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Hadamard Renormalization of the Stress Energy Tensor in a Spherically Symmetric
Black Hole Space-Time with an Application to Lukewarm Black Holes

Cormac Breen∗ and Adrian C. Ottewill†

School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,
University College Dublin, Belfield, Dublin 4, Dublin, Ireland

(Dated: December 15, 2011)

We consider a quantum field which is in a Hartle-Hawking state propagating in a spherically
symmetric black hole space-time. We calculate the components of the stress tensor, renormalized
using the Hadamard form of the Green’s function, in the exterior region of this space-time. We then
specialize these results to the case of the ‘lukewarm’ Riessner-Nordstrom-de Sitter black hole.

PACS numbers: 04.62.+v

I. INTRODUCTION

In a recent paper, [1] henceforth referred to as Paper I,
we calculated the renormalized expectation value of the
stress energy tensor operator 〈T̂µν〉 on the horizons of a
spherically symmetric space-time. This calculation was
performed using the Hadamard renormalization proce-
dure [2, 3], which in our view provides the most direct
and logical approach to the renormalization problem for
practical calculations.

Building on the seminal paper by Howard [4], Ander-
son, Hiscock and Samuel [5] developed a method to com-

pute 〈T̂µν〉 in a general spherically symmetric space-time.
Their method relied on the renormalization countert-
erms, denoted by 〈T̂ ν

µ 〉DS , which were first calculated
by Christensen [6]. This calculation in turn relied on
the DeWitt series representation for the Green’s func-
tion, which is an asymptotic power series in inverse pow-
ers of the mass of the field m. This series is ill-defined
for the massless case and requires some severe modifica-
tion in order to be applicable to this case. In paper we
use the Hadamard renormalization procedure, which is
well-defined for both massive and massless fields, to de-
velop an alternate approach to that of [5]. In doing so we
renormalise each term in the definition of the stress ten-
sor independently making it very much easier to debug
numerical calculations.

This paper is organized as follows, in Sec. II we will
outline our new method of constructing the stress tensor.
The method leads to renormalized expressions which are
readily amenable to numerical computation. In Sec. III
we will outline the numerical method used to calculate
these expressions. The results of this method for the luke-
warm case are given in Sec. IV. Finally our conclusions
are presented in Sec. V. Throughout this paper we use
the sign conventions of Misner, Thorne and Wheeler [7]
and work in units in which 8πG = ~ = c = kB = 1.

∗Electronic address: cormac.breen@ucd.ie
†Electronic address: adrian.ottewill@ucd.ie

II. FORMAL CONSTRUCTION

In this section we present a new approach to the con-
struction of 〈T̂µν〉ren for a spherically symmetric black
hole space-time which has a Euclidean line element of
the form

ds2 = f(r)dτ2 +
1

f(r)
dr2 + r2dθ2 + r2 sin2 θdφ2. (2.1)

The standard approach in the literature is to consider
an expression for 〈T̂µν〉unren in its entirety, then subtract

off the renormalizing counterterms, 〈T̂µν〉DS , as calcu-
lated by Christensen [6], en masse to obtain a single ex-

pression for 〈T̂µν〉ren. This method was first developed
by Candelas and Howard for a conformal scalar field in
the Schwarzschild space-time [4, 8] and then extended to
case of scalar fields with arbitrary mass and coupling to
the gravitational field, in general spherically symmetric
space-times, by Anderson, Hiscock and Samuel [5].

We adopt an alternative approach. This approach be-
gins with the definition of the stress tensor given in Pa-
per I

〈T̂µν〉ren =
1

8π2
(τµν [WA] + 2v1g

µν) +Mµν , (2.2)

where τµν [WA] represents the coincidence limit of the
differential operator τµν

τµν = (1− 2ξ)g ν
ν′∇µ∇ν′

+ (2ξ − 1
2 )gµνg α

α′∇α′∇α
− 2ξ∇µ∇ν + 2ξgµν∇α∇α

+ ξ(Rµν − 1
2Rg

µν)− 1
2m

2gµν , (2.3)

acting on the regular part of the Hadamard form for the
Euclidean Green’s function GE(x, x′). Here

Mµν =
m2

16π2

{(
ξ − 1

6

) (
Rµν − 1

2g
µνR

)
− 3

8m
2gµν

}
,

(2.4)

and g α′

ν is a bivector of parallel transport, which acts to
parallel transport a vector at x′ to a vector at x.

The main idea of our method is that we consider the
contribution from each of the derivative terms and from
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GE(x, x′) to Eq. (2.2) individually. This involves calcu-
lating the mode sum expression for each of these quanti-
ties, as well as the corresponding renormalising subtrac-
tion terms. The latter quantity comes from consideration
of the singular part of Hadamard form of GE , which we
will discuss in Section II B, while the former may be ob-
tained from the mode sum expression, given in Eq. (2.7)
below, and will be the subject matter of Section II A. This
approach is, of course, completely equivalent to that of
Anderson et al. however, we feels it affords a somewhat
clearer and more tractable way of constructing 〈T̂µν〉ren.

A key issue in renormalisation, in particular when one
cannot solve the radial equation in closed form, is finding
a way of isolating the x → x′ divergences in the compo-
nents of 〈T̂µν〉unren which are to cancel with those con-
tained in the corresponding renormalisation subtraction
terms. For calculations on the horizons of the space-time,
radial separation turns out to be the most convenient
choice of point separation.

Indeed in paper I we made use of regularization via ra-
dial separation to calculate 〈T̂µν〉ren for a thermal state,
on the horizons of a spherically symmetric space-time. In
the region exterior to the black hole, excluding the im-
mediate vicinity of the horizons, temporal separation is
the favoured choice as angular separation generally leads
to very complicated expressions due to derivatives of the
Legendre function. We note here that temporal separa-
tion only makes sense in this region, as the Killing vector
∂/∂t become null on the horizons of the black hole and so
temporal sepatation cannot be used to calculate horizon
values.

We will now briefly outline the strategy employed in
the construction of the components of 〈T̂µν〉ren using
temporal point splitting before proceeding to describe
the details of the calculation. We follow the spirit of [5],
but with the differences in approach outlined previously.
Consider one component of 〈T̂µν〉ren,

[gµν
′
GE(x, x′);νν′ ]ren say (the square brackets de-

note that the coincidence limit has been taken and we
choose not to sum over ν′), this is formally given by
(with ε(= t− t′)→ 0)

[gµν
′
GE(x, x′);νν′ ]ren =

lim
ε→0

[
gµν

′
GE(x, x′);νν′ − gµν′

GEsing(x, x
′);νν′

]
, (2.5)

where x′p = xp + εδpt and gµν
′
GEsing(x, x

′);νν′ repre-
sents the renormalizing subtraction terms. Note that
here we follow the conventions of [5], by performing all
our derivatives in Lorentzian space, i.e. the derivatives in
Eqn (2.2) are taken with respect to x = (t, r, θ, φ). In the
case of temporal point separation the divergences of the
Green’s function manifest themselves as divergent mode
sums over n. In order to take this coincidence limit, we
write the ε → 0 divergences in gµν

′
GEsing(x, x

′);µν′ as
divergent sums over n, and then bring these sums inside
the mode sum over n.
We are then in a position to take the coincidence limit

yielding a finite expression which takes the form

[gµν
′
GE(x, x′);νν′ ]ren = [gµν

′
GE(x, x′);νν′ ]numeric

+ [gµν
′
GE(x, x′);νν′ ]analytic,

(2.6)

where [gµν
′
GE(x, x′);νν′ ]numeric consists of the coinci-

dence limit of the mode sum expression minus the di-
vergent sums over n contained in gµν

′
GEsing(x, x

′);νν′ ,

and [gµν
′
GE(x, x′);νν′ ]analytic contains the finite remain-

der terms from gµν
′
GEsing(x, x

′);νν′ . Note that we are
free to take the coincidence limit in any direction we
choose as W is smooth.

A. Unrenormalized Expressions

We begin with the mode sum expression for the un-
renormalized Euclidean Green’s function for a thermal
state, with temperature T = κ/2π, in a spherically sym-
metric space-time:

GE(x, x′) =

∞∑
n=0

F (n) cos(nκ (ετ ))

×
∞∑
l=0

(2l + 1)Pl(cos γ)pnl(r<)qnl(r>), (2.7)

where ετ = τ−τ ′,r< =min(r, r′), r> =max(r, r′), F (0) =
κ/8π2 and F (n) = κ/4π2, n > 0. Henceforth we choose
to set r> = r. pnl and qnl are the independent solutions
to the homogeneous version of this equation,

1

r2
d

dr

(
r2f

dχ

dr

)
−
(
n2κ20
f

+
l(l + 1)

r2
+m2 + ξR

)
χ

= 0 (2.8)

with pnl defined to be the solution which is regular on
the lower limit of the region under consideration, while
qnl is regular at the upper limit of the region. Cnl is fixed
by the Wronskian condition

Cnl

[
pnl

dqnl
dr
− qnl

dpnl
dr

]
= − 1

r2f
. (2.9)

Using this expression we will derive a formal expression
〈T̂µν〉ren for the Hartle Hawking state in a spherically
symmetric space-time.

