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7 Abstract Theaimof thiswork is to determinewhat free

8 energy functionals are expressible as quadratic forms of

9 the state functional It which is discussed in earlier

10 papers. The single integral form is shown to include

11 the functional wF proposed a few years ago, and also a

12 further category of functionals which are easily

13 described but more complicated to construct. These

14 latter examples exist only for certain types of materials.

15 The double integral case is examined in detail, against

16 the backgroundof a new systematic approachdeveloped

17 recently for double integral quadratic forms in terms of

18 strain history, which was used to uncover new free

19 energy functionals. However, while, in principle, the

20 samemethod should apply to free energieswhich can be

21 given by quadratic forms in terms of It, it emerges that

22 this requirement is very restrictive; indeed, only the

23 minimum free energy can be expressed in such amanner.

24 Keywords Thermodynamics �Memory effects

25 � Free energy functional � Minimal state

26 functional � Rate of dissipation

27

28

29 1 Introduction

30 Free energy functionals that are expressible as

31 quadratic forms of the state functional It are explored

32in the present work. The quantity It is discussed in [1,

336, 7] and elsewhere. Such free energies have applica-

34tions in proving results concerning the integro-partial

35differential equations describing materials with mem-

36ory. They may also be useful for physical modeling of

37such materials. However, these applications generally

38require that the free energy functionals involved have

39compact, explicit analytic representation.

40The single integral form is shown to include the

41functional wF , proposed some years ago [1, 6]. There

42is also however a further category of functionals of this

43kind for materials with non-singleton minimal states.

44These functionals are easily described but more

45difficult to construct, since basic inequalities relating to

46thermodynamics must be explicitly imposed; they are

47therefore not so useful for practical applications.

48The double integral quadratic form is examined in

49detail. In this context, a recent paper [10] deals with

50determining new free energies that are quadratic func-

51tionals of the history of strain, using a novel approach.

52This new method is based on a result showing that if a

53suitable kernel for the rate of dissipation is known, the

54associated free energy kernel can be determined by a

55straightforward formula, yielding a non-negative qua-

56dratic form. It allows us to determine previously

57unknown free energy functionals by hypothesizing rates

58of dissipation that are non-negative, and applying the

59formula. In particular, new free energy functionals

60related to the minimum free energy are constructed.

61In principle, the methods developed in [10] apply to

62quadratic forms in terms of It, and should lead to new
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63 free energies which can be expressed as such quadratic

64 forms. It emerges however that this is a very restrictive

65 property; indeed, only the minimum free energy is

66 expressible as such a functional.

67 Regarding the notational convention for referring to

68 equations, we adopt the following rule. A group of

69 relations with a single equation number (***) will be

70 individually labeled by counting ‘‘¼’’ signs or ‘‘\’’,

71 ‘‘[’’, ‘‘B’’ and ‘‘C’’. Thus, (***)5 refers to the fifth

72 ‘‘¼’’ sign, if all the relations are equalities. Relations

73 with ‘‘2’’ are ignored for this purpose.

74 2 Quadratic models for free energies

75 As in [10], we discuss the scalar problem, denoting the

76 independent field variable by EðtÞ, the strain function,

77 and the dependent variable by TðtÞ, the stress function.

78 However, it is fairly straightforward to generalize to

79 tensor fields (for example, [1, 5]) and to certain other

80 theories such as heat flow in rigid bodies or electro-

81 magnetic phenomena.

82 Certain basic formulae from [10] and earlier work

83 are repeated here for convenience. The current value

84 of the strain function is EðtÞ while the strain history

85 and relative history are given by

EtðsÞ ¼ Eðt � sÞ; Et
rðsÞ ¼ EtðsÞ � EðtÞ; s 2 IRþ:

ð2:1Þ

8787 It is assumed here that

lim
s!1

EtðsÞ ¼ lim
u!�1

EðuÞ ¼ 0; ð2:2Þ

8989 which simplifies certain formulae. The state of the

90 material, in the most basic sense, is specified by

91 ðEt;EðtÞÞ or ðEt
r;EðtÞÞ. Another definition of state will

92 be introduced in Sect. 5.1.

93 Let TðtÞ be the stress at time t. Then the constitutive

94 relations with linear memory terms have the form

TðtÞ ¼ TeðtÞ þ

Z1

0

eGðuÞ _EtðuÞdu; eGðuÞ ¼ GðuÞ � G1;

¼ TeðtÞ þ

Z1

0

G0ðuÞEt
rðuÞdu; _E

tðuÞ ¼
o

ot
EtðuÞ

¼ �
o

ou
EtðuÞ ¼ �

o

ou
Et
rðuÞ; €E

tðuÞ ¼ �
o

ou
_EtðuÞ;

ð2:3Þ

9696where TeðtÞ is the stress function for the equilibrium

97limit, defined by the condition EtðsÞ ¼ EðtÞ 8 s2 IRþ,

98and the quantity Gð�Þ : IRþ 7!IRþ is the relaxation

99function of the material. We define

G0ðuÞ ¼
d

du
GðuÞ; G1 ¼ Gð1Þ; G0 ¼ Gð0Þ;

eGð0Þ ¼ G0 � G1 ¼ eG0: ð2:4Þ

101101The assumption is made that

eG;G0 2 L1ðIRþÞ \ L2ðIRþÞ: ð2:5Þ

102
103Remark 2.1 Various formulae presented here can be

104expressed either in terms of quantities related to eGðuÞ

105and _EtðuÞ or G0ðuÞ and Et
rðuÞ ([1, 10] and earlier

106references). We shall generally use those related to

107eGðuÞ and _EtðuÞ.

108Let us denote a particular free energy at time t by

109wðtÞ ¼ ~wðEt;EðtÞÞ, where ~w is understood to be a

110functional of Et and a function of EðtÞ. The Graffi [11]

111conditions obeyed by any free energy are given as

112follows:

113P1:

o

oEðtÞ
~wðEt;EðtÞÞ ¼

o

oEðtÞ
wðtÞ ¼ TðtÞ: ð2:6Þ

115115P2: For any history Et

~wðEt;EðtÞÞ� ~/ðEðtÞÞ or wðtÞ�/ðtÞ; ð2:7Þ

117117where /ðtÞ is the equilibrium value of the free energy

118wðtÞ, defined as

~/ðEðtÞÞ ¼ /ðtÞ ¼ ~wðEt;EðtÞÞ;

where EtðsÞ ¼ EðtÞ 8s 2 IRþ:
ð2:8Þ

120120

121Thus, equality in (2.7) is achieved for equilibrium

122conditions.

123P3: It is assumed that w is differentiable. For any

124ðEt;EðtÞÞ we have the first law

_wðtÞ þ DðtÞ ¼ TðtÞ _EðtÞ; ð2:9Þ

126126where DðtÞ� 0 is the rate of dissipation of energy

127associated with wðtÞ:

128This non-negativity requirement on DðtÞ is an expres-

129sion of the second law.

