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Abstract 

Vast amounts of sound data are transmitted every second over digital networks. VoIP 

services and cellular networks transmit speech data in increasingly greater volumes. 

Objective sound quality models provide an essential function to measure the quality of 

this data in real-time. However, these models can suffer from a lack of accuracy with 

various degradations over networks. This research uses machine learning techniques to 

create one support vector regression and three neural network mapping models for use 

with ViSQOLAudio. Each of the mapping models (including ViSQOL and 

ViSQOLAudio) are tested against two separate speech datasets in order to 

comparatively study accuracy results. Despite the slight cost in positive linear 

correlation and slight increase in error rate, the study finds that a neural network 

mapping model with ViSQOLAudio provides the highest levels of accuracy in 

objective speech quality measurement. In some cases, the accuracy levels can be over 

double that of ViSQOL. The research demonstrates that ViSQOLAudio can be altered 

to provide an objective speech quality metric greater than that of ViSQOL. 
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1 INTRODUCTION 

The quality of speech and audio processing systems has been an important metric in the 

lives of most people in the developed world for many years. From the world’s first 

transistor radio (the Regency TR-1) being developed in 1954, to the proliferation of 

modern-day portable music devices, it is clear that digital audio processing is the 

preference for audio consumers. In fact, it was found that 82% of university students in 

Canada used various digital portable audio devices in their daily lives. These included 

MP3 players, iPods, CD players and mobile phones (Ahmed et al., 2007). With regards 

to audio delivery, digital processing is clearly the dominant method whether it be 

mediums such as television, radio, cinema, how distortion is added to an artist’s guitar 

or how a DJ will mix music at a live event. Music and sound effects are also seen as 

important immersive factors in video games (Sanders & Cairns, 2010). In some cases, 

immersion in the video game becomes so important that digital audio processing 

techniques are used to generate original music for the player on-the-fly (Epstein, 2016). 

It is clear that speech and audio quality permeates quite a few facets of everyday life. 

Due to this, finding objective ways in which to measure this quality has been the subject 

of much research and investment. The research conducted in this paper aims to provide 

an answer to the following question: can machine learning techniques improve a 

currently existing objective speech quality metric? 

1.1 Project Background 

Digital speech processing techniques have been adopted worldwide. The most 

prominent example of this would be the adoption of the GSM (Global System for Mobile 

Communications) standard for cellular communications around the world. In the early 

1980s, it was seen that analogue cellular telephone systems were being developed with 

incompatible standards across different states within the European Union. To remedy 

this, a standard was devised that would include criteria such as: 

• A good subjective speech quality 

• Compatibility with ISDN 

• International roaming support 

This would become the GSM standard that started commercial service in 1991 and went 

on to be adopted across the globe (Scourias, 1995). ISDN (Integrated Services Digital 
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Network) is a communications standard for the public switched telephone network 

which handles digital transmission of data, sound, and video. 

For many years prior to GSM’s introduction, speech signals have been transmitted 

across vast distances using the legacy telephone network service, which is now referred 

to as Plain Old Telephony Services (POTS). POTS provided a dedicated end-to-end 

connection for phone calls for decades. However, with the rise of digital technology and 

the need for digital networking, the POTS network connections (although never 

designed for digital signals) are becoming increasingly digitised. These are connections 

that consist of many hundreds of kilometres of twisted pair copper wire running from a 

service provider’s hub to a customer’s location and can provide a decent high-speed 

digital connection using technologies such as Asymmetrical Digital Subscriber Line 

(ADSL) (Kyees, McConnell, & Sistanizadeh, 1995). For markets where Internet access 

with even higher speeds are highly sought over, there has been a transition from POTS 

to high-quality IP telephony services. For example, ADSL growth has slowed down in 

Japan while growth in FTTH (Fibre-To-The-Home) has increased (Shinohara, 2005). 

POTS has switched from an analogue telephone network to a digitised circuit-switched 

network over a period of many years. With the dawning of the 21st century, there has 

been a move from circuit-switched networks to packet-switched networks. These 

networks can carry voice, as well as data, over an Internet Protocol (IP) (Postel, 1981) 

network. With this has come the emergence of Voice-over-IP (VoIP) technologies 

(Goode, 2002). Specific architectures and protocols for VoIP have been developed by 

the International Telecommunication Union (ITU) (ITU-T, 1998b; Thom, 1996) and by 

the Internet Engineering Task Force (IETF) (Greene, Ramalho, & Rosen, 2000; 

Rosenberg et al., 2002). There are many platforms that utilise this technology, with 

Skype being the most popular. A study in the US in 2003 (the year Skype started 

operating) showed that some POTS networks were already suitable for high-quality 

VoIP. Although other POTS networks showed issues with reliability, network protocols, 

and router operation, actions could be taken to improve VoIP performance at the network 

and/or end-user systems (Markopoulou, Tobagi, & Karam, 2003). In October of 2012, 

after celebrating its 9th birthday, Skype recorded 45,469,977 concurrent users (Lunden, 

2012). This clearly shows that the VoIP platform has continued to increase in popularity 

and provide an effective means of delivering speech signals across networks. Even with 
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the digitisation of telephony networks, customers still expect a high level of availability 

and quality (Kuhn, 1997). 

The production, transmission, and perception of speech is referred to as the speech train. 

It can be simplified into 3 steps; These are generation, propagation, and reception. 

Speech can be generated by the vocal tract in humans and has varying characteristics 

such as loudness, frequency distribution, amplitude distribution, pitch rate, and syllabic 

rate. There can also be differences in how individuals speak. For example, their age, sex, 

mental state, and accent may all affect how the speech signal generated is perceived 

(Bedi et al., 2014; Goy, Kathleen Pichora-Fuller, & van Lieshout, 2016; Sharifzadeh, 

McLoughlin, & Russell, 2012). Upon receiving a speech signal, the listener must then 

be able to understand it. There are various reasons why it may not be perceived correctly 

due to the hearing ability and lexicon of the listener. The context of the speech signal 

may not be understood either. 

As difficult as it can be for a human listener to perceive speech signals, one might 

wonder how does a computer system perceive speech if humans cannot always perceive 

it correctly? Due to the physical constraints of the human vocal system, such as 

breathing, there is an upper limit on how many words humans can transmit. As well as 

that, the rates of speech (or words per minute) can change based on factors such as age, 

sex, native, or second language spoken, speaking to strangers, or topics discussed (Yuan, 

Liberman, & Cieri, 2006). However, due to the nature of how speech is generated, 

speech signals are broken up into phones, phonemes, syllables, etc. This means that all 

speech, regardless of language or accent, has fundamental building blocks. This can be 

quite useful when getting computer systems to analyse speech signals in a digital format. 

Two of the main factors to a listener of a speech signal are intelligibility and quality. A 

standard phone call will have a low quality signal but has quite a high rate of 

intelligibility. Voice transmission does not require high amounts of quality as human 

listeners can understand speech signals even in low quality environments. Intelligibility 

is a specific measurement. Generally, listeners will understand or not understand a 

speech signal. Intelligibility is necessary in the case of a phone call, but is not sufficient 

for quality. However, quality is related to intelligibility. If you have low intelligibility 

in a speech signal, the quality of that signal will also be low. It is a more subjective 

measurement than intelligibility. To give another example; a Skype call may have high 
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quality but drop packets at random intervals. A transmission such as this will drop the 

intelligibility of the speech signals transmitted. Thus, the perceived quality of the Skype 

call will also degrade. 

There are various ways that one may measure intelligibility in a signal. Tests such as the 

diagnostic rhyme test (DRT), modified rhyme test (MRT), phonetically balanced word 

lists test, and ICAO spelling alphabet tests can all measure speech intelligibility 

(American National Standards Institute, 1989; House, Williams, Hecker, & Kryter, 

1963; Martin, Champlin, & Perez, 2000; Schmidt-Nielsen, 1988). As discussed above, 

speech quality is a subjective measurement. This makes it more difficult to measure. 

If a VoIP system wanted to constantly monitor the quality of the speech signals 

transmitted during a communication, it would not be practical to use a subjective test 

such as what is described above. Not only can the test take quite some time and be too 

costly, it is not possible for humans to react in time to inform the system that the speech 

signal quality had changed. However, there exist a number of objective sounds quality 

models that can give an objective value or score for a digitised speech signal in real-

time. These models can be integrated into a VoIP system to provide immediate feedback 

of current speech quality. 

1.2 Research Aims and Objectives 

This research aims to evaluate the effectiveness of the use of machine learning 

techniques is in creating models that map the output values from objective sound quality 

models to a value that is understood to a user. With this in mind, and with the detailed 

review of existing literature explored below (Chapter 2), the effective Null Hypothesis 

is as follows: the accuracy of the ViSQOL objective speech quality metric cannot be 

improved using advancements taken from the newer ViSQOLAudio metric and 

training the output mapping function with a neural network and relevant speech data. 

Both ViSQOL and ViSQOLAudio are objective sound quality models that will be 

explained in detail in Chapter 2. 
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1.3 Research Methods 

The experiments conducted as part of this research will be empirical in nature. Primary 

data will be recorded from the experiments conducted. Some secondary data will be 

obtained from previous, relevant research for comparison purposes only. This research 

seeks to prove that accuracy can be improved in a selected objective sound quality 

model. It also aims to provide a basis for future work by comparing the machine learning 

techniques used, as well as the datasets used, to train the machine learning algorithms. 

The datasets used were obtained from external sources (International 

Telecommunication Union and Trinity College Dublin). The research is classified as 

empirical as it is aiming to increase accuracy which is a concrete and measurable metric. 

1.4 Scope and Limitations 

Within the scope of this study, two separate speech quality datasets were selected for 

testing. ViSQOL was originally trained with the ITU-T P Supplemental 23 database 

which contains audio samples from a number of different research laboratories (Hines, 

Skoglund, Kokaram, & Harte, 2015; ITU-T, 1998a). The database contains a collection 

of reference and degraded speech samples, as well as the MOS score that was given for 

the reference speech samples (ITU-T, 2006). It is designed to be used in the development 

of speech quality metrics. MOS scores are subjective quality measurements of sound 

samples. They are explained in greater detail in Chapter 2. The TCD-VoIP speech 

quality corpus was also selected as a candidate for training of machine learning models 

as it is presented in a simple format of WAV format speech files with associated MOS 

values for reference speech files (Harte, Gillen, & Hines, 2015). It is a valuable dataset 

as it was designed to emulate typical VoIP degradations. 

While there are a relatively small number of available speech quality datasets that would 

be useful in the context of the research presented in this paper, the two datasets selected 

were deemed appropriate within the limitations of the experiments. The limitation in 

question being that the experiments need only be run on two separate datasets in order 

to prove results accurate. Additional datasets are not required to further prove whether 

improvements in accuracy occur or not. 

The experiments were also limited to training one configuration of one type of machine 

learning model, as well as three separate configurations of a different machine learning 

model, for each dataset in order to test results on accuracy levels. Any further 
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experiments would be deemed unnecessary as the experiments conducted as part of this 

research should provide a basis of further work if required. 

Full descriptions of the machine learning techniques and datasets used are available in 

Chapter 3, “Design / Methodology”. 

1.5 Organisation of Dissertation 

The remainder of this paper is organised into the following format: 

 Chapter 2 (“Literature Review”) will explore previous research and provide a 

state-of-the-art analysis on how subjective sound quality is measured, the ITU’s 

role in providing standards, relevant objective sound quality models, detailed 

analysis of ViSQOL and the newer ViSQOLAudio, and machine learning 

techniques required in the scope of this research. Special attention is given to the 

ViSQOL model and the updated ViSQOLAudio objective sound quality models 

as the improvement of the accuracy of these models in the context of speech 

quality is the basis of this research. Similar research that uses machine learning 

techniques to predict sound quality is also discussed as it provides a precursor, 

or evidence of the relevance, for the experiments conducted as part of this paper. 

 Chapter 3 (“Design / Methodology”) explores the datasets that will be used to 

train with machine learning techniques. These techniques are also detailed 

according to the manner in which they are utilised. Measurement of the accuracy 

of the models is also detailed in this section. 

 Chapter 4 (“Implementation / Results”) details the results obtained from the 

experiments explained in Chapter 3. The results of each of the experiments run 

against both of the selected datasets are presented in a clear and concise manner. 

