 (56)

ΩiEB
†
i E +BiEΩ†

iE = 0 (57)

where

Ωi = 11 +
r
∑

j 6=i

µiBj

µj(µi − µj)
+

r
∑

j=1

µiCBjC

µj(µi + µj)
· (58)

It is straightforward from (56) that the residues are degenerate, i.e. the decomposition
(48) applies again. The matrices Fi fulfill the quadratic relations:

FT
i EF ∗

i = 0. (59)
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Equality (57) implies that there exist quadratic matrices αi such that

ΩiEF
∗
i = Xiαi, α†

i = −αi. (60)

Thus we obtain the following linear system for Xi

EF ∗
i = Xiαi − CXi

FT
i CEF ∗

i

2µi

+
r
∑

j 6=i

(

Xj

µiF
T
j EF ∗

i

µj(µj − µi)
− CXj

µiF
T
j CEF ∗

i

µj(µj + µi)

)

. (61)

By solving it we can express matrices Xi in terms of Fi and αi.

Example 2 Like in the generic case discussed in the previous subsection this is espe-
cially easy when g has a single pair of poles and the rank of X and F equals 1. Then
the linear system (61) simplifies to:

EF ∗ =

(

α−
FT CEF ∗

2µ
C

)

X (62)

and the result for X reads:

X =

(

α−
FT CEF ∗

2µ
C

)−1

EF ∗. � (63)

In order to find Fi and αi we consider equation (39). After evaluating the coeffi-
cients before powers of λ− µi we get the following differential relations:

i∂xF
T
i − FT

i U
(0)(x, t, µi) = 0 (64)

i∂xαi − FT
i ∂λ|λ=µi

U (0)EF ∗
i = 0 (65)

where U (0)(x, t, λ) = λQ(0)(x, t) − λ2J . Relation (64) implies that Fi is proportional
to a bare fundamental solution as given by (53). On the other hand, it can be shown
that (65) leads to an interrelation between αi and Fi, namely we have:

αi(x, t) = αi,0(t) − FT
i (x, t)∂λ|λ=µi

Ψ0(x, t, λ)EF ∗
i,0. (66)

To find functions Fi,0(t) and αi,0(t) we have to consider equation (40) this time. As
a result we derive the following relations:

i
dFT

i,0

dt
− FT

i V
(0)(x, t, µi) = 0 (67)

i
dαi,0

dt
− FT

i ∂λ|λ=µi
V (0)EF ∗

i = 0. (68)
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The former relation leads to exponential t-dependence of Fi,0 like in the generic case,
see (54). The second differential relation gives rise to:

i
dαi,0

dt
− FT

i,0

df(λ)

dλ

∣

∣

∣

∣

λ=µi

EF ∗
i,0 = 0 (69)

which means that αi,0 is a linear function of time. Thus to recover the time dependence
of the dressed solution in this case one has to apply the rule given by (55) as well as:

αi,0 → αi,0 − iFT
i,0

df(λ)

dλ

∣

∣

∣

∣

λ=µi

EF ∗
i,0t. (70)

3.3 Degenerate case II (imaginary poles)

Now let us suppose the poles of the dressing factor are all imaginary, i.e. µ∗
i = −µi,

i = 1, . . . , r. Then from the equality g(λ)ĝ(λ) = 11 one obtains the following algebraic
relations:

BiECB†
i = 0 (71)

BiECΩ†
iCE = ΩiECB†CE (72)

where Ωi is given by (58). As before the former algebraic relation means that Bi(x, t)
are degenerate matrices, hence they are decomposed into a product of two rectangular
matrices Xi and Fi, see (48). After substituting that decomposition into (71) the
latter gives rise to the quadratic relation:

FT
i ECF ∗

i = 0. (73)

Similarly to the previous case relation (72) is reduced to:

ΩiECF ∗
i = Xiαi (74)

where we have that α†
i = αi. (74) is viewed as a linear equation for Xi. Solving it,

allows one to express Xi in terms of Fi and αi.