130
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131 Integrating (2.9) over ð�1; t� yields that

wðtÞ þDðtÞ ¼ WðtÞ; ð2:10Þ

133133 where

WðtÞ ¼

Z t

�1

TðuÞ _EðuÞdu; DðtÞ ¼

Z t

�1

DðuÞdu� 0:

ð2:11Þ

135135 We assume that these integrals are finite. The quantity

136 WðtÞ is the work function, while DðtÞ is the total

137 dissipation resulting from the entire history of defor-

138 mation of the body.

139 The function TeðtÞ in (2.3) is given by

TeðtÞ ¼
o/ðtÞ

oEðtÞ
: ð2:12Þ

141141 It follows that

_/ðtÞ ¼ TeðtÞ _EðtÞ: ð2:13Þ

142143 For a scalar theory with a linear memory constitu-

144 tive relation defining stress, the most general form of a

145 free energy is

wðtÞ ¼ /ðtÞ þ
1

2

Z1

0

Z1

0

_EtðsÞeGðs; uÞ _EtðuÞdsdu;

eGðs; uÞ ¼ Gðs; uÞ � G1: ð2:14Þ

147147 There is no loss of generality in taking

eGðs; uÞ ¼ eGðu; sÞ: ð2:15Þ

149149 TheGraffi condition P2, given by (2.7), requires that the

150 kernel eG must be such that the integral term in (2.14) is

151 non-negative. Various properties of eGðs; uÞ are given

152 in [10] and earlier references. The relaxation function

153 GðuÞ introduced in (2.3) is related to Gðs; uÞ by

GðuÞ ¼ Gð0; uÞ ¼ Gðu; 0Þ 8u 2 IRþ: ð2:16Þ

155155 Note that, with the aid of (2.4), we have

Gð0Þ ¼ Gð0; 0Þ ¼ G0: ð2:17Þ

157157 The rate of dissipation can be deduced from (2.9) and

158 (2.3) to be

DðtÞ ¼ �
1

2

Z1

0

Z1

0

_EtðsÞKðs; uÞ _EtðuÞdsdu; ð2:18Þ

160160where

Kðs; uÞ ¼ G1ðs; uÞ þ G2ðs; uÞ: ð2:19Þ

162162The subscripts 1, 2 indicate differentiation with respect

163to the first and second arguments. The quantityGmust

164be such that the integral in (2.18) is non-positive, as

165required by P3 of the Graffi conditions. The quantityK

166can also be taken to be symmetric in its arguments, i.e.

Kðs; uÞ ¼ Kðu; sÞ: ð2:20Þ

168168Seeking to expressDðtÞ, given by (2.11)2, as a general

169quadratic functional form similar to those in (2.14) or

170(2.18), we put

DðtÞ ¼
1

2

Z1

0

Z1

0

_EtðsÞQðs; uÞ _EtðuÞdsdu: ð2:21Þ

1721722.1 The work function

173This quantity, given by (2.11)1, can be put in the form

174([1, 10], p 153 and earlier references cited therein):

WðtÞ ¼ /ðtÞ þ
1

2

Z1

0

Z1

0

_EtðsÞeGð s� uj jÞ _EtðuÞduds:

ð2:22Þ

176176We see that it has the form (2.14) where

eGðs; uÞ ¼ eGð s� uj jÞ: ð2:23Þ

177178Remark 2.2 The quantity WðtÞ can be regarded as a

179free energy, but with zero total dissipation, which is

180clear from (2.10). Because of the vanishing dissipa-

181tion, it must be the maximum free energy associated

182with the material or greater than this quantity, an

183observation which follows from (2.10).

184Thus, we have in general the requirement that

wðtÞ�WðtÞ: ð2:24Þ

186186It follows from (2.10) that Qðs; uÞ in (2.21) is given by

Qðs; uÞ ¼ eGð s� uj jÞ � eGðs; uÞ; ð2:25Þ

188188so that

Qðs; 0Þ ¼ Qð0; uÞ ¼ 0; 8s; u 2 IRþ: ð2:26Þ

189
190Remark 2.3 The integral term in (2.14) and (2.21) are

191in general positive-definite quadratic forms, in the
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192 sense that they vanish only if _EtðuÞ ¼ 0, u 2 IRþ,

193 while DðtÞ, given by (2.18), may be positive semi-

194 definite, so that it can vanish for non-zero histories.

195 3 Frequency domain quantities

196 Let X be the complex x plane and

X
þ ¼ fx 2 X j ImðxÞ 2 IRþg;

X
ðþÞ ¼ fx 2 X j ImðxÞ 2 IRþþg:

198198 These define the upper half-plane including and

199 excluding the real axis, respectively. Similarly, X�,

200 X
ð�Þ are the lower half-planes including and excluding

201 the real axis, respectively.

202 Remark 3.1 Throughout this work, a subscript ‘‘þ’’

203 attached to any quantity defined onXwill imply that it

204 is analytic on X
�, with all its singularities in X

ðþÞ.

205 Similarly, a subscript ‘‘�’’ will indicate that it is

206 analytic on X
þ, with all its singularities in X

ð�Þ.

207 The notation for and properties of Fourier trans-

208 formed quantities is specified in [1, 10] and earlier

209 references. It is assumed that all frequency domain

210 quantities of interest are analytic on an open set

211 including the real axis. The functions and relations

eGþðxÞ ¼

Z1

0

eGðsÞe�ixsds ¼ eGcðxÞ � ieGsðxÞ;

G0
þðxÞ ¼

Z1

0

G0ðsÞe�ixsds ¼ G0
cðxÞ � iG0

sðxÞ

¼ �eG0 þ ixeGþðxÞ ð3:2Þ

213213 will be required, where the quantities eGcðxÞ, G
0
cðxÞ

214 and eGsðxÞ, G
0
sðxÞ are the cosine and sine transforms

215 of eGðsÞ, G0ðsÞ, respectively; the former quantities are

216 even functions of x while the latter are odd functions.

217 It follows from (2.5) that eGþðxÞ;G
0
þðxÞ 2 L2ðIRÞ.

218 The quantities eGþðxÞ and G0
þðxÞ are analytic in X

�.

219 Because eG is real, we have

eGþðxÞ ¼ eGþð�xÞ: ð3:3Þ

221221 This constraint means that the singularities are sym-

222 metric under reflection in the positive imaginary axis.

223A similar relation applies to G0
þðxÞ. Also, we have

G00
þðxÞ ¼

Z1

0

G00ðsÞe�ixsds ¼ �G0ð0Þ þ ixG0
þðxÞ:

ð3:4Þ

225225A function of significant interest, particularly in the

226context of the minimum and related free energies, is

}ðxÞ ¼ x2 eGcðxÞ ¼ �xG0
sðxÞ ¼ �G00

c ðxÞ

� G0ð0Þ� 0; x 2 IR; ð3:5Þ

228228where the inequality is an expression of the second law

229([1], p 159 and earlier references). The quantity HðxÞ

230goes to zero quadratically at the origin sinceHðxÞ=x2

231tends to a finite, non-zero quantity eGcð0Þ, asx tends to

232zero. One can show that

H1 ¼ lim
x!1

HðxÞ ¼ �G0ð0Þ� 0: ð3:6Þ

234234We assume for present purposes thatG0ð0Þ is non-zero

235so that H1 is a finite, positive number. Then

236HðxÞ 2 IRþþ 8x 2 IR; x 6¼ 0.