The first step in our computation is to calculate the
required mode sum expressions constructed by action of
the appropriate covariant differentiations on Eq. (2.7).
Firstly considering two derivatives taken at x, since gµν

is diagonal it turns out that we only need to calculate
derivatives of the form gµµGE(x, x′);µµ (here µ is not
summed over). For the case of a derivative taken at either

point, gµν
′
GE(x, x′);µν′ , the situation is not so straight-

forward. To see this we consider the world function, σ
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(defined as half the square of the geodesic distance), for
temporal splitting, which can be written as an expansion
in ε (see Section II B for details):

σ = −1

2
ε2f − 1

96
ε4
(
ff ′2

)
+ ε6

(
− ff ′4

11520
− f2f ′2f ′′

1920

)
+O

(
ε7
)
.

(2.10)

Inspection of this expression shows that even though the
points are split in time, σ has components in the (t, r)
plane, due to the fact that the coefficients of the expan-
sion depend on r; hence we will have cross components
of gµν

′
in this plane. The components of the bivectors of

parallel transport are readily calculated from the defining
equation

σ;α′
gab′;α′ = 0; [gab′ ] = gab, (2.11)

and using the non-vanishing components of the connec-
tion

Γrrr = − f
′(r)

2f(r)
; Γrθθ = −rf(r); Γrφφ = −rf(r) sin2 θ;

Γrtt =
f(r)f ′(r)

2
Γθrθ = Γθθr =

1

r
; Γθφφ = − sin θ cos θ;

Γφrφ = Γφφr =
1

r
; Γφθφ = Γφφθ = cot θ; Γttr = Γtrt =

f ′(r)

2f(r)
.

(2.12)

These bivectors are then given as expansions in ε ≡ t− t′
[5]:

gtt
′

= − 1

f
− ε2f ′2

8f
+ ε4

(
− f ′4

384f
− 1

96
f ′2f ′′

)
+O

(
ε5
)

gtr
′

= −grt′ = −1

2
εf ′ + ε3

(
− 1

48
f ′3 − 1

48
ff ′f ′′

)
+O

(
ε4
)

grr
′

= f +
1

8
ε2ff ′2 +

1

384
ε4
(
ff ′4 + 4f2f ′2f ′′

)
+O

(
ε5
)

gθθ
′

=
1

r2
; gφφ

′
=

1

r2 sin2(θ)
. (2.13)

Hence gµν
′
GE(x, x′);µν′ possesses two off diagonal com-

ponents, namely gtr
′
GE(x, x′);tr′ and grt

′
GE(x, x′);rt′ .

Armed with these expressions we may now proceed to
calculate the unrenormalized expressions for the required
derivatives of the Green’s function in the partial coinci-
dence limit (r → r′, θ → θ′, φ → φ′). We choose to
denote a bitensor A(x, x′) evaluated in this partial co-
incidence limit by {A} and to drop the (x, x′) notation
for convenience. These expressions are straightforward
to derive and so we will just list the final results:

{GE} =

∞∑
n=0

F (n) cos(nκετ )

∞∑
l=0

(2l + 1)pnl(r)qnl(r),

(2.14)

{gttGE;tt} =

∞∑
n=0

F (n) cos(nκετ )

∞∑
l=0

(2l + 1)

×
(
f ′

2
pnl(r)

dqnl(r)

dr
− n2κ2

f
pnl(r)qnl(r)

)
,

(2.15)

{gtt′GE;tt′} =

− gtt′
∞∑
n=0

F (n)n2κ2 cos(nκετ )

∞∑
l=0

(2l + 1)pnl(r)qnl(r),

(2.16)

{gtr′GE;tr′} =

− igtr′
∞∑
n=0

F (n)nκ sin(nκετ )

∞∑
l=0

(2l + 1)
dpnl(r)

dr
qnl(r),

(2.17)

{grt′GE;rt′} =

igrt
′
∞∑
n=0

F (n)nκ sin(nκετ )

∞∑
l=0

(2l + 1)pnl(r)
dqnl(r)

dr
,

(2.18)

{grr′GE;rr′} =

grr
′

( ∞∑
n=0

F (n) cos(nκετ )

∞∑
l=0

(2l + 1)
dpnl(r)

dr

dqnl(r)

dr

)
,

(2.19)

{gθθGE;θθ} = {gφφGE;φφ} =
∞∑
n=0

F (n) cos(nκετ )

∞∑
l=0

(2l + 1)

(
f

r
pnl(r)

dqnl(r)

dr

− l(l + 1)

2r2
pnl(r)qnl(r)

)
, (2.20)

{gθθ′GE;θθ′} = {gφφ′
GE;φφ′} =

∞∑
n=0

F (n) cos(nκετ )

∞∑
l=0

(2l + 1

(
l(l + 1)

2r2
pnl(r)qnl(r)

)
.

(2.21)

Here we have made use of the relation ∂/∂t = i∂/∂τ .
Note that we have not calculated a mode sum expression
for {grrGE;rr}. This is not required, since as will be seen
in Section II C, [grrGE;rr]ren may be written in terms of
the other renormalized derivatives of the Green’s func-
tion.

It is well known that all of the sums over l above are
divergent [8]; this has to be a non-physical divergence
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as the points are still separated. This superfluous diver-
gence is just a reflection of the distributional nature of
the Green’s function. For our case, with temporal sepa-
ration, it may be removed by subtracting off appropriate
multiples of δ(τ − τ ′) which vanish when the points are
separated. These subtraction terms are easily calculated
for each of the above sums, and will be detailed in Sec-
tion III. For the sake of simplicity, we will not explicitly
incorporate them for the renormalization procedure at
this stage; instead when we write down a mode sum over
l, the subtraction term is included implicitly.

B. Renormalization Subtraction Terms

As was discussed earlier, the renormalisation subtrac-
tion terms for a particular component are obtained by
the action of the corresponding differential operator on
the singular part of the Hadamard form of GE , namely

Gsing(x, x
′) =

∆1/2

σ
+ V log(λσ). (2.22)

Here λ is a constant which is required to ensure that the
argument of the logarithm is dimensionless. Following
the convention of Christensen [6], we let λ = e2γµ2/2,
where µ = m for a massive field but is arbitrary when
the field is massless [5]. Following [5], we choose to set
µ = 1 for massless fields. We make use of a method due to
Ottewill and Wardell [9] to obtain the desired subtraction
terms, which we will now briefly outline.

We begin by expanding σ in terms of an expansion in
powers of the coordinate separation of x and x′, ∆xα:

σ =
1

2
gαβ∆xα∆xβ +Aαβγ∆xα∆xβ∆xγ

+Bαβγδ∆x
α∆xβ∆xγ∆xδ + . . . (2.23)

where the coefficients Aαβγ , Bαβγδ are given by

Aabc = −1

4
g(ab,c); (2.24)

Babcd = −1

3

(
A(abc,d) + gαβ

(
1

8
g(ab,|α|A|β|cd)

+
9

2
Aα(abA|β|cd)

))
. (2.25)

The higher order terms are easily calculated by hand or
by using Mathematica [10]. Here we have followed the
standard convention of denoting symmetrization of in-
dices by using brackets (e.g. (αβ)) and exclude indices
from symmetrization by surrounding them by vertical
bars (e.g. (α|β|γ)).

Wardell and Ottewill [11] have developed a Mathemat-
ica notebook which allows one to expand both ∆1/2(x, x′)
and V (x, x′) in a coordinate expansion in powers of the
coordinate separation of ∆xα, using Eq. (2.23), for arbi-
trary point splitting to high order. This notebook thus
allows one to obtain a series expansion of Gsing(x, x

′)

in powers of ∆xα, up to the required order to capture
both the divergence and the finite remainder terms of
Gsing(x, x

′) and its derivatives in the coincidence limit.
The results of this procedure for temporal point split-

ting are given in Appendix A.