Tables and figures are presented as a visual guide to show the differences in 

accuracy for each of the machine learning techniques tested. The chapter 

concludes with a table presenting overall accuracy results for quick reference. 

 Chapter 5 (“Evaluation / Analysis”) details the analysis of the results presented 

in Chapter 4. Observations on the resultant data are explored. Limitations on the 

research regarding datasets and machine learning techniques used are also 

explored. 
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 Chapter 6 (“Conclusions and Future Work”) summarises the entirety of the 

research presented in this paper, providing an explanation on how the research 

contributes to the body of research in objective sound quality metrics (with 

ViSQOL taking particular focus) and suggests further research that could be 

conducted from the results of this research. 
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2 LITERATURE REVIEW 
This literature review will begin by focusing on research conducted on sound quality 

and objective sound quality models. Of these models, both ViSQOL and ViSQOLAudio 

will be discussed in the greatest detail as they are the main focus of this research. Finally, 

a review of published material on machine learning techniques used for analysing data 

for regression and classification (in the context of objective sound quality models) will 

be discussed. 

While somewhat out of scope of the research presented in this paper, some research into 

the presence of machine learning in the mainstream media is provided in order to give 

context on the decreased level of expertise required for using machine learning and the 

rise in easily accessible machine learning tools. Thus, the experiments conducted as part 

of this research can be reproduced with a larger number of people. 

Assumptions have been made that the reader is not versed in the somewhat specialised 

field of sound quality and objective sound quality models. Every effort has been made 

to explain the origins of the field as well as the workings of the objective sound quality 

models used as part of the experiments carried out in this research. It is, however, 

assumed that the reader has knowledge of machine learning techniques as there is little 

room to explain the roots of this field, nor the detailed mathematical formulae required, 

within the scope of this literature review. The machine learning techniques are discussed 

at a reasonable level of detail in the context of the research. Any readers interested in 

exploring the machine learning techniques used in greater detail will find vast amounts 

of reference material available from the usual sources. 

Note on the lexicon: 

Within the literature review presented, there is a mix of terminology used to describe 

features, metrics, and/or techniques. The “reference” and “degraded” signals discussed 

are generally deemed to be the inputs to a full reference objective sound quality model. 

The “reference” signal is an uncorrupted signal, while the “degraded” signal refers to a 

signal that has some kind of degradation or corruption. “Sound” quality generally refers 

to both speech and audio quality, while “speech” quality refers to only speech quality 

and “audio” quality refers to only audio (music) quality. “Similarity values” may refer 

to a specific metric such as the “NSIM” value (which is detailed later in this chapter) or 

any other similarity value outputted by various full reference objective sound quality 
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models. “MOS scores” or “MOS values” both refer to the same metric, which is a mean 

opinion score (which will be detailed later in this chapter). “Neural network” generally 

refers to an artificial neural network, rather than a naturally occurring biological neural 

network (e.g. in the human brain), in the context of this paper. 

2.1 Measuring Sound Quality 

Accurately measuring the quality of sound can be quite a complex task as it linked 

intrinsically to human hearing. While POTS networks traditionally provided a certain 

level of speech quality as standard, personal audio device manufacturers and codec 

creators constantly seek to improve and perfect sound recording and playback. Thus, 

there is no set standard for what is deemed a ‘perfect’ signal between different listeners. 

It is considered a subjective measurement. 

2.1.1 Standardising Sound Quality Measurement 

Since the 1990s, there have been great efforts to standardise sound quality measurement 

techniques. At present, the International Telecommunication Union (ITU) are seen as 

the governing body for speech and audio quality evaluation regulations with various 

regulations published. 

In order to accurately measure subjective speech and audio quality, systematic 

subjective methodologies must be employed. In these test methodologies, a group of 

subjects (or listeners) are asked to rate the quality of a sample of audio that they are 

exposed to as part of the experiment. The most common type of subjective sound quality 

test is standardised in ITU-T P.800. Within the standard, an Absolute Category Rating 

(ACR) was devised to rate audio quality in subjective and objective testing using a Mean 

Opinion Score (MOS) (ITU-T, 1996). Each subject is asked to give their opinion of the 

quality of a sample of speech that has been played as part of the experiment. The subjects 

rate the stimulus played using a discrete scale shown in Table 2.1: MOS Scale with ‘1’ 

being the worst quality and ‘5’ being the best quality. In a typical test, signals within 5 

seconds and 8 seconds are played to the subjects that contain two sentences, broken up 

by a 0.5 second period of silence, by the same speaker. 50 samples in this format are 

played to, and rated by, 24-32 subjects. The overall result of this test is the mean score 

of all the subject’s opinions on the speech quality, or the MOS. 
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Score ACR Listening 

Quality 

1 Bad 

2 Poor 

3 Fair 

4 Good 

5 Excellent 

Table 2.1: MOS Scale 

ITU-T P.800 also discusses alternative listening-opinion tests. These are the 

Degradation Category Rating (DCR) and the Comparative Category Rating (CCR) tests. 

With ACR, the order in which speech samples are presented to the listeners is not 

entirely important. However, with DCR, the order is relevant to the overall rating 

obtained. This is due to the fact that the degraded sample is presented immediately after 

the original sample and degradation is scored accordingly. The order at which samples 

are presented is random with CCR. Both DCR and CCR use separate discrete scales for 

measuring quality. DCR uses a scaling ranging from ‘1’ (annoyingly degraded) to ‘5’ 

(inaudibly degraded), while CCR uses a scaling ranging from ‘-3’ (much worse) to ‘+3’ 

(much better). 

2.1.2 Mapping Quality Ratings to User Satisfaction Levels 

Another quality scaling devised by the ITU, which will be discussed again further into 

this chapter, is the E-Model (ITU-T, 2003). The E-Model outputs a quality rating, R, 

which is a transmission rating factor measured between 0-100. Table 2.1 illustrates how 

user satisfaction can be mapped to a quality rating of R. Both Figure 2.1 and Table 2.2 

illustrate how a MOS value can be mapped to an R transmission rating factor. Using this 

data, detailed MOS values can be assigned to user satisfaction ratings. 

 

Table 2.2: Definition of categories of speech transmission quality (ITU-T, 1999, p. 2) 
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Figure 2.1: MOS as a function of rating factor R (ITU-T, 2003, p. 16) 

 

Table 2.3: Relation between R-value and user satisfaction (ITU-T, 2003, p. 16)  

A MOS score of above 4.3 corresponds to the best transmission quality for speech 

signals with high satisfaction levels from users. A MOS score of 4.0 to 4.3 corresponds 

to high quality with regular satisfaction levels. A MOS score of 3.6 to 4.0 corresponds 

to medium quality with some users dissatisfied. A MOS score of 3.1 to 3.6 corresponds 

to low quality with many users dissatisfied. A MOS score of 2.6 to 3.1 corresponds to 

poor quality with nearly all users dissatisfied. MOS ratings of 2.6 and below are not 

recommended. MOS ratings of above 4.0 match the levels of quality that are seen in 

POTS. These are the levels that VoIP must achieve in order to be a viable replacement 

for the levels of quality that are expected (e.g. with POTS). Using methods such as those 

described above to map user satisfaction to MOS values, Rämö was able to evaluate the 

subjective voice quality of various audio codecs (2010). 
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2.1.3 Advancements to MOS Quality Ratings 

Fiedler et al. discusses in detail the relationship between Quality of Experience (QoE), 

which is perceived by users, and Quality of Service (QoS), which is affected by networks 

(2010). At times, the diverging views of some test subjects in QoE testing must be taken 

into account. Diversity of user ratings has been characterised and accounted for in 

previous research (Karapanos & Martens, 2007; Karapanos, Martens, & Hassenzahl, 

2009). As a means of measuring subjective QoE, MOS experiments often do not focus 

on the lack of diversity in the subjective user ratings. Hoβfeld et al. argue that reporting 

just the MOS is not sufficient as even with large numbers of subjects, diversity of 

opinion occurs due to psychological factors such as expectation of quality levels, 

memory of quality previously experienced, and uncertainty on how to accurately grade 

a sample (2011). The authors proposed a Standard deviation of Opinion Scores (SOS) 

to be used in conjunction with MOS to rate the quality of the experiments undertaken to 

produce the MOS results. The SOS parameter a reflects rating diversity within an 

experiment. This parameter should be within a certain range in order to guarantee a level 

of quality in the experiment used to collect MOS values. Xu et al. investigated the QoE 

assumptions that are present in MOS calculations and found that the homogeneity that 

is required is lacking in practice (2011). The authors proposed a utility-based averaging 

for MOS called ‘uMOS’ which is designed to remove the ‘unfairness’ present in MOS 

averaging. 

It is then clear that the subjective testing to acquire MOS values comes with some 

constraints such as sufficiently large number of test subjects to produce accurate results, 

equal control characteristics for each test subject, equal environmental conditions for 

each test, and a repeatable experimental procedure must be guaranteed (de Lima et al., 

2008, p. 416). These issues can, and do, hinder the use of subjective measurement for 

speech and audio signals as they are costly and require much time to complete. Objective 

methods of acquiring quality measurements of speech and audio signals are therefore a 

more desirable option. Traditional automated methods to compute objective 

measurements for quality such as the use of Signal-To-Noise Ratio (SNR) have been 

shown to be lacking when it comes to accurately measuring speech quality (Hansen & 

Pellom, 1998). However, it must be noted that a weighted calculation of SNR (WSNR) 

has been shown to be effective at measuring the objective voice quality over cellular 
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networks (Karkhanechi, Gilhooly, & Soderstrand, 1998). Still more complex models are 

required to compute objective values for sound quality. 

2.2 Objective Sound Quality Models 

There are a number of different objective sound quality model types. The network 

channel and model estimates the quality of a signal without any reference to the input or 

output signal of a network (Moller et al., 2011). The no-reference signal-based models 

(e.g. P.563, ANIQUE+, LCQA) takes a reference from the output signal to estimate 

sound (ATIS, 2006; Grancharov, Zhao, Lindblom, & Kleijn, 2006; ITU-T, 2004). The 

parametric signal-based model (e.g. E-Model) monitors the state of the network itself to 

generate an estimated signal quality metric (ITU-T, 2003). The E-Model is a useful tool 

when analysing the perceptual quality of networks and had previously been used to 

evaluate to access networks in Pakistan (Mehmood, Jadoon, & Sheikh, 2005). 

Researchers have also proposed improvements to the model in the ‘modified E-model’ 

(Takahashi, Yoshino, & Kitawaki, 2004). There are additional full-reference signal-

based models (e.g. PESQ, POLQA, ViSQOL, ViSQOLAudio) that reference both the 

input and output signals from the network in order to generate an objective speech signal 

quality score (Hines, Skoglund, et al., 2015; ITU-T, 2001b, 2011; Sloan, Harte, Kelly, 

Kokaram, & Hines, 2017). This research will focus on the full-reference signal-based 

models. In particular, it will focus on the ways in which objective speech quality 

measurement can be in improved in ViSQOL using advancements taken from 

ViSQOLAudio (an objective audio quality model) and the use of alternate mapping 

models. 

PESQ (Perceptual Evaluation of Speech Quality) was standardised in ITU-T P.862. For 

many years, it has been the standard algorithm used for objective speech quality 

measurements. It involves three separate stages of processing: pre-processing, 

perceptual modelling, and cognitive modelling. The output of the PESQ model can be 

mapped to an objective MOS score with the following equation: 

𝑦 = 0.999 + 
4.000

1 +  𝑒𝐴𝑥+𝐵
(1) 

𝐴 = −1.4945, 𝐵 = 4.6607, while 𝑥 is the output from the PESQ model. 𝑦 is the 

objective MOS value. 
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PESQ can be used for signals within the range of 300 Hz to 3400 Hz. A wideband 

version of PESQ, (W-PESQ) was standardised in ITU-T P.862.2 and has a range of 50 

Hz to 7000 kHz (ITU-T, 2007). With this model, the above equation is still used, but 

values for 𝐴 and 𝐵 are changed as follows: 𝐴 = −1.3669 and 𝐵 = 3.8224. Hu and 

Loizou showed in their research that, although PESQ performed best, both the LLR (log-

likelihood ratio) and fwSNRseg (frequency-weighted segmental SNR) measures 

performed close enough to the PESQ results that they should be seriously considered as 

alternatives due to their significantly smaller computational cost (2008), (Tribolet, Noll, 

McDermott, & Crochiere, 1978). In recent years, POLQA (Perceptual Objective 

Listening Quality Assessment) was standardised in ITU-T P.863. It was specifically 

developed for HD Voice, 3G and 4G/LTE, and VoIP. It addresses some of the limitations 

of PESQ (warped speech and time alignment) while supplying objective quality values 

for narrowband, wideband, and super-wideband speech. 