237If GðsÞ, s 2 IRþ, is extended to the even function

238Gð sj jÞ on IR, then dGð sj jÞ=ds is an odd function with

239Fourier transform ([1], p 144)

G0
FðxÞ ¼ �2iG0

sðxÞ ¼
2i

x
HðxÞ: ð3:7Þ

241241The non-negative quantity HðxÞ can always be

242expressed as the product of two factors [8]

HðxÞ ¼ HþðxÞH�ðxÞ; ð3:8Þ

244244where HþðxÞ has no singularities or zeros in X
ð�Þ and

245is thus analytic in X
�. Similarly, H�ðxÞ is analytic in

246X
þ with no zeros in X

ðþÞ. We put [1, 8]

H�ðxÞ ¼ H�ð�xÞ ¼ H�ðxÞ;

HðxÞ ¼ H�ðxÞj j2; x 2 IR: ð3:9Þ

248248The factorization (3.8) is the one relevant to the

249minimum free energy. For materials with only isolated

250singularities, we shall require a much broader class of

251factorizations, where the property that the zeros of

252H�ðxÞ are inX
ð�Þ respectively need not be true. These

253generate a range of free energies related to the

254minimum free energy [1, 7, 9], as discussed briefly

255in Sect. 4.
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256 The Fourier transform of EtðsÞ, Et
rðsÞ, given by

257 (2.1) for s 2 IRþ, are defined for example in [1, 10] and

258 denoted by Et
þðxÞ, Et

rþðxÞ. These have the same

259 analyticity properties as eGþðxÞ. However, E
t
rðsÞ does

260 not have the property (2.5), so that Et
rþðxÞ must be

261 defined with care. For a constant history, EtðsÞ ¼ EðtÞ,

262 s 2 IRþ, we have ([1], p 551)

Et
þðxÞ ¼

EðtÞ

ix� ; ð3:10Þ

264264 where the notation x� (and xþ) is defined in [1, 10]

265 and earlier work. Briefly, x� ¼ x� ia, respectively,

266 where a ! 0þ after integrations are carried out. Thus,

267 we have

Et
rþðxÞ ¼ Et

þðxÞ �
EðtÞ

ix� : ð3:11Þ

269269 Also ([1], p 145),

d

dt
Et
þðxÞ¼ _Et

þðxÞ¼�ixEt
þðxÞþEðtÞ¼�ixEt

rþðxÞ;

ð3:12Þ

271271 and

d

dt
_Et
þðxÞ ¼ �ix _Et

þðxÞ þ _EðtÞ;

d

dt
Et
rþðxÞ ¼ _Et

rþðxÞ ¼ �ixEt
rþðxÞ �

_EðtÞ

ix� :

273273 For large x,

Et
þðxÞ	

EðtÞ

ix
; Et

rþðxÞ	
AðtÞ

x2
; ð3:14Þ

275275 where AðtÞ is independent of x. Also, from (3.12),

_Et
þðxÞ	

AðtÞ

ix
; ð3:15Þ

277277 for large x. Relation (3.12) is convenient for convert-

278 ing formulae from those in terms of Et
rþðxÞ to

279 equivalent expressions in terms of _Et
þðxÞ or vice

280 versa.

281 Applying Parseval’s formula to (2.3)1, we obtain

TðtÞ ¼ TeðtÞ þ
1

2p

Z1

�1

eGþðxÞ _E
t
þðxÞ dx: ð3:16Þ

283283 There is a non-uniqueness in this form allowing us to

284 write it as [1, 10]

TðtÞ ¼ TeðtÞ þ
1

p

Z1

�1

HðxÞ

x2
_Et
þðxÞdx: ð3:17Þ

286286More detail is included on this argument in (5.38)–

287(5.40) below.

288We shall be using the Plemelj formulae on the real

289axis ([1], p 542) several times in this work, in relation

290to frequency dependent quantities. These are given as

291follows. Let

FðzÞ ¼
1

2pi

Z1

�1

f ðuÞ

u� z
du; z 2 XnIR; ð3:18Þ

293293where f ðuÞ is any Hölder continuous function. For

294z 2 X
ðþÞ, the function FðzÞ is analytic in X

ðþÞ, while

295for z 2 X
ð�Þ, it is analytic in X

ð�Þ. Let z ¼ xþ ia,

296a[ 0 where a approaches zero. Then, we write (3.18)

297as (recall Remark 3.1)

F�ðxÞ ¼
1

2pi

Z1

�1

f ðuÞ

u� xþ
du ¼

1

2
f ðxÞ

þ
1

2pi
P

Z1

�1

f ðuÞ

u� x
du; ð3:19Þ

299299where the symbol ‘‘P’’ indicates a principal value

300integral. Similarly,

FþðxÞ ¼
1

2pi

Z1

�1

f ðuÞ

u� x�
du ¼ �

1

2
f ðxÞ

þ
1

2pi
P

Z1

�1

f ðuÞ

u� x
du: ð3:20Þ

3023024 The minimum and related free energies

303It is shown in [7, 9] that, for materials with only

304isolated singularities, the quantity HðxÞ is a rational

305function and has many factorizations other than (3.8),

306denoted by

HðxÞ ¼ H
f
þðxÞH

f
�ðxÞ;

H
f
�ðxÞ ¼ Hf

�ð�xÞ ¼ H
f
�ðxÞ; ð4:1Þ

308308where f is an identification label distinguishing a

309particular factorization. These are obtained by
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310 exchanging the zeros of HþðxÞ and H�ðxÞ, leaving

311 the singularities unchanged.

312 Each factorization yields a (usually) different free

313 energy of the form

wf ðtÞ ¼ /ðtÞ þ
1

2p

Z1

�1

pft�ðxÞ
�� ��2 dx; ð4:2Þ

315315 where, recalling (3.12),

PftðxÞ ¼ i
Hf

�ðxÞ
x

_Et
þðxÞ ¼ Hf

�ðxÞE
t
rþðxÞ

¼ pft�ðxÞ � p
ft
þðxÞ;

p
ft
�ðxÞ ¼ 1

2pi

R1

�1

Pftðx0Þ
x0 � x� dx0:

ð4:3Þ

317317 The quantity pft� is analytic on Xþ while p
ft
þ is analytic

318 on X
� [1]. Note that (4.3) involves the use of the

319 Plemelj formulae, as given by (3.19) and (3.20). The

320 total dissipation is given by

Df ðtÞ ¼
1

2p

Z1

�1

p
ft
þðxÞ

���
���
2

dx: ð4:4Þ

322322 Defining

Kf ðtÞ ¼ �
1

2pi

Z1

�1

Hf
�ðxÞ

x
_Et
þðxÞdx

¼ lim
x!1

½�ixpft�ðxÞ�; ð4:5Þ

324324 we can write the associated rate of dissipation in the

325 form

Df ðtÞ ¼ Kf ðtÞ
�� ��2: ð4:6Þ

326327 These formulae apply in particular to the case

328 where no exchange of zeros takes place, which is

329 denoted by f ¼ 1. In this case, the formulae in fact

330 apply to all materials, not just those characterized by

331 isolated singularities.