C. Renormalization

We now proceed to obtain renormalized expressions for
each of the derivatives of the Green’s function required
to construct the renormalized stress tensor. As outlined
previously, we achieve this by writing the geometric x→
x′ divergences in the subtraction terms as divergent mode
sums over n and then taking the coincidence limit. To
do this we make use of the following identities, which all
follow from the first expression, found in [12]:

κ

∞∑
n=1

cos(nκετ )

nκ
= −1

2
ln(−κ2ε2) +O(ε2);

iκ

∞∑
n=1

sin(nκετ ) =
1

ε
+O(ε);

κ

∞∑
n=1

nκ cos(nκετ ) =
1

ε2
− κ2

12
+O(ε2);

iκ

∞∑
n=1

n2κ2 sin(nκετ ) =
2

ε3
+O(ε2)

κ

∞∑
n=1

n3κ3 cos(nκετ ) =
6

ε4
+

κ4

120
+O(ε2). (2.26)

It is at this stage of the calculation that the main
advantage of our method becomes apparent. In previ-
ous calculations [4, 5], these identities were applied to
the divergences contained in the Christensen subtraction
terms, resulting in a collection of divergent sums over n.
These sums then had to be distributed among the rele-
vant mode sum expressions in a manner which rendered
each sum convergent. The order of this distribution, how-
ever, was far from obvious. In fact, in order to ensure the
correct distribution, one had to first insert the WKB ap-
proximations to the radial solutions into the mode sum
expression, then perform these sums in the large n limit
to see which counter-terms were needed for each sum. For
our method, however, the order of distribution is imme-
diate, as the correct divergent n sum for each component
must come from that particular components renormaliz-
ing counter term.

We now employ this method to obtain a finite ex-
pression for each of the individual derivatives of the
Green’s function required to construct the renormal-
ized stress tensor. These calculations are repetitive, so
will show the details of the calculation of one compo-
nent, [GE ]ren, and simply list the results for the others.
We note here that for simplicity, we choose to perform
our calculations for a space-time with a constant Ricci
scalar R. Therfore we may define an effective field mass
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m̂ =
√
m2 + (ξ − 1/6)R. It is worth noting also that

space-times with a cosmological constant that are solu-
tions of Einstein’s vacuum equations, possess a constant
Ricci scalar.

Using the identities in Eq. (2.26) we may write the
subtraction terms GEsing in the form

8π2{GEsing} = −κ
∞∑
n=1

cos(nκετ )

(
2

f
nκ+

m̂2

nκ

)
− κ2

6f

+
m̂2

2
ln

(
λf

2κ2

)
− f ′′

12
+
f ′2

24f
− f ′

6r
.

(2.27)

Hence we can write down an expression for [GE ]ren for
which the coincidence limit can now be readily taken:

[GE ]ren = lim
ετ→0

{
κ

4π2

∞∑
n=1

cos(nκετ )

×
( ∞∑
l=0

(2l + 1)pnlqnl +
1

f
nκ+

m̂2κ

2nκ

)

+
κ

8π2

∞∑
l=0

(2l + 1)p0lq0l +
κ2

48π2f
− m̂2

16π2
ln

(
λf

2κ2

)
+

f ′′

96π2
− f ′2

192π2f
+

f ′

48π2r

}
. (2.28)

We may now simply take the coincidence limit yielding
the result

[GE ]ren = [GE ]numeric + [GE ]analytic, (2.29)

where

[GE ]numeric =
κ

4π2

∞∑
n=1

( ∞∑
l=0

(2l + 1)pnlqnl +
1

f
nκ+

m̂2

2nκ

)

+
κ

8π2

∞∑
l=0

(2l + 1)p0lq0l,

[GE ]analytic =
κ2

48π2f
− m̂2

16π2
ln

(
λf

2κ2

)
+

f ′′

96π2

− f ′2

192π2f
+

f ′

48π2r
. (2.30)

Applying this procedure to the other components yields
the results:

[grt
′
GE;rt′ ]ren = [gtr

′
GE;tr′ ]ren = 0, (2.31)

[gtt
′
GE;tt′ ]numeric =

κ

4π2f

∞∑
n=1

[
n2κ2

∞∑
l=0

(2l + 1)pnl(r)qnl(r) +
n3κ3

f
+
m2

2
nκ− Ltt′

nκ

]

[gtt
′
GE;tt′ ]analytic = − κ4

480π2f2
+
m̂2κ2

96π2f
+

Ltt′

8π2f
ln

(
λf

2κ2

)
+

Ftt′

8π2f
, (2.32)

[grr
′
GE;rr′ ]numeric =

κf

4π2

∞∑
n=1

[ ∞∑
l=0

(2l + 1)
dpnl(r)

dr

dqnl(r)

dr
− n2κ2

3f3
−
(
f ′′

6f2
− f ′2

3f3
+
m2

2f2

)
nκ+

Lrr′

nκ

]

+
κf

8π2

∞∑
l=0

(2l + 1)
dp0l(r)

dr

dq0l(r)

dr
,

[grr
′
GE;rr′ ]analytic =

κ4

1440π2f2
− κ2

96π2

(
f ′′

3f
− 2f ′2

3f2
+
m2

f

)
− f Lrr′

8π2
ln

(
λf

2κ2

)
− f Frr′

8π2
, (2.33)

[gθθ
′
GE;θθ′ ]numeric =

κ

4π2

∞∑
n=1

[ ∞∑
l=0

(2l + 1)
l(l + 1)

2r2
pnl(r)qnl(r)−

1

3f2
n3κ3 − Qθθ′

2
nκ+

Lθθ′

nκ

]

+
κ

16π2r2

∞∑
l=0

(2l + 1) l(l + 1)p0l(r)q0l(r),

[gθθ
′
GE;θθ′ ]analytic =

κ4

1440π2f2
− Qθθ′κ

2

96π2
− Lθθ′

8π2
ln

(
λf

2κ2

)
− Fθθ′

8π2
, (2.34)
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[gttGE;tt]numeric =
κf ′

8π2

∞∑
n=1

[ ∞∑
l=0

(2l + 1)pnl(r)
dqnl(r)

dr
− f ′

2f2
nκ

]
+

κf ′

16π2

∞∑
l=0

(2l + 1)p0l(r)
dq0l(r)

dr
− [gtt

′
GE;tt′ ]numeric,

[gttGE;tt]analytic =
κ4

480π2f2
−
(
m2

f
+
f ′2

2f2

)
κ2

96π2
− Ltt

8π2
ln

(
λf

2κ2

)
− Ftt

8π2
. (2.35)

[gθθGE;θθ]numeric =
2f

f ′r

(
[gttGE;tt]numeric + [gtt

′
GE;tt′ ]numeric

)
− [gθθ

′
GE;θθ′ ]numeric,

[gθθGE;θθ]analytic = − κ4

1440π2f2
− Qθθκ

2

96π2
− Lθθ

8π2
ln

(
λf

2κ2

)
− Fθθ

8π2
. (2.36)

With

Ltt′ = − f

1440r4
{
r4f ′′

(
f ′′ + 60m̂2

)
+ 4r2f ′2 − 2r3f ′

(
rf ′′′ + 2f ′′ − 60m̂2

)
− 4rf

(
2f ′ + r

(
r2f ′′′′ + 3rf ′′′ − f ′′

))
+4f2 − 4

(
45m̂4r4 + 1

)}
,

Ftt′ =
1

2880r4f

{
3r4f ′4 − 12r4ff ′2

(
f ′′ + 5m̂2

)
+ 4f2

(
r2
(
3r2f ′′

(
f ′′ − 30m̂2

)
− 4f ′2

+rf ′
(
9rf ′′′ + 28f ′′ − 180m̂2

))
+ 270m̂4r4 + 6

)
+ 24rf3

(
2f ′ + r

(
r2f ′′′′ + 3rf ′′′ − f ′′

))
− 24f4

}
. (2.37)

Lrr′ =
1

1440r4f

{
r4f ′′

(
f ′′ + 60m̂2

)
+ 4r2f ′2 − 2r3f ′

(
rf ′′′ + 2f ′′ − 60m̂2

)
+ 4rf (r (rf ′′′ + f ′′)− 2f ′)

+4f2 − 4
(
45m̂4r4 + 1

)}
,

Frr′ =
1

2880r4f3
{

41r4f ′4 − 4r4ff ′2
(
26f ′′ + 15m2

)
+ 4f2

(
10r4f ′′

(
f ′′ + 9m2

)
+ r3f ′

(
5rf ′′′ − 24f ′′ + 60m2

)
−90m4r4 − 2

)
− 8rf3

(
26f ′ + r

(
7r2f ′′′′ + 15rf ′′′ − 25f ′′

))
+ 8f4

}
. (2.38)

Qθθ′ =
1

6r2ε2f2
(
−r2f ′2 + f

(
r2f ′′ + 2rf ′ + 6m̂2r2 + 2

)
− 2f2

)
Lθθ′ = − 1

1440r4
{
r4f ′′2 + 4r2f ′2 − 2r3f ′

(
rf ′′′ + 2f ′′ + 60m̂2

)
− 2rf

(
4f ′ + r

(
r2f ′′′′ + 2rf ′′′ − 2f ′′ + 60m̂2

))
+4f2 + 180m̂4r4 + 120m̂2r2 − 4

}
,

Fθθ′ =
1

2880r4f2
{

11r4f ′4 − 8r2f3 (r (9f ′′′ + rf ′′′′) + 16f ′′)− 2r2ff ′2
(
17r2f ′′ + 10rf ′ + 30m̂2r2 + 10