Example 3 Now consider the case when the dressing factor has a single pair of poles.
Suppose X(x, t) and F (x, t) are m+ n-vectors and α is a real scalar function. Then
(74) is reduced to give

ECF ∗ =

(

α−
FTEF ∗

2µ
C

)

X. (75)

Clearly, the solution to (75) is written down as follows:

X =

(

α−
FTEF ∗

2µ
C

)−1

ECF ∗. � (76)
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In order to find Fi and αi we again evaluate the coefficients before poles of the
equation (53). Thus we get the following equations:

i∂xF
T
i − FT

i U
(0) = 0 ⇒ (77)

FT
i (x, t) = FT

i,0(t)Ψ̂0(x, t, µi) (78)

i∂xαi − FT
i ∂λ|λ=µi

U (0)ECF ∗
i = 0 ⇒

αi(x, t) = αi,0(t) − FT
i (x, t)Ψ̇0(x, t, µi)ECF ∗

i,0(t) (79)

where dot means differentiation in λ and U (0)(x, t, λ) is the same as in the previous
subsection. The time dependence of Fi,0 and αi,0 is determined from equation (40).
The result reads:

FT
i,0 → FT

i,0 e−if(µi)t (80)

αi,0 → αi,0 − iFT
i,0

df(λ)

dλ

∣

∣

∣

∣

λ=µi

ECF ∗
i,0 t. (81)

Remark 1 We have discussed so far the situations when all poles of g are either
generic or belong to the continuous spectrum of L. Apart from these ”pure” cases
one could consider a mixed one as well, i.e. part of poles are generic while the rest
are real or imaginary. Clearly, analysis of the mixed case is reduced to that of (some
combination of) the pure ones. �

The algorithm to generate new solutions based on the dressing technique we de-
scribed here can be symbolically presented in the following diagram:

Q0
(35)
−→ Ψ0

(53)
−→ {Fj}

r
j=1

(49),(61),(74)
−→ {Xj}

r
j=1

(48)
−→ {Bj}

r
j=1

(45)
−→ Q1.

4 Particular solutions

We shall illustrate here the general considerations from the previous section by con-
structing reflectionless potentials over zero background and extend them to solutions
to DNLS (24). Thus in what follows we shall assume that Q0 = 0. As a bare funda-
mental solution one can pick up the plane wave solution:

Ψ0(x, t, λ) = e−iλ2Jx. (82)

Let us start with the case when the dressing factor has a single pair of complex poles
in generic position. Due to (53) and (82) the rectangular factor F is given by:

F (x, t) = eiµ2JxF (t), µ ∈ C, µ2 /∈ R. (83)
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Further on we shall restrict ourselves with the simplest case when F (x, t) is simply
a vector1. Taking into account (52) and (83) formula (45) leads to the following
reflectionless potential:

(q1(x))ba =
2v

ρ

m+n
∑

k=m+1

ǫaǫkǫb+m sin(2ϕ)e−iσak(x)e−θak(x)

∆k(x)

×

[

δkb+m −
2iǫb+meiγb+m keξb+mk sin(2ϕ)

∆k(x)

]

(84)

a = 1, . . . ,m b = 1, . . . , n .

We have used above the polar representations

µ = ρ exp(iϕ), F0,p = |F0,p| exp(iφp) (85)

of the pole of g and the components of polarization vector F0 respectively as well as
the following auxiliary notations:

∆k(x) = e−2iϕ
m
∑

p=1

ǫpe
−2θpk(x) +

m+n
∑

p=m+1

ǫpe
2ξpk

θpk(x) = vx sin(2ϕ) − ξpk, ξpk = ln |F0,p/F0,k|

σpk(x) = vx cos(2ϕ) + γpk + ϕ, v =
m+ n

m
ρ2

γpk = φp − φk − 2ϕ.

In order to obtain soliton type solution for the matrix DNLS (24) one needs to recover
the t-dependence in (85) using (55). The dispersion law for DNLS reads

fDNLS(λ) = −
n+m

m
λ4J .

Thus one derives the following rule:

δp → δp +

{

vnρ2t cos(4ϕ)/m, p = 1, . . . ,m
−vρ2t cos(4ϕ), p = m+ 1, . . . ,m+ n

(86)

ξpk →

{

ξpk − v2t sin(4ϕ), p = 1, . . . ,m
ξpk, p = m+ 1, . . . ,m+ n.