332 We can write wf ðtÞ in the form [1, 8–10]

wf ðtÞ ¼ /ðtÞ þ
i

4p2

Z1

�1

Z1

�1

_Et
þðx1ÞH

f
þðx1ÞH

f
�ðx2Þ _E

t
þðx2Þ

x1x2ðx
þ
1 � x�

2 Þ
dx1dx2:

ð4:7Þ

334334The notation in the denominator [1, 10] indicates that

335if, for example, the x1 integration is carried out first,

336then xþ
1 � x�

2 becomes x1 � x�
2 . Also, the total

337dissipation (see (4.4)) can be shown, by similar

338manipulations, to have the form

Df ðtÞ ¼ �
i

4p2

Z1

�1

Z1

�1

_Et
þðx1ÞH

f
þðx1ÞH

f
�ðx2Þ _E

t
þðx2Þ

x1x2ðx
�
1 � xþ

2 Þ
dx1dx2;

ð4:8Þ

340340while Df ðtÞ, given by (4.6), can be expressed as

Df ðtÞ ¼
1

4p2

Z1

�1

_Et
þðx1ÞH

f
þðx1ÞH

f
�ðx2Þ _E

t
þðx2Þ

x1x2

dx1dx2:

ð4:9Þ

342342The factorization f ¼ 1, given by (3.8), yields the

343minimum free energy wmðtÞ. Each exchange of zeros,

344starting from these factors, yields a free energy which

345is greater than or equal to the previous quantity. The

346maximum free energy, denoted by wMðtÞ, is obtained

347by interchanging all the zeros, which produces a

348factorization labeled f ¼ N. The quantity wMðtÞ is

349less than the work function [1, 10].

350The most general free energy and rate of dissipation

351arising from these factorizations is given by

wðtÞ ¼
XN

f¼1

kfwf ðtÞ; DðtÞ ¼
XN

f¼1

kfDf ðtÞ;

XN

f¼1

kf ¼ 1; kf � 0: ð4:10Þ

353353A particular case of this linear form is the physical free

354energy, proposed in [9].

3554.1 Discrete spectrum materials

356Consider a material with relaxation function of the

357form

eGðsÞ ¼
Xn

i¼1

Gie
�ais; ð4:11Þ

359359where n is a positive integer. The inverse decay times

360ai 2 IRþþ, i ¼ 1; 2; . . .; n and the coefficients Gi are

361assumed to be positive. We arrange that
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362 a1\a2\a3. . .. These are discrete spectrum materials

363 which will be used in later discussions.

364 From (3.2)1;2, we have

eGþðxÞ ¼
Xn

i¼1

Gi

ai þ ix
; eGcðxÞ ¼

Xn

i¼1

aiGi

a2i þ x2
;

eGsðxÞ ¼ x
Xn

i¼1

Gi

a2i þ x2
; ð4:12Þ

366366 so that eGþðxÞ consists of a sum of simple pole terms

367 on the positive imaginary axis. From (2.3)1 and (4.11),

368 we have that

TðtÞ ¼ TeðtÞ þ
Xn

i¼1

Gi
_Et
þð�iaiÞ: ð4:13Þ

370370 Relations (3.5) and (4.12)2 give

HðxÞ ¼ x2
Pn

i¼1

aiGi

a2i þ x2 ¼ H1 �
Pn

i¼1

a3iGi

a2i þ x2 � 0;

H1 ¼
Pn

i¼1

aiGi:

ð4:14Þ

372372 This quantity can be expressed in the form [8]

HðxÞ ¼ H1

Yn

i¼1

c2i þ x2

a2i þ x2

� �
; ð4:15Þ

374374 where the c2i are the zeros of f ðzÞ ¼ HðxÞ, z ¼ �x2,

375 and obey the relations

c1 ¼ 0; a21\c22\a22\c23. . .: ð4:16Þ

377377 Observe that

Gi ¼
2i

a2i
lim

x!�iai
ðxþ iaiÞHðxÞ

¼ �
2i

a2i
lim
x!iai

ðx� iaiÞHðxÞ: ð4:17Þ

379379 To obtain the minimum free energy for discrete

380 spectrum materials, one chooses the factorization of

381 (4.15) given by

HþðxÞ ¼ h1
Qn

i¼1

x� ici
x� iai

n o
; h1 ¼ H1½ �1=2;

H�ðxÞ ¼ h1
Qn

i¼1

xþ ici
xþ iai

n o
¼ HþðxÞ: ð4:18Þ

383383 Equations (4.18) can be written as [1, 2]

H�ðxÞ ¼ h1 1þ i
Pn

i¼1

Ui
xþ iai

� �
¼ �h1x

Pn

i¼1

Ui

aiðxþ iaiÞ
;

Ui ¼ ðci � aiÞ
Qn

j ¼ 1

j 6¼ i

cj � ai
aj � ai

n o
;

Pn

i¼1

Ui
ai

¼ �1:

ð4:19Þ

385385For discrete spectrum materials, the interchange of

386zeros referred to after (4.1) means switching a given ci
387to �ci in both HþðxÞ and H�ðxÞ. Let us introduce an

388n-dimensional vector with components �fi ; i ¼

3891; 2; . . .; n where each �fi can take values �1. We

390define q
f
i ¼ �fi ci, and write

H
f
þðxÞ¼ h1

Yn

i¼1

x� iq
f
i

x� iai

( )
; Hf

�ðxÞ¼ h1
Yn

i¼1

xþ iq
f
i

xþ iai

( )
:

ð4:20Þ

392392The case where all the zeros are interchanged [1, 6, 7,

3939] is labeled f ¼N. The resulting factors are given

394by

HN
þðxÞ¼ h1

Yn

i¼1

xþ ici
x� iai

� �
; HN

�ðxÞ¼ h1
Yn

i¼1

x� ici
xþ iai

� �
:

ð4:21Þ

3963965 The functional It

3975.1 Minimal states

398As noted after (2.2), a viscoelastic state is defined in

399general by the history and current value of strain

400ðEt;EðtÞÞ. The concept of a minimal state, defined in

401[7] and based on the work of Noll [13] (see also for

402example [1, 3–5, 12]), can be expressed as follows:

403two viscoelastic states ðEt
1;E1ðtÞÞ, ðEt

2;E2ðtÞÞ are

404equivalent or in the same equivalence class or minimal

405state if

E1ðtÞ¼E2ðtÞ;

Z1

0

G0ðsþ sÞ Et
1ðsÞ�Et

2ðsÞ
� �

ds

¼ Itðs;Et
1Þ� Itðs;Et

2Þ¼ 0 8s�0;

Itðs;EtÞ¼

Z1

0

G0ðsþ sÞEt
rðsÞds¼

Z1

0

eGðsþ sÞ _EtðsÞds

¼ ItðsÞ: ð5:1Þ
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407407 The abbreviated notation ItðsÞwill be used henceforth.

408 Note the property

lim
s!1

ItðsÞ ¼ 0: ð5:2Þ

410410 It follows from (2.3)1 and (5.1) that

Itð0Þ ¼ TðtÞ � TeðtÞ: ð5:3Þ

412412 A functional of ðEt;EðtÞÞ which yields the same value

413 for all members of the same minimal state is referred

414 to as a FMS or functional of the minimal state, or a

415 minimal state variable. The quantity ItðsÞ is a FMS, in

416 fact, the defining example of a FMS.