The ITU recommendation BS.1387 is a mixture of different individual contributions 

from various researchers (ITU-T, 2001a). It is referred to as PEAQ (Perceptual 

Evaluation of Audio Quality). It has two different versions: Basic and Advanced. It 

emulates some of the hearing properties of the human ear through software and produces 

an objective MOS value for quality. De Lima et al. argue that a neural network that is 

pre-trained and part of PEAQ may give unexpected results if presented with degraded 

samples that are not familiar to the network (2008). However, no evidence is brought 

forward to back up this argument. PEMO-Q is a psychoacoustic-based intrusive model 

that can evaluate both speech and audio across the audible spectrum that has shown 

better accuracy than that of PEAQ (Huber & Kollmeier, 2006). 

2.3 ViSQOL 

ViSQOL (Virtual Speech Quality Objective Listener) is a full-reference, signal-based, 

objective speech quality measurement model. It was brought about through the 

culmination of research carried out by the original authors (Hines, Počta, & Melvin, 

2013; Hines, Skoglund, Kokaram, & Harte, 2012, 2013). It was designed to be 

deployable for a wide array of objective speech quality measurement situations, but is 

particularly suited to VoIP degradations in speech signals. The model works by 

examining time-frequency representations of the reference and degraded input signals 

in order to pinpoint particular VoIP degradations. 
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2.3.1 History of ViSQOL 

The original inspiration for the ViSQOL model comes from research carried out on 

speech intelligibility by some of the original authors of the ViSQOL paper (Hines & 

Harte, 2010, 2012). In this work, auditory nerve discharge outputs were created by a 

model that simulated the workings of part of human ear (Zilany, Bruce, Nelson, & 

Carney, 2009). The model then outputted a neurogram which is essentially a visual 

representation of the time-frequency relationship of the neural firing activity. ViSQOL 

uses this research to create, not a neurogram, but a spectrogram of both the reference 

and degraded signals inputted into the ViSQOL model in order to contrast the 

differences between the signals. This is a somewhat unique approach to measuring the 

degradation of a signal, as most objective quality models will try to quantify how much 

distortion, noise, etc. is present in the degraded signal compared to the reference signal. 

A metric used for classifying the distance in similarity between the reference and 

degraded signal is used by ViSQOL dubbed the Neurogram Similarity Index Measure 

(NSIM). Speech intelligibility can be objectively measured by measuring the NSIM 

value between both the reference and degraded signals inputted into ViSQOL. NSIM is 

a variant of Structural Similarity Index Measure (SSIM) which is very widely used to 

measure image quality loss (Z. Wang, Bovik, Sheikh, & Simoncelli, 2004). To put into 

simple terms, the input reference and degraded speech signals are essentially converted 

into an image that represents the spectrogram of the signals. These images are then 

compared to ascertain the difference between them in order to measure speech 

intelligibility. The reason spectrograms are used, rather than the neurograms from the 

research that inspired ViSQOL, is due to the computational cost of the model. A 

neurogram would increase the complexity of the model too much to be comparable with 

the computational cost of other objective speech quality metrics such as PESQ or 

POLKA. 
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2.3.2 The ViSQOL Model 

 

Figure 2.2: High-level block diagram of ViSQOL (Hines, Skoglund, et al., 2015, p. 4) 

The ViSQOL model has five main parts; pre-processing, time alignment, predicting 

warp, similarity comparison, and mapping of similarity to objective quality. These are 

shown in Figure 2.2 above. In the first part of the model, pre-processing, the power of 

the degraded signal y(t) is scaled to match that of the reference signal x(t). A Short-Term 

Fourier Transform (STFT) spectrogram of both the reference and degraded signals is 

then created which are used as inputs to the next part of the model. These reference and 

degraded spectrograms are denoted r and d respectively. 

The next part of the model involves time alignment of the reference and degraded 

signals. The reference signal is split into a number of different patches, each 30 frames 

in length. The signal is split into active patches by the use of a voice activity detector 

(VAD). The patches from the reference signal are then time aligned with the spectrogram 

from the degraded signal using NSIM to find the point at which the highest similarity 

occurs. These NSIM values (measured at the maximum of all the patches) are averaged 

across all the patches for the degraded signal to provide an overall NSIM value. 

The ViSQOL model then proceeds to predict the warp on the signals. Different reference 

patches are created with warped values of 1% and 5% longer and shorter than the 

reference signal. The NSIM of each of the warped (and original) reference patches is 

measured against the degraded patch. The highest NSIM value is then used as the overall 

score for that patch. This is done because NSIM is better at picking up on time warped 

that the human ear is. 

Next, the similarity comparison takes place. NSIM has been described above and is 

defined by the following equation (Hines, Skoglund, et al., 2015, p. 8): 

𝑄(𝑟, 𝑑) = 𝑙(𝑟, 𝑑) ∙ 𝑠(𝑟, 𝑑) =
2𝜇𝑟𝜇𝑑 + 𝐶1

𝜇𝑟
2 + 𝜇𝑑

2 + 𝐶1

∙
𝜎𝑟𝑑 + 𝐶3

𝜎𝑟 ∙ 𝜎𝑑 + 𝐶3
(2) 
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Where 𝑙 is intensity, 𝑠 is structure, 𝜇 is the mean, 𝜎 is standard deviation, 𝐶1 = 0.01𝐿, 

and 𝐶2 = 𝐶3 = (0.03𝐿)2. 𝐿 is defined as the intensity range of the reference input (in 

this case the reference signal). This equation is derived from workings of Wang et al. 

(2004). NSIM will return a result of ‘1’ for a reference and degraded signal that are 

identical to each other, (i.e. no differences in the two input signals) and ‘0’ for a reference 

and degraded signal that are completely dissimilar to each other (i.e. no part of the 

signals is similar). The mean of all the NSIM scores are calculated and returned as an 

overall NSIM score for the reference and degraded signal. 

Finally, the ViSQOL model performs the mapping of the NSIM score to an equivalent 

objective MOS value. This mapping is done by a transfer function defined as follows 

(Hines, Skoglund, et al., 2015, p. 8): 

𝑐𝑙𝑎𝑚𝑝(𝑄𝑀𝑂𝑆, 𝑎, 𝑏) = ∫

𝑚      𝑖𝑓 𝑓(𝑧) ≤ 𝑚,

𝑓(𝑧)   𝑎 < 𝑓(𝑧) ≤ 𝑛,

𝑛        𝑖𝑓 𝑓(𝑧) > 𝑛

(3) 

Where 𝑄𝑀𝑂𝑆 = 𝑎𝑧3 + 𝑏𝑧2 + 𝑐𝑧 + 𝑑, 𝑚 = 1, and 𝑛 = 5. The coefficients are defined as 

thus: 𝑎 = 158.7, 𝑏 = −373.6, 𝑐 = 295.5, and 𝑑 = −75.3. 

In the experiments conducted on ViSQOL by Hines et al., it was shown that it performed 

better than simpler metrics such as LLR and fwSegSNR and on par with both PESQ and 

POLKA (2015). It also noted that the mapping function had some issues for reference 

signals of lower quality with subjective MOS scores between ‘2’ and ‘3’. 

It is clear that the mapping from an NSIM score to an objective MOS value is likely the 

most important part of the ViSQOL model. Without proper mapping, the NSIM values 

calculated will be, in effect, wasted when using the model. While quite a lot of work has 

been conducted into distinguishing the differences between a reference and degraded 

signal, the mapping of ViSQOL does leave quite a lot to be desired. 

2.4 ViSQOLAudio 

ViSQOLAudio could be considered a ‘newer’ version of ViSQOL, even if it is 

specifically designed to rate the objective quality of music/audio samples rather than 

speech samples. The core of ViSQOLAudio contains some enhancements including a 

different approach to mapping NSIM scores to objective MOS values. The ViSQOL 

model described above was adapted to work with audio by removing the voice activity 

sensor, increasing the number of frequency bands evaluated, and removing the mapping 
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of NSIM values to MOS values in favour of a similarity scale between ‘0’ and ‘1’ (Hines, 

Gillen, et al., 2015). The reason the mapping was removed in this research was due to 

the fact that the mapping function used in ViSQOL was specifically designed for speech 

and would not give accurate objective MOS values for the new ViSQOLAudio model. 

2.4.1 ViSQOLAudio Improvements 

Sloan et al. built upon this work to further advance ViSQOLAudio (2017). There are 

five main improvements that were added to the ViSQOLAudio model with this research: 

 Stereo audio samples are evaluated with both channels. 

 Subframe misalignments of the input signals (reference and degraded) are 

compensated for. 

 Fullband signals (audio) use a more appropriate filter bank. 

 MOS values are outputted rather than a similarity score. 

 MOS values are mapped from NSIM values with a machine learning model. 

 

Figure 2.3: High-level block diagram of ViSQOLAudio (Sloan et al., 2017, p. 3) 

Figure 2.3 shows the high-level diagram of the ViSQOLAudio objective sound quality 

model. It can be seen that this model is still quite similar to the original ViSQOL model 

shown in Figure 2.2. The pre-processing stage of the model now extracts the mid channel 

from the inputs. This is done in order to process information from both channels. The 

subframe misalignments are also compensated for in this stage. The pairing stage 

operates in a similar fashion to the original ViSQOL model. In the comparison stage, 

NSIM values are calculated across different frequency bands in order to evaluate 

similarity across a larger spectrum. The similarity to quality mapping stage uses a 

machine learning model to map NSIM values to an objective MOS value. Since the 

NSIM values are measured across the different frequency bands in this model, it allows 

for the machine learning model to look for matches for similarities throughout the 
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available frequency spectrum. The mapping model used is a support vector regression 

(SVR) model and allows for the mean of NSIM values of all similarity patches to be 

converted to an objective MOS value. 

ViSQOLAudio generates an objective MOS value with the following process: 

𝑞 = 𝑆𝑉𝑅 (
1

𝑀
∑ Ω𝑖

𝑀

𝑖=1

) (4) 

Where the objective MOS value is 𝑞, 𝑀 is the number of similarity patches, Ω is the 

NSIM values across the frequency bands, and 𝑆𝑉𝑅 is the support vector regression 

machine learning model. 

In the experiments conducted on this version of ViSQOLAudio, it was shown that the 

model had superior results on two out of the three datasets used (Sloan et al., 2017). It 

came a very close second to a competing model in the third dataset. As an objective 

audio quality model, it is a viable alternative to PEAQ, POLQA and PEMO-Q. 

 

Table 2.4: Evaluation metrics for ViSQOLAudio (2015) Vs. ViSQOLAudio (2017) (Sloan et al., 2017, p. 10) 

Table 2.4 shows the improvements to linearity, accuracy and consistency between the 

original ViSQOLAudio and newer version of ViSQOLAudio presented by Sloan et al. 

(2017). The linearity, accuracy and consistency are calculated using Pearson’s 

correlation coefficient (R), epsilon insensitive root means square error rate (𝜀-RMSE) 

and outlier ratio (OR) respectively (ITU-T, 2012). Therefore, although specifically 

tested with audio only, this iteration of ViSQOLAudio has improved upon its original 

form. 

2.4.2 Objective Speech Quality to Objective Audio Quality 

Objective sound quality models such as POLKA and ViSQOL have been adapted to 

work with audio. This is shown by the existence of the ViSQOLAudio and POLKA 

Music models. In the case of POLKA Music, the advancements made to create this 

model improved the objective speech metric of the model (Pocta & Beerends, 2015). 

This begs the question, could the improvements made to ViSQOLAudio resulted in 
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increased accuracy of the objective speech metric? Or could the SVR model be trained 

with speech data to improve the accuracy of the objective speech metric? Also, could a 

different machine learning technique be applied to the mapping model? 