)
+4f2

(
90m̂4r4 − 2

)
+ 8f4

+4f2
(
r
(
5rf ′′

(
r2f ′′ + 6m̂2r2 + 2

)
− 13rf ′2 + f ′

(
5r3f ′′′ + 14r2f ′′ + 120m̂2r2 + 20

)))}
. (2.39)

Ltt =
Ltt′

f
,

Ftt =
1

2880r4f2
{
−27r4f ′4 + 12r4ff ′2

(
4f ′′ + 25m̂2

)
+ 4f2

(
3
(
r4f ′′

(
f ′′ − 30m̂2

)
+ 90m̂4r4 + 2

)
+ 26r2f ′2

−2r3f ′
(
3rf ′′′ + f ′′ + 90m̂2

))
+ 24rf3

(
2f ′ + r

(
r2f ′′′ + 3rf ′′′ − f ′′

))
− 24f4

}
. (2.40)

Qθθ =
f ′

rf
−Qθθ′ ; Lθθ = −Lθθ′ , (2.41)

Fθθ =
1

2880r4f2
{
−11r4f ′4 + 2r2ff ′2

(
17r2f ′′ − 20rf ′ + 30m̂2r2 + 10

)
+ 4f2

(
−5r2f ′′

(
r2f ′′ + 6m̂2r2 + 2

)
+13r2f ′2 + rf ′

(
−5r3f ′′′ + 16r2f ′′ + 60m̂2r2 − 20

)
+ 90m̂4r4 + 2

)
+8rf3

(
30f ′ + r

(
r2f ′′′′ − 6rf ′′′ − 14f ′′

))
− 8f4

}
. (2.42)
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The construction of [grrGE;rr]ren follows immediately from the other components. To see this we exploit the fact
that [W ] (the coincidence limit of the regular part of the Hadamard expansion for GE) satisfies the inhomogeneous
wave equation [3]

(�−m2 − ξR)[W ] = −6v1, (2.43)

where for a static spherically symmetric Ricci-constant space-time v1 is of the form

v1 = 1
720RabcdR

abcd − 1
720RabR

ab +
m̂4

8

=
1

1440r4
{
r4f ′′2 − 8f (rf ′ + 1) + f ′

(
8r − 4r3f ′′

)
+ 4f2 + 180m̂4r4 + 4

}
. (2.44)

Now since [grrGE;rr]ren = [grrW;rr] by definition, we have the result that

[grrGE;rr]ren = [grrGE;rr]numeric + [grrGE;rr]analytic, (2.45)

where

[grrGE;rr]numeric = −[gttGE;tt]numeric − 2[gθθGE;θθ]numeric + (m2 + ξR)[GE ]numeric

[grrGE;rr]analytic = −[gttGE;tt]analytic − 2[gθθGE;θθ]analytic + (m2 + ξR)[GE ]analytic −
3v1
4π2

. (2.46)

The extension to non-Ricci constant space-times is
straightforward and results in an extra 1/nκ contribu-
tion to the sum over n from the renormalization counter-
terms (proportional to R′). We choose not to pursue
this extension here as we are interested in solutions to
Einstein’s equations.

D. Formal Expressions

In static, spherically symmetric space-times, states
respecting the same symmetries have a stress tenor
〈T̂µν〉ren, which is diagonal. We may now write down

formal expressions for the diagonal elements of 〈T̂µν〉ren
in the following manner:

〈T̂µν 〉ren = 〈T̂µν 〉numeric + 〈T̂µν 〉analytic (2.47)

where (not summing over ν)

〈T̂ νν〉numeric = 2( 1
2 − ξ)gνν

′
[GE;νν′ ]numeric

+ (2ξ − 1
2 )[gαα

′
GE;αα′ ]numeric − 2ξ[gννGE;νν ]numeric

+ 2ξ[gααGE;αα]numeric + ξ(Rνν − 1
2R)[GE ]numeric

− m2

2
[GE ]numeric, (2.48)

and

〈T̂ νν〉analytic =

2( 1
2 − ξ)gνν

′
[GE;νν′ ]analytic + (2ξ − 1

2 )[gαα
′
GE;αα′ ]analytic

− 2ξ[gν,νGE;ν,ν ]analytic + 2ξ[gααGE;αα]analytic

+ ξ(Rνν − R
2 )[GE ]analytic −

m2

2
[GE ]analytic +

2v1
8π2

+Mν
ν , (2.49)

with

Mν
ν =

m2

16π2

{(
ξ − 1

6

)(
Rνν −

1

2
R

)
− 3

8
m2

}
. (2.50)

The components of the Ricci tensor are given by

Rtt = Rrr = −f
′′

2
− f ′

r
,

Rθθ = Rφφ =
1

r2
− f

r2
− f ′

r
. (2.51)

If we were able to solve the radial equation (2.8) in closed
form and perform the required mode sums we would now
possess everything required to calculate each component
of 〈T̂µν〉ren. Unfortunately, in general, the radial equation
must be solved numerically, adding more complexity to
the calculation. This will be the subject matter of the
Section III

E. Conservation Equations

In order for the expressions we have just obtained for
〈T̂µν〉ren to be correct they must, by Wald’s axioms [2],

satisfy the conservation equations, ∇µ〈T̂µν〉ren = 0. Us-
ing the symmetries of the space-time and Eq. (2.12) it is
straightforward to show that the only equation which is
not identically satisfied is:

∇µ〈T̂µr〉ren = 〈T̂µr〉ren,µ + 〈T̂αr〉renΓµαµ − 〈T̂µα〉renΓαrµ
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which, again using Eq. (2.12), reduces to

∇µ〈T̂µr〉ren = 〈T̂ rr〉ren,r +
2

r
〈T̂ rr〉ren +

f ′

2f
(〈T̂ rr〉ren

− 〈T̂ tt〉ren)− 2

r
〈T̂ θθ〉ren. (2.52)

At this juncture we are in a position to check that the
analytic components of the stress tensor satisfy the above
equation. To do this we substitute the relevant expres-
sions obtained for the analytic components obtained in
Section II C into Eq. (2.49) and then in turn substitute
these into the conservation equation (2.52). Due to the
algebraic complexity of the expression involved, this pro-
cedure is most easily done in a Mathematica notebook
and the result is that the right hand side of Eq. (2.52)
vanishes. Therefore we may conclude that the analytic
contribution to 〈T̂µν〉ren is a conserved quantity, i.e.

∇µ〈T̂µν〉analytic = 0. (2.53)

III. NUMERICAL CALCULATION FOR THE
LUKEWARM BLACK HOLE

In this section we describe the details of the numerical
calculations required in order to calculate both 〈φ2〉ren
and 〈T̂µν〉ren in the exterior region, excluding the hori-
zon, of a lukewarm black hole. As described in the pre-
vious chapter, the radial equation cannot, in general, be
solved in closed form for most space-times of interest.
While it may be solved in special cases, for example the
n = 0 mode radial equation in Schwarzschild space-time,
when the quantum field is massless, reduces to Legen-
dre’s equation [13]; in general, however, one has to resort
to numerical integration to find the desired solutions. We
begin by introducing the lukewarm black hole space-time,
we then consider the numerical integration of the radial
equation, before moving on the details of calculating the
relevant mode sums.

A. Lukewarm Black Holes

Lukewarm black holes are a special class of Reissner-
Nordstrom-de Sitter space-times with (Euclidean) line el-
ement given by Eq. (2.1) with metric function

f(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
, (3.1)

where M , Q are the mass and charge of the black hole re-
spectively, and Λ is the (positive) cosmological constant,

with Q = M . For 4M <
√

3/Λ we have three distinct
horizons, a black hole event horizon at r = rh, an inner
Cauchy horizon at r = r−, and a cosmological horizon at

r = rc, where

r− =
1

2

√
3/Λ

(
−1 +

√
1 + 4M

√
Λ/3

)
. (3.2a)

rh =
1

2

√
3/Λ

(
1−

√
1− 4M

√
Λ/3

)
. (3.2b)

rc =
1

2

√
3/Λ

(
1 +

√
1− 4M

√
Λ/3

)
. (3.2c)

The fourth root of f is negative and hence nonphysical.
While the event horizon is formed by the gravitational
potential of the black hole, the cosmological horizon is
formed as a result of the expansion of the universe due
to the cosmological constant [14]. An observer located
between the two horizons is causally isolated from the
region within the event horizon, as well as from the re-
gion outside the cosmological horizon.
If, as the evidence seems to suggest, the universe pos-
sesses a cosmological constant [15], then it is more natural
to consider a black hole configuration which is asymptot-
ically de Sitter than one which sits in an asymptotically
flat universe. Also given that de Sitter space is awash
with radiation [14], it seems rather natural that a black
hole in a de Sitter background would be most comfort-
able in a final configuration in which its event horizon is
at the same temperature as the surrounding bath. This
state of affairs is realized in the lukewarm case and so
the study of such a black hole configuration is well mo-
tivated. In fact the lukewarm case has attracted much
interest recently, as evidenced in [16–18].
We shall confine our attention to a single exterior region
r ∈ [rh, rc] which has a regular Euclidean section with
topology S2 × S2 [19].