417 Remark 5.1 A distinction between materials [1] is

418 that for certain relaxation functions, namely those

419 with only isolated singularities (in the frequency

420 domain), the minimal states are non-singleton,

421 while if some branch cuts are present in the

422 relaxation function, the material has only singleton

423 minimal states. For relaxation functions with only

424 isolated singularities, there is a maximum free

425 energy that is less than the work function WðtÞ and

426 also a range of related intermediate free energies, as

427 noted in Sect. 4.

428 On the other hand, if branch cuts are present, the

429 maximum free energy is WðtÞ and there are no

430 intermediate free energies of type wf ðtÞ.

431 Remark 5.2 There will be some later contexts where

432 we confine the discussion to materials with only

433 isolated singularities, for reasons connected with the

434 properties noted in Remark 5.1. Treating the general

435 case of such materials is algebraically complicated [1,

436 9], because any given singularity or zero may be of

437 higher order. We simplify the treatment, while main-

438 taining the essential content, by separating higher order

439 poles or zeros into simple poles or zeros. A further

440 simplification will be made, which also retains most

441 essential properties,1 by taking all the singularities and

442 zeros on the imaginary axis. This means, in effect, that

443 the material is a discrete spectrum material, as defined

444 in Sect. 4.1.

445Thus, we will use discrete spectrum materials as

446simple but realistic proxies for more general materials

447with only isolated singularities.

448The quantitiespft�ðxÞ, defined by (4.3), are FMSs; in

449particular, pt�ðxÞ corresponding to the minimum free

450energy for general materials ([1], p 253). The func-

451tionals p
ft
þðxÞ do not have this property, by virtue of

452(4.3)2.

453Let us characterize minimal states for discrete

454spectrum materials in the following simple manner.

455Consider two states ðEt
1;E1ðtÞÞ and ðEt

2;E2ðtÞÞ obey-

456ing conditions (5.1), so that they are equivalent. We

457define the difference between these states as

458ðEt
d;EdðtÞÞ where

Et
dðsÞ ¼ Et

1ðsÞ � Et
2ðsÞ 8s 2 Rþ;

EdðtÞ ¼ E1ðtÞ � E2ðtÞ:
ð5:4Þ

460460The conditions (5.1) holds for all s� 0 if and only if

EdðtÞ ¼ 0;

Z1

0

e�aisEt
dðsÞds ¼ Et

dþð�iaiÞ ¼ 0;

i ¼ 1; 2; . . .; n:

461462Remark 5.3 Therefore, for a given discrete spectrum

463material, the property that two histories are equivalent,

464or in the same minimal state, is determined by (5.5)1
465and by the values of those histories in the frequency

466domain, at x ¼ �iai, i ¼ 1; 2; . . .; n. This is a special

467case of the general requirement given in [1], p 359.

468Thus, if a quantity depends on the strain history only

469through the values Et
þð�iaiÞ or Et

rþð�iaiÞ or (see

470(3.12)) _Et
þð�iaiÞ, for i ¼ 1; 2; . . .; n, this quantity is a

471FMS.

472For discrete spectrum materials,

ItðsÞ ¼
Xn

i¼1

Gi
_Et
þð�iaiÞe

�ais; ð5:6Þ

474474which is an example of the property described in

475Remark 5.3. The property that pft�ðxÞ is a FMS can be

476perceived for discrete spectrum materials by complet-

477ing the contour in (4.3)4 on X
ð�Þ.

478We now present a more general characterization of

479minimal states, which leads to results consistent with

480(5.5). The condition that minimal states are non-

481singleton is that the integral equation

1FL01 1 There is a noteworthy difference between the general case

1FL02 where singularities may be off the imaginary axis and discrete

1FL03 spectrum materials, namely that in the latter case, the relaxation

1FL04 function decays monotonically, while in the former case, the

1FL05 possibility exists of oscillatory decay.
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Z1

0

G0ðsþ sÞEt
dðsÞds ¼ 0; s 2 IRþ; ð5:7Þ

483483 for Et
dðsÞ ¼ Et

1ðsÞ � Et
2ðsÞ in (5.1), has non-zero

484 solutions. The other requirement (5.1)1 will be

485 enforced below by (5.17). Putting Et
dðsÞ ¼ 0, s 2 IR�

486 and s ¼ �u, we can write (5.7) as ([1], p 341)

Z1

�1

o

ou
Gð u� sj jÞEt

dðsÞds ¼ 0; u 2 IR�: ð5:8Þ

488488 This is a Wiener–Hopf equation, which can be solved

489 by a standard technique. We put

Z1

�1

o

ou
Gð u� sj jÞEt

dðsÞds ¼
JðuÞ; u 2 IRþþ

0; u 2 IR�

�
;

ð5:9Þ

491491 where JðuÞ is a quantity to be determined. Taking the

492 Fourier transform of both sides, we obtain, with the aid

493 of the convolution theorem and (3.7),

2i

x
HðxÞEt

dþðxÞ ¼ JþðxÞ: ð5:10Þ

495495 Using (4.1) and (4.3), we can write (5.10) in the form

2i

x
H

f
þðxÞ p

ft
d�ðxÞ � p

ft
dþðxÞ

h in o
¼ JþðxÞ; ð5:11Þ

497497 where the subscript d implies that Et
dþ is used in (4.3).

498 The value of the superscript f will be assigned below.

499 Because pft�ðxÞ is a FMS, we have

p
ft
d�ðxÞ ¼ 0: ð5:12Þ

501501 It then follows from (5.11) that

p
ft
dþðxÞ ¼ �

x

2i

JþðxÞ

H
f
þðxÞ

: ð5:13Þ

503503 Using (5.13) in (5.10), we obtain

HðxÞEt
dþðxÞ ¼ �H

f
þðxÞp

ft
dþðxÞ; ð5:14Þ

505505 or

Et
dþðxÞ ¼ �

p
ft
dþðxÞ

Hf
�ðxÞ

: ð5:15Þ

507507This quantity must be analytic on X
�, so that all the

508zeros of H�ðxÞ must have been interchanged. This is

509the case where f ¼ N and the resulting factors are

510those given by (4.21), which yield the maximum free

511energy wMðtÞ, introduced after (4.9).

512Thus, if we can find a quantity Et
dþðxÞ which

513satisfies (5.12), it satisfies (5.14) and (5.15) by virtue

514of (4.3)3, applied to this history difference. Rela-

515tion (5.14) is equivalent to (5.10), with JþðxÞ

516determined by (5.13). Therefore, a solution to (5.9)

517or (5.8) is provided by any choice of Et
dðsÞ where the

518corresponding Et
dþðxÞ satisfies (5.12). Now, from

519(4.3)4,

pNtd�ðxÞ ¼
1

2pi

Z1

�1

HN
�ðx

0ÞEt
dþðx

0Þ

x0 � xþ dx0 ¼ 0: ð5:16Þ

521521If there are non-isolated singularities in the mate-

522rial, we know (remark 5.1) that the only solution is

523the trivial one, Et
dþðxÞ ¼ 0. Thus, we can focus on

524the case of a material with only isolated singulari-

525ties. The simplifying assumptions of Remark 5.2 will

526be adopted so that we are dealing with dis-

527crete spectrum materials. Then, H
f
�ðxÞ are given by

528(4.20).

