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Hadamard Renormalization of the Stress Energy Tensor on the Horizons of a

Spherically Symmetric Black Hole Space-Time

Cormac Breen∗ and Adrian C. Ottewill†

School of Mathematical Sciences and Complex & Adaptive Systems Laboratory,

University College Dublin, Belfield, Dublin 4, Dublin, Ireland

(Dated: January 12, 2012)

We consider a quantum field which is in a Hartle-Hawking state propagating in a general spher-
ically symmetric black hole space-time. We make use of uniform approximations to the radial
equation to calculate the components of the stress tensor, renormalized using the Hadamard form
of the Green’s function, on the horizons of this space-time. We then specialize these results to the
case of the ‘lukewarm’ Reissner-Nordstrom-de Sitter black hole and derive some conditions on the
stress tensor for the regularity of the Hartle-Hawking state.

PACS numbers: 04.62.+v

I. INTRODUCTION

The renormalized expectation value of the stress en-
ergy tensor operator 〈T̂µν〉ren is of fundamental impor-
tance in the study of quantum field theory in curved
space time as it governs, via the semi-classical Einstein
field equations

Gµν + Λgµν = 8π〈T̂µν〉ren, (1.1)

the back-reaction of the quantum field on the geometry
of the space-time. There is a long and fruitful history of
calculations of 〈T̂µν〉ren for various space-times, begin-
ning with the work of Candelas and Howard for a mass-
less, conformally coupled scalar field in the Schwarzschild
black hole space-time [1–3]. This was then extended to
the case of scalar fields with arbitrary mass and cou-
pling to the Ricci scalar, in general spherically symmet-
ric space-times, by Anderson, Hiscock and Samuel [4, 5].

Other examples of calculations of 〈T̂µν〉ren can be found
in [6–12].
These calculations relied on the renormalization coun-

terterms, denoted by 〈T̂µν〉DS , which were first calcu-
lated by Christensen [13]. This calculation in turn relied
on the DeWitt series representation for the Green’s func-
tion, which is an asymptotic power series in inverse pow-
ers of the mass of the field m. This series is ill-defined for
the massless case and requires some severe modification
in order to be applicable to this case. We choose instead
to follow the Hadamard renormalization procedure in the
formulation of Brown and Ottewill [14] which, building
upon the axiomatic approach of Wald [15], constructs
a renormalization prescription which is well defined for
both massive and massless fields.
The calculation of the components of 〈T̂µν〉ren in the

exterior region of a black hole space-time naturally splits
into two distinct parts, a quasi-analytical calculation to

∗Electronic address: cormac.breen@ucd.ie
†Electronic address: adrian.ottewill@ucd.ie

find the exact values on the horizons and a numerical
calculation which is valid in the exterior region excluding
the immediate vicinity of the horizon. This paper is con-
cerned with the former calculation, while in an upcoming
paper (henceforth referred to as Paper II), we will discuss
how the application of the Hadamard renormalization
procedure leads to an alternate method to that of An-
derson, Hiscock and Samuel [5], for calculating 〈T̂µν〉ren
in a general spherically symmetric space-time.

We note that these calculations do not assume that the
exterior region of the space-time possess a single hori-
zon, in fact, once the general calculations are done, we
will apply the results to the case of a lukewarm black
hole, whose exterior region possesses both an event and
a cosmological horizon.

In a previous paper [16], we developed a technique for
calculating the vacuum polarization of a scalar field on
the horizon of a spherically symmetric black hole space-
time. This paper was motivated by the numerical can-
cellation of horizon divergences to give a finite answer,
which arose in a paper by Winstanley and Young on the
vacuum polarization for lukewarm black holes [17]. It is
therefore natural to ask if we may extend the technique
developed in [16] to the stress tensor case, allowing us
to obtain finite values on the horizon without relying on
numerical cancellations of divergent quantities.

This paper is organized as follows, in Sec. II we will
outline the Hadamard renormalization procedure. In
Sec. III we will demonstrate the application of this
method to obtain unrenormalized mode sum expressions
and their renormalization subtraction counterterms. In
Sec. IV we will calculate these mode sums using a uni-
form approximation to the radial solutions allowing us to
obtain renormalized values which we then apply to the
lukewarm case in Sec. V. Finally our conclusions are pre-
sented in Sec. VI. Throughout this paper we use the sign
convention of Misner, Thorne and Wheeler [18] and we
will work in units in which 8πG = ~ = c = kB = 1.

http://arxiv.org/abs/1111.3298v2
mailto:cormac.breen@ucd.ie
mailto:adrian.ottewill@ucd.ie
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II. HADAMARD RENORMALIZATION

In this paper we will be concerned with the calculation
of 〈T̂µν〉 resulting from quantum scalar fields. The action
for a scalar field φ with mass m on a background space-
time of dimension n, possessing metric gµν , is given by

S = −
√−g
2

∫

dnx{gµνφ,µφ,ν + [m2 + ξR]φ2}, (2.1)

where g denotes the determinant of gµν , R is the Ricci
scalar and ξ is a dimensionless constant describing the
coupling between the scalar field and the gravitational
field. Requiring that the variation of the action with
respect to φ vanishes yields the scalar field equation

(�−m2 − ξR)φ = 0, (2.2)

where � ≡ gµν∇µ∇ν . The classical stress tensor is de-
fined by the equation:

T µν ≡2g−1/2 δS

δgµν

=(1 − 2ξ)φ;µφ;ν + (2ξ − 1
2 )g

µνφ;αφ
;α − 2ξφφ;µν

+ 2ξgµνφ�φ+ ξ(Rµν − 1
2Rg

µν)φ2 − m2

2
gµνφ2.

(2.3)

Vacuum expectation values of the various quadratic
products of field operators can be identified with var-
ious Green’s functions of the wave equation (2.2). Of
particular importance in the study of quantum field the-
ory in curved space-time is the Feynman propagator GF ,
defined as the time ordered product of the fields [19]

GF (x, x
′) = i〈0|T (φ̂(x)φ̂(x′))|0〉,

=i(θ(t− t′)〈0|φ̂(x)φ̂(x′)|0〉+ θ(t− t′)〈0|φ̂(x′)φ̂(x)|0〉).
(2.4)

The Feynman propagator satisfies the equation

(�−m2 − ξR)GF (x, x
′) = −δ

n(x, x′)√
g

(2.5)

where δn(x, x′) is the n-dimensional delta function.
We will perform our calculations on a static spheri-

cally symmetric black hole background spacetime with
line element:

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2dθ2 + r2 sin2 θdφ2. (2.6)

The spacetime will have a horizon at r = r0 whenever
f(r0) = 0 and in this case the surface gravity of that
horizon is given by κ0 = |f ′(r0)|/2 . Following the stan-
dard procedure we Euclideanize our spacetime, that is we
perform a Wick rotation τ → it, Eq. (2.6) then becomes

ds2 = f(r)dτ2 +
1

f(r)
dr2 + r2dθ2 + r2 sin2 θdφ2. (2.7)

Assuming κ0 6= 0, this space will have a conical singu-
larity whenever f(r0) = 0 which may be removed by
making τ periodic with period 2π/κ0. This periodicity
in the Euclidean section corresponds in quantum field
theory on the Lorentzian section to a thermal state with
temperature T = κ0/2π.

In this configuration the quantum field φ̂ satisfies a
wave equation where� is now the Laplacian on Euclidean
space. The Euclidean Green’s function GE(x, x

′), for this
elliptic equation, is related to GF by

GF (t, x; t
′, x′) = −iGE(iτ, x; iτ

′, x′), (2.8)

and satisfies the equation

(� −m2 − ξR)GE(x, x
′) = −δ

4(x, x′)√
g

, (2.9)

with x = (τ, r, θ, φ). A key advantage of Euclidean field
theory is that � is now an elliptic operator and hence
has a unique, well defined inverse when supplemented by
appropriate boundary conditions [20].

We may now define a formal expression for 〈T̂µν〉 given
by:

〈T̂ µν〉 = R[ lim
x→x′

τµνGE(x, x
′)], (2.10)

where R denotes taking the real part, and τµν is a dif-
ferential operator which reduces to Eq. (2.3) in the coin-
cidence limit, for example [14]

τµν = (1 − 2ξ)g ν
ν′ ∇µ∇ν′

+ (2ξ − 1
2 )g

µνg α
α′ ∇α′∇α

−2ξ∇µ∇ν + 2ξgµν∇α∇α + ξ(Rµν − 1
2Rg

µν)− 1
2m

2gµν ,
(2.11)

where g ν
ν′ is the bivector of parallel transport, which

serves to parallel transport a vector at x′ to a vector
at x.
These expressions are perfectly valid in the classi-

cal theory, however in the quantum theory, being con-
structed from products of distributions evaluated at the
same point, they are divergent. The characterization of
these divergences (and their identification as an adjust-
ment to the parameters of the theory) is the role of renor-
malization theory. As mentioned in the introduction the
usual approach to renormalization begins with the De-
Witt series representation. We choose to adopt an ap-
proach based upon the Hadamard series representation
to the Euclidean Green’s function, as it is equivalent to
the standard method but is better defined, in particular,
for the massless theory [14]. We will now briefly outline
this method.
In four dimensions the Green’s function possesses

the following singularity structure, first identified by
Hadamard [21, 22]:

GE(x, x
′) =

1

8π2

[

∆1/2

σ
+ V ln(λσ) +W

]

, (2.12)
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where 2σ(x, x′) denotes the square of the geodesic dis-
tance between x and x′, and

∆ = −g−1/2(x) det(σ;µν′)g−1/2(x′) (2.13)

is the biscalar form of the VanVleck-Morette determi-
nant. V (x, x′) andW (x, x′) are regular biscalar functions
possessing expansions of the form

V (x, x′) =
∞
∑

0

Vn(x, x
′)σn; W (x, x′) =

∞
∑

0

Wn(x, x
′)σn,

(2.14)

where Vn(x, x
′) andWn(x, x

′) are themselves regular bis-
calar functions. λ is a constant which is required to en-
sure that the argument of the log function is dimension-
less. Following the convention of Christensen [13], we let
λ = e2γµ2/2, where µ = m for a massive field but is ar-
bitrary when the field is massless [5]. Following [5], we
choose to set µ = 1 for massless fields.
Imposing Eq. (2.9) for x 6= x′, and demanding balance of
explicit powers of σ. one can derive recursion relations
for the coefficients Vn(x, x