2.5 Machine Learning Techniques 

The following section will detail the machine learning techniques that are already pre-

existing, as well as those which will be used as part of the experiments conducted in this 

research, to create mapping functions from similarity values to objective sound quality 

values. 

2.5.1 ViSQOLAudio and Support Vector Regression 

ViSQOLAudio uses a support vector regression machine learning model in order to map 

NSIM values to objective MOS values. To achieve this, it uses LIBSVM and a training 

set of data to create the machine learning model (Chang & Lin, 2011). The model used 

is a ν-SVR with a radial kernel, 𝜈 = 0.6, cost = 0.4, and all other values set to defaults. 

There is precedent for the use of support vector regression machine learning models and 

sound quality. Liu et al. used SVR in order to predict diesel-engine related noise (2015). 

Additionally, Shen et al. used a support vector machine (which can be applied to 

classification and regression), a multiple linear regression model, and a neural network 

to predict vehicle interior sound quality (2010). Support vector machines have also been 

used with regards to audio steganography (Ozer, Avcibas, Sankur, & Memon, 2003). 

2.5.2 Neural Networks Popularisation 

Neural networks have become increasingly popular in academic and commercial use, 

and have been discussed widely in worldwide media in the last few years. As the 

technology has become more freely available and relatively easy to use, people have 

started to use it for a myriad of purposes. Its applications have ranged from the comical 

recipes that a badly trained neural network outputs (Alexander & Chambers, 2017), to 

commercial products generating original music to help customers add backing tracks to 

videos without having to worry about copyright issues on platforms such as YouTube 

(Chambers, 2017). Neural network training has even been streamed live on the popular 

video game streaming service ‘Twitch’. The blockbuster video game ‘Grand Theft Auto 

V’ has previously been discussed in the media as a training platform for self-driving cars 

(Matulef, 2017), but Harrison Kinsely, a Python programmer, has created a 
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convolutional neural network to teach a Python program how to drive within the virtual 

world of the video game while streaming its progress (O’Connor, 2017). 

The most recent, high-profile example of a neural network making headlines would most 

likely be the Go match between South Korea’s Lee Sedol (professional Go player with 

a rank of 9th dan) and the computer program ‘AlphaGo’ created by a subsidiary of 

Google called ‘DeepMind’ (Silver et al., 2016). The match, and the loss of one the 

world’s greatest players one game to four, is seen as a milestone in the progress of AI 

(F.-Y. Wang et al., 2016).  Many at the time compared it to a similar event almost 20 

years’ prior where a chess program, ‘Deep Blue’, developed by IBM, defeated the then 

World Chess Champion Garry Kasparov over six games in 1997 (Campbell, Hoane, & 

Hsu, 2002). However, the difference between the two programs is quite vast. Simply 

put, the reason ‘Deep Blue’ won the game was because computational power in 

computers had increased to a stage where the program could calculate and estimate every 

combination of moves in a game of chess. However, in a game of Go, there are vastly 

more combination of moves than any computer can calculate at present. This is why a 

neural network was developed and trained to learn from the data of games played by 

various professionals and from games it played with itself. The program has been shown 

to mimic human intuition in calculating its next move as it cannot possible know every 

move available. Therefore, it does not have the absolute ‘right’ move to play, just like a 

human player. 

Thanks to these advancements, discussions, and popularisations of neural network 

techniques, experimentation with neural networks is far more accessible to the general 

public than it ever was. While a certain level of expertise in computing and mathematics 

is still required at present, that level is ever decreasing. Open source libraries, such as 

TensorFlow, are now available and can set up a neural network with GPU computational 

support in an extremely short amount of time compared to even a decade ago (Abadi et 

al., 2016). 

2.5.3 ViSQOLAudio Accuracy Prediction 

As discussed previously, ViSQOLAudio uses a machine learning model to predict the 

‘right’ mapping between similarity values and objective MOS values. This research 

seeks to ask if a neural network model will improve accuracy over a support vector 

regression model. Narendra and Parthasarathy show in their research that neural 
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networks can be used effectively for identification (1990). Neural networks have already 

been used to predict sound quality in the automotive industry (H.-H. Lee & Lee, 2009; 

S.-K. Lee, 2008; S.-K. Lee, Kim, & Park, 2005; S.-K. Lee, Kim, & Lee, 2006; Y. S. 

Wang, Lee, Kim, & Xu, 2007). There is also a precedence to use neural networks with 

objective sound quality models as both PESQ and PEMO-Q use a neural network to map 

their respective model values to quality values (Huber & Kollmeier, 2006; ITU-T, 

2001b). 

2.6 Summary 

The following section will detail a summary of the literature covered, any gaps 

discovered in the research as well as the research question for this paper. 

2.6.1 Summary of Literature 

While there are dozens of studies that discuss the workings of objective quality models 

and compare various models to one and other in terms of accuracy, it is clear that these 

objective quality models still have some way to go before they can be considered a true 

replacement for subjective sound quality measurement (Hines, Počta, et al., 2013; Hines 

et al., 2012; Hines, Skoglund, et al., 2013; Huber & Kollmeier, 2006; ITU-T, 2001b, 

2011; Sloan et al., 2017). However, it is also clear that incremental advancements in 

accuracy are occurring with each of the newer models published over the last decade. 

An increasing amount of them are using machine learning techniques in order to map 

similarity values to objective sound quality values too (Hines, Gillen, et al., 2015; Huber 

& Kollmeier, 2006; ITU-T, 2001b). This may be a big factor in the recent increases in 

accuracy. From the research conducted on objective sound quality models that use 

machine learning techniques for mapping of similarity values to sound quality values, it 

is apparent that training with appropriate datasets has been a successful approach to the 

creation of such mapping models. Furthermore, with the popularisation of machine 

learning techniques (neural networks in particular), creating these type of mapping 

models has become much easier over the last few years (Abadi et al., 2016; Silver et al., 

2016; F.-Y. Wang et al., 2016). That could be an additional factor into why there is a 

rise in the use of them being applied to objective sound quality models. 

2.6.2 Gaps in Literature and Open Problems 

While there appears to be some work done with regards to adding machine learning 

techniques into these full-reference objective sound quality models, there is quite a lack 
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of detail on the mapping models themselves. It appears that most researchers into 

objective sound quality models migrate image pattern recognition techniques into their 

models (Hines & Harte, 2010, 2012; Z. Wang et al., 2004). This leaves one questioning 

the level of expertise that the researches have with regards to the creation of machine 

learning models for mapping. However, as the research in this paper will show, this gap 

in knowledge may not actually be an issue as the level of expertise required for creating 

neural networks has lessened over time. Research from the perspective of a machine 

learning expert on the use of machine learning techniques in objective sound quality 

models would be most welcome. This could point out any issues or inconsistencies with 

the approach taken by most objective sound quality researchers. It could also lead to 

improvements in overall accuracy. 

2.6.3 The Research Question 

Through a thorough analysis of the available research into ViSQOL, its recent 

advancements, and similar full-reference objective sound quality models, the dominant 

motivation for the research presented in this paper was brought about: can the training 

of a new mapping model for ViSQOLAudio improve the accuracy levels (for speech 

quality) to levels greater than ViSQOL? 
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3 DESIGN / METHODOLOGY 

This section of the document will detail the methodology used to conduct the 

experiments required to answer the research question posed. 

3.1 Method Used 

In order to provide effective testing, datasets were selected that contain pairs of reference 

and degraded speech samples with accompanying Mean Opinion Scores (MOS). For the 

purposes of this research, such MOS values will be labelled as MOS-LQS (mean opinion 

score – listening quality subjective) as they are subjective values. The values outputted 

by the objective sound quality models tested will be referred to as MOS-LQO (mean 

opinion score – listening quality objective) as they are objectively calculated. 

Accuracy and linearity are key metrics that were observed by this research in order to 

grade which objective sound quality model (or variant of) performs best (or has 

improved). To calculate accuracy, an F-score and root-mean-square error (RMSE) were 

calculated from the MOS-LQS and MOS-LQO results of each model tested. Linearity 

was measured using Pearson’s correlation coefficient. This gives a measure of the linear 

relationship between both the objective and subjective values measured. As an added 

metric, the average difference in MOS score across the pairs of MOS-LQS and MOS-

LQO results was generated to calculate the variance in results. These metrics allow for 

a measure of how often a model is accurate as well as how much it may deviate when it 

is inaccurate. 

ITU-T P.1401 recommends that linearity, accuracy, and consistency be measured when 

evaluating objective sound quality models (ITU-T, 2012). However, the measurement 

of both accuracy and consistency will be used as part of this research. The only 

evaluation method taken from ITU-T P.1401 is the Pearson’s correlation coefficient 

measurement. Further research could evaluate the results presented in Chapter 4 with 

the recommendations in ITU-T P.1401. 

F-score (also referred to as F1-score or F-measure) is a measure of accuracy (Sokolova, 

Japkowicz, & Szpakowicz, 2006). Both the precision (p) and the recall (r) of the results 

(in the case of this research, the MOS-LQS and MOS-LQO values) are considered to 

compute the accuracy scoring. The sum of correct positive results divided by the sum of 

all positive results is p. The sum of the correct positive results divided by the sum of 

positive results that should have been returned is r. F-score is measured between ‘0’ and 
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‘1’ with ‘0’ being the worst accuracy rating and ‘1’ being the best accuracy rating. It is 

the weighted average of p and r and is calculated with the following formula: 

𝐹1 = 2 ∙
1

1
𝑟

+
1
𝑝

= 2 ∙
𝑝 ∙ 𝑟

𝑝 + 𝑟
(5)

 

The root-mean-square error (RMSE) is used to calculate the true prediction error 

between both the subjective and objective MOS values recorded as part of this research. 

It is calculated with the following equation: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1

𝑛
(6) 

Where 𝑋𝑖 is the predicted values (MOS-LQO) and 𝑌𝑖 is the observed values (MOS-LQS). 

In the context of this research, the smallest value recorded will signify the smallest error 

in results between the datasets. RMSE can be viewed as a measure of how close the 

predicted data (MOS-LQO) is to the actual data (MOS-LQS) in the dataset. 

Pearson’s correlation coefficient (𝑅) is a measure of the linear relationship between a 

selection of objective and subjective opinion scores (ITU-T, 2012). 𝑅 is calculated as 

thus: 

𝑅 =
∑ (𝑋𝑖 − �̅�)(𝑌𝑖 − �̅�)𝑁

𝑖=1

√∑ (𝑋𝑖 − �̅�)2𝑁
𝑖=1 √∑ (𝑌𝑖 − �̅�)2𝑁

𝑖=1

(7)
 

Where 𝑋𝑖 is the MOS-LQS for speech sample 𝑖, 𝑌𝑖 is the MOS-LQO for speech clip 𝑖, �̅� 

is the mean MOS-LQS, �̅� is the mean MOS-LQO, and 𝑁 is the sum of speech samples 

in the dataset. With Pearson’s, if a value is between ‘0’ and ‘1’, there is a positive 

correlation between the two sets of data. However, if a value is between ‘0’ and ‘-1’, 

then that shows a negative correlation between the two sets of data. In the context of this 

research, the ideal result between the two sets of data is as close to ‘1’ as possible. Or in 

other words, the highest positive correlation between the two sets of data is ideal. 
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3.2 Sources of Data 

Two relevant datasets were selected for use in the experiments conducted as part of this 

research. The first is the TCD-VoIP dataset (Harte et al., 2015). This dataset was chosen 

not only because it has not been used with ViSQOL or ViSQOLAudio in previous 

research, but due to the fact it represents data that is ideal for the development of 

objective sound quality models. Namely, samples of speech that have been degraded 

with various degradations that can be present in VoIP communications. For example, 

some of the degraded signals in the dataset contain echo, which can cause quality 

degradation in VoIP (Kostas et al., 1998, p. 20). The second dataset used was the ITU-

T P Supplement 23 (P.Supp. 23) coded-speech dataset (ITU-T, 1998a). This dataset was 

developed for the 8 kbit/s codec (Recommendation G.729) designed by ITU-T and is a 

useful benchmark in speech quality measurement in objective VoIP speech quality 

models. Although relatively old at this point in time, it is still in use (M.-K. Lee & Kang, 

2013). This dataset was also chosen as it has been used to train and benchmark ViSQOL 

in previous research (Hines, Skoglund, et al., 2015) and can effectively illustrate any 

differences in accuracy that this research may obtain. 