529The simplifying assumption will now be made that

530Et
dþðxÞ is a rational function. More generally, it could

531also have branch cuts in X
ðþÞ.

532At large x, we must have

Et
dþðxÞ	

1

x2
; ð5:17Þ

534534by virtue of (3.14) and (5.1)1. If the zeros of Et
dþðxÞ

535cancel the poles in HN
�ðxÞ, given by (4.21), then, by

536taking the contour around X
ð�Þ, we see that (5.16) is

537obeyed. Thus, non-trivial solutions to (5.8) or (5.10)

538are given by

Et
dþðxÞ ¼

E0ðtÞ

x� iv0

Yn

j¼1

xþ iaj

x� ivj

( )
1

x� ivnþ1

;

ð5:18Þ

540540where the constants vi, i ¼ 0; 1; . . .; nþ 1 indicate

541the positions of singularities on the imaginary

542axis in X
ðþÞ. These are arbitrary positive quantities.

543The factor E0ðtÞ, which determines the time depen-

544dence of Et
dþðxÞ, is also arbitrary. Note that
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545 (5.18) obeys the constraints (5.5). We can write it in

546 the form

Et
dþðxÞ ¼ �iE0ðtÞ

Xnþ1

i¼0

Ai

x� ivi
;

Ai ¼
vi þ ai

vi � v0

Yn

j ¼ 1

j 6¼ i

vi þ aj

vi � vj

( )
1

vi � vnþ1

;

i ¼ 1; 2; . . .; n;

A0 ¼
Yn

j¼1

v0 þ aj

v0 � vj

( )
1

v0 � vnþ1

;

Anþ1 ¼
1

vnþ1 � v0

Yn

j¼1

vnþ1 þ aj

vnþ1 � vj

( )
; ð5:19Þ

548548 where, to satisfy (5.17), we must have

Xnþ1

i¼0

Ai ¼ 0: ð5:20Þ

550550 Taking the inverse transform of (5.19)1, we obtain

551 that

Et
dðsÞ ¼ E0ðtÞ

Xnþ1

i¼0

Aie
�vis

¼ Et
dðvj; j ¼ 0; 1; . . .; nþ 1; sÞ:

ð5:21Þ

553553 A given history Et
1ðsÞ belongs to the minimal state

554 with members

Etðvj; j ¼ 0; 1; . . .; nþ 1; sÞ ¼ Et
1ðsÞ

þ Et
dðvj; j ¼ 0; 1; . . .; nþ 1; sÞ;

ð5:22Þ

556556 where the parameters vj may take any positive value.

557 If (5.7) is true for eG given by (4.11), we must have

Xnþ1

j¼0

Aj

vj þ ai
¼ 0; i ¼ 1; 2. . .; n; ð5:23Þ

559559 which is simply a statement that Et
dþðxÞ, given by

560 (5.19)1, vanishes at x equal to each �iai.

561 If E0ðtÞ in (5.18) were replaced by E0ðx; tÞ, where

562 limx!1 E0ðx; tÞ is a non-zero finite constant, and the

563 singularities of this quantity consists of branch cuts in

564 X
ðþÞ, then the resulting Et

dþðxÞ would be equally

565 satisfactory, except that the simple relation (5.21)

566 would not hold.

5675.2 Free energies that are FMSs, as quadratic

568forms of histories for discrete spectrum

569materials

570We now briefly describe a general form of free

571energies that are FMSs for discrete spectrum materials

572([1] and references therein). Let us define a vector e in

573IRn with components

eiðtÞ ¼ EðtÞ � aiE
t
þð�iaiÞ ¼

d
dt
Et
þð�iaiÞ

¼ _Et
þð�iaiÞ ¼ �aiE

t
rþð�iaiÞ; i ¼ 1; 2; . . .; n;

ð5:24Þ

575575where (3.12) has been used2. As we see from (5.5), the

576quantities Et
þð�iaiÞ are real. Consider the function

wðtÞ ¼ /ðtÞ þ
1

2
e>Ce ¼ /ðtÞ þ

1

2
e � Ce; ð5:25Þ

578578where /ðtÞ is the equilibrium free energy and C is a

579symmetric, positive definite matrix with components

580Cij, i; j ¼ 1; 2; . . .; n. It is clear that wðtÞ has property

581P2 of a free energy, given by (2.7). For a stationary

582history EtðsÞ ¼ EðtÞ; s 2 IRþ, we have, from (3.10),

583that Et
þð�iaiÞ ¼ EðtÞ=ai, so that eiðtÞ ¼ 0; i ¼ 1;

5842; . . .; n. Relations (2.6) and (4.13) yield the condition

Xn

j¼1

Cij ¼ Gi; i ¼ 1; 2; . . .; n: ð5:26Þ

586586From (3.13)1 or (5.24), we have

_eiðtÞ ¼ _EðtÞ � aieiðtÞ; i ¼ 1; 2; . . .; n; ð5:27Þ

588588so that, using (5.26), we obtain

_wðtÞ þ DðtÞ ¼ TðtÞ _EðtÞ;

DðtÞ ¼ 1
2
e>Ce; Cij ¼ ðai þ ajÞCij;

ð5:28Þ

590590where Cij are the elements of the matrix C. Condition

591P3 (see (2.9)) requires that C must be at least positive

592semidefinite.

5935.3 Properties of It in the frequency domain

594Let us revert now to discussing general materials but

595returning periodically to the discrete spectrum case as

596an illustrative example. Some results presented here

2FL012 Note that analytic continuation into X
� is straightforward

2FL02since Et
þ is analytic in this half-plane.
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597 are the same as or equivalent to certain formulae given

598 previously in [1, 6]. Let

ItkðsÞ ¼
dk

dsk
ItðsÞ; k ¼ 1; 2; . . .; ð5:29Þ

600600 so that

It1ðsÞ ¼

Z1

0

G0ðsþ uÞ _EtðuÞdu;

It2ðsÞ ¼

Z1

0

G00ðsþ uÞ _EtðuÞdu: ð5:30Þ

602602 Also,

o

ot
It1ðsÞ ¼ G0ðsÞ _EðtÞ þ It2ðsÞ;

o

ot
It2ðsÞ ¼ G00ðsÞ _EðtÞ þ It3ðsÞ: ð5:31Þ

604604 Just as in (5.2), we have

lim
s!1

ItkðsÞ ¼ 0; k ¼ 1; 2; 3; . . .: ð5:32Þ

606606 The quantity ItðsÞ, s 2 IR, will be required. This can be

607 defined in a number of ways. We choose the following

608 formula. Let

ItðsÞ ¼

Z1

0

eGð sþ uj jÞ _EtðuÞdu; s 2 IR: ð5:33Þ

610610 Then

It2ðsÞ ¼
R1

0

o
2

os2
Gð sþ uj jÞ _EtðuÞdu;

o
ot
It2ðsÞ ¼

o
2

os2
Gð sj jÞ _EðtÞ þ It3ðsÞ; s 2 IR:

ð5:34Þ

612612 Note that

lim
sj j!1

ItkðsÞ ¼ 0; k ¼ 1; 2; 3; . . .: ð5:35Þ

614614 We now seek to express It in terms of frequency

615 domain quantities. Let us put

eGðuÞ ¼ 0; _EtðuÞ ¼ 0; u 2 IR��: ð5:36Þ

617617 Then

Z1

�1

eGðuþ sÞe�ixudu ¼

Z1

0

eGðvÞe�ixvdv eixs

¼ eGþðxÞ e
ixs: ð5:37Þ

619619Parseval’s formula, applied to (5.1)5, gives

ItðsÞ ¼
1

2p

Z1

�1

eGþðxÞ _E
t
þðxÞe

�ixsdx; s� 0:

ð5:38Þ

621621We have

ItðsÞ ¼
1

2p

Z1

�1

½eGþðxÞ þ keGþðxÞ� _E
t
þðxÞe

�ixsdx;

ð5:39Þ

623623for arbitrary complex values of k, since the added term

624gives zero. This can be seen by integrating over a

625contour around X
ð�Þ, noting that the exponential goes

626to zero as Imx ! �1 and using (3.15). Let us choose

627k ¼ 1. Then, recalling (3.5)1, we find that

ItðsÞ ¼
1

p

Z1

�1

HðxÞ

x2
_Et
þðxÞe

�ixsdx

¼
1

p

Z1

�1

HðxÞ

x2
_Et
þðxÞe

ixsdx; ð5:40Þ

629629for s� 0, where the reality of It has been used. This

630relation generalizes (3.17). It follows that

ItþðxÞ ¼

Z1

0

ItðsÞe�ixsds

¼ �
1

pi

Z1

�1

Hðx0Þ _Et
þðx

0Þ

ðx0Þ2ðx0 � x�Þ
dx0: ð5:41Þ

632632We must choose x� so that the integration over the

633exponential converges. From (5.1)3, it follows that

634ItþðxÞ is a FMS. Similarly, the derivatives of ItðsÞ,

635given by (5.29), for s 2 IRþ are also FMSs, in

636particular It1þðxÞ and It2þðxÞ.

637For the discrete spectrum case, it follows from (5.6)

638that

ItþðxÞ ¼ �i
Xn

i¼1

Gi
_Et
þð�iaiÞ

x� iai
: ð5:42Þ

640640By virtue of remark 5.3, equation (5.42) implies that

641ItþðxÞ is a FMS, which confirms for such materials the

642general property stated after (5.41).
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643 Similarly, let It be defined by (5.39) for s\0. In this

644 case, we cannot close the contour in X
ð�Þ because the

645 exponential diverges on this half-plane. It follows that

646 ItðsÞ depends on k for s\0. Let us take k ¼ 1 so that it

647 is given by (5.40) for s\0. This is equivalent to the

648 choice given by (5.33), as may be seen by transforming

649 the integration variable in (5.33) from u to�u and using

650 (3.7) together with the convolution theorem. Also,

It�ðxÞ ¼

Z0

�1

ItðsÞe�ixsds

¼
1

ip

Z1

�1

Hðx0Þ _Et
þðx

0Þ

ðx0Þ2ðx0 � xþÞ
dx0; ð5:43Þ

652652 and

ItFðxÞ ¼ It�ðxÞ þ ItþðxÞ

¼

Z1

�1

ItðsÞe�ixsds ¼
2HðxÞ

x2
_Et
þðxÞ; ð5:44Þ

654654 by virtue of the Plemelj formulae (3.19) and (3.20). It

655 follows from (5.44) that It� is not a FMS. Also, one can

656 deduce from (3.13)1 and (5.44) that

_ItFðxÞ ¼ ixItFðxÞ þ 2
HðxÞ

x2
_EðtÞ: ð5:45Þ

658658 We see, using (3.6) and (3.15), that

ItFðxÞ	x�3; ð5:46Þ

660660 at large x.

661 Note that (5.44) allows us to write (3.17) in the form

TðtÞ ¼ TeðtÞ þ
1

2p

Z1

�1

ItFðxÞdx

¼ TeðtÞ þ
1

2p

Z1

�1

ItFðxÞdx: ð5:47Þ

663663 For the discrete spectrum case, we have from (4.14)1,

664 (5.42) and (5.44) that

It�ðxÞ¼ ItFðxÞ� ItþðxÞ

¼ i
Xn

i¼1

Gi½ _E
t
þð�iaiÞ� _Et

þðxÞ�

x� iai
þ i

Xn

i¼1

Gi
_Et
þðxÞ

xþ iai
;

ð5:48Þ

666666which is analytic on X
ðþÞ. Returning to general

667materials, we see from (5.40)2 that

It1ðsÞ ¼ �
1

ip

Z1

�1

HðxÞ

x
_Et
þðxÞe

ixsdx;

It2ðsÞ ¼ �
1

p

Z1

�1

HðxÞ _Et
þðxÞe

ixsdx; s� 0:

ð5:49Þ

669669Thus

It1�ðxÞ ¼ �
1

p

Z1

�1

Hðx0Þ _Et
þðx

0Þ

x0ðx0 � x�Þ
dx0;

It2�ðxÞ ¼ �
1

pi

Z1

�1

Hðx0Þ _Et
þðx

0Þ

x0 � x� dx0;

It1FðxÞ ¼ ixItFðxÞ; It2FðxÞ ¼ �x2ItFðxÞ:

ð5:50Þ

671671We have

It2FðxÞ ¼ �2HðxÞ _Et
þðxÞ ¼ It2þðxÞ þ It2�ðxÞ;

ð5:51Þ

673673by virtue of (5.44) and the Plemelj formulae (3.19) and

674(3.20). The quantities Itþ, I
t
1þ and It2þ are analytic in X�

675while It�, I
t
1� and It2� are analytic in X

þ. For the

676complex conjugate of these quantities, the opposite is

677true.

678In the case of discrete spectrum materials,
679we have, from (5.6),

It1ðsÞ ¼ �
Xn

i¼1

aiGi
_Et
þð�iaiÞe

�ais

It2ðsÞ ¼
Xn

i¼1

a2iGi
_Et
þð�iaiÞe

�ais; ð5:52Þ

681681and

It1þðxÞ ¼ i
Xn

i¼1

aiGi

x� iai
_Etð�iaiÞ;

It2þðxÞ ¼ �i
Xn

i¼1

a2iGi

x� iai
_Etð�iaiÞ: ð5:53Þ

Meccanica

123

Journal : Medium 11012 Dispatch : 29-5-2014 Pages : 29

Article No. : 9967 h LE h TYPESET

MS Code : MECC-D-14-00146 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

683683 The corresponding quantities It1�ðxÞ and It2�ðxÞ can

684 be given in the same way as (5.48).