′) for n ≥ 0 and for Wn(x, x
′)

[22] for all n > 0. W0(x, x
′) remains undetermined and

corresponds to the freedom to add to GE(x, x
′) solutions

of the homogeneous wave equation. The Vn(x, x
′) are

purely geometrical, all the information about the state
in contained in W (x, x′). All the singular behaviour of
the Green’s function is geometrical and state indepen-
dent.
We return now to our definition of the stress tensor

〈T̂ µν〉 = lim
x→x′

τµνGE(x, x
′), (2.15)

where τµν is defined in Eq. (2.11) and it is implied that
we are only taking the real part of the limit. As we have
previously stated, this expression is divergent and is a
priori meaningless. However, as the singular behaviour
is geometrical, the difference between the stress tensor
of two different quantum states, |A〉 and |B〉 say, is well
defined and given by

〈A|T̂ µν |A〉 − 〈B|T̂ µν |B〉 ≡
lim
x→x′

{τµνGEA(x, x
′)− τµνGEB(x, x

′)}

=[τµνWA(x, x
′)− τµνWB(x, x

′)], (2.16)

where the square brackets denote that the coincidence
limit has been taken. Now the tensor

τµν [WA] ≡ [τµνWA(x, x
′)] (2.17)

is well defined and contains all the state dependent in-
formation. We will use it to construct a new definition
for the stress tensor. Firstly we remark that although
τµν [WA] is symmetric it is not, in general, conserved. In
fact it can be shown that [14]

τµν ;ν [WA] = −2v;µ1 , (2.18)

where v1 ≡ [V1(x, x
′)] and is given by the expression [14]

v1 =
1

720

(

RabcdR
abcd −RabR

ab
)

− 1

24
(ξ − 1

5 )�R

+
1

8
(ξ − 1

6 )
2R2 +

1

4
m2(ξ − 1

6 )R+
m4

8
.

(2.19)

If we therefore choose to define our renormalized stress
tensor for a quantum state |A〉 by

〈T̂ µν〉ren =
1

8π2
(τµν [WA] + 2v1g

µν) , (2.20)

then we see that our definition of the stress tensor is
conserved and has trace [14]

〈T̂ µ
µ 〉 = 1

8π2

(

2v1 +
1
2 (6ξ − 1)�wA(x) −m2wA(x)

)

.

(2.21)

where wA ≡ [WA(x, x
′)]. In the conformal case this defi-

nition reproduces the standard trace anomaly v1/4π
2.

Wald has shown that if a given definition for a stress ten-
sor satisfies certain natural conditions then it is unique
up to the possible addition of conserved geometrical ten-
sors corresponding to the metric variation of the terms in
the gravational action [15]. The definition (2.20) satisfies

these axioms [14] and so is equivalent to any 〈T̂µν〉ren
derived using one of the other renormalizing techniques,
but has the added advantage of being more direct. As
noted above we must introduce an implicit length scale
in order to make the argument of the logarithm func-
tion in Eq. (2.12) dimensionless. A different choice in

length scale results in a different definition for 〈T̂µν〉ren,
however these tensors will differ only by a multiple of
[τµνV (x, x′)], which is a conserved tensor in Wald’s class.
Mc Laughlin has shown that renormalization using the

Hadamard regularization procedure is equivalent to co-
variant geodesic point separation technique [23]. In fact
he has proven that, for scalar fields, the stress tensor ob-
tained via Christensen’s covariant geodesic point separa-
tion technique procedure is equal to that obtained using
the Hadamard form plus a geometric term

Mµν =
m2

16π2

{(

ξ − 1

6

)(

Rµν − 1

2
gµνR

)

− 3

8
m2gµν

}

,

(2.22)

which can be absorbed into the left hand side of the semi
classical Einstein equation in the usual way by renormal-
izing the constants G and Λ. Mµν is clearly a conserved
quantity, therefore we are free to add it to our definition
of the stress tensor, without violating Wald’s axioms, in
order for our results to be in agreement with those ob-
tained using Christensen’s method. Hence we choose to
give a final definition of the renormalized stress tensor as

〈T̂ µν〉ren =
1

8π2
(τµν [WA] + 2v1g

µν) +Mµν , (2.23)
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with trace

〈T̂ µ
µ 〉 = 1

8π2

(

2v1 +
1
2 (6ξ − 1)�wA(x) −m2wA(x)

)

+M µ
µ ,

(2.24)

again giving the correct trace anomaly.
We note here that this analysis has been extended to arbi-
trary spacetime dimensions by Décanini and Folacci [24].

III. APPLICATION OF HADAMARD

RENORMALIZATION

In practice, we calculate τµν [WA] on a given space-time
by subtracting off the action of τµν on the singular part
of the Hadamard form (2.12) from an expression for the
unrenormalized value of τµνGE(x, x

′), then finally taking
the coincidence limit. The unrenormalized expression we
make use of was first derived for a Schwarzschild space-
time by Candelas [1] and extended to the case of general
spherically symmetric space-time by Anderson [4] and is
given by

GE(x, x
′) =

κ

8π2

∞
∑

n=−∞
einκ(τ−τ ′)

∞
∑

l=0

Pl(cos γ)χnl(r, r
′).

(3.1)

Where n labels the mode’s frequency, l labels the mode’s
total angular momentum, and χnl(r, r

′) is the Green’s
function for the radial equation

1

r2
d

dr

(

r2f
dχ

dr

)

−
(

n2κ20
f

+
l(l+ 1)

r2
+m2 + ξR

)

χ

= −δ(r − r′)

r2
. (3.2)

We define pnl and qnl to be the independent solutions to
the homogeneous version of this equation, with pnl de-
fined to be the solution which is regular on the lower limit
of the region under consideration, while qnl is regular at
the upper limit of the region. χnl(r, r

′) is then given by
[4]

χnl(r, r
′) = Cnlpnl(r<)qnl(r>), (3.3)

where r< is the lesser of the two points r, r′, and r> the
greater. Cnl is fixed by the Wronskian condition

Cnl

[

pnl
dqnl
dr

− qnl
dpnl
dr

]

= − 1

r2f
. (3.4)

Since we have that χnl(r, r
′) is real, we may then express

GE(x, x
′) for a thermal state in a form which we will use

for the remainder of this paper:

GE(x, x
′) =

∞
∑

n=0

F (n) cos(nκ(ǫτ ))

∞
∑

l=0

(2l+ 1)Pl(cos γ)

×Cnlpnl(r<)qnl(r>),
(3.5)

where ǫτ = τ − τ ′, F (0) = κ/8π2 and F (n) = κ/4π2,
n > 0. Henceforth we choose to set r> = r. In static,
spherically symmetric space-times, states respecting the
same symmetries have a stress tenor 〈T̂ µ

ν〉ren, which is
diagonal. Using the definition given in the previous sec-
tion we may express the diagonal elements of 〈T̂ µ

ν〉ren in
the following manner:

〈T̂ ν
ν〉ren = 2(12 − ξ)[gνν

′

G;νν′ ]ren + (2ξ − 1
2 )[g

αα′

G;αα′ ]ren

−2ξ[gννG;νν ]ren + 2ξ[gααG;αα]ren + ξ(Rν
ν −

1

2
R)[G]ren

−m
2

2
[G]ren +

2v1
8π2

+Mν
ν .

(3.6)

where ν is not summed over, ; denotes covariant differ-
entiation and we have dropped the (x, x′) dependence as
well as the E subscript for notational convenience.

Our strategy for computing these components of
〈T̂ µ

ν〉ren is as follows. Firstly we calculate the required
derivatives of GE(x, x

′), after which we may take the par-
tial coincidence limit {t→ t′, θ → θ′, φ→ φ′} and also we
place r′ on r0. We then renormalize these expressions by
subtracting off their respective singular Hadamard parts
before taking the coincidence limit r → r0. Finally we
insert these renormalized expressions into Eq. (3.6).

A. Unrenormalized mode sum expressions

Before we can begin to consider working with Eq. (3.6)
we need to first calculate these bivectors for our partic-
ular choice of point separation. The bivector of parallel
transport are defined by the equation

σ;α′

gab′;α′ = 0, (3.7)

with the boundary conditions that gab′ = gab when
x = x′. For a general point separation this expression
can be quite complicated, however for radial separation
this reduces to quite a simple form. By virtue of the
symmetries of the space-time we have

σ;α′

= 0 α 6= r′, (3.8)

hence Eq. (3.7) reduces to

σ;r′gab′;r′ = 0. (3.9)

Using the definition of the covariant derivative we see
that the bivectors of parallel transport for radial separa-
tion are determined by

gab′,r′ = Γρ′

b′r′gaρ′ . (3.10)
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We require the non-vanishing components of the connec-
tion, these are

Γr
rr = − f ′(r)

2f(r)
; Γr

θθ = −rf(r); Γr
φφ = −rf(r) sin2 θ;

Γr
tt =

f(r)f ′(r)

2
Γθ
rθ = Γθ

θr =
1

r
; Γθ

φφ = − sin θ cos θ;

Γφ
rφ = Γφ

φr =
1

r
; Γφ

θφ = Γφ
φθ = cot θ; Γt

tr = Γt
rt =

f ′(r)

2f(r)
.