B. Numerical Integration of the Radial Equation

In this section we consider the numerical integration
of the equation

dS

dr

(
r2f

dS

dr

)
−
(
n2κ20
f

+
l(l + 1)

r2
+m2 + ξR

)
S = 0,

(3.3)

whose solutions will have a Wronskian satisfying

Cnl

[
pnl

dqnl
dr
− qnl

dpnl
dr

]
= − 1

r2f
(3.4)

for a lukewarm black hole space-time as described in Sec.
III A. In this case, Eq. (3.3) has two regular singular
points, at the event and cosmological horizons, which,
henceforth, we will denote by rh and rc, respectively. We
apply the standard method described in Sec. V of [17]
to find the initial conditions for pnl and qnl about rh and
rc respectively.

We then utilize the NDSolve algorithm in Mathematica
to perform our integrations, with one important modifi-
cation. NDSolve makes use of an interpolating function
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to give a solution which is defined continuously on the
range of integration. This interpolating function, how-
ever, introduces large errors in the calculation and re-
quires a computationally prohibative high degree of pre-
cision in order to gain accurate results. To avoid this
issue we force NDSolve to calculate the desired solution
on a defined grid. We do this by splitting our integra-
tion range into a grid, performing the integration between
successive points and only storing the end point values.
In particular we solve Eq. (3.3) on a evenly spaced grid
of 1000 points to a precision of 25 decimal places. This
procedure allows us to obtain the Wronskian of our solu-
tions Cnl to be constant to at least 10−21Cn,l at all grid
points for 0 ≤ l ≤ 100, 0 ≤ n ≤ 7.

Finally we choose to express all the dimensional quan-
tities (M,Q, r,m) in units of L =

√
3/Λ (where Λ is

the cosmological constant), which has the dimensions of
length.

C. Mode Sum Calculations Strategy

As was discussed in Section II A in order to ensure
convergence of the mode sums over l one must subtract
off multiples of the delta function, representing the di-
vergent behaviour of the summands. These subtraction
terms however, calculated in Section III D, only render
the mode sums O(1/l2). Therefore we would require an
almost computationally intractable number of modes to
achieve an accurate result. To circumvent this issue, we
subtract off a large l approximation to the summand in-
side the sum, thereby rendering the sum rapidly conver-
gent. We then add back on the sum of the approximation.
Now this sum of course also converges like 1/l2, but if we
have a closed form expression for the approximation we
are able to transform this sum into rapidly convergent
integrals which can be calculated with great accuracy.

The approximation which is most commonly used for
such calculations [4, 5, 16] is the WKB approximation,
as it is in a relatively simple form. However, as is well
known [5, 16] the WKB approximation suffers from issues
with uniformity near the horizons, and as a result it fails
to capture the correct behaviour as these horizons are
approached, resulting in a lack of sufficient convergence
in the numerics near the horizon.

Therefore, the strategy we adopt is as follows:

• For the mode sums required to calculate 〈T̂µν〉ren
we use the WKB approximation for all n modes.

• We only use these numerical results up to a dis-
tance from each horizon where the convergence in
the numerical mode sums is still at a reasonable
level.

• We then match this last numerical point to the ex-
act horizon values calculated in Paper I.

In practice we found that the numerical calculations were
of sufficient accuracy up to a distance of 1 grid point from

each horizon, so we simply took the next grid point on
each end of our region to be the horizon values calculated
in Paper I.

D. WKB Contribution

We adopt the WKB approach of Howard [4], that is,
we find an approximation to the non-linear equation that
Cnlpnlqnl satisfies. Letting βnl(r) = Cnlpnl(r)qnl(r) this
equation takes the form,

βnl =
1

2χ

[
1− 1

χ2

(
r2f

β
1/2
nl

d2(r2fβ
1/2
nl )

dr2
− η
)]−1/2

,

(3.5)

where

χ =
√
n2κ2r4 + (l + 1

2 )2r2f,

η = (m2 + ξR)fr4 − 1
4fr

2. (3.6)

We desire that our WKB approximation be valid for large
n as well as for large l so that we may cancel the renor-
malization subtraction terms, which are given in terms of
divergent sums over n. Hence, we look for a large χ ap-
proximation to βnl, i.e. a large l fixed n or a large n fixed
l approximation. To keep track of orders it is convenient
to replace χ by χ/ε, where ε is an expansion parameter
which we will ultimately set to unity at the end of our
calculation. We then write

βnl = β0nlε+ β1nlε
2 + ..., (3.7)

and expand Eqn (3.5) for small ε. To balance both sides
of this equation to lowest order we must have that

β0nl =
1

2χ
. (3.8)

Substitution of this expression into the coefficient of ε2

yields an expression for β1nl, which in turn gives an ex-
pression for β2nl and so on. We may then express each
βinl coefficient in the expansion (3.7) in the form

βinl =

2i∑
j=0

Ai,j
χ2i+2j+1

. (3.9)

The Aij for the first 2 orders are given in Table I, the
higher order coefficients have quite long expressions but
are easily calculable.

In order to calculate the mode sums required to calcu-
late the stress tensor, we also require approximations to
the products

Cnlpnl
dqnl
dr

; Cnl
dpnl
dr

dqnl
dr

. (3.10)



10

A0,0
1
2

A1,0
1
64

(
r4f ′2 − 4r3f (rf ′′ + 3f ′)− 4r2f2 − 16η

)
A1,1

1
32
r6n2κ2

(
−3r2f ′2 + 2rf (rf ′′ + 4f ′)− 8f2

)
A1,2

5
64
r10n4κ4 (rf ′ − 2f)

2

TABLE I: WKB expansion coefficients for a spherically sym-
metric space-time

We can obtain the first of these expressions by exploiting
the Wronskian condition on pnl and qnl

Cnl

[
pnl

dqnl
dr
− qnl

dpnl
dr

]
= − 1

r2f
, (3.11)

and the definition of βnl to give the identity

Cnlpnl
dqnl
dr

=
1

2

(
dβnl
dr
− 1

r2f

)
. (3.12)

The second expression can be obtained by consideration
of

d2βnl
dr2

= 2Cnl
dpnl
dr

dqnl
dr

+ Cnlpnl
d2qnl
dr2

+ Cnlqnl
d2pnl
dr2

.

(3.13)

The radial equation allows us to replace the second
derivatives of pnl and qnl and together with the definition
of βnl we obtain the following identity:

Cnl
dpnl
dr

dqnl
dr

=
1

2

d2βnl
dr2

+
1

2

(
2

r
+
f ′

f

)
dβnl
dr

−
(
n2κ2

f2
+
l(l + 1)

r2f
+
m2 + ξR

f

)
βnl. (3.14)

We may now obtain approximations to the quantities
(3.10) by inserting our expansion for βnl, to the required
order, into the above identities. The error in the numer-
ical integration of the radial equation increases with in-
creasing l and, most severely, with increasing n; above
n = 7 the error in the consistency of Cn,l increases
rapidly. If we choose to subtract the WKB approxima-
tion to the order which renders the sums over l to con-
verge like l−8 and those over n like n−7, we need only
sum up to a maximum of l = 100 and n = 7 to give
an answer accurate to 10−6. To obtain this convergence
we require at most a fourth order WKB approximation.
(For many of the sums a third order approximation suf-
fices, only when we have an l3 or n3 factor is the fourth
order approximation necessary.) We may also improve
upon this accuracy by using the Levin u transform (see
[20] for a detailed discussion of this transform), to speed
up the convergence of the sums further. We now turn our
attention to the calculation of the sums over n and l of

the WKB approximation. We will use the transformation

∞∑
l=0

F (l) =

∫ ∞
0

F (λ− 1
2 )dλ−R

[∫ ∞
0

2F (iλ− 1
2 )

1 + e2πλ
dλ

]

+I
[
P
∫ ∞
− 1

2

F (l) cot(πl)

]
,

(3.15)

to perform the sum over l. Here λ = l + 1/2, R, I
and P denote the real, imaginary and principal parts
respectively. We note here that Eq. (3.15) comprises of
the standard Wastson Sommerfield formula together with
an extra term which only contributes if F (l) takes on
complex values for real l.