3.3 Objective Sound Quality Models 

As the purpose of this research is to improve on the accuracy of the ViSQOLAudio 

objective sound quality model with speech samples, both ViSQOL and ViSQOLAudio 

were chosen as the objective sound quality models to test accuracy levels against. 

ViSQOL was selected as an objective sound quality model in order to get a benchmark 

of MOS-LQO values for speech samples that need to be improved upon. ViSQOL was 

original designed for speech data and predicts quality relatively well compared to other 

objective sound quality models such as PESQ and POLQA. ViSQOLAudio is an 

updated version of ViSQOL with many improvements, but is specifically trained for 

audio/music samples. It was chosen as an objective sound quality model for this research 

as those improvements may lead to increased accuracy for speech samples as well. 

The test data selected from within the chosen datasets were used as inputs both ViSQOL 

and ViSQOLAudio in order to gather accuracy results for comparison between the 

models. 
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3.4 Training ViSQOLAudio 

ViSQOLAudio utilises a support vector regression machine learning model in order to 

map similarity scores taken from the reference and degraded audio samples inputted to 

a MOS-LQS value. Given the appropriate speech samples from both the TCD-VoIP and 

ITU-T coded speech datasets, ViSQOLAudio was then re-trained with a new support 

vector regression model using LIBSVM as well as three separate TensorFlow neural 

networks (Chang & Lin, 2011) (Abadi et al., 2016). 

3.4.1 LIBSVM 

When training a support vector regression model with LIBSVM, the subsets of data 

selected for training purposes from each of the dataset were run through the ‘vanilla’ 

ViSQOLAudio code with debug enabled. This allowed the capture of frequency band 

similarity scores for each of the pairs of reference and degraded speech samples. Each 

of these arrays of similarity scores were assigned an MOS-LQS value obtained from the 

dataset itself. The MOS-LQS value is our ‘label’ while each of the similarity scores 

measured are the ‘values’ associated with that ‘label’. This allows for the creation of a 

support vector regression (SVR) model that can predict MOS-LQO values based on an 

input of an array of similarity scores. This approach was conducted as ViSQOLAudio 

used the exact same method to create a support vector regression model when training 

with audio data (Sloan et al., 2017). 

3.4.2 TensorFlow 

TensorFlow is an open source Python programming language library developed by 

Google that is utilised for the creation of machine learning algorithms. In the context of 

this research, it was used to create a deep neural network (DNN) to provide a model that 

can predict MOS-LQS values given an array of similarity scores. It is used as an 

alternative to the machine learning algorithm constructed using LIBSVM for 

ViSQOLAudio. As with the support vector regression model construction, MOS-LQS 

values obtained from each of the datasets were used as ‘labels’ and an associated array 

of similarity scores for each sample were used as ‘values’ when training the DNN. Three 

separate DNNs models were created with varying epoch training values. 
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3.5 Accuracy Measurement 

The subsets of data from each of the datasets allocated for testing were used as inputs to 

the following objective sound quality models in order to obtain an F-score and RMSE 

value to measure accuracy between MOS-LQS and MOS-LQO values: ViSQOL, 

ViSQOLAudio, ViSQOLAudio with a new SVR model trained with speech samples, 

and ViSQOLAudio with three separate DNN models that replace the SVR model. 

The results of each of the experiments was recorded in order to obtain F-score and 

RMSE accuracy readings for each model. These values were then used calculate the 

model that had the greatest accuracy in measuring the objective sound quality of speech 

samples with VoIP degradations. 

3.6 Linearity and Average Difference in MOS-LQS and MOS-LQO Values 

As an added measurement, the Pearson’s correlation coefficient and average difference 

between the MOS-LQS and MOS-LQO for each of the models detailed was recorded. 

This allowed for a measurement of how much the results differed in some models. This 

is needed due to the fact that while accuracy may be relatively high in some cases, when 

the model calculates an incorrect MOS-LQO value, the difference in MOS-LQS and 

MOS-LQO may not be within tolerance levels of the user. Some models may give a 

lower accuracy but have incorrect MOS-LQO values within a user’s tolerance level. 

Pearson’s correlation coefficient can indicate a positive or negative correlation between 

the MOS-LQS and MOS-LQO values. 
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4 IMPLEMENTATION / RESULTS 

The following section will detail and explain the results of the experiments that were 

conducted. It will be split into two sections. One detailing the experiments run against 

both ViSQOL and ViSQOLAudio with the TCD-VoIP dataset and another detailing the 

experiments run against ViSQOL and ViSQOLAudio with the ITU-T coded-speech 

dataset. 

4.1 TCD-VoIP Dataset 

The MOS-LQS scores that were provided with this dataset of speech samples were used 

to compute the accuracy of six different MOS-LQO scores. These six MOS-LQO scores 

were taken from the original ViSQOL MATLAB code, the original ViSQOLAudio, a 

version of ViSQOLAudio trained with a support vector regression model, as well as 

three versions of ViSQOLAudio replacing the support vector regression model with 

Tensorflow neural network models. 

The dataset contains 5 different subset of files that are labelled ‘CHOP’, ‘CLIP’, 

‘COMPSPKR’, ‘ECHO’, and ‘NOISE’. The models described in this section were 

trained with the first 4 subsets of the dataset (‘CHOP’, ‘CLIP’, ‘COMPSPKR’, and 

‘ECHO’) and tested against the remaining subset of data (‘NOISE’). This subset of data 

used for testing contains 96 corresponding reference and degraded samples, while the 

subsets of data used for training contains 181 corresponding reference and degraded 

samples. 

4.1.1 ViSQOL MOS-LQO Results 

In order to obtain a reference of what this experiment hopes to improve on, the subset 

of data used for testing (‘NOISE’) was used as inputs for the original ViSQOL 

MATLAB code. This provided reference MOS-LQO scores. As the output of this code 

can return values between ‘0’ and ‘5’, with a precision of up to 9 decimal points, the 

MOS-LQO values outputted were rounded down to one decimal place values. Thus, a 

value of ‘4.922250734’ becomes ‘4.9’. This was done in order to ensure correct accuracy 

testing between the MOS-LQS (which have a precision of one decimal place) and MOS-

LQO scores. 
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Figure 4.1: TCD-VoIP Dataset ViSQOL Results 

Figure 4.1 illustrates a graphical representation of how closely the MOS-LQS values 

and ViSQOL MOS-LQO values align with each other. An F-score was calculated to 

distinguish how accurate the ViSQOL MOS-LQO scores are when compared to the 

MOS-LQS scores associated with the dataset. The result of this calculation was ‘0.021’ 

(or 2.1%) accuracy. The RMSE was calculated as ‘0.86’. 𝑅 was found to be ‘0.86’. The 

average difference in MOS scores between the two results was also calculated as ‘0.7’. 

4.1.2 ViSQOLAudio MOS-LQO Results 

The ‘NOISE’ reference and degraded speech samples were then used as inputs to the 

newer ViSQOLAudio in order to ascertain how a more updated version of the ViSQOL 

code (albeit trained specifically for music/audio) would respond to the same samples 

presented to the older ViSQOL code. ViSQOLAudio outputs MOS-LQO values ranging 

from ‘0’ to ‘5’ with a precision of up to 5 decimal places. In order to align correctly with 

the MOS-LQS results that are provided with the dataset, these results were rounded 

down to 1 decimal place of precision. Thus, a value of ‘4.94922’ became ‘4.9’. This 

helped to calculate a more accurate F-score and RMSE between MOS-LQS provided by 

the dataset and MOS-LQO values that result from ViSQOLAudio. 
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Figure 4.2: TCD-VoIP Dataset ViSQOLAudio Results 

It can be immediately seen from Figure 4.2 that the accuracy is worse than that of 

ViSQOL as the MOS-LQO line does not cross the MOS-LQS line at any point. In fact, 

an F-score of ‘0’ is calculated for the accuracy rating between the MOS-LQS and 

ViSQOLAudio MOS-LQO values. RMSE is ‘1.794’. 𝑅 is ‘0.759’. The average 

difference between the MOS-LQS and MOS-LQO results is calculated as ‘1.5’. 

4.1.3 Training ViSQOLAudio for Speech using LibSVM 

ViSQOLAudio was specifically trained with audio samples and is not designed to give 

accurate results for speech samples. It was trained using LIBSVM and all similarity 

scores that the code outputs are run through the trained model in order to output accurate 

results for audio samples. This section will detail how ViSQOLAudio was re-trained for 

speech samples with a new model. 

Each of the remaining subsets of speech samples in the TCD-VoIP dataset (excluding 

the ‘NOISE’ subset as that is the test subset) were run through ViSQOLAudio in order 

to capture the similarity scores that are outputted by the code in debug mode. Using the 

MOS-LQS results from the dataset, a new support vector regression model was created 

using LIBSVM and the ‘NOISE’ test samples were run through this updated version of 

the code. 

LIBSVM was given the following parameters when computing the model: 

 The SVR is a nu-SVR with a radial kernel. 
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 The value of nu was set to ‘0.6’. This is the number of support vectors desired 

with respect to the number of samples in the dataset. 

 The cost was set as ‘0.4’. This refers to the cost function of the model. 

 All other parameters were kept as LIBSVM defaults. 

These parameters were chosen as they are the same parameters used by Sloan et al. when 

training ViSQOLAudio for audio clips (2017). 

4.1.4 ViSQOLAudio Trained with Speech Samples 

With a new support vector regression model in place, the ‘NOISE’ subset of speech 

samples were run through the ViSQOLAudio code once more in order to see if there 

was any meaningful change to accuracy. 

 

Figure 4.3: TCD-VoIP Dataset Re-Trained ViSQOLAudio Results 

The data presented in Figure 4.3 achieves an F-Score of ‘0.031’, or 3.1%, and RMSE of 

‘0.971’. As the last F-Score accuracy measurement was ‘0’, the re-training of the support 

vector regression model has increased the accuracy above that of the ViSQOL code 

(even if the RMSE has increased above the value recorded for that model). However, it 

can be seen that there is little variance in the results. There appears to be an averaging 

of the MOS-LQO results against the MOS-LQS scores. 𝑅 was measured at ‘0.384’ and 

the average difference between each of the sets of MOS scores was ‘-0.1’. 
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4.1.5 Training ViSQOLAudio for Speech using Tensorflow 

Using Tensorflow, a neural network was created to present a different model to that 

constructed by LIBSVM’s support vector regression. The dataset was split into training 

and test data in the same manner that was used when re-training the support vector 

regression model. The ‘NOISE’ subset of speech samples were used as test data while 

all remaining speech samples were used to train the neural network. The data was split 

into ‘labels’ and ‘features’. The ‘labels’ corresponded to the MOS-LQS values provided 

with the dataset. There were 51 unique ‘labels’ ranging from ‘0.0’ to ‘5.0’. These 

represent the MOS-LQO values that will be outputted by the model. The ‘features’ were 

the similarity scores that were recorded when passing all reference and degraded speech 

samples present in the dataset through ViSQOLAudio. The neural network was tested 

against the ‘features’ (similarity scores) of the ‘NOISE’ subset of speech samples and 

provided ‘labels’ which are interpreted as MOS-LQO scores. 

A neural network model was computed with the following parameters: 

 Two hidden layers with 280 and 300 nodes respectively. 

 Training rate of ‘0.01’. 

 Three separate epoch training rates of 5,000, 50,000, and 1,000,000. 

The neural network was trained with three separate training epoch values of 5,000, 

50,000 and 1,000,000 in order to evaluate if accuracy increased as the cost function of 

the training reduced over time. These values themselves have no particular meaning 

other than to increase the time taken to train the model. Appendix A contains graphs 

illustrating the respective rise in epoch values and cost function reductions. While there 

is an initial drop in cost within the first few hundred epochs, it can clearly be seen that 

cost function eventually reduces to an acceptable level once enough training epochs are 

provided. 