(87)

Let us consider a simple example.

Example 4 The result we have just obtained represents a natural generalization of
the soliton solution to the scalar DNLS (1) derived by Kaup and Newell in [15].

1
F0 is sometimes called polarization vector in theory of solitons.

14



Indeed, for the simplest case when the Lax pair is related to the Lie algebra sl(2) we
have m = n = 1 and v = 2ρ2. Then C = σ3 and the dressing factor (44) looks as
follows:

g = 11 +
λB

µ(λ− µ)
+
λσ3Bσ3

µ(λ+ µ)
. (88)

According to (85) the reflectionless potential can be written down as:

q1(x) =
4iρ sin(2ϕ)e−iσ(x)eθ(x)

[

e2θ(x) ± e2iϕ
]

[

e2θ(x) ± e−2iϕ
]2 (89)

θ(x) = 2ρ2x sin(2ϕ) − ξ0, ξ0 = ln |F0,1/F0,2|

σ(x) = 2ρ2x cos(2ϕ) − φ0, φ0 = φ2 − φ1 − 3ϕ.

where the sign ± above refers to DNLS ”+” or DNLS ”−” respectively. To obtain
the 1-soliton solution for (1) we recover the time dependence in (89) by using the
correspondence:

ξ0 → ξ0 − 4ρ4t sin(4ϕ), φ0 → φ0 − 2ρ4t cos(4ϕ). (90)

This way formulas (89)–(90) reproduce the soliton solution obtained by Kaup and
Newell by making use of Gelfand-Levitan-Marchenko equation. �

Let us consider now the degenerate case when g has a single pair of real simple
poles ±ρ. Due to (82) formulas (53) and (66) give the following result for the vector
F and the function α

FT (x) = FT
0 eiρ2Jx (91)

α(x) = α0 +
2ivx

ρ

m
∑

p=1

ǫp|F0,p|
2. (92)

In order to obtain a solution to DNLS one needs to recover time evolution making
use of the following correspondence:

FT
0 → FT

0 eivρ2Jt

α0 → α0 +
4iv2t

ρ

m
∑

p=1

ǫp|F0,p|
2.

(93)

Thus after taking into account (63), (91) and (92) and set α0 = 0 formula (45) gives
rise to the following rational solution of the matrix DNLS (24):

(q1(x, t))ba =
2v

ρ

m+n
∑

k=m+1

ǫaǫkǫb+m|FaFk|e
−iv(x+vt−ϕak)

2iv (x+ 2vt) − 1

×

{

δk b+m −
2ǫb+m|Fb+mFk|e

ivϕk b+m

2iv (x+ 2vt) − 1

}

(94)

ϕab = (argFb − argFa)/v

15



where we have used a normalized polarization vector:

Fs =
F0,s

√

∑m
p=1 ǫp|F0,p|2

, s = 1, . . . ,m+ n. (95)

Example 5 Suppose again we have a Lax pair associated with sl(2), i.e. m = n = 1
and set E = σ3 (the choice E = 11 leads to a trivial result). Then the dressing factor
is again given by (88) and the solution (94) simplifies to

q1(x, t) = 4ρ

[

1 + 4iρ2
(

x+ 4ρ2t
)]3

[

1 + 16ρ4 (x+ 4ρ2t)
2
]2 e−2iρ2(x+2ρ2t). � (96)

It is seen that (94) (and 96) is a traveling wave solution with no singularities.
Finally let us consider the case when the dressing factor has a pair of imaginary

poles, i.e. we assume µ = iρ. Then the vector F and the function α are given by:

FT (x) = FT
0 e−iρ2Jx (97)

α(x) = α0 −
2vx

ρ

m
∑

p=1

ǫp|F0,p|
2. (98)

In order to obtain a solution to DNLS one needs to recover time evolution making
use of the following correspondence:

FT
0 → FT

0 eivρ2Jt

α0 → α0 +
4v2t

ρ

m
∑

p=1

ǫp|F0,p|
2.