To perform the required sums over l of the WKB ap-
proximation we note that, in virtue of Eqn (3.9), each
sum takes one of the following forms:

∞∑
l=0

2λgi(r, n)

(n2κ2r4 + λ2r2f)
1
2+i
− Sg, (3.16)

∞∑
l=0

2λ(λ2 − 1
4 )hi(r, n)

(n2κ2r4 + λ2r2f)
1
2+i
− Sh, (3.17)

where Sg and Sh represent the subtraction terms which
are required to make each sum converge. We will consider
sums of the first type; the same argument applies to those
of the second form Eqn (3.17) above. Using Eq. (3.15)
we can write

∞∑
l=0

2λgi(r, n)

(n2κ2r4 + λ2r2f)
1
2+i
− Sg =

∫ ∞
0

 2λgi(r, n)

(n2κ2r4 + λ2r2f)
1
2+i
− Sg

 dλ

+R

∫ ∞
0

4λ

1 + e2πλ
gi(r, n)

(n2κ2r4 − λ2r2f)
1
2+i

dλ

 . (3.18)

In the terminology of Eqn (3.15), the function F (l) for
this case is always real for real values of l so we may drop
the extra term. Note that we drop the contribution of
the subtraction term to the second integral above as it
would be purely imaginary.

We consider the real integral first. Introducing the

quantity a = nκr/f
1
2 and changing variable from λ to

q = λ/a we may recast the real integral in the form

IR =
a

rf
1
2

∫ ∞
0

 2qgi

(r2fa2)i(1 + q2)
1
2+i
− rf1/2Sg

 dq.

(3.19)
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Performing the integration gives

IR =
a

rf
1
2

 lim
q→∞

2gi
(1 + q2)

1
2−i

(r2fa2)i(1− 2i)
− qrf1/2Sg


− 2

(r2fa2)i(1− 2i)
gi

]
.

(3.20)

Now it is clear from the above expression that in order
for the integral to be finite we require the subtraction
term to satisfy the relation,

Sg =


2g0
rf1/2

i = 0.

0 i > 0.
(3.21)

Correspondingly for sums of the form Eq. (3.17), the
above relation takes the form

Sh =



h0
rf1/2

(
2a2q2 − a2 − 1

2

)
i = 0.

2h1
r2f

i = 1.

0 i > 1.

(3.22)

Finally we arrive at the result

IR =
a1−2i

(rf1/2)1+2i

2gi
(2i− 1)

. (3.23)

Using Eqns. (3.21) and (3.22) one can deduce the form
of the large l subtraction terms required for each sum
in 〈T̂µν〉ren, which we denote by SG, SGrr′ and so forth.
These are given in Table II.

SG
1

rf1/2

SGtt′
1

rf1/2

SGtt −
1

4r2f3/2

(
rf ′ + 4λ

√
f + 2f

)
SGrr′

1

32r3f5/2

(
r2
(
3f ′2 − 16n2κ2)− 4f(r2(1− 4ξ)f ′′

+(r − 16rξ)f ′ + 4m2r2 + 8λ2 + 8ξ − 1) + 4(8ξ + 1)f2

)

SGθθ′
1

32rf3/2

(
r2
(
f ′2 − 16n2κ2)− 4f(r2(1− 4ξ)f ′′

+r(3− 16ξ)f ′ + 4m2r2 − 8λ2 + 8ξ + 1) + 4(8ξ − 1)f2

)

TABLE II: Large l subtraction terms

It is now incumbent upon us to calculate the second
integral in Eq. (3.18),

IC = R
[∫ ∞

0

4λ

1 + e2πλ
gi(r, n)

(n2κ2r4 − λ2r2f)1/2+i
dλ

]
.

(3.24)

Once more, changing independent variable from λ to q
allows us to write this integral in the form

IC = R
[

a

rf
1
2

∫ ∞
0

ĝi
(1− q)1/2+i dq

]
. (3.25)

For sums of the type Eq. (3.17) we obtain an equivalent

expression as above with ĝ replaced by ĥ where

ĝi =
4aq

1 + e2πaq
gi

(r2fa2)i(1 + q)1/2+i
. (3.26)

ĥi = −4aq(a2q2 + 1
4 )

1 + e2πaq
hi

(r2fa2)i(1 + q)1/2+i
. (3.27)

Inspection of Eq. (3.25) enables us to conclude that the
integral possesses branch points at q = ±1, so we must
introduce a cut along the plane between [−1, 1].

k0

Ca

Cb

Cc

1

FIG. 1: The contour of integration for IC .

We now split the integral into 3 integrals along the con-
tours Ca, Cb and Cc, shown in Fig. 1. Thus our variable q
to runs from 0→ 1− ε on Ca and from 1 + ε→∞ on Cc.
It is clear that the integral along Cc is purely imaginary
and so does not contribute to the final answer. Both the
integral along Ca and along Cb will have a contribution
which will be divergent in the ε→ 0 limit. In Appendix
B we show that these contributions cancel out leaving a
answer which is finite in the ε→ 0 limit, given by:

IC =
a

rf
1
2

i−1∑
j=0

(−1)j ĝ
(j)
i (1)

j!(j − i+ 1
2 )

+

∫ 1

0

ĝi(q)−
∑i−1
j=0

(−1)j
j! ĝ

(j)
i (1)(1− q)j

(1− q)i+
1
2

 . (3.28)
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This result is equally valid if ĝ is replaced by ĥ defined
by Eq. (3.27).

Now while Eq. (3.28) is a perfectly finite expression,
in practice we must calculate the integral numerically,
which will run into accuracy errors near q = 1 despite
being finite there. This is due to the divergent nature
of the denominator in the integral, which for large i will
diverge rapidly, so that inevitable round-off errors in the
denominator will lead to potentially large errors in the
numerical integration. To avoid these errors we integrate
by parts i− 1 times (see Appendix B for details) leading
to the following expression for IC :

IC =
a

rf
1
2

[
− gi(0)

(i− 1
2 )

+
g′i(0)

(i− 1
2 )(i− 3

2 )
+ ...

+(−1)i−1
gii(0)

(i− 1
2 )(i− 3

2 )....( 1
2 )

+2
(−1)i

(i− 1
2 )(i− 3

2 )....( 1
2 )

(
g
(i)
i (0)

+

∫ 1

0

g
(i+1)
i (q)(1− q)1/2

)]
, (3.29)

which may now be easily calculated numerically. Again,

the corresponding result, when ĝ is replaced by ĥ, is also
valid. Finally we note that for the n = 0 mode, from

Eq. (3.6), χ = (l + 1/2)
√
r2f , therefore each sum over l

is of the simple form:

H(r)

∞∑
l=0

(l + 1/2)−2j . (3.30)

where j is an integer > 0 and H(r) is some function of
r. Due to their simplicity, these sums may be directly
evaluated with out recourse to the Watson-Sommerfeld
method, using [12, 21]

∞∑
l=0

(l + 1/2)−2j = −(1− 22n)ζ(2n)

= − (1− 22n)22n−1

(−1)n−1(2n!)
B2n. (3.31)

where ζ is Riemann’s Zeta function and B2n are the
Bernoulli numbers.

At this juncture it is useful to take stock of our progress
thus far. We are now in a position to calculate the sum
over l and n of the full radial solutions minus their WKB
approximations to a reasonable accuracy (≈ 10−6). We
may also perform the sum over l of the WKB approxima-
tion using the integration method outlined above. There-
fore all that remains for us to calculate in this section, is
the sum over n of these WKB integrals. We use the Levin
u transform to perform this sum over n. We calculate the
first 20 n values and then apply the Levin u transform
to these values to give a final value for the sum.

We now have all tools required to calculate both
〈φ2〉ren and 〈T̂µν〉ren numerically in the exterior region,

excluding the immediate vicinity of the horizons. Plots
of the results combined with the exact hoirzon values
calculated in Paper 1, can be found in the next section.

IV. RESULTS

A. Plots of 〈T̂ µ
ν 〉ren

In Fig. 2 we plot the components of the stress tensor,
calculated on a grid of 1000 points, for a massless con-
formally coupled scalar field in the exterior region of a
lukewarm black hole with M = Q = 0.1L. We note here

that due to spherical symmetry 〈T̂ θ
θ 〉ren = 〈T̂ φ

φ 〉ren, so

we do not include a plot of the latter. 〈T̂ µ
ν 〉ren is plotted

(r − rh)
L

(r − rh)
L 〈T t

t 〉ren

〈T t
t 〉numeric

〈T t
t 〉numeric

〈T t
t 〉analytic

〈T t
t 〉ren

(r − rh)
L

Cosmological Horizon

〈T r
r 〉ren

〈T r
r 〉numeric

〈T r
r 〉analytic

Cosmological Horizon

(r − rh)
L

〈T θ
θ 〉ren

〈T θ
θ 〉numeric

〈T θ
θ 〉analytic

(r − rh)
L

0.2 0.4 0.6

!0.3

!0.2

!0.1

0.1

0.2

0.3

0.4

Event Horizon

(r − rh)
L

〈T t
t 〉ren

〈T r
r 〉ren

〈T θ
θ 〉ren

〈T µ
ν 〉ren

Components of

〈T t
t 〉ren

〈T r
r 〉ren

〈T θ
θ 〉ren

Cosmological
Horizon

FIG. 2: A plot of the non-zero elements of 〈T̂ µ
ν 〉ren in the

entire exterior region.

on the first 100 points on the grid plus the event horizon
value in Fig. 3, while 〈T̂ µ

ν 〉ren is shown on the last 100
viable grid points plus the cosmological horizon value in
Fig. 4. In Figs. 3 and 4 we see the equality of 〈T̂ r

r 〉ren

(r − rh)

L

Event Horizon

Event Horizon

Components of

!0.3

!0.2

!0.1

0.0

0.1

0.2

0.3

0.4

〈T t
t 〉ren

〈T r
r 〉ren

〈T θ
θ 〉ren

〈T µ
ν 〉ren

FIG. 3: A plot of the non-zero elements of 〈T̂ µ
ν 〉ren in the

region of the event horizon.

and 〈T̂ t
t 〉ren on both horizons as derived in Paper 1.
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Event Horizon

!0.00015

!0.00010

!0.00005

0.00000

〈T t
t 〉ren

〈T r
r 〉ren

〈T θ
θ 〉ren

Components of

〈T µ
ν 〉ren

Cosmological Horizon

FIG. 4: A plot of the non-zero elements of 〈T̂ µ
ν 〉ren in the

region of the cosmological horizon.