4.1.6 ViSQOLAudio with Tensorflow Neural Network Model 

Once all three variants of the neural network with increasing training epoch times were 

completed, they outputted predicted MOS-LQO values for the ‘NOISE’ subset of 

reference and degraded speech samples. F-Score, RMSE, 𝑅, and average difference in 

MOS values were also calculated for each of the predicted array of MOS-LQO values. 
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Figure 4.4: TCD-VoIP Dataset Tensorflow NN 5k Epochs Results 

 

Figure 4.5: TCD-VoIP Dataset Tensorflow NN 50k Epochs Results 
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Figure 4.6: TCD-VoIP Dataset Tensorflow NN 1M Epochs Results 

Figure 4.4, Figure 4.5, and Figure 4.6 illustrate the accuracy of the Tensorflow neural 

networks run with 5,000, 50,000, and 1,000,000 training epochs respectively. It can be 

seen that although the results are somewhat sporadic, they behave quite differently than 

those of the LIBSVM support vector regression models. The neural network models also 

achieved the greatest F-Score accuracy results of any of the models with ‘0.042’ (or 

4.2%), ‘0.042’ (or 4.2%), and ‘0.052’ (or 5.2%) respectively. RMSE was measured at 

‘1.197’, ‘0.872’, and ‘0.877’ respectively. 𝑅 was measured at ‘0.551’, ‘0.784’, and 

‘0.739’ respectively. The average difference between MOS-LQS and MOS-LQO scores 

for each of the neural network models was ‘-0.5’, ‘-0.4’, and ‘-0.4’ respectively. 
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4.1.7 TCD-VoIP F-Scores and Average Difference 

This section illustrates the F-Scores, RMSE, 𝑅, and average difference between MOS-

LQS and MOS-LQO results from each of the different models described above. 

Models F-Score 

(Accuracy) 

RMSE 

(Accuracy) 

Pearson's 

(Correlation) 

Average 

Difference (in 

MOS) 

Original ViSQOL 

MOS-LQO 

0.021 0.856 0.861 0.7 

ViSQOLAudio 

MOS-LQO 

0 1.794 0.759 1.5 

New 

ViSQOLAudio 

MOS-LQO 

0.031 0.971 0.384 -0.1 

Tensorflow 

MOS-LQO 1 

0.042 1.197 0.551 -0.5 

Tensorflow 

MOS-LQO 2 

0.042 0.872 0.784 -0.4 

Tensorflow 

MOS-LQO 3 

0.052 0.877 0.739 -0.4 

Table 4.1: TCD-VoIP Dataset Results 

Table 4.1 shows the resultant F-Scores, RMSE, 𝑅, and average differences between 

MOS-LQS and MOS-LQO results for each model. The ‘Tensorflow MOS-LQO 3’ 

model (which was the neural network trained with 1,000,000 epochs) achieves the best 

accuracy with a score of ‘0.052’. The original ViSQOL model still achieves the lowest 

RMSE value and the highest 𝑅 (correlation) value. The least average difference between 

MOS-LQS and MOS-LQO results was the ‘New ViSQOLAudio MOS-LQO’ model 

with a difference of ‘-0.1’. This was the support vector regression model re-trained with 

the selected speech samples from the TCD-VoIP dataset. 
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4.2 ITU-T Coded Speech Dataset 

As with the above section, this dataset was used to ascertain how accurate different 

models were at objectively measuring sound quality when compared to the subjective 

test measurements (or MOS-LQS values) supplied for each of the reference and 

degraded samples contained within the dataset. The ITU-T coded speech dataset 

contains data from three separate experiments on sound quality (‘EXP1’, ‘EXP2’, and 

‘EXP3’). Of these three experiments, two contain reference and degraded samples of 

speech that have MOS-LQS values associated with them (‘EXP1’ and ‘EXP3’). The 

remaining dataset (‘EXP2’) contains reference and degraded speech samples but does 

not have associated subjective MOS values. Due to this, it was removed from this 

experiment, as associated subjective MOS values are a requirement with all speech 

samples used. 

The original ViSQOL code trained a model using only one of the experiments contained 

in the dataset (‘EXP3’). For the purposes of this experiment, all remaining valid data 

contained within the dataset was used for training and testing of models generated 

(‘EXP1’ and ‘EXP3’). In order to make this a valid test against the original ViSQOL 

model, the same data that was used for testing that model was selected for this 

experiment (laboratory results labelled ‘O’ from experiment labelled ‘EXP3’). All 

remaining valid data was used for training of the models. 

There were 1152 pairs of reference and degraded speech samples used for training of 

models and 203 used for testing trained models. In total, there were 1355 pairs of 

reference and degraded samples to utilise within this dataset. 

The objective sound quality models that are used for testing against the subjective MOS 

values obtained from this dataset are as follows: ViSQOL, ViSQOLAudio, a re-trained 

ViSQOLAudio for speech samples, and three separate neural networks used as an 

alternative to ViSQOLAudio’s support vector regression model for similarity score to 

objective MOS value mapping. 

4.2.1 ViSQOL MOS-LQO Results 

The original ViSQOL objective sound quality model was used to test the reference and 

degraded speech samples from the selected test set within the dataset. However, it 

appears some issues with the processing of the samples occurred when conducting this 

experiment. While most pairs of reference and degraded speech samples were processed 
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without issue, a proportion of them simply outputted a MOS value of ‘1’. Although no 

error message was outputted by the code, it seems that there are some flaws to the 

MATLAB version of the model provided. This was unforeseen as this dataset has been 

previously documented to work with ViSQOL. It is unfortunate that these issues have 

been observed in the experiment, but it does not hinder the remaining results from other 

models. 

 

Figure 4.7: ITU-T Dataset ViSQOL Results 

The issue described above is clearly visible in Figure 4.7. However, judging from the 

illustration of the data above alone, when the MATLAB model did work, it appeared to 

be quite accurate. From these results, an F-Score of ‘0.02’ was observed. RMSE was 

measured at ‘1.398’. 𝑅 was measured at ‘0.284’. Also, the average difference in MOS 

values between the two sets of values was ‘-0.9’. This value was more than likely 

dropped from what it should have been by the issues present with the model. 

  

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

M
O

S 
Sc

o
re

s

Number of Samples

ViSQOL Results

MOS-LQS Original ViSQOL MOS-LQO



39 
 

4.2.2 ViSQOLAudio MOS-LQO Results 

ViSQOLAudio was tested with the ITU-T coded speech dataset in the same manner as 

the TCD-VoIP dataset was tested. 

 

Figure 4.8: ITU-T Dataset ViSQOLAudio Results 

Similar behaviour was observed with the MOS-LQO values outputted by 

ViSQOLAudio with both this dataset and the previous dataset. While there was some 

relative behaviours with the peaks and troughs between the MOS-LQS and MOS-LQO 

values, ViSQOLAudio was still outputting values far too high for these speech samples. 

The accuracy (F-Score) calculated from the MOS-LQS and MOS-LQO values was 

‘0.015’, or 1.5%. RMSE was measured at ‘1.664’. 𝑅 was measured at ‘0.264’. The 

average difference between MOS-LQS and MOS-LQO values was ‘1.5’. 

4.2.3 Training ViSQOLAudio for Speech using LIBSVM 

The results from ViSQOLAudio were clearly not an improvement on the original 

ViSQOL when tested with this dataset (even with the errors seen with that model). 

Therefore, the support vector regression model used for mapping the similarity scores 

to MOS values was retrained with the 1152 pairs of reference and degraded speech 

samples designated for training in this dataset. This was done in the same manner that 

ViSQOLAudio was re-trained with the TCD-VoIP dataset described above. 

Since the ITU-T coded speech dataset comes with MOS-LQS values with an accuracy 

of two decimal points, the support vector regression model was trained with these values. 

This is one difference to the support vector regression model trained with the TCD-VoIP 
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dataset which has MOS-LQS values with an accuracy of one decimal place. Due to the 

speed at which support vector regression models can be computed with LIBSVM, the 

more accurate values were not rounded down to one decimal place as it would affect 

accuracy. 

4.2.4 ViSQOLAudio Trained with Speech Samples 

 

Figure 4.9: ITU-T Dataset Re-Trained ViSQOLAudio Results 

The results from the re-training of the ViSQOLAudio support vector regression model 

show similar behaviour to that of the re-training conducted with the TCD-VoIP dataset. 

Namely that the resultant MOS-LQO values appear to be closer to an average of all 

MOS-LQS values than a proper mapping of MOS-LQS to MOS-LQO values with 

correct variance in results. The accuracy recorded for this model was ‘0.025’ or 2.5%. 

RMSE was measured as ‘0.960’. 𝑅 was measured as ‘0.377’. The average difference 

between MOS-LQS and MOS-LQO values was calculated at ‘0.6’. 

4.2.5 Training ViSQOLAudio for Speech using Tensorflow 

Since similar results were observed with this dataset to that of the previous dataset, 

namely poor mapping of similarity scores to MOS-LQO values with support vector 

regression methods, a neural network was constructed and trained as an alternative. The 

same Tensorflow neural network architecture was used to create a model for mapping 

MOS-LQS values supplied with the dataset to MOS-LQO values. The ‘features’ 

contained the similarity scores for each of the pairs of reference and degraded speech 
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samples designated for training in this dataset. The ‘labels’ contained the associated 

MOS-LQS values that were recorded for those paired speech samples. 

It must be noted that due to the time it takes to train a neural network, the MOS-LQS 

values supplied with this dataset were rounded down from two decimal places to one 

decimal place. This meant that there were still 51 unique ‘labels’ in the neural network 

ranging from ‘0.0’ to ‘5.0’. Without this, there would be a need for 501 unique ‘labels’ 

ranging from ‘0.00’ to ‘5.00’ which would increase the time taken to run the neural 

network exponentially and was not feasible within the time limits of this research. 

In a similar fashion to that of the neural network trained with the previous dataset (TCD-

VoIP), it was observed that the cost function of the neural network sharply decreased 

initially within the first 100 training epochs (or iterations through the neural network). 

The cost function then steadily decreases to a more stable rate once the neural network 

is run for up to 1,000,000 training epochs. Three different training epoch values were 

assigned each of the three neural networks with the same values as that of the neural 

networks trained with the TCD-VoIP dataset. These were 5,000, 50,000, and 1,000,000 

training epochs and are shown by graphs collected in Appendix B. 
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4.2.6 ViSQOLAudio with TensorFlow Neural Network Model 

Each of the three neural networks models were then used as a replacement for the 

support vector regression model that maps similarity scores to MOS-LQO values. The 

three neural network models were run against the similarity scores from the reference 

and degraded speech samples in order to ascertain MOS-LQO values. 

 

Figure 4.10: ITU-T Dataset Tensorflow NN 5k Epochs Results 

 

Figure 4.11: ITU-T Dataset Tensorflow NN 50k Epochs Results 
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Figure 4.12: ITU-T Dataset Tensorflow NN 1M Epochs Results 

Figure 4.10, Figure 4.11, and Figure 4.12 illustrate the results taken from each of the 

TensorFlow neural network models with epoch training values of 5,000, 50,000, and 

1,000,000 respectively. The F-score accuracy measured for each of the neural network 

models was calculated as ‘0.094’ (or 9.4%), ‘0.064’ (or 6.4%), and ‘0.064’ (or 6.4%) 

respectively. RMSE was measured as ‘0.947’, ‘0.883’, and ‘0.885’ respectively. 𝑅 was 

measured as ‘0.338’, ‘0.382’, and ‘0.372’ respectively. Average difference between 

MOS-LQS and MOS-LQO results for each of the models was calculated as ‘0.6’, ‘0.3’, 

and ‘0.2’ respectively. 

  

0

1

2

3

4

5

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

M
O

S 
Sc

o
re

s

Number of Samples

Tensorflow NN 1M Epochs Results

MOS-LQS Tensorflow NN 1M Epochs MOS-LQO



44 
 

4.2.7 TCD-VoIP F-Scores and Average Difference 

This section illustrates the F-Scores and Average difference between MOS-LQS and 

MOS-LQO results from each of the different models described above. 