(3.11)

The calculation of the bivectors is repetitive in nature so
we will just show the calculation of the one and the rest
follow similarly.
For grr′ we have:

grr′,r′ = Γρ′

r′r′grρ′ = Γr′

r′r′grr′ = − f ′(r′)

2f(r′)
grr′ . (3.12)

Integration gives

grr′ =

(

f(r)

f(r′)

)1/2

grr =
1

√

f(r)f(r′)
. (3.13)

The other components are given by:

gtt′ =

(

f(r′)

f(r)

)1/2

gtt = −
√

f(r)f(r′). (3.14)

gθθ′ =
r′

r
gθθ = rr′. (3.15)

gφφ′ =
r′

r
gφφ = rr′ sin2 θ. (3.16)

It is straightforward to show that all other components
of gab′ vanish.
We turn our attention to calculating the derivatives of
GE(x, x

′). For the purposes of this calculation we choose
to denote the partial coincidence limit, {t → t′, θ →
θ′, φ→ φ′}, of a bitensor A(x, x′) by {A}. We will show
the derivation details for one derivative {G;tt}, the oth-
ers follow along similar lines. Using the definition of the
covariant derivative, we have that

G;tt = G,tt − Γr
ttG,r. (3.17)

We consider the partial derivative first

G,tt = − ∂2

∂τ2
κ

4π2

∞
∑

n=0

cos(nκǫτ )

∞
∑

l=0

(2l+ 1)Pl(cos γ)

× pnl(r
′)qnl(r)

=
κ

4π2

∞
∑

n=0

n2κ2 cos(nκǫτ )

∞
∑

l=0

(2l + 1)Pl(cos γ)

× pnl(r
′)qnl(r). (3.18)

Where we have used the relation ∂/∂t = i∂/∂τ . Taking
the partial coincidence limit yields

{gttG;tt} = − 1

f(r)

κ

4π2

∞
∑

n=1

n2κ2
∞
∑

l=0

(2l+ 1)pnl(r
′)qnl(r)

(3.19)

This vanishes in the limit r → r0 as pnl(r0) = 0 for n > 0
as

pnl(r
′) = a0(r

′ − r0)
n/2 +O

(

(r′ − r0)
n/2+1

)

, (3.20)

with a0 = 1/
√
κr0. Likewise taking r′ → r0

Γr
tt{G,r} =

f(r)f ′(r)

2

a0κ

4π2

∞
∑

l=0

(2l + 1)
dq0l
dr

, (3.21)

and hence

{gttG;tt} =
f ′(r)

2

a0κ

4π2

∞
∑

l=0

(2l + 1)
dq0l
dr

. (3.22)

Repeating this procedure for the other derivatives leads
to the following mode sum expressions

{GE} =
κ

8π2
a0

∞
∑

l=0

(2l + 1)q0l(r). (3.23)

{gtt′G;tt′} =
1

√

f(r)

κ3

4π2

a0√
2κ

∞
∑

l=0

(2l + 1)q1l(r) (3.24)

{grr′G;rr′} =
κ

4π2

√

f(r)κ

2
a0

∞
∑

l=0

(2l + 1)
dq1l(r)

dr
(3.25)

{G;θθ′}
r2

=
{G;φφ′}
r2 sin2 θ

=
κa0
4π2

∞
∑

l=0

(2l+ 1)

(

f(r)

r

dq0l(r)

dr

− l(l+ 1)

2r2
q0l(r)

)

(3.26)

{G;θθ′}
rr0

=
{G;φφ′}
rr0 sin

2 θ
=

κa0
4r0π2

∞
∑

l=0

(2l + 1)
l(l+ 1)

2r
q0l(r)

(3.27)

Note that we did not calculate a mode sum expression for
f(r){G;rr} since, as will be seen shortly, we may exploit
the wave equation to obtain [grrGrr]ren once we have cal-
culated the renormaized value of the other components.
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B. Renormalization subtraction terms

As discussed earlier, the renormalization subtraction
terms for a particular component are obtained by the
action of the corresponding differential operator on the
singular part of the Hadamard form of GE , namely

Gsing(x, x
′) =

1

8π2

[

∆1/2

σ
+ V log(λσ)

]

. (3.28)

Using the expansion

σ =
1

2
gαβ∆x

α∆xβ +Aαβγ∆x
α∆xβ∆xγ

+Bαβγδ∆x
α∆xβ∆xγ∆xδ + . . . (3.29)

with

Aabc =− 1

4
g(ab,c); (3.30)

Babcd =− 1

3

(

A(abc,d) + gαβ
(

1

8
g(ab,|α|A|β|cd)

+
9

2
Aα(abA|β|cd)

))

. (3.31)

(the higher order terms are easily calculated by hand or
by using Mathematica [25]), Wardell and Ottewill [26]
have developed a Mathematica notebook which allows
one to expand both ∆1/2(x, x′) and V (x, x′) in a coor-
dinate expansion in powers of the coordinate separation
of ∆xα, for arbitrary point splitting to high order. This
notebook thus allows one to obtain a series expansion of
Gsing(x, x

′) in powers of ∆xα, up to the required order
to capture both the divergence and the finite remainder
terms ofGsing(x, x

′) and its derivatives in the coincidence
limit.
This method works perfectly for any regular point of the
metric, indeed we will make use of this method in paper
II to calculate the subtraction terms for temporal sep-
aration. In the case under consideration here, namely
the case of radial separation about the horizon, we must
modify this method slightly. This is due to the singular-
ity, at r = r0, of this coordinate system. This singularity

is manifested through the function f(r) which vanishes
on the horizon, hence Eq. (3.29), which is an expansion
of σ for small ǫ ≡ r−r0 and fixed f(r), is no longer valid.
To overcome this, we use the definition of σ in terms of
proper distance s:

2σ = s2, (3.32)

for space-like geodesics. A great advantage of radial point
splitting is that it allows one to integrate the line element
to get an expression for s. Since t = t′, θ = θ′ and φ = φ′,
the line element becomes

ds2r =
dr2

f(r)
where sr denotes the proper distance along a radial
geodesic. Hence

sr =

∫ r

r′

1
√

f(r′)
dr′. (3.33)

For a Ricci-flat space-time (f(r) quadratic), one can per-
form this integral exactly and hence obtain an expression
for σ for radial splitting everywhere, without recourse to
the expansion method. Unfortunately, for a general non
Ricci-flat space-time, this is not the case. We can, how-
ever, expand the integrand about the horizon, then inte-
gration yields an expression for sr in terms of ǫ ≡ r− r0.
Using this relation we may obtain an expression for σ and
hence ∆1/2(x, x′) and V (x, x′) which are now valid for ra-
dial separation about the horizon. Implementation of the
method of Wardell and Ottewill, adapted in the manner
just outlined, leads to the expressions listed below for the
required subtraction terms. We note here that for sim-
plicity, we choose to perform our calculations for a space-
time with a constant Ricci scalar R. Therfore we may
define an effective field mass m̂ =

√

m2 + (ξ − 1/6)R.
It is worth noting also that space-times with a cosmo-
logical constant that are solutions of Einstein’s vacuum
equations, possess a constant Ricci scalar.

{Gsing} =
f ′
0

16π2ǫ
+

m̂2

16π2
ln

(

λǫ

f ′
0

)

− f ′
0

48π2r0
+O(ǫ ln(ǫ)) (3.34)

{gttGEsing;tt} = − κ2

8π2ǫ2
+

κ

16π2ǫ

(

m̂2 − f ′′
0

)

+ Ftt +
1

11520π2r40

{

−4f ′′
0
2r20 + 2f ′

0r
3
0

(

2f ′′
0 + f ′′′

0 r0 − 60m̂2
)

−r40
(

f ′′
0
2 + 60f ′′

0 m̂
2 − 180m̂4

)

+ 4
}

ln (ǫ) +O(ǫ ln(ǫ)), (3.35)
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{gθθGsing;θθ} = {gφφGsing;;φφ} = − κ2

8π2ǫ2
+

κ

96π2ǫ

(

R+ 6m̂2
)

+ Fθθ

+
1

11520π2r40

{

4f
′2
0 r

2
0 − 2f ′

0r
3
0

(

2f ′′
0 + f ′′′

0 r0 + 60m̂2
)

+ r40

(

f
′′2
0 + 180m̂4

)

+ 120m̂2r20 − 4
}

ln(ǫ) +O(ǫ ln(ǫ)) (3.36)

{grr′Gsing;rr′} = − 3κ2

8π2ǫ2
+

κ

16π2ǫ

(

m̂2 − f ′′
0

)

+ Frr′

+
1

11520π2r40

{

r40f
′′
0

(

f ′′
0 + 60m̂2

)

+ 4r20f
′2
0 − 2r30f

′
0

(

r0f
′′′
0 )2f ′′

0 − 60m̂2
)

− 4
(

45m̂4r40 + 1
)

}

ln (ǫ) +O(ǫ ln(ǫ)) (3.37)

{gtt′Gsing;tt′} =
κ2

8π2ǫ2
− κm̂2

16π2ǫ
+ Ftt′

+
1

11520π2r40

{

r40f
′′
0

(

f ′′
0 + 60m̂2

)

+ 4r20f
′2
0 −2r30f

′
0

(

r0f
′′′
0 )2f ′′

0 − 60m̂2
)

− 4
(

45m̂4r40 + 1
)}

ln (ǫ) +O(ǫ ln(ǫ)) (3.38)

{gθθ′

Gsing;θθ′} = {gφφ′

Gsing;φφ′} =
κ2

8π2ǫ2
− κ

16π2ǫ

(

m̂2 − 1
6f

′′
0 + 1

3r2
0

(1 + r0f
′
0)
)

+ Fθθ′

+
1

11520π2r40

{

−4r20

(

f
′2
0 + 30m̂2

)

− r40

(

−2f ′
0f

′′′
0 + f

′2
0 + 180m̂4

)

+ 4f ′
0r

3
0

(

f ′′
0 + 30m̂2

)

+ 4
}

ln (ǫ) +O(ǫ ln(ǫ)),

(3.39)

where

Ftt =
1

11520π2r40

{

ln

(

λ

f ′
0

)

[

−4f ′′
0
2r20 + 2f ′

0r
3
0

(

2f ′′
0 + f ′′′

0 r0 − 60m̂2
)

− r40

((

f
′′2
0 + 60f ′′

0 m̂
2 − 180m̂4

))

+ 4
]

−4f ′′
0
2r20(ln(2)− 15) + f ′

0r
3
0

(

4f ′′
0 (ln(2)− 3) + 2f ′′′

0 r0(ln(2)− 92)− 120m̂2(1 + ln(2))
)

+r40

(

−f ′′2
0 (ln(2)− 2)− 60f ′′

0 m̂
2(ln(2)− 4) + 180m̂4(1 + ln(2))

)

+ 4 + ln(16)
}

. (3.40)

Fθθ =
1

11520π2r40

{

ln

(

λ

f ′
0

)

[

4r20

(

f
′2
0 + 30m̂2

)