B. Conservation Equations

In the Section II E we demonstrated that the analytical
contribution to 〈T̂µν〉ren is a conserved quantity. We are
now in a position to perform the same analysis on the
numerical contribution for a lukewarm black hole space-
time. The conservation equation is given by

∇µ〈T̂µr〉ren = 〈T̂ rr〉ren,r +
2

r
〈T̂ rr〉ren

+
f ′

2f
(〈T̂ rr〉ren − 〈T̂ tt〉ren)− 2

r
〈T̂ θθ〉ren.

(4.1)

As we have performed all of our numerical calculations
on a grid we see that in order to construct the quan-
tity 〈T̂ rr〉ren,r, we must employ a numerical derivative
scheme. We choose to implement a finite difference
scheme to calculate the derivative. Mathematica has a in-
built finite difference algorithm which we employ. Unfor-
tunately, calculating 〈T̂ rr〉ren,r using this method is prone
to error, in particular near the horizon where the rate of
change is large. These errors introduce a lot of numerical
noise into the conservation equation. However, a more
informative measure, to that of the conservation equa-
tion alone, is the magnitude of the conservation equation
(C) relative to that of its constituent parts, which we
denote as

C1 = 〈T̂ rr〉ren,r,

C2 =
2

r
〈T̂ rr〉ren +

f ′

2f
(〈T̂ rr〉ren − 〈T̂ tt〉ren)− 2

r
〈T̂ θθ〉ren.

(4.2)

In Fig. 5 we see a plot of the conservation equation and
its components between the event and cosmological hori-
zon for a massless scalar field on lukewarm black space-
time with parameter values M = Q = 0.1L. In Fig. 6
we zoom into a mid section of the exterior region, again
for a massless scalar field on lukewarm black space-time
with the same black hole parameter values. These plots
show that the conservation equation is small relative to

!10

!5

0

5

10

C

C_2

C_1

(r − rh)

L

Event Horizon Cosmological Horizon

Components of the 
Conservation Equation

FIG. 5: A plot of the components of the conservation equa-
tion over the entire exterior region.

!0.02

!0.01

0.00

0.01

0.02

C

C_2

C_1

(r − rh)

L

Components of the 
Conservation Equation

FIG. 6: A plot of the components of the conservation equa-
tion over a mid-section of the exterior region.

its constituent components, C1 and C2, almost every-
where with the exception of the region of the point where
C1 = C2 = 0 and the region of the cosmological horizon.

In the neighborhood of the cosmological horizon, the
magnitude of the quantitates we are calculating approach
the error in our numerical scheme, hence the relative er-
ror becomes an issue. In fact after the 960th grid point
the values we obtained for the derivatives of the Green’s
functions are badly behaved. So we ignore these data
points and just simply interpolate between the 960th grid
point and the values we will obtain for the derivatives on
the horizon in Paper 1.

C. Regularity of the Hartle Hawking State

In Paper 1 we reduced the constraints on the stress
tensor for the regularity of the state to requiring that
the components of 〈T̂ µ

ν 〉ren possesses a Taylor series to
the first order about the horizons of the black hole space-
time of interest. As we have calculated both 〈T r

r 〉ren and
〈T t
t 〉ren on the entire exterior region of a lukewarm black
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hole, we may numerically calculate the radial derivative
of each, either by using a finite difference method, or
by fitting an interpolating function to the data points
and differentiating. In Fig. 7 we plot the derivatives of
〈T r
r 〉ren, 〈T t

t 〉ren and 〈T θ
θ 〉ren in the region of the event

horizon. It is clear that both numerical derivatives are
finite there. If this is the case then they must both pos-
sess a Taylor series, at least to O(r − r0), about both
horizons. Therefore we may conclude, with correspond-
ing confidence, that the equivalent of the Hartle-Hawking
state for a lukewarm black hole configuration, is regular
on both the event and cosmological horizons.

0.0005 0.0010 0.0015

!40

!30

!20

!10

10

(r − rh)

L

〈T t
t 〉ren,r

〈T r
r 〉ren,r

〈T θ
θ 〉ren,r

FIG. 7: Radial derivatives of 〈T t
t 〉ren, 〈T θ

θ 〉ren and 〈T r
r 〉ren

in the vicinity of the event horizon

0.7735 0.7740 0.7745

!0.0004

!0.0002

0.0002

〈T t
t 〉ren,r

〈T r
r 〉ren,r

〈T θ
θ 〉ren,r

(r − rh)

L

FIG. 8: Radial derivatives of 〈T t
t 〉ren, 〈T θ

θ 〉ren and 〈T r
r 〉ren

in the vicinity of the cosmological horizon

V. CONCLUSIONS

In this paper, we have, using the Hadamard renormal-
ization procedure, developed a new prescription for the
calculation of the 〈T̂µν〉ren for a spherically symmetric
space-time possessing a thermal state. In this new ap-
proach, each derivative of the Green’s function is renor-
malized individually, after which they may be combined
to form the 〈T̂µν〉ren. This method is equivalent to the
method of Anderson, Hiscock and Samuel, but has the
advantage of being more direct. Our method avoids the
separate identification of divergences via the WKB ap-
proximation and provides much greater control in debug-
ging numerical calculations.

The application of this new method naturally splits the
〈T̂µν〉ren into two components; an analytic contribution
which is formed from a combination of closed form ex-
pressions, and a numerical component. We showed that
the analytical component is a conserved quantity for a
general spherically symmetric space-time. We then cal-
culated, using Mathematica, the numerical component
for a field in Hartle-Hawking state on the exterior re-
gion (excluding the immediate vicinity of the horizons)
of a lukewarm black hole, and demonstrated that it too
is conserved. To facilitate this calculation we developed
a method of performing the required summations of the
WKB approximation of arbitrary order.

Finally combining the results of this paper with the
horizon calculations contained in Paper 1, we have plot-
ted the components of 〈T̂µν〉ren on the exterior region of
a lukewarm black hole. The combination of the results
from both papers provides us with compelling numerical
evidence that the equivalent of the Hartle-Hawking state
for the lukewarm black hole is regular on both the event
and cosmological horizons.

Appendix A: Renormalization Subtraction Terms

Here we list the renomalization subtraction terms for
temporal separation. We recall here that if we are dealing
with a space-time which has a constant Ricci scalar, such
as the lukewarm case, then we can define an effective field
mass, m̂ =

√
m2 + (ξ − 1/6)R.

8π2{GEsing} = − 2

ε2f
+

1

2
m̂2 ln

(
−λfε2/2

)
− f ′′

12
+
f ′2

24f
− f ′

6r
, (A1)
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8π2{gtt′GEsing;tt′} = gtt
′
[

12

ε4f
+
m̂2

ε2
− f

1440r4
{
r4f ′′

(
f ′′ + 60m̂2

)
+ 4r2f ′2 − 2r3f ′

(
rf ′′′ + 2f ′′ − 60m̂2

)
−4rf

(
2f ′ + r

(
r2f ′′′′ + 3rf ′′′ − f ′′

))
+ 4f2 − 4

(
45m̂4r4 + 1

)}
ln
(
−λfε2/2

)
+

1

2880r4f

{
3r4f ′4 − 12r4ff ′2

(
f ′′ + 5m̂2

)
+ 24rf3

(
2f ′ + r

(
r2f ′′′′ + 3rf ′′′ − f ′′

))
+4f2

(
r2
(
3r2f ′′

(
f ′′ − 30m̂2

)
− 4f ′2 + rf ′

(
9rf ′′′ + 28f ′′ − 180m̂2

))
+ 270m̂4r4 + 6

)
+ 24f4

} ]
, (A2)

8π2{gtr′GEsing;tr′} = gtr
′ 2f ′

ε3f2
, 8π2{grt′GEsing;rt′} = −grt′ 2f ′

ε3f2
. (A3)