Models F-Score 

(Accuracy) 

RMSE 

(Accuracy) 

Pearson's 

(Correlation) 

Average 

Difference (in 

MOS) 

Original ViSQOL 

MOS-LQO 

0.02 1.398 0.284 -0.9 

ViSQOLAudio 

MOS-LQO 

0.015 1.664 0.264 1.5 

New 

ViSQOLAudio 

MOS-LQO 

0.025 0.960 0.377 0.6 

Tensorflow 

MOS-LQO 1 

0.094 0.947 0.338 0.6 

Tensorflow 

MOS-LQO 2 

0.064 0.883 0.382 0.3 

Tensorflow 

MOS-LQO 3 

0.064 0.885 0.372 0.2 

Table 4.2: ITU-T Dataset Results 

From the overall F-score accuracy and average difference between MOS-LQS and 

MOS-LQO results shown in Table 4.2, it was seen that the highest F-score accuracy was 

seen for the TensorFlow neural network trained with 5,000 epochs. However, the 

average difference between the MOS-LQS and MOS-LQO values was relatively high 

(compared to other models) at ‘0.6’. The best values for RMSE and 𝑅 were recorded for 

the TensorFlow neural network trained with 50,000 epochs. While the F-score accuracy 

measured for the remaining neural network models was recorded as ‘0.064’ for each 

model, the lowest average difference between MOS-LQS and MOS-LQO results was 

seen with the neural network trained with 1,000,000 epochs with a value of ‘0.2’. 
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5 EVALUATION / ANALYSIS 

The following section will discuss the evaluation, observations, strengths, and 

limitations of the results obtained in Chapter 4. 

5.1 Evaluation of Results 

This section of the paper will evaluate the results of each of the models (and variants 

thereof) that were tested with different datasets, as well as give an overall evaluation of 

the results captured from experiments. 

5.1.1 Original ViSQOL Results 

When testing the original ViSQOL model against the TCD-VoIP dataset, it was clear to 

see that it achieved reasonable accuracy. F-Score measures the rate at which the 

predicted MOS-LQO values were equal to the actual MOS-LQS values. Due the nature 

of objective sound quality models and the current amount of research into them, this 

value has not reached ‘1’ or 100% accuracy for any current model. However, the aim of 

this research is to provide a stepping stone on the path to greater accuracy. F-Score is 

still a valuable metric to see how accurate a model has been though, especially in 

conjunction with the RMSE and Pearson’s correlation value. In the case of ViSQOL 

tested with the TCD-VoIP dataset, F-Score accuracy was ‘0.021’, quite a low accuracy 

level. Thus, one must look to the accompanying values for a fuller picture of the results. 

RMSE was ‘0.856’ which shows that the model achieved the lowest rate of error when 

compared to the MOS-LQS values in the dataset. It is also seen that this model achieved 

the highest 𝑅 value, ‘0.861’, which signifies the greatest positive linear relationship 

between the MOS-LQO and MOS-LQS values in the dataset. The average difference 

between MOS-LQO and MOS-LQS values was relatively low at ‘0.7’. This metric 

provides a fuller picture of the results in question. One could argue that RMSE gives a 

better idea of the difference, or error rate of the difference, between MOS-LQO and 

MOS-LQS values. 

When testing the same model with the ITU-T P.Supp. 23 dataset, it is seen that results 

are not guaranteed in this experiment, as the MATLAB code provided seems to be 

flawed in some way. As mentioned in the previous chapter, the MATLAB code appears 

to output an MOS-LQO value of ‘1’ when it experiences some unknown error. This is 

particularly frustrating as when the MATLAB code is working (as in the case with the 

experiment of the TCD-VoIP dataset), it works quite well. Also, this code has been 
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documented working with the ITU-T P.Supp. 23 dataset in the past (Hines et al., 2012). 

One can salvage some data from this failed experiment, however, as previous 

documentation in question does give an 𝑅 value of ‘0.77’ for testing the model against 

this dataset. 

5.1.2 ViSQOLAudio Results 

The results obtained from the ViSQOLAudio model were always predicted to be poor 

as the model itself is specifically trained for audio clips (Sloan et al., 2017). Hence the 

name – ‘ViSQOLAudio’. However, the model itself does provide a substantial base on 

which to work upon. When tested with the TCD-VoIP dataset, some of the worst results 

for the overall experiment were recorded. The F-Score was ‘0’ as no values of MOS-

LQO were ever equal to the MOS-LQS values. RMSE was ‘1.794’ which is quite a high 

error rate in a spectrum of values that ranges from ‘0’ to ‘5’. It did however achieve a 

relatively high correlation rate with 𝑅 measuring ‘0.759’. The average difference 

between MOS-LQO and MOS-LQS values was quite high at ‘1.5’. 

When tested with the ITU-T P.Supp. 23 dataset, the F-Score was less than that of 

ViSQOL at ‘0.015’. The RMSE remained high at ‘1.664’ and, surprisingly, the 𝑅 value 

dropped considerably to ‘0.264’. While still a positive linear correlation, the large drop 

is surprising. The average difference between MOS-LQO and MOS-LQS values 

remained the same at ‘1.5’. 

5.1.3 New ViSQOLAudio Results 

As described in Chapter 4, the same test was run against the ViSQOLAudio model, once 

the SVR mapping model had been retrained with training data in both the TCD-VoIP 

and ITU-T P.Supp. 23 datasets. 

In the case of the TCD-VoIP dataset, some of the measured metrics changed greatly. 

The F-Score accuracy level increased above that of even ViSQOL to ‘0.031’, with a 

greatly decreased RMSE value of ‘0.971’. Surprisingly, the 𝑅 value dropped to ‘0.384’, 

which means that although there is less of a positive linear relationship between MOS-

LQO and MOS-LQS, accuracy levels were still increased. The average difference 

between MOS-LQO and MOS-LQS values dropped significantly to ‘-0.1’. However, 

from Figure 4.3, it can be seen that the resultant SVR model has created an almost 

straight line prediction that essentially gives an average value of the test data. Thus, the 

significantly low average difference between MOS-LQO and MOS-LQO values. 
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When the same experiment was run with the ITU-T P.Supp. 23 dataset, similar 

behaviour was observed for the SVR mapping model when used with ViSQOLAudio. 

F-Score accuracy was slightly less than with the previous dataset at ‘0.025’. However, 

the RMSE was slightly lowered at ‘0.960’ which shows less of a variance in results. The 

𝑅 value was roughly similar to that of the experiment on the previous dataset at ‘0.377’. 

The average difference between MOS-LQO and MOS-LQS values rose to ‘0.6’. Figure 

4.9 shows that similar ‘averaging’ behaviour was observed with the predicted values 

from the mapping model. 

5.1.4 Neural Network Results 

As described in Chapter 4, three configurations of neural networks (with increasing 

epoch training rates) were trained with each dataset to produce mapping models for 

similarity values to MOS-LQO values. 

With the TCD-VoIP dataset, each of the three models outputted higher F-Score accuracy 

measurements than that of ViSQOL. In fact, F-Score accuracy was at least doubled 

compared to ViSQOL in all cases. However, the model with just 5,000 training epochs 

outputted a large RMSE of ‘1.197’, while the other two models outputted RMSE values 

quite close to that of ViSQOL which could mean more training was essential for the 

neural network. It is important to note that when the number of epochs increase, the risk 

of overfitting also increase. That is why there is not always a positive linear correlation 

between the number of epochs and accuracy levels. The model with just 5,000 training 

epochs outputted the lowest 𝑅 value (between the three neural network models) of 

‘0.551’. While still a substantial positive linear correlation between MOS-LQO and 

MOS-LQS values, both the models with 50,000 and 1,000,000 training epochs outputted 

𝑅 values of ‘0.784’ and ‘0.739’ respectively. These values are much closer to that of 

ViSQOL. Average difference between MOS-LQO and MOS-LQS values remained 

consistent across the three values with rising epoch training rates at ‘-0.5’, ‘-0.4’ and ‘-

0.4’ respectively. 

5.1.5 Overall Evaluation of Results 

With the TCD-VoIP dataset, the neural network models achieved the greatest levels of 

F-Score accuracy with comparable values of RMSE and 𝑅 to that of ViSQOL. The 

average difference between MOS-LQO and MOS-LQS values was dropped slightly by 

the neural network models also. The SVR model trained with this dataset also achieved 
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a high level of accuracy, but still comes behind that of the neural network models. It also 

has increased levels of inaccuracy and difference in results measured by RMSE and 𝑅 

respectively. 

Roughly the same observations were noted with the ITU-T P.Supp. 23 dataset. Some of 

the highest F-Score accuracy rates were measured with this dataset and the neural 

network mapping models. For the increasing levels of training epochs across the three 

neural network models, F-Score measurements of ‘0.094’, ‘0.064’, and ‘0.064’ were 

recorded respectively. While the first neural network model had the greatest level of F-

Score accuracy. It also had a higher error rate (RMSE), less correlation (𝑅), and higher 

difference in results between MOS-LQO and MOS-LQS values than that of the other 

two models that were trained for longer. Essentially, it was ‘right’ in its predictions more 

of the time, but it came at a cost to error rate and correlation. Thus, the results for the 

neural network trained with 5,000 training epochs may be considered an outlier. The 

results from the neural networks trained with 50,000 and 1,000,000 training epochs are 

more consistent and still provide a good level of F-Score accuracy. The SVR model 

behaved roughly the same as the results given in the experiment with the previous 

dataset. F-Score accuracy increased with a re-trained SVR model, but RMSE error rate 

and 𝑅 were still below expectations. 

The correlation rate (𝑅) given from previous research on ViSQOL still provides a higher 

positive rate of correlation than that of any of the new mapping models created as part 

of this research. 

5.2 Observations from the Results 

It is clear from the results presented in Chapter 4 that ViSQOL can and has been 

improved upon with new mapping models for ViSQOLAudio. The neural network 

models provided the greatest levels of F-Score accuracy, but they came at a cost to error 

rate (RMSE) and positive linear correlation between MOS-LQO and MOS-LQS results 

(𝑅). Thus, the research question presented by this paper is answered: the training of a 

new mapping model for ViSQOLAudio improves accuracy levels (for speech quality) 

to levels greater than ViSQOL. While the error rate and positive correlation rates may 

be out of comfortable limits for some, this research shows that the improvements in 

ViSQOLAudio over ViSQOL can be used to improve upon ViSQOL. 
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Interestingly, it was found that the SVR models gave worse results than the neural 

network models. Although in a different field of research, DiPadua found that SVR 

models performed better than neural network models for pattern analysis (2016). Further 

research into the tuning of the selected machine learning models for this research may 

prove this to be true in the end. 

5.3 Strengths of the Results 

The results presented in this research show that machine learning techniques can, and 

are, valuable tools when attempting to increase the accuracy levels of objective sound 

quality models. The results can be used as a stepping stone for further research into this 

area as both the SVR and neural network models could possibly be tweaked to provide 

even greater accuracy results. Also, only two methods of machine learning techniques 

are explored as part of this research. There are many other techniques that could be 

applied to the objective sound quality models explored in this research for even greater 

results. Thus, the primary strength of the results presented in this research is the 

justification for feature selection as part of future work. 

Accuracy data from the neural networks in this research is intended to be a first step in 

a rigorous investigation into the feasibility of neural network models for use with 

objective sound quality models. In particular, for use with ViSQOLAudio. However, the 

results do provide essential data on the successes and capabilities of how a neural 

network can handle the mapping of NSIM values to objective MOS values. The three 

different neural network models tested show that the data is not just a fluke, but instead 

show the relevance and capabilities of how a neural network model may be used in future 

with ViSQOLAudio. It also provides evidence that machine learning models can almost 

definitely be researched further for mapping functions in ViSQOLAudio. 

The results themselves also show that the behaviour of the models are mostly similar 

across the two datasets used as part of the experiments undertaken in this research. It 

can be reasonably assumed that there are few outliers in the results presented. Even with 

a limited amount of datasets used, resultant data remains robust. 

A secondary strength to the results presented as part of the experiments conducted in 

this research is that the models created can very easily be applied to currently existing 

objective sound quality models such as ViSQOLAudio. Once the mapping model has 

been created, mapping from similarity value to MOS-LQO takes very little time. Thus, 
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mapping models can be exchanged with ease for objective sound quality models such as 

ViSQOLAudio. 

The final strength of the results is that the time taken to train models is relatively short. 