+ r40

(

−2f ′
0f

′′′
0 + f

′′2
0 + 180m̂4

)

− 4f ′
0r

3
0

(

f ′′
0 + 30m̂2

)

− 4
]

+r0
[

4f ′′
0
2r0(39 + ln(2))− f ′

0

(

r20
(

f ′′
0 (248 + ln(16) + f ′′′

0 r0(4 + ln(4)) + 120m̂2(ln(2)− 1)
)

+ 280
)

+f
′′2
0 r30(2 + ln(2)) + 60m̂2r0

(

m̂2r20(3 + ln(8)) + ln(4)
)

]

+ 4(1− ln(2))
}

(3.41)

Frr′ =
1

11520π2r40

{

ln

(

λ

f ′
0

)

[

r40f
′′
0

(

f ′′
0 + 60m̂2

)

+ 4r20f
′2
0 − 2r30f

′
0

(

r0f
′′′
0 + 2f ′′

0 − 60m̂2
)

− 4
(

45m̂4r40 + 1
)

]

+4f ′′
0
2r20(2 + ln(2)) + f

′′2
0 r40 ln(2) + 60f ′′

0 m̂
2r40(4 + ln(2))− 4(3 + ln(2))

(

45m̂4r40 + 1
)

−2f ′
0r

3
0

[

f ′′
0 (28 + ln(4) + f ′′′

0 r0(45 + ln(2))− 60m̂2(3 + ln(2))
]}

(3.42)

Ftt′ =
1

11520π2r40

{

ln

(

λ

f ′
0

)

[

r40f
′′
0

(

f ′′
0 + 60m̂2

)

+ 4r20f
′2
0 − 2r30f

′
0

(

r0f
′′′
0 + 2f ′′

0 − 60m̂2
)

− 4
(

45m̂4r40 + 1
)

]

+f ′′
0
2r20 ln(16) + f

′′2
0 r40(ln(2)− 2) + 60f ′′

0 m̂
2r40(2 + ln(2))− 4(1 + ln(2))

(

45m̂4r40 + 1
)

−2f ′
0r

3
0

[

f ′′
0 (24 + ln(4)) + f ′′

0 r0(13 + ln(2))− 60m̂2(1 + ln(2))
]}

(3.43)

Fθθ′ =
1

11520π2r40

{

ln

(

λ

f ′
0

)

[

−4r20

(

f
′2
0 + 30m̂2

)

− r40

(

−2f ′
0f

′′′
0 + f

′2
0 + 180m̂4

)

+ 4f ′
0r

3
0

(

f ′′
0 + 30m̂2

)

+ 4
]

+r0
[

−4f ′′
0
2r0(ln(2)− 21) + f ′

0

{

r20
[

f ′′
0 (ln(16)− 52) + f ′′′

0 r0(4 + ln(4)) + 120m̂2(2 + ln(2))
]

+ 160
}

−r0
(

f
′′2
0 r20(2 + ln(2)) + 60m̂2

(

m̂2r20(3 + ln(8)) + ln(4)
)

)]

− 4 + ln(16)
}

(3.44)

The extension of the above calculation to non-Ricci con-
stant space times is straightforward.

IV. RENORMALIZED HORIZON VALUES

In this section we introduce uniform approximations
to the radial function qnl, which will allow us to calcu-
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late the unrenormalized mode sums to the required order.
We then expand the resulting expression in the near hori-
zon limit and show that the divergent terms will cancel
with those contained in the counterterms calculated in
the previous section. Finally we will the take the horizon
limit leaving us with the renormalized horizon values we
desired.

A. Approximations of q0l(r) and q1l(r)

In a previous paper [16], we demonstrated that the
EGL uniform approximation to q0l(r) captured enough
of the horizon behaviour to facilitate the calculation of
the vacuum polarization on the horizons of a spherically
symmetric black hole space-time. In order to perform
the corresponding calculations for the stress tensor, we
require an uniform approximation which captures more
of the horizon behaviour. The analysis contained in [16]
can be extended, giving uniform approximations to both
pnl(r) and qnl(r) in terms of Whittaker functions. For
the purposes of this paper, we require only the zeroth
order approximation to qnl(r), which is given by:

Q
W (0)
nl (r) =

F2(n)

(r2f(r)ξ)1/4
W−νn,n/2(2

√

ψnξ)

F2(n) =



















Γ(12 + νn)

23/2ψ
1/4
n

n = 0

Γ(12 + n/2 + νn)

(2κr20)
n/221/2ψ

(1−n)/4
n

n > 0.

(4.1)

Here Γ is the gamma function,W is a Whittaker function
of the second kind and

ξ =

(

∫ r

r0

dr′
√

r′2f(r′)

)2

; νn =
k2n

8
√
ψn

;

k2n = V0 −
R0r

2
0

6
+

1

3
(n2 − 1) + n2

(

R0r
2
0

6
+ 2κr0

)

ψn =
1

960
r0
[

f ′
0

(

−3
(

n2 − 4
)

r30f
′′′
0

+8r0f
′
0

(

2n2 − 60ξ + 7
)

+ 120
(

m2r20 + 2ξ
))

−8r20f
′′
0 f

′
0

(

2n2 + 15ξ − 8
)

+
(

4n2 − 1
)

r30f
′′2
0

]

(4.2)

with V0 = l(l + 1) + (m2 + ξR0)r
2
0 .

We will now demonstrate that the zeroth order approx-
imation captures enough of the near horizon behaviour
of q0l(r) to facilitate the caculation of the required mode
sums. We will show the details for the n = 0 approxima-
tion.
We begin by noting that using standard Frobenius the-
ory we can find a series expansion for q0l about the event
horizon. To do this, we require the following expansions
in ǫ (with V0l(r) = l(l+ 1) + (m2 + ξR)r2):

ǫ
(r2f(r))′

r2f(r)
= p0 + p1ǫ+ p2ǫ

2 +O(ǫ3); (4.3a)

ǫ2
V0l(r)

r2f(r)
= q1ǫ+ q2ǫ

2 +O(ǫ3); (4.3b)

with

p0 = 1; p1 =
f ′′
0

4κ
+

2

r0
; p2 = − f ′′2

0

16κ2
− 2

r20
+
f ′′′
0

6κ
;

q1 = − V0
2κr20

; q2 =
l(l + 1)

κr30
+

f ′′
0

8κ2r20
V0, (4.4)

The irregular solution obtained by Frobenius analysis on
the radial equation near the regular singular point r = r0
then has the form [27]

q0l(r) = −a0
2

[(

1− q1ǫ+
q1(p1 + q1)− q2

4
ǫ2
)

ln(ǫ)

+

(

(2q1 − p1)ǫ+
p21 − p2 − p1q1 − 3q21 + q2

4
ǫ2
)]

+O(ǫ3 ln(ǫ)), (4.5)

We may form the series for the solution q0l(r) near r = r0
by adding an appropriate multiple of the regular solution,
αlp0l(r), to ensure its satisfies the boundary conditions
at the outer boundary, for example, regularity on the cos-
mological horizon for a lukewarm black hole or vanishing
on the outer boundary if the black hole is contained in
a reflecting box [28]. We note here that since our ap-

proximation, Q
W (0)
0l , is a local approximation, it cannot

contain all the global information contained in the full
solution, i.e it will differ form the full solution in its α0l

term.
Next, we consider the zeroth order approximation to q0l,

Q
W (0)
0l

Q
W (0)
0l (r) =

1

(ξr2f)1/4
Γ
(

1
2 − ν

)

23/2(ψ0)1/4
W−ν0,0

(

2
√

ψ0ξ
)

(4.6)
It is straightforward to show that (4.6) satisfies

d

dr

(

r2f(r)
d

dr
Q

W (0)
0l (r)

)

− ṼW
0l (r)Q

W (0)
0l (r) = 0, (4.7)

with

ṼW
0l (r) = k20 −

1

4ξ(r)
− f

4
+
r2f ′2

16f
− r(3f ′ + rf ′′)

4

+4ψ0ξ(r).

We now wish to apply Frobenius theory to Eq. (4.7). To
do this analysis we need the equivalent of the expansions
(4.3a) and (4.3b). Clearly the expansion (4.3a) is the
same in this case, so all we need is to find the equivalent
of Eq. (4.3b) for Ṽ (r). This is readily computed and we
find that

ǫ2
ṼW
0l (r)

r2f(r)
= q1ǫ+ q2ǫ

2 +O(ǫ3), (4.8)

with q1 and q2 given by Eq. (4.4) i.e. the potentials V0l
and ṼW

0l agree to this order. Hence, we can conclude that
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the local terms of the series expansion of Q0(r) about the
horizon is in agreement with Eq. (4.5) up to O

(

ǫ3 ln(ǫ)
)

and, as discussed above, the global terms αl term will
differ. So we may then write

q0l(r) = Q
W (0)
0l (r) + βW

0l p0l(r) +RW
0l (r), (4.9)

where RW
0l (r) denotes the remainder terms and is

O(ǫ3 ln(ǫ)) as ǫ → 0. The constants β0l are determined
by the requirement that q0l(r) is regular on the outer
boundary (i.e. contains the correct multiple of the regu-
lar solution) and are given in Appendix A.
We wish to use this approximation to calculate the sum-
mations

S1(r) =

∞
∑

l=0

(2l + 1)
l(l+ 1)

2
q0l(r),

S2(r) = f ′(r)
∞
∑

l=0

(2l + 1)
dq0l(r)

dr
. (4.10)

It can shown that for l ≥ ǫ−1/2, the combination
βW
0l p0l(r) +RW

0l (r) cuts off exponentially in l. Therefore
we have an asymptotic expression for S1(r) and S2(r)
valid in the region of the horizon:

S1(r) =

∞
∑

l=0

(2l+ 1)
l(l + 1)

2
Q

W (0)
0l (r) +O(ǫ ln(ǫ)),

S2(r) = f ′(r)
∞
∑

l=0

(2l + 1)
dQ

W (0)
0l (r)

dr
+O(ǫ ln(ǫ)),

(4.11)

and so we may conclude that the approximationQ
W (0)
0l (r)

is of sufficient accuracy for the calculation of the n = 0
contribution to the stress tensor. Similar analysis for the

n = 1 approximationQ
W (0)
1l (r) allows us to conclude that

q1l(r) = QW
1l (r) + βW

1l p1l(r) +RW
1l (r), (4.12)

where R1l(r) denotes the remainder terms which are
O
(

ǫ5/2
)

as ǫ → 0. The constants βW
1l are determined

by the requirement that q1l(r) is regular on the outer
boundary and are given in Appendix A. For the n = 1
mode we are required to calculate the following sums for
the stress tensor:

S3 =
1

√

f(r)

∞
∑

l=0

(2l+ 1)q1l(r);

S4 =
√

f

∞
∑

l=0

(2l+ 1)
dq1l(r)

dr
. (4.13)

The argument proceeds along the same lines as in the
case of q0l, allowing us to conclude that

S3 =
1

√

f(r)

∞
∑

l=0

(2l + 1)QW
1l (r) +O(ǫ), (4.14)

S4 =
√

f

∞
∑

l=0

(2l + 1)
dQW

1l (r)

dr
+O(ǫ), (4.15)

The calculation of the contributing sums over l of βW
0l and

βW
1l present no problem as they can be shown numerically

to converge like l−3.