8π2{grr′GEsing;rr′} = grr
′
[

4

ε4f3
+
r2ff ′′ − 2r2f ′2 + 3m̂2r2f

3r2ε2f3
+

1

1440r4f

{
r4f ′′

(
f ′′ + 60m̂2

)
+ 4r2f ′2

−2r3f ′
(
rf ′′′ + 2f ′′ − 60m̂2

)
+ 4rf (r (rf ′′′ + f ′′)− 2f ′) + 4f2 − 4

(
45m̂4r4 + 1

)}
ln
(
−λfε2/2

)
+

1

2880r4f3
{

41r4f ′4 − 4r4ff ′2
(
26f ′′ + 15m2

)
+ 4f2

(
10r4f ′′

(
f ′′ + 9m2

)
+ r3f ′

(
5rf ′′′ − 24f ′′ + 60m2

)
−90m4r4 − 2

)
− 8rf3

(
26f ′ + r

(
7r2f ′ + 15rf ′′′ − 25f ′′

))
+ 8f4

} ]
, (A4)

8π2{gθθ′GEsing;θθ′} =
4

ε4f2
+
−r2f ′2 + f

(
r2f ′′ + 2rf ′ + 6m̂2r2 + 2

)
− 2f2

6r2ε2f2
− ln

(
−λfε2/2

)
1440r4

{
r4f ′′2 + 4r2f ′2

−2r3f ′
(
rf ′′′ + 2f ′′ + 60m̂2

)
+ 120m̂2r2 − 4− 2rf

(
4f ′ + r

(
r2f ′′′ + 2rf ′′′ − 2f ′′ + 60m̂2

))
+ 4f2 + 180m̂4r4

}
+

1

2880r4f2
{

11r4f ′4 − 8r2f3 (r (9f ′′′ + rf ′′′′) + 16f ′′)− 2r2ff ′2
(
17r2f ′′ + 10rf ′ + 30m̂2r2 + 10

)
+ 8f4

+4f2
(
r
(
5rf ′′

(
r2f ′′ + 6m̂2r2 + 2

)
− 13rf ′2.+ f ′

(
5r3f ′′′ + 14r2f ′′ + 120m̂2r2 + 20

))
− 90m̂4r4 − 2

)}
, (A5)

{gφφ′
GEsing;φφ′} = {gθθ′GEsing;θθ′}, (A6)

8π2{gttGEsing;tt} =
12

ε4f2
+
r2f ′2 + 2m̂2r2f

2r2ε2f2
+

1

1440r4
{
−r4f ′′

(
f ′′ + 60m̂2

)
− 4r2f ′2 + 2r3f ′

(
rf ′′′ + 2f ′′ − 60m̂2

)
+4rf

(
2f ′ + r

(
r2f ′′′′ + 3rf ′′′ − f ′′

))
− 4f2 + 180m̂4r4 + 4

}
ln
(
−λfε2/2

)
+

1

2880r4f2
{
−27r4f ′4 + 12r4ff ′2

(
4f ′′ + 25m̂2

)
+ 4f2

(
3
(
r4f ′′

(
f ′′ − 30m̂2

)
+ 24rf3

(
2f ′ + r

(
r2f ′′′′ + 3rf ′′′ − f ′′

))
−24f4 + 90m̂4r4 + 2

)
+ 26r2f ′2 − 2r3f ′

(
3rf ′′′ + f ′′ + 90m̂2

))}
, (A7)

8π2{gθθGEsing;θθ} = − 4

ε4f2
+
r2f ′2 − f

(
r2f ′′ − 4rf ′ + 6m̂2r2 + 2

)
+ 2f2

6r2ε2f2

1

1440r4
{
r4f ′′2 + 4r2f ′2 − 2r3f ′

(
rf ′′′ + 2f ′′ + 60m̂2

)
− 2rf

(
4f ′ + r

(
r2f ′′′′.+ 2rf ′′′ − 2f ′′ + 60m̂2

))
+4f2 + 180m̂4r4 + 120m̂2r2 − 4

}
ln
(
−λfε2/2

)
+

1

2880r4f2
{
−11r4f ′4 + 2r2ff ′2

(
17r2f ′′ − 20rf ′ + 30m̂2r2 + 10

)
+4f2

(
−5r2f ′′

(
r2f ′′ + 6m̂2r2 + 2

)
+ 13r2f ′2 + rf ′

(
−5r3f ′′′ + 16r2f ′′ + 60m̂2r2 − 20

)
+ 90m̂4r4 + 2

)
+8rf3

(
30f ′ + r

(
r2f ′′′′ − 6rf ′′′ − 14f ′′

))
− 8f4

}
, (A8)

{gφφGEsing;φφ} = {gθθGEsing;θθ}. (A9)

Note we choose not to include the expression for
grrGEsing;rr as it will not be required.

Appendix B: WKB Integrals

In this appendix we derive the expressions (3.28) and
(3.29).
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To derive Eq. (3.28) we firstly we consider the integral
along Ca. We may isolate the divergent behaviour of the
integral by initially subtracting off the Talyor series of
ĝi about q = 1 from ĝi to the order which will render

the integrand integrable at q = 1 and then adding back
on the integral of this series over the denominator (1 −
q)1/2+i. Following this procedure we obtain the following
expression for the integral along Ca:

R

 a

rf1/2

i−1∑
j=0

(−1)j

j!
ĝ
(j)
i (1)

1− εj−i+1/2

j − i+ 1/2
+

∫ 1−ε

0

ĝi(q)−
∑i−1
j=0

(−1)j
j! ĝ

(j)
i (1)(1− q)j

(1− q)i+1/2

 . (B1)

For the integral along Cb we transform integration variable from q to θ in the following manner; q → 1 + εeiθ, then
our integral becomes

R
[

a

rf1/2

∫ 0

−π

ĝi(1 + εeiθ)iεeiθ

(−εeiθ)i+1/2
dθ

]
(B2)

We may then expand ĝn(1 + εeiθ) about ε = 0 to obtain an expression which is now amenable to integration. This
procedure gives the following form for the integral along C2:

a

rf
1
2

∞∑
j=0

(−1)jεj−i+
1
2 gji (1)

j!(j − i+ 1
2 )

, (B3)

which, together with Eqn (B1), allows us to obtain

IC = lim
ε→0

a

rf
1
2

i−1∑
j=0

(−1)j ĝ
(j)
i (1)

j!(j − i+ 1
2 )

+

∫ 1−ε

0

ĝi(q)−
∑i−1
j=0

(−1)j
j! ĝ

(j)
i (1)(1− q)j

(1− q)i+
1
2

+

∞∑
j=i

(−1)jεj−i+
1
2 gji (1)

j!(j − i+ 1
2 )

 . (B4)

As each term in Eq. (B4) is manifestly finite as ε→ 0 we make take this limit leaving us with Eq. 3.28.
For the derivation of Eq. (3.29) it is useful to introduce a new function

G(q) = ĝi(q)−
i−1∑
j=0

(−1)j

j!
ĝ
(j)
i (1)(1− q)j . (B5)

Then we have that G(1) = G′(1) = .. = G(i−1)(1) = 0 and so integration by parts yields∫ 1

0

G(q)

(1− q)i+
1
2

= − G(0)

(i− 1
2 )

+
G′(0)

(i− 1
2 )(i− 3

2 )
+ · · ·+ (−1)i

G(i−1)(0)

(i− 1
2 )(i− 3

2 ) . . . ( 1
2 )

+
(−1)i

(i− 1
2 )(i− 3

2 ) . . . ( 1
2 )

∫ 1

0

G(i)(q)

(1− q)1/2
(B6)

Now using the definition of G(q) and Eq. (3.28) we have

IC =
a

rf
1
2

(
− gi(0)

(i− 1
2 )

+
g′i(0)

(i− 1
2 )(i− 3

2 )
+ ...+ (−1)i

gii(0)

(i− 1
2 )(i− 3

2 )....( 1
2 )

+gi(1)

[
− 1

i− 1
2

+
1

i− 1
2

]
+g′i(1)

[
1

i− 3
2

− 1

i− 1
2

− 1

(i− 1
2 )(i− 3

2 )

]
+g′′i (1)

[
− 1

i− 5
2

1

2!
+

1

i− 1
2

1

2!
+

1

(i− 1
2 )(i− 3

2 )

1

1!
+

1

(i− 1
2 )(i− 3

2 )(i− 5
2 )

]
+ . . .

+(−1)i−1gi−1i (1)

[
− 1

1
2

1

(i− 1)!
+

1

i− 1
2

1

(i− 1)!
+ · · ·+ 1

(i− 1
2 )(i− 3

2 ) . . . 12

]
+

(−1)i

(i− 1
2 )(i− 3

2 )....( 1
2 )

∫ 1

0

g
(i)
i (q)

(1− q)1/2

)
(B7)
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All the quantities in square brackets can be shown to vanish. Therefore we arrive at the desired result, namely
Eq. (3.29)
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