(99)

Thus after taking into account (76), (97) and (98) and set α0 = 0 we get the following
rational solution of the matrix DNLS:

(q1(x, t))ba =
2v

ρ

m+n
∑

k=m+1

ǫaǫkǫb+m|FaFk|e
iv(x−vt+ϕak)

1 + 2iv (x− 2vt)

×

{

δk b+m −
2ǫb+m|Fb+mFk|e

ivϕk b+m

1 + 2iv (x− 2vt)

}

(100)

where ϕab = (argFb − argFa)/v and by F is denoted the normalized polarization
vector defined in (95).

Example 6 Suppose again we have a Lax pair associated with sl(2). The only mean-
ingful situation now is when E = 11. Then expression (100) simplifies to

q1(x, t) = 4ρ

[

1 − 4iρ2
(

x− 4ρ2t
)]3

[

1 + 16ρ4 (x− 4ρ2t)
2
]2 e2iρ2(x−2ρ2t). � (101)
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The rational solutions (96) and (101) we have just obtained coincides with those in
[15] derived from the soliton solution (89) by taking a long-wave limit.

Remark 2 Function (100) (and 101) represents a nonsingular traveling wave so-
lution. In fact, (101) can be obtained from (96) (similarly, (100) from (94)) after
substituting µ = iρ. However, one should keep in mind that those satisfy different
NLEEs. �

Remark 3 Clearly, one can recursively apply the dressing procedure we have demon-
strated here thus building a whole infinite sequence of exact solutions to DNLS. �

5 Conclusions

We have adapted Zakharov-Shabat’s dressing technique to quadratic bundles related
to symmetric spaces of the series A.III. This allowed us to establish an algebraic
procedure for construction of reflectionless potentials which give rise to solutions to
NLEEs of the DNLS hierarchy provided time dependence is appropriately recovered.
To do this it suffices to use dressing factors with simple poles symmetrically located
to coordinate frame, see (44). As an illustration, we have considered in more detail
the case when the dressing factor has just a single pair of poles. Using such a factor
one can easily obtain explicit formulas for the solutions of (24). Our results naturally
generalize those obtained by Kaup and Newell [15] for the scalar DNLS which can be
constructed by using a dressing factor in the form (88).

The dressing procedure developed in Section 3 naturally leads to two different
classes of solutions: generic soliton type of solutions (85) and rational solutions, see
(94) and (100). In contrast to the case of nonlinear Schrödinger equation, fast decaying
rational solutions to DNLS are non-singular. The interest on rational solutions has
significantly increased [3, 4, 13] after it was observed that rogue waves in open ocean
could be modeled through rational solutions to nonlinear Schrödinger equation [1, 20,
21, 24]. There is certain evidence[4, 23] that similar phenomena in other media (like
optical waveguides or plasma) could be described by rational solutions or solutions
over nontrivial background to other NLEEs as well.

Like in the scalar case, one could derive rational solutions (94) and (100) from
(85) through a limiting procedure. Clearly, one could derive more complicated ratio-
nal solutions through a similar limiting procedure but applied on more complicated
generic solutions, i.e. those constructed by using dressing factors with multiple pole
pairs or a recursive dressing by several single-pair factors. A major drawback of this
approach, however, is that finding generic solutions could lead to quite complicated
calculations. This is where the procedures exposed in Subsection 3.2 and Subsection
3.3 come into play. Those allow one to directly construct more complicated rational
type solutions without knowing the corresponding generic soliton type solutions.

Our results can be extended by constructing solutions over a non-trivial back-
ground. Such solutions were obtained in [25, 32] for the case of the scalar DNLS. The

17



considerations required in this case are more complicated and we intend to discuss it
elsewhere.

Another meaningful direction of further developments is to study quadratic bun-
dles associated with other types Hermitian symmetric spaces or, to put it even in a
more general context, complete quadratic bundles related to homogeneous spaces like
the one given below:

L(λ) = i∂x + U0 + λU1 − λ2J , (102)

where U0 splits into a diagonal and off-diagonal part, U1 is strictly off-diagonal and J
is a diagonal matrix. The theory of complete quadratic bundles like this one is more
complicated than in the case we have considered in that report. The latter represents
certain interest in relation to N-wave type equations with cubic non-linearity recently
derived by Gerdjikov [8].
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