B. Mode Sum Calculation

These calculations are tedious and repetitive in nature,
so for the sake of brevity we will outline the calcula-
tion details of one component, [gθθ

′
Gθθ′]ren, and simply

list the results for the other components. The interested
reader may refer to [29] for a more detailed discussion.
We wish to compute the renormalized value, on the black
hole horizon r = r0, of

{gθθ′

G;θθ′} =

√
κ

8π2r20

S1

r
(4.16)

where again,

S1(r) =

∞
∑

l=0

(2l+ 1)
l(l+ 1)

2
Q

W (0)
0l (r) +O(ǫ ln(ǫ)).

(4.17)

Unfortunately, we have no way of computing this sum in
its current form, however we may rexpress it as

S1 =
∞
∑

l=0

(2l + 1)
l(l+ 1)

2

×
[

Q
W (0)
0l (r) −

(

ξ

r2f

)1/4

K0(k0ξ
1/2)

]

+
∞
∑

l=0

(2l+ 1)
l(l + 1)

2

(

ξ

r2f

)1/4

K0(k0ξ
1/2)

= S1a + S1b, (4.18)

where, as above k20 = V0 − 1
6R0r

2
0 +

1
3 . We will now pro-

ceed to calculate the two component sums in the above
expression, beginning with S1b as it is the most straight-
forward.
a. Evaluation of S1b

We may calculate S1b by making use of the Watson-
Sommerfeld formula, giving

S1b =

∫ ∞

0

λ(λ2 − 1
4 )

(

ξ

r2f

)1/4

K0(k0ξ(λ)
1/2)dλ

−R
[

∫ ∞

0

2λ(λ2 + 1
4 )

1 + e2πλ

(

ξ

r2f

)1/4

K0k0(iλ)ξ
1/2)dλ

]

= I1 + I2. (4.19)

Here we have introduced a new integration variable λ =
l + 1/2 and k20(λ) = λ2 + m̂2r20 + 1/12 ≡ λ2 + k200 with
k20(iλ) = −λ2 + k200.
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Evaluation of the integral I1
We have

I1 = A(r)

∫ ∞

0

λ(λ2 − 1
4 )K0(k0(λ)ξ(r)

1/2)dλ (4.20)

with A(r) =
(

ξ
r2f

)1/4

. Using the relations 2k0dk = 2λdλ

and k20(λ) = λ20 + k200, we obtain [30]

I1 = A(r)

∫ ∞

0

λ(λ2 − 1
4 )K0(k(λ)ξ

1/2)dλ

= A(r)

∫ ∞

k0

k0(λ)(k
2
0(λ)− k200 − 1

4 )K0(k0(λ)ξ
1/2)dk

= A(r)
8k200ξK2(k00ξ

1/2)− k00ξ
3/2K1(k00ξ

1/2)

4ξ2
.

(4.21)

Evaluation of the integral I2
We now consider the integral

I2 = −R
[

∫ ∞

0

2λ(λ2 + 1
4 )

1 + e2πλ

(

ξ

r2f

)1/4

K0(k0(iλ)ξ
1/2)dλ

]

.

(4.22)

Due to the exponential factor in the denominator, this
integral is absolutely convergent. Hence we can take the
near horizon limit inside the sum to give

I2 =
1

√

κr20
R
[
∫ ∞

0

2λ(λ2 + 1
4 )dλ

1 + e2πλ

{

1

2
ln

(

k0(iλ)
2ǫ

2κr20

)

+ γ

}]

=
1

√

κr20

{

34

1920

(

γ +
1

2
ln

(

ǫ

2κr20

))

+R
[
∫ ∞

0

2λ(λ2 + 1
4 )

1 + e2πλ
ln (k0(iλ)) dλ

]}

+O(ǫ ln(ǫ))

(4.23)

where γ is Euler’s constant and we have used the integral
formulas [31]

∫ ∞

0

λdλ

1 + e2πλ
=

1

48
;

∫ ∞

0

λ3dλ

1 + e2πλ
=

7

1920
. (4.24)

Note that we truncate the series expansions at the level
which contributes on the horizon.
The integral in Eq. (4.23) has a branch point at λ =
k00(k0(iλ) = 0), however the divergence is logarithmic
and therefore is integrable. We then may write

R
[
∫ ∞

0

2λ(λ2 + 1
4 )

1 + e2πλ
ln (k0(iλ)) dλ

]

=

∫ k00

0

2λ(λ2 + 1
4 )

1 + e2πλ
ln (k0(iλ)) dλ

+

∫ ∞

k00

2λ(λ2 + 1
4 )

1 + e2πλ
ln
(

k̂0(iλ)
)

dλ (4.25)

where k̂20(iλ) = λ2 − k200.
Hence,

S1b = I1 + I2 =

A(r)
8k200ξK2(k00ξ

1/2)− k00ξ
3/2K1(k00ξ

1/2)

4ξ2

+
1

√

κr20

{

34

1920

(

γ +
1

2
ln

(

ǫ

2κr20

))

+

∫ k00

0

2λ(λ2 + 1
4 )

1 + e2πλ
ln (k0(iλ)) dλ

+

∫ ∞

k00

2λ(λ2 + 1
4 )

1 + e2πλ
ln
(

k̂0(iλ)
)

dλ

}

+O(ǫ ln(ǫ)), (4.26)

where we haven retained only those terms which con-
tribute in the ǫ→ 0 limit.
b. Evaluation of the integral S1a

We calculate S1a in the following manner. Firstly we
expand the summand in the small ǫ limit and isolate
the divergence over l by subtracting away the divergent
terms (if any). We then express the sum over l of these
divergent terms as a geometric term which diverges in the
ǫ → 0 limit and add this back on outside the sum. Fi-
nally, we apply the Riemann sum argument, developed in
[16], to the original summand minus its divergent coun-
terterm, to give the final value of the sum in the ǫ → 0
limit.
Taking the limit inside the sum gives

S1a =
1√
κrh2

{

(2l + 1)
l(l+ 1)

4
[ln(ν0)− ψ(12 + ν0)]

}

+O(ǫ)
(4.27)

and then, expanding each of the terms in the large l limit,
we see that

(2l + 1)
l(l+ 1)

4
[ln(ν0)− ψ(12 + ν0)] = −4ψ0

3l
+O(l−2).

(4.28)

Using the identity derived in [16],

ln(η − 1) = −2

∞
∑

l=0

1

(l + 1)(
√
η − 1 + 1)l+1

+O(
√

η − 1),

and letting η = r/r0 allows us to express S1a in terms of
a finite sum over l plus a geometric term which diverges
logarithmically as ǫ→ 0:

S1a =

∞
∑

l=0

{

(2l+ 1)
l(l + 1)

2
[

1

(r2fξ)1/4
Γ
(

1
2 + ν0

)

23/2(ψ0)1/4
W−ν0,0

(

2
√

ψ0ξ(r)
)

−A(r)K0(k0ξ
1/2)

]

+A(r)
4ψ

3

1

(l + 1)(
√

ǫ
r0

+ 1)l+1

}

+A(r)
2ψ

3
ln

(

ǫ

r0

)

+O(
√
ǫ). (4.29)
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Denoting the summand as F (l, ǫ) we see the quantity we
wish to calculate can be written as

lim
ǫ→0

[ ∞
∑

l=0

F (l, ǫ) +A(r)
2ψ

3
ln

(

ǫ

r0

)

]

. (4.30)

Eq. (4.30) is now in a form which is amenable to the
application of the Riemann sum argument. Using the
methodology of [16] we expand F (l, ǫ) in the following
manner:

F (l, ǫ) = F0(l) + F1(xl)
√
ǫ+∆F (xl, ǫ) (4.31)

where

F0(l) = lim
ǫ→0

F (l, ǫ)

=
1

√

κr20

{

(2l+ 1)
l(l + 1)

4
[ln(ν0)− ψ(12 + ν0)]

+
4ψ0

3

1

(l + 1)

}

,

F1(xl) = lim
ǫ→0

1√
ǫ
F

(

x√
ǫ
, ǫ

)

. (4.32)

Here xl = (l + 1/2)
√
ǫ and where recall from Eq. (4.2)

that ν0 = k20/8
√
ψ0. Unfortunately, in this case, it ap-

pears that we have to calculate the sum of F0(l) numer-
ically. We do this, for a particular space-time, using the
Levin u transform (see [32] for a detailed discussion of
this transform).
Now we turn our attention to F1(xl). Firstly, we ex-

pand ξ in the near horizon limit

ξ = α2ǫ + βǫ2 +O(ǫ3); α =

√

2

κr20
;

β = −2

3

(

8κ2 + f ′′
0 r0

4κ2r30

)

. (4.33)

Then we may write F

(

x√
ǫ
, ǫ

)

as

xl√
ǫ

(

x2l
ǫ

− 1

4

)

{

(

1√
2ǫ

+
β

23/2α2
ǫ3/2

)

Γ
(

1
2 + ν̃0

)

23/2(ψ0)1/4

×W−ν̃0,0

(

2
√

ψ0(α
2ǫ+ βǫ2)

)

−
(

1
√

κr20
+

β

21/2α
x

)