The process to train an SVR model takes quite a small amount of time and can be 

accomplished without specialised hardware. The neural network models with smaller 

training epochs can be trained and tested in a relatively short amount of time also. The 

SVM models created as part of this research took a number of seconds on an Intel Core 

i3-4030U CPU at 1.90 MHz. On the same hardware, the neural networks with 5,000 

epochs took roughly five minutes to complete. Additional datasets could be merged to 

train and test additional models relatively easily for further advancements. 

5.4 Limitations of the Results 

The primary limitation of the results is that, as a measure of subjective QoE, the MOS 

values obtained as part of the datasets selected may in fact be flawed in the first place. 

Karapanos et al. argue against the common practice of averaging when analysing 

subjective measurements due to individuals’ perceptions (2009). Karapanos and 

Martens suggest a different approach when modelling the difference in individuals’ 

perceptions to avoid these issues (2007). With regards to MOS, it has also been argued 

that the measurement itself suffers from a lack of diversity in measuring subjective user 

rating. The SOS parameter has been proposed to be used in conjunction with MOS 

values to help avoid these issues (Hoβfeld et al., 2011). In practice, the required 

homogeneity for MOS has been found to be lacking and a utility-based averaging has 

been proposed to counteract this (Xu et al., 2011). With these issues present in the 

subjective MOS values that accompany the speech samples in the selected datasets, it is 

unclear whether or not the MOS-LQO values predicted by the models presented in this 

paper are trying to predict the ‘right’ value in the first place. However, within the scope 

of this research, it is assumed that the values for subjective MOS that are part of the 

datasets are correct. Further research could evaluate if these subjective values suffer 

from psychological factors or not. Further to this limitation, it has been shown that there 

are a number of biases that occur in quality listening tests (Zielinski, Rumsey, & Bech, 

2008). For example, rating a sample ‘OK’ maps to various different levels of satisfaction 

across languages and cultures. 
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A secondary limitation to the results involves the allocation of training and test data from 

the datasets for the machine learning models. In both cases, the data used for training 

contained more samples that the test data, but there was no random selection of data. In 

the case of the TCD-VoIP dataset, four of the five subsets of data (that represented 

different VoIP degradations) were chosen for training data while the remainder were 

chosen for testing. It could be argued that if a random selection was used across all five 

of the subsets of data, better results may have been obtained. The results presented in 

this paper (for the TCD-VoIP dataset) show machine learning mapping models trained 

with various VoIP degradations, but then tested on a VoIP degradation which it was 

never trained on. While it performed well, it may not have been the best approach. 

The ITU-T P.Supp. 23 dataset contains speech samples from different laboratories and 

experiments with a wide variety of degradations. The data that was selected for training 

and testing was safe from the concerns present for the TCD-VoIP dataset as they both 

contained similar degradations. However, a random selection for training and test data 

was not conducted as this research wanted to emulate the experiments carried out on 

ViSQOL (Hines et al., 2012). Further research could prove if a random selection of this 

dataset could provide better results. 

A further limitation to the results presented in this paper involves the metrics used to 

evaluate the models. ITU-T P.1401 recommends that objective models should be 

assessed in terms of linearity, accuracy and consistency (ITU-T, 2012). It also 

recommends that first order and third order polynomial regressions are applied to the 

MOS-LQO data from the models. Hawkins formula should be used finding 

monotonically increasing polynomials for first and third order fits (Murray, Müller, & 

Turlach, 2016). Regression allows for a minimisation in RMSE and bias compensation 

for MOS-LQO data. Linearity should be measured with Pearson’s correlation 

coefficient, accuracy should be measured with epsilon insensitive root mean square error 

(ε-RMSE) (which accounts for prediction error) and consistency should be measured 

with the outlier ratio (OR). The data collected as part of this research could be re-

evaluated using the metrics presented as part of this recommendation in future work. 

Another important limitation of the results involves the tuning of the SVR and neural 

network models. One study concluded that “SVR probably has greatest use when the 

dimensionality of the input space and the order of the approximation creates a 
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dimensionality of a feature space representation much larger than that of the number of 

examples” (Drucker, Burges, Kaufman, Smola, & Vapnik, 1997, p. 160). In the context 

of this research, it is worth investigating the dimensionality of the data presented to the 

SVR model as an input for training. Similarity values related to subjective MOS values 

may not have enough dimensionality for the SVR model chosen. Further tweaking of 

the SVR model may be required. Chromagram, mel-scaled spectrogram, mel-frequency 

cepstral coefficients, spectral centroid tonal centroid features, and/or zero crossing rate 

data of the input signals could add dimensionality to the models. However, this would 

also come at a cost of computational processing of the objective sound quality model in 

question. 

Hornik et al. concluded in their research that “standard multilayer feedforward networks 

are capable of approximating any measurable function to any desired degree of accuracy, 

in a very specific and satisfying sense. We have thus established that such “mapping” 

networks are universal approximators” (1989). From this it can be seen that if a neural 

network mapping model does not achieve the desired amount of success, it must be due 

to inadequate learning rates, lack of hidden layer nodes, or that the relationship between 

input and output is not deterministic enough. 

For the neural network created in the experiments detailed in this research, two hidden 

layers were used. Funahashi’s research showed that any mapping can be achieved using 

just one hidden layer, while for pattern recognition, two hidden layers are used (1989). 

Similar research (based on Kolmogorov's theorem) to prove how the use of two hidden 

layers in a neural network has the capability to provide universal approximation has also 

been conducted (Hornik, 1991; Kůrková, 1992). Further research could prove if different 

configurations or numbers of hidden layers may improve the accuracy of the neural 

network mapping models created using neural networks. 

The final limitation to the results is this: ViSQOLAudio was created to process, analyse, 

and compare audio samples, not speech samples. In the process of converting ViSQOL 

to ViSQOLAudio, elements important to speech detection, such as the voice activity 

detector, were removed (Hines, Gillen, et al., 2015). It was also trained to work with 

audio samples only. While this research has successfully re-trained the model to work 

with speech samples, it is not known how the presence of original elements from 

ViSQOL (such as the voice activity sensor) would have had an effect on the results. 
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Further research could investigate how the addition of such elements effect 

ViSQOLAudio’s performance with speech data. 
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6 CONCLUSIONS  

This section of the paper details the conclusions found as part of the research. The 

overview of the research, a definition of the research problem, the design, 

experimentation, evaluation and results is given. The contributions and impact are 

discussed, and recommendations for future research are given. 

6.1 Research Overview 

A thorough analysis of the available research on the measurement of subjective sound 

quality, various objective sound quality models (ViSQOL and ViSQOLAudio in 

particular), and machine learning techniques (support vector regression and neural 

networks) was conducted. The research implies that, while subjective sound quality 

testing may have some psychological flaws in its methodology, objective sound quality 

testing has progressed greatly over the last decade. However, accuracy levels when 

measuring objective quality of sound still require some improvement. 

6.2 Problem Definition 

From the research conducted, it was evident that many useful advancements have 

occurred in the ViSQOL objective sound quality model as it has advanced from an 

objective speech quality model (ViSQOL) to an objective audio quality model 

(ViSQOLAudio). These advancements include the calculation of a more comprehensive 

similarity score between reference and degraded input signals, and the addition of a 

support vector regression machine learning model to map similarity scores to objective 

MOS values. Thus, the research problem presented by this paper asked the following: 

can the training of a new mapping model for ViSQOLAudio improve the accuracy 

levels (for speech quality) to levels greater than ViSQOL? 

6.3 Design/Experimentation, Evaluation and Results 

Two separate speech datasets (TCD-VoIP and ITU-T P.Supp. 23) were selected for both 

the training and testing of machine learning algorithms, as well as testing of standard 

ViSQOL and ViSQOLAudio models for benchmark results. The support vector 

regression model used by ViSQOLAudio (to map similarity scores to objective MOS 

values) was retrained in two separate experiments using the two selected datasets. The 

support vector regression model was also replaced by a neural network model, with three 

different configurations, and tested with the same datasets. Thus, results were obtained 
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for ViSQOL, ViSQOLAudio, ViSQOLAudio with a re-trained SVR mapping model, 

and ViSQOLAudio with three different neural network mapping models. 

The metrics used for evaluating models were as follows; F-Score and RMSE for 

accuracy, Pearson’s correlation coefficient for linearity, and average difference between 

real and predicted values as a simpler linearity/accuracy measure. 

The results of the experiments showed that ViSQOLAudio, in some cases, can be used 

to give objective speech quality metrics with greater accuracy than ViSQOL. Both the 

re-trained support vector regression model and the neural network models showed 

greater accuracy than ViSQOL with the TCD-VoIP dataset. However, this came at a 

slight cost to linearity and error rate. There were issues with using ViSQOL on the ITU-

T P.Supp. 23 dataset, but some results from previous research on ViSQOL were obtained 

for comparison. They showed that linearity values for the new machine learning models 

did not reach that of ViSQOL’s original results.  

6.4 Contributions and Impact 

This research sought to evaluate if the accuracy levels of objective sound quality models 

could be increased with the use of machine learning techniques. The general conclusion 

brought forward from this research is that both support vector regression and neural 

network models are superior to a standard transfer function when mapping similarity 

scores to objective MOS values. It was also seen that the ViSQOLAudio model can be 

altered, with relative ease, to accommodate for both speech and audio quality 

measurement. 

The viability of machine learning mapping models for ViSQOL and ViSQOLAudio is 

proven by this research and provides a ground basis for future improvements to the 

accuracy of the objective sound quality models. 

6.5 Future Work and Recommendations 

Two speech quality datasets were chosen to be used as part of this research (Harte et al., 

2015; ITU-T, 1998a). However, there exists additional appropriate datasets that could 

be used as part of further research, such as the NOIZEUS narrowband noisy speech 

corpus (Hu & Loizou, 2007). Future research should make every attempt to collect as 

much viable data as reasonably possible and combine the datasets to create much larger 

and varied training and test data. The experiments presented in this research could be 

repeated with the increased training dataset size in order to evaluate if training time 
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decreases and/or accuracy improves. Shalev-Shwartz and Srebro argue that, in the case 

of support vector machines, the increase of training set size should decrease the time 

taken to train the model as well as decrease the error rate (2008). 

As part of this research, a support vector regression model was trained with both of the 

selected speech datasets. The parameters used to train this machine learning model were 

purposefully identical to the parameters chosen when ViSQOLAudio was trained with 

audio datasets (Sloan et al., 2017). It has been shown that if there is not enough 

dimensionality to the training data, results of the SVR model may be poor (Drucker et 

al., 1997). Further research into the SVR mapping models used for ViSQOLAudio 

should explore different approaches to how the model itself is trained. Different 

configurations should be tested in order to ascertain the optimum parameters to train a 

mapping model with the available datasets. The addition of extra dimensionality to the 

training and test data should be explored to ascertain if an increase in accuracy is 

observed with the resultant SVR mapping model. 

Three separate neural networks were trained and tested with the two chosen datasets in 

this research. The only difference in their configuration was the amount of training 

epochs allocated to the models. This resulted in different training times for each of the 

models. It has been proven that neural networks with two hidden layers are ideal for 

pattern recognition systems (Funahashi, 1989; Hornik, 1991; Kůrková, 1992). 

Therefore, optimisations to the configuration of the neural networks used should be 

explored as part of further research. This should help to improve upon the accuracy 

results obtained in this research. 

Lastly, due to the relative ease of replacing the mapping model used for ViSQOLAudio, 

it is recommended that the authors of ViSQOLAudio seriously consider the 

implementation of a separate model for objective speech quality measurement based on 

this research. A ‘ViSQOLSpeech’ model based on the core mechanics of 

ViSQOLAudio, that re-introduces the voice activity detector, and uses a mapping model 

based on this research could potentially be a very accurate measure of objective speech 

quality. 
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8 Appendix A: TCD-VoIP Neural Network Training Graphs 

 

TCD-VoIP Neural Network Training with 5k epochs 
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TCD-VoIP Neural Network Training with 50k epochs 
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TCD-VoIP Neural Network Training with 1M epochs 
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9 Appendix B: ITU-T P.Supp 23 Neural Network Training Graphs 

 

ITU-T P.Supp 23 Neural Network Training with 5k epochs 
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ITU-T P.Supp 23 Neural Network Training with 50k epochs 
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ITU-T P.Supp 23 Neural Network Training with 1M epochs 
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