K0

(

8
√

ψ0ν̃0

(

αǫ1/2 +
β

2α
ǫ3/2

))

}

+

(

1√
κrh2

+
β

21/2α
x

)

4ψ0

3

1

(xl

ǫ + 1
2 )(
√

ǫ
r0

+ 1)
xl

ǫ +1/2
,

(4.34)

where

ν̃0 =
x2l /ǫ+ m̂2r20 + 1/12

8
√
ψ0

. (4.35)

Expanding the last term in Eq. (4.34) about ǫ = 0 gives

4ψe
− x

l√
r0

3xlr0
√
κ
ǫ1/2 +O(ǫ). (4.36)

We may also expand the second term in Eq. (4.34) about
ǫ = 0 to obtain

x3l
√

κr20

K0(αxl)

ǫ3/2
+

1

16 4
√
2κ5/4(r0α)3/2

× 1

ǫ1/2
{

xl
(

K0(xlα)
(

f ′′
0 r0x

2
l α

2 + 4κ
(

α2
(

r0 + 2x2l
)

−r0x2l β
))

+ 2r0xlακK1(xlα)
(

(4m̂2r20 − 1)α2 + 4x2l β
))}

+G(xl)ǫ
1/2, (4.37)

where G(xl) is a rather long expression involving combi-
nations of Bessel functions.
We now require a similar expansion for the first term,
which we would expect to cancel with the ǫ → 0 diver-
gent terms in the above expression, leaving us with a
finite term that is integrable over x by the Riemann sum
argument.
To achieve this we consider the following integral repre-
sentation for the Whittaker W function:

Γ(12 + ν)W−ν,0(z) =
2
√
ze−z/2

Γ(12 + ν)

∫ ∞

0

e−ttν−1/2K0(2
√
zt)dt.

(4.38)

We now apply Laplace’s method, discussed in Appendix
B for finding an asymptotic solution of this integral as
ν → ∞. Application of this method leads to the following
expansion for the first term in Eq. (4.34):

x3l
√

κr20

K0(αxl)

ǫ3/2
+

1

16 4
√
2κ5/4(r0α)3/2

× 1

ǫ1/2
{

xl
(

K0(xlα)
(

f ′′
0 r0x

2
l α

2 + 4κ
(

α2
(

r0 + 2x2l
)

−r0x2l β
))

+ 2r0xlακK1(xlα)
(

(4m̂2r20 − 1)α2 + 4x2l β
))}

+ G̃(xl)ǫ
1/2 (4.39)

which we may combine with the expansions (4.37) and
(4.36), achieving the result

F

(

xl√
ǫ
, ǫ

)

= − 4ψ0
√
ǫ

3r50κ
2xl

[

−r30κ3/2e−xl/
√
r0

+
√
2xl
(

r20κ+ x2l
)

K1 (xlα) + r0x
2
l

√
κK0 (xlα)

]

.

(4.40)

One can readily numerically check that ∆F (xl, ǫ) is both
O(ǫ) as ǫ → 0, and is a smooth integrable function.
Therefore, we may apply the Riemann sum argument to
give the relation

S1a = F0(l)−
∫ ∞

0

4ψ0
√
ǫ

3r50κ
2xl

[

−r30κ3/2e−xl/
√
r0

+
√
2xl
(

r20κ+ x2l
)

K1 (xlα) + r0x
2
l

√
κK0 (xlα)

]

dx.

(4.41)
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Using the identites contained in [30], we write down the
value of the sum S1a in the horizon limit:

S1a = F0(l)−
α3κψ0r0

(

ln
(

r0α
2/4
)

− 3
)

3
√
2

+A(r)
2ψ0

3
ln

(

ǫ

r0

)

+O(ǫ). (4.42)

Together with Eq. (4.26) we finally arrive at an expres-
sion for the sum S1 valid in the near horizon limit:

S1 =

∞
∑

l=0

F0(l)−
α3κψ0r0

(

ln
(

r0α
2/4
)

− 3
)

3
√
2

+A(r)
2ψ0

3
ln

(

ǫ

r0

)

+
34

1920

(

γ +
1

2
ln(ǫ)

)

+A(r)
8k200ξK2(k00ξ

1/2)− k00ξ
3/2K1(k00ξ

1/2)

4ξ2

+

∫ k00

0

2λ(λ2 + 1
4 )

1 + e2πλ
ln (k0(iλ))

+

∫ ∞

k00

2λ(λ2 + 1
4 )

1 + e2πλ
ln
(

k̂0(iλ)
)

+O(ǫ). (4.43)

C. Renormalized Values

We are now in a position to substitute the expression
(4.43) in the definition of {gθθ′

G;θθ′} Eq. (4.16) and ex-
pand in the near horizon limit. This procedure yields

{gθθ′

G;θθ′} =
κ2

8π2ǫ2
− κ

16π2ǫ

(

m̂2 − 1
6f

′′
0 + 1

3r2
0

(1 + r0f
′
0)
)

+
1

2880π2r40

{

1 + 240ψ0 − 15m̂2r20(2 + 3m̂2r20))
}

ln (ǫ)

+O(1). (4.44)

Comparing this expression with the renormalization sub-
traction terms (3.39) and using the definition of ψ0, it is
straightforward to show that these divergences will can-
cel exactly with those contained in the subtraction terms,
giving us the following renormalized value on the horizon:

[gθθ
′

G;θθ′ ]ren = [gθθ
′

G;θθ′ ]numeric + [gθθ
′

G;θθ′]analytic
(4.45)

where

8π2r40 [g
θθ′

G;θθ′]numeric =
∞
∑

l=0

(

4ψ0

3

1

(l + 1)

+(2l + 1)
l(l+ 1)

4
[ln(ν0)− ψ(12 + ν0) + 2βW

0l ]

)

+

∫ k00

0

2λ(λ2 + 1
4 )

1 + e2πλ
ln (k0(iλ))

+

∫ ∞

k00

2λ(λ2 + 1
4 )

1 + e2πλ
ln(k̂0(iλ)) (4.46)

8π2r40 [g
θθ′

G;θθ′]analytic =

34

1920

(

γ − 1

2
ln
(

2κr20
)

)

−
2ψ0r0

(

ln
(

r0α
2

4

)

− 3
)

3

+
1

480

(

r0

(

36f ′2r0 + 2f ′
0

(

−8f ′′
0 r

2
0 + f ′′′

0 r
3
0 + 15

)

− f
′′2
0 r30

)

+30k200(4f
′r0 − 2γ + 1) + 30

(

2k400 + k200
)

ln

(

k200
f ′r20

)

+30(3− 4γ)k400
)

− 2ψ0

3
ln (r0) +

Fθθ′

8π2r40
. (4.47)

where we recall that k00 =
√

m̂2r20 + 1/12 and Fθθ′ is
defined in Eq. (3.41).
Repeating the procedure for the other derivatives leads to
the following expressions on the horizon, again splitting
each term into a numerical and an analytical component

8π2r20 [G]numeric =
∞
∑

l=0

(2l+ 1)

2

(

ln(ν0)− ψ(12 + ν0)

+2βW
0l

)

−
∫ k00

0

4λ

1 + e2πλ
ln(k0iλ)dλ

−
∫ ∞

k00

4λ

1 + e2πλ
ln(k0iλ)dλ (4.48)

8π2r20 [G]analytic =
1

24

[

12k200 ln

(

k200
2r20κ

)

+ 24γk200

−12k200 − ln

(

1

r20κ

)

− 2γ + ln(2)

]

− 1

2
m̂2 ln

(

λ

κ

)

+
κr0
3

(4.49)

8π2r40 [g
tt′G;tt′ ]numeric =

∞
∑

l=0

(

(2l + 1)

8
[2k21(ψ(1 + ν1)− ln(ν1))− 8

√

ψ1 + 8r20β1l]

+
8ψ1

3

1

(l + 1)

)

(4.50)

8π2r40 [g
tt′G;tt′ ]analytic =

− 4ψ1(ln(2r0κ) + 1)

3
− 4ψ1

3
ln (r0)

+
1

288

[

r20
(

5f ′′2
0 r20 − 4r0κ(4f

′′
0 + 3f ′′′

0 r0)− 16κ2
)

+24k210r0(f
′′
0 r0 + 2κ) + (54− 72γ)k410

−36k40
(

2 ln(k10)− ln
(

2r20κ
))

]

+
1

144
(−r0(f ′′

0 r0 + 2κ)) +
κ2

4π2r20
√
2
P +

Ftt′

8π2r40

+
40k210 − 7

5760

(

−3 ln
(

2r20κ
)

+ (6γ − 3)
)

(4.51)
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8π2r40 [g
ttG;tt]numeric =

∞
∑

l=0

(2l + 1)

[

f ′′
0 r

2
0 + 4f ′

0r0
24

(

ψ(12 + ν0)− ln(ν0
)

+
k20
4

(

ln(ν0)− ψ(12 + ν0) +
4ψ0

3l

)]

+

∫ k00

0

2λ ln(k0(iλ))

1 + e2πλ

(

r0(f
′′
0 r0 + 4f ′

0)

6
− k0(iλ)

2

)

dλ

+

∫ ∞

k00

2λ ln(k̂0(iλ))

1 + e2πλ

(

r0(f
′′
0 r0 + 4f ′

0)

6
− k̂0(iλ)

2

)

dλ

+
1

2

∞
∑

l=0

(2l + 1)[l(l+ 1) + (m2 + ξR)r20 ]β
W
0l (4.52)

8π2r40 [g
ttG;tt]analytic = −2ψ0

3
ln(r0)

+
1

480

[

r20
(

f ′′2r20 − 4r0κ(2f
′′ + 31f ′′′r0) + 16κ2

)

+20k200
(

3k200 − r0(f
′′r0 + 8κ)

)

ln

(

k200
2r20κ

)

−20k200r0((2γ − 5)f ′′r0 + 8(1 + 2γ)κ) + 30(4γ − 3)k400
]

+
1

288

[

−f
′′
0 r

2
0 + 4f ′

0r0
6

ln
(

2r20κ
)

+ 2(γ − 2)f ′′r20

+16(1 + γ)κr0] +
40k200 − 7

1920

(

1− 2γ + ln
(

2r20κ
))

r0

+
Ftt

8π2r40
. (4.53)

Note the coefficient of βW
0l in [gttG;tt]numeric comes from

near horizon series expansion of dp0l/dr. It is also found
that

[gtt
′

G;tt′ ]ren = [grr
′

G;rr′ ]ren

[gθθG;θθ]ren = −[gθθ
′

G;θθ′ ]ren (4.54)

up to terms proportional to R′(r). Of course, due to
spherical symmetry we must have that

[gθθG;θθ]ren = [gφφG;φφ]ren

[gθθG;θθ]ren = [gφφ
′

G;φφ′ ]ren (4.55)

Finally we turn our attention to the calculation of
[grrG;rr]ren, whose construction follows immediately
from the above expression. To see this we exploit the
fact that [W (x, x′]) (the coincidence limit of the regu-
lar part of the Hadamard expansion for GE) satisfies the
inhomogeneous wave equation [14]

(� −m2 − ξR)[W ] = −6v1, (4.56)

where for a static spherically symmetric Ricci-constant
space-time v1 is of the form

v1 = 1
720RabcdR

abcd − 1
720RabR

ab +
m̂4

8

=
1

1440r4
{

r4f ′′2 − 8f (rf ′ + 1) + f ′ (8r − 4r3f ′′)

+4f2 + 180m̂4r4 + 4
}

. (4.57)

Now since [grrGE;rr]ren = [grrW;rr] by definition, we
have the result that

[grrG;rr]ren = −[gttG;tt]ren − [gθθG;θθ]ren

−[gφφG;φφ]ren − (m2 + ξR)[G]ren − 6v1 (4.58)

Inserting the expressions calulated for each term on the
right hand side we arrive at the result that, on the horizon
r = r0,

[grrG;rr]ren = [gttG;tt]ren (4.59)

again up to terms proportional to R′(r). Finally we
remark that equating the expression obtained here for
[G]ren with that obtained in [16] allows one to derive the
following identity:

∫ k00

0

4λ

1 + e2πλ
ln(k0iλ)dλ +

∫ ∞

k00

4λ

1 + e2πλ
ln(k0iλ)dλ

= k200
(

ln(k00)− 3
2

)

− d

dx
ζ
(

x, 12 + ik00
)

∣

∣

∣

∣

x=−1

− d

dx
ζ
(

x, 12 − ik00
)

∣

∣

∣

∣

x=−1

+ ik00 ln

(

Γ
(

x, 12 + ik00
)

Γ
(

x, 12 − ik00
)

)

.

(4.60)

D. Renormalized Stress Tensor Components

We begin this section by considering the behaviour of

〈T̂ r
r 〉ren − 〈T̂ t

t 〉ren, (4.61)

near the horizons of a static spherically symmetric black
hole space-time. This expression, by Eq (3.6) and the
fact that R t

t = R r
r (hence M t

t = M r
r by Eq. (2.22)),

reduces to

〈T̂ r
r 〉ren − 〈T̂ t

t 〉ren = −2ξ([grrG;rr]ren − [gttG;tt]ren)

+ (12 − ξ)([grr
′

G;rr′ ]ren − [gtt
′

G;tt′ ]ren) (4.62)

As we have already shown that, on the horizon
[grrG;rr]ren = [gttG;tt]ren and [grrG;rr]ren = [gttG;tt]ren,
we may therefore conclude that

〈T̂ r
r 〉ren − 〈T̂ t

t 〉ren = 0 (4.63)

on the horizon, r = r0 of a general spherically symmetric
space.
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Now it is known, that in order for 〈T̂ ν
µ 〉ren to be fi-

nite in a freely-falling frame on the past and future event
horizons, the following conditions must be satisfied [33]:

1) |〈T̂ t
t 〉ren + 〈T̂ r

r 〉ren| <∞.

2) |〈T̂ θ
θ 〉ren| <∞.

3)
|〈T̂ t

t 〉ren − 〈T̂ r
r 〉ren|

f
<∞. (4.64)

Its is straightforward to see that the first two of these
conditions are satisfied. While Eq. (4.63) suggests that
the third condition may be satisfied, the analysis of this
paper does not allow us to prove this analytically, as we
cannot rule out terms of the form O(r − r0) ln(r − r0)
in the numerator. In order to complete this proof we
require knowledge of the behaviour of the derivatives of
〈T̂ t

t 〉ren and 〈T̂ r
r 〉ren as the horizon is approached. If

they remain finite, then we may say that these quantities
posses a Taylor series, at least to the first order, about the
horizon, and hence we may then conclude that condition
3 holds.
In Paper II, we calculate both 〈T̂ r

r 〉ren and 〈T̂ t
t 〉ren

on the exterior region, excluding the immediate vicinity
of the horizons, of a lukewarm black hole. Combining
these numerical results with the horizon values obtained
in this paper will allow us to numerically calculate these
derivatives and thereby draw conclusions on the regu-
larity of the equivalent of the Hartle-Hawking state for
lukewarm black holes. We note here that the satisfaction
of condition 3 can be shown to be equivalent to requiring
that 〈T̂ θ

θ 〉ren possess a Taylor series about the horizon,
by following the method of Morgan et al. [34]. This will
also be investigated in Paper II.
We may now write down expressions for the diago-

nal components of the stress tensor on a horizon of a
spherically symmetric black hole space-time. These ex-
pressions are however quite unwieldy, fortunately with
the approach adapted here we may easily unite them in
terms of their sub-components.

〈T̂ r
r 〉ren = 〈T̂ t

t 〉ren =

2ξ([grr
′

Grr′ ]ren + [grrGrr]ren)− [gθθ
′

Gθθ′ ]ren

+
{

ξ(R r
r − 1

2R)− m2

2

}

[G]ren +
2v1
8π2

+M r
r (4.65)

〈T̂ θ
θ 〉ren = 〈T̂ φ

φ 〉ren =

4ξ([grr
′

Grr′ ]ren + [grrGrr]ren)− [grr
′

Grr′ ]ren

+
{

ξ(R θ
θ − 1

2R)− m2

2

}

[G]ren +
2v1
8π2

+M θ
θ (4.66)

These expressions have the interesting consequence that
for the minimally coupled case, one need only calculate
[gθθ

′
Gθθ′ ]ren, [g

rr′Grr′ ]ren and [G]ren in order to obtain
the diagonal components of the stress tensor on a hori-
zon, with the need for [G]ren disappearing in the massless
case.

V. LUKEWARM BLACK HOLES

We now specialize these results to the case of a luke-
warm black hole. Lukewarm black holes are a special
class of Reissner-Nordstrom-de Sitter space-times with
(Euclidean) line element given by Eq. (2.7) with metric
function

f(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
, (5.1)

whereM , Q are the mass and charge of the black hole re-
spectively, and Λ is the (positive) cosmological constant,

with Q = M . For 4M <
√

3/Λ we have three distinct
horizons, a black hole event horizon at r = rh, an inner
Cauchy horizon at r = r−, and a cosmological horizon at
r = rc, where

r− =
1

2

√

3/Λ

(

−1 +

√

1 + 4M
√

Λ/3

)

. (5.2a)

rh =
1

2

√

3/Λ

(

1−
√

1− 4M
√

Λ/3

)

. (5.2b)

rc =
1

2

√

3/Λ

(

1 +

√

1− 4M
√

Λ/3

)

. (5.2c)

The fourth root of f is negative and hence nonphysical.
While the event horizon is formed by the gravitational
potential of the black hole, the cosmological horizon is
formed as a result of the expansion of the universe due
to the cosmological constant [35]. An observer located
between the two horizons is causally isolated from the
region within the event horizon, as well as from the re-
gion outside the cosmological horizon.
If, as the evidence seems to suggest, the universe pos-
sesses a cosmological constant [36], then it is more natural
to consider a black hole configuration which is asymptot-
ically de Sitter than one which sits in an asymptotically
flat universe. Also given that de Sitter space, in its nat-
ural vacuum, is awash with radiation to a static observer
[35], it seems rather natural that a black hole in a de
Sitter background would be most comfortable in a final
configuration in which its event horizon is at the same
temperature as the surrounding bath. This state of af-
fairs is realized in the lukewarm case and so the study of
such a black hole configuration is well motived. In fact
the lukewarm case has attracted interest recently, as ev-
idenced in [16, 17, 37].
We shall confine our attention to a single exterior region
r ∈ [rh, rc] which has a regular Euclidean section with
topology S2 × S2 [38]
In Tables I and II we list the values of the pressure
〈T̂ θ

θ 〉ren and the energy density −〈T̂ t
t 〉ren for a range

of valus of the mass of the field on both the event hori-
zon and cosmological horizons respectively. We consider
the case of a conformally coupled field of mass m with
M = 0.1L = Q with L = 3/

√
Λ.

As can be seen from the Tables, the energy density on
the event horizon remains negative as the mass of the
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field increases, while on the cosmological horizon it re-
mains positive. The pressure remains positive on the
event horizon, while its is mostly negative on the cos-
mogical horizon, as the field mass increases.
To interpret this result we consider the semi-classical

m Event Cosmological

0 0.3166133 −0.0001567

1

4
L 0.31458112 0.0016206

1

2
L 0.3033364 −0.0008350

3

4
L 0.2920777 −0.0013648

1L 0.2829577 −0.0044883

TABLE I: 〈T̂ θ

θ 〉ren on both horizons for various field masses.

m Event Cosmological

0 −0.0058418 0.0000407

1

4
L −0.0062360 6.133531 × 10−6

1

2
L −0.0139295 0.0007781

3

4
L −0.0171130 0.0019650

1L −0.0117374 0.0053876

TABLE II: Energy density on both horizons for various field
masses.

field equations:

Gµν + Λgµν = 〈T̂µν〉ren. (5.3)

If we take the Λgµν over to the right hand side and con-
sider it to be a classical stress tensor contribution due to
the cosmological constant. We see that, since the metric
has signature (−,+,+,+) and Λ is positive, the energy
density of this “stress tensor” and the pressure are both
negative. One may say that it is this negative pressure
that leads to inflation. We may conclude that incorporat-
ing the ‘one loop’ quantum effects causes an increase in
energy density on the cosmological horizon while it adds
to the negative pressure driving inflation for the massless
conformally coupled case. Similar conclusions for differ-
ent values of the mass may be drawn from the Tables I
and II.

VI. CONCLUSIONS

The key question in study of quantum field theory on
black hole spacetimes with multiple horizons, including
the important class of lukewarm black hole configura-
tions, is whether it is possible, when the temperature of
the two horizons is equal, to define an equivalent of the
Hartle-Hawking state on Schwarzschild space-time which
is regular on both horizons? In this paper, we have made
major progress towards answering this question in the af-
firmative by using the Hadamard renormalization proce-
dure to calculate expressions for the components of the
renormalized stress tensor 〈T̂ ν

µ 〉ren, on the horizons of
a spherically symmetric black hole spacetime. Making
use of uniform approximations to the solutions of the
radial equations, we were able to calculate the value of
〈T̂µν〉ren for a quantum scalar field with arbitrary mass
and coupling to the geometry and which is in a Hartle-
Hawking state, on the horizons of a general, spherically
symmetric black hole spacetime, which is not necessarily
asymptotically flat. In particular we demonstrated, two
of the three necessary conditions for regularity: finiteness
of 〈T̂tt + T̂r

r〉ren and of 〈T̂θθ〉ren.
We also made progress in proving the third condition,

namely, that the |〈T̂tt−T̂rr〉ren|/(r−rh) be finite by prov-

ing that 〈T̂ r
r 〉ren and 〈T̂ t

t 〉ren components are equal on
the two horizons of our spacetime region. Therefore the
regularity of the Hartle-Hawking state depends entirely
on this difference of components possessing a Taylor se-
ries to the first order about the horizon. To address this
question, and to find the behaviour of the renormalized
stress tensor away from the horizon, requires a different
numerical approach which we will present in Paper II.
To underline the different nature of these calculation we
note that to calculate quantities on the horizon it is most
convenient to separate in a radial direction as only the
lowest two frequency modes are required there for the
Hartle-Hawking vacuum. By contrast, away from the
horizon temporal separation, which is not posssible on
the horizon since the separation becomes null, is most
convenient, all modes contribute and we must resort to a
numerical calculation. In Paper II, we will complete the
our ‘proof’ of finiteness by providing compelling numeri-
cal evidence that 〈T̂tt〉ren and 〈T̂rr〉ren do indeed possess
finite first derivatives at the horizons.
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Appendix A: βW

0l and βW

1l

In this Appendix we give expressions for βW
0l and βW

1l
for the lukewarm black hole configuration. These cal-
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culations follow along the lines of Appendix B in [16],
yielding the results, for the event horizon:

βW
1l =

∫ rc

rh

I(r)

(

2p′1l(r
′)

p1l(r′)3
− â

(r − rh)2

)

dr + I2(rc)

− b̂

4(κr2h)
+

1

2κr2c

(

b+
a

rc − rh

)

ln(rc − rh)

+
1

2κir2i

(

a

rh − ri
− b

)

ln(rh − ri) + I2(rc)

+
1

2κnr2n

(

a

rh − rn
− b

)

ln(rh − rn)

+
1

48(κrh2)3/2

[

12(2γ − 1)k21 − rh(4f
′
h + f ′′

h )

−48
√

ψ1 + 12k2
(

ln

(

4
√
ψ1

κr2h

)

+ ψ(1 + ν1)

)]

(A1)

which can be shown, numerically, to exhibit a l−4 be-
haviour for large l.

βW
0l =

∫ rc

rh

2p′l(r
′)

p3l (r
′)
I(r′)dr′ +

1

4
ln(ψ1) + γ + ln(2a0)

+ κr2h

[

1

κcr2c
ln(rc − rh)−

1

2κir2i
ln(rh − ri)

− 1

2κnr2n
ln(rh − rn)

]

+
1

2
ψ(12 − ν0) (A2)

which behaves like l−6 for large l. Here

a =
1

√

κr2h
; â =

1

a2

b =
a3

4

(

l(l + 1) + (m2 + ξR)r2h − rh
2 (2f ′

h + f ′′
h rh)

)

b̂ =
1

b2
.

I(r) =
1

κhr2h
ln(r − rh) +

1

2κir2i
ln(r − ri)

+
1

2κnr2n
ln(r − rn)−

1

2κcr2c
ln(rc − r).

I2(r) =

∫

I(r)
â

(r − rh)2
dr (A3)

Finally we note that all the relevant sums over l are
performed using the Levin u transformation

Appendix B: Laplace’s Method

In this discussion we draw heavily from Murray [39].
Laplace’s method is a technique for obtaining an asymp-
totic expansion of an integral of the form

I(x) =

∫ a

−b

g(t)eh(t)x, (B1)

as x→ ∞. The main concept behind the method is that
if the function h(t) has its maximum at 0, and g(0) 6= 0,
then the dominant contribution to the large x asymptotic
expansion of I(x) will come from the immediate neigh-
bourhood of 0. To calculate an asymptotic expansion
for I(x) as x → ∞ it is appropriate to introduce a new
variable, s, defined by the relation

h(t)− h(0) = −s2. (B2)

Hence, the exponential term in Eq. (B1) becomes

eh(t)x = eh(0)xe−xs2 , (B3)

and so Eq. (B1) is of the form

I(x) =

∫ A

−B

φ(s)e−xs2ds. (B4)

By Watson’s lemma, an asymptotic power series as x→
∞ for Eq. (B4) may be obtained [39].

Following the arguments of [39] one can obtain an asymptotic expansion of Eq. (B1) as x→ ∞ given by:

I(x) ≈ exh(0)

√

2π

−h′′(0)x

{

g(0) +
1

24h′′(0)3x

[

−12g′′(0)h′′(0)2 + 12h′′′(0)g′(0)h′′(0) + g(0)
(

3h(4)(0)h′′(0)− 5h′′′(0)2
)]

+
1

1152h′′(0)6x2

[

144g(4)(0)h′′(0)4 − 210h′′′(0)2h′′(0)
(

4h′′′(0)g′(0) + 3g(0)h(4)(0)
)

+21h′′(0)2
(

40h′′′(0)2g′′(0) + 5h(4)(0)
(

8h′′′(0)g′(0) + g(0)h(4)(0)
)

+ 8g(0)h(4)(0)h′′′(0)
)

−24h′′(0)3
(

20g′′′(0)h′′′(0) + 15h(4)(0)g′′(0) + 6h(4)(0)g′(0) + g(0)h(5)(0)
)

+ 385g(0)h′′′(0)4
]

+O(x−3)
}

.

(B5)
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Higher order coefficients can be found in [40].
Now, we shift our focus back to the integral in Eq. (4.38). If we introduce a new variable τ defined by t = ν(τ + 1),
the integral takes the form

Γ(12 + ν)W−ν,0,z =
2
√
ze−z/2

Γ(12 + ν)
νν+

1
2

∫ ∞

−1

eν(−(τ+1)+ln(τ+1))(τ + 1)−1/2K0

(

2
√

z(τ + 1)ν
)

dτ. (B6)

Setting ν = ν̃0 and considering the limit ǫ → 0 allows us to observe, by Eq. (4.35), that we require an asymptotic
expansion of the above integral for ν → ∞. In other words, we may apply the expansion (B5) to the integral in
Eq. (B6). Examining this integral we see that, in the notation of Eq.(B1)

g(τ) = (τ + 1)−1/2K0

(

2
√

z(τ + 1)ν
)

; h(τ) = −(τ + 1) + ln(τ + 1). (B7)

It is clear that h(τ) achieves a maximum value at τ = 0 and so we have the following asymptotic expansion for the
integral in Eq.(B6):

∫ ∞

0

eν(−τ+ln(τ))τ−1/2K0

(

2
√
zτν

)

νdt ≈
√

2π

ν
e−ν

{

K0(2
√
zν) +

1

24ν
(12νz − 1)K0(2

√
zτz)

1

1152ν2
[

(72νz(2νz − 1) + 1)K0

(

2
√
zτν

)

− 48
√
νz(1 + 2zν)K1(2

√
zτz)

]

}

. (B8)

Of course, in this case the function g(τ) is actually a function of both τ and ν; however we are interested only in
taking the near horizon limit (z → 0), and in this limit the product νz tends to a constant, so we may treat it as so.
Next, we consider the integral representation [31]

Γ(ν + 1
2 ) =

∫ ∞

0

e−ttν−
1
2 dt. (B9)

Applying Laplace’s method to this integral, we obtain the well known large ν asymptotic expansion of Γ(ν + 1
2 ):

Γ(ν + 1
2 ) ≈ νν

√
2πe−ν

{

1− 1

24ν
+

1

1152ν2
+O(ν−3)

}

. (B10)

Combining this expression with Eqs. (B8) and (4.38) yields the result

Γ(12 + ν)W−ν,0(z) ≈ 2
√
ze−z/2

[

1 +
1

24ν
+

1

1552ν2

]{

K0(2
√
zν) +

1

24ν
(12νz − 1)K0(2

√
zτz)

1

1152ν2
[

(72νz{2νz − 1}+ 1)K0(2
√
zτz)− 48

√
νz(1 + 2zν)K1(2

√
zτz)

]

}

. (B11)

Making the replacements

z = 2
√

ψ0ξ; ξ ≈ 2
√

ψ0(α
2ǫ+ βǫ2); ν = ν̃0. (B12)

we obtain the expansion (4.39).
It should be noted here that for some parameter sets

ψ0 is negative and so ν0 is purely imaginary; in this case
Laplace’s method is not applicable, and the method of
stationary phase must be used instead. In this case we
consider integrals of the form

∫ b

a

g(t)eixh(t)dt, (B13)

as x → ∞ (x real), and assume that h(t) has a turn-
ing point at t = c, c ∈ (a, b). The term eixh(t) is now
purely oscillatory, and as x increases these oscillations
become more and more rapid, except at the turning point
c. Near c, the phase xh(t) is approximately constant (or
stationary) as x → ∞. One can expand the integrand
about this point, in a analogous manner to the analysis
of Laplace’s method, leading to a result similar to Eq.
(B5) to first order. To achieve higher order approxima-
tions we require the method of steepest descent (see [39]
for details). Applying this method to Eq. (B6) when ν is
purely imaginary leads precisely to the result (4.39).
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