685 5.4 Frequency domain representation of the work

686 function

687 The frequency domain version of (2.22) is [1, 10]

WðtÞ ¼ /ðtÞ þ 1
2p

R1

�1

HðxÞ
x2

_Et
þðxÞ

�� ��2dx

¼ /ðtÞ þ 1
8p

R1

�1

x2

HðxÞ
ItFðxÞ
�� ��2dx

¼ /ðtÞ þ 1
8p

R1

�1

It2FðxÞ
�� ��2

x2HðxÞ
dx;

ð5:54Þ

689689 by virtue of (5.44) and (5.50)4.

690 6 Single integral quadratic forms in terms of It

691 derivatives

692 Consider the functional

wðtÞ ¼ /ðtÞ þ
1

2

Z1

0

LðsÞ½It1ðsÞ�
2
ds; ð6:1Þ

694694 in terms of I1ðsÞ, defined by (5.30)1. This quantity is

695 assumed to be a free energy. We now explore the

696 constraints on LðsÞ imposed by this requirement.

697 The relation (2.9) must hold. Using (2.13), (5.31)1
698 and (5.32), we deduce that

_wðtÞ¼ _EðtÞ TeðtÞþ

Z1

0

G0ðsÞLðsÞIt1ðsÞds

2
4

3
5

þ

Z1

0

It2ðsÞLðsÞI
t
1ðsÞds¼ TðtÞ _EðtÞ

�
1

2
Lð0Þ½It1ð0Þ�

2�
1

2

Z1

0

L0ðsÞ½It1ðsÞ�
2
ds; ð6:2Þ

700700 provided that the condition

Z1

0

G0ðsÞLðsÞIt1ðsÞds ¼ TðtÞ � TeðtÞ ð6:3Þ

702702 holds. With the help of (2.3), (5.3) and (5.30)1, this can

703 be written as

Z1

0

½G0ðsÞLðsÞ þ 1�It1ðsÞds

¼

Z1

0

Z1

0

½G0ðsÞLðsÞ þ 1�G0ðsþ uÞ _EtðuÞdsdu ¼ 0;

ð6:4Þ

705705which must be true for arbitrary histories. Let us write

706the resulting condition as an integral equation of the

707form

Z1

0

G0ðsþ uÞf ðsÞds ¼ 0 8u 2 IRþ;

f ðsÞ ¼ G0ðsÞLðsÞ þ 1: ð6:5Þ

709709An alternative pathway to (6.5) is to express (6.1) in

710the form (2.14) with

eGðs; uÞ ¼

Z1

0

G0ðsþ sÞLðsÞG0ðsþ uÞds; ð6:6Þ

712712and to impose the constraint (2.16), written in terms of

713eGðuÞ. Condition (6.5) has the same form as (5.7),

714leading to

2i

x
HðxÞfþðxÞ ¼ JþðxÞ; ð6:7Þ

716716where JþðxÞ is an unknown function, analytic inX
ð�Þ.

717This corresponds to (5.10).

718If the material has only isolated singularities, taken

719here to be the discrete spectrum type, in accordance

720with remark 5.2, we see that there are many non-trivial

721solutions of (6.5) given by a form similar to (5.18).

722However, in this case, there is no reason for f ð0Þ to be

723zero, so that, at large x,

fþðxÞ	
f ð0Þ

ix
: ð6:8Þ

725725which differs from (5.17). Thus, we put

fþðxÞ ¼ �
if0

x� iv0

Yn

j¼1

xþ iaj

x� ivj

( )
; f0 ¼ f ð0Þ;

ð6:9Þ

727727where the constants vi, i ¼ 0; 1; . . .; n are arbi-

728trary positive quantities. Also, f0 may be chosen

729arbitrarily.
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730 Remark 6.1 The observations before (5.17) and at

731 the end of subsection 5.1 on more general choices of

732 EdþðxÞ do not apply to fþðxÞ. This is because for f ðsÞ,

733 given by (6.5)2, a material with only isolated singu-

734 larities cannot have branch cuts in the Fourier

735 transform of the quantities G0ðsÞ and LðsÞ. Thus,

736 (6.9) is the most general form of fþðxÞ for discrete

737 spectrum materials.

738 Note that if we choose vi ¼ ci, i ¼ 1; 2; . . .; n then

fþðxÞ ¼ �
if0h1

ðx� iv0ÞH
N
�ðxÞ

; ð6:10Þ

740740 where HN
�ðxÞ is given by (4.21) and v0 is an arbitrary

741 non-negative quantity.

742 The quantity f ðsÞ is the inverse transform of fþðxÞ.

743 It follows from (6.5)2 that

LðsÞ ¼ �
1

G0ðsÞ
þ

f ðsÞ

G0ðsÞ
; s 2 IRþ: ð6:11Þ

745745 We deduce from (2.9) and (6.2) that the rate of

746 dissipation is given by

DðtÞ ¼
1

2
Lð0Þ½It1ð0Þ�

2 þ
1

2

Z1

0

L0ðsÞ½It1ðsÞ�
2
ds:

ð6:12Þ

748748 In order that wðtÞ � /ðtÞ andDðtÞ be non-negative, we

749 must have

LðsÞ� 0; L0ðsÞ� 0; 8s 2 IRþ: ð6:13Þ

751751 Note that, from (4.11), the relaxation function of the

752 material obeys the constraints

G0ðsÞ� 0; G00ðsÞ� 0; 8s 2 IRþ: ð6:14Þ

754754 The quantity LðsÞ, given by (6.11), obeys (6.13) if

f ðsÞ� 1;
f 0ðsÞ

f ðsÞ � 1
�

G00ðsÞ

G0ðsÞ
; 8s 2 IRþ: ð6:15Þ

756756 If the free energies of the form (6.1) are to exist, based

757 on (6.5)2 with f ðsÞ non-zero, we must show that the set

758 of functions f ð�Þ, obeying the conditions (6.15), is not

759 empty. We can write (6.9) in the form

fþðxÞ ¼ �if0
Pn

i¼0

Bi
x� ivi

;

Bi ¼
vi þ ai
vi � v0

Qn

j ¼ 1

j 6¼ i

vi þ aj
vi � vj

� �
; i ¼ 1; 2; . . .; n;

B0 ¼
Qn

j¼1

v0 þ aj
v0 � vj

� �
;

Pn

i¼0

Bi ¼ 1;

ð6:16Þ

761761where the last relation follows from (6.8). Taking the

762inverse Fourier transform of (6.16)1, we obtain that

f ðsÞ ¼ f0
Xn

i¼0

Bie
�vis; s 2 IRþ: ð6:17Þ

764764It may be confirmed from (6.16) that a relation similar

765to (5.23) holds. The coefficients Bi alternate in sign, so

766that f ðsÞ and f 0ðsÞmay take both positive and negative

767values. However, by taking f0j j to be sufficiently small,

768we can ensure that (6.15)1 holds, as may be seen by the

769following argument. Let

f ðsÞ ¼ f0½T1ðsÞ � T2ðsÞ�;

T1ðsÞ ¼
P

Bi[ 0 Bie
�vis; T2ðsÞ ¼ �

P
Bi\0 Bie

�vis:

ð6:18Þ

771771Both T1ðsÞ and T2ðsÞ are positive quantities, decaying

772monotonically to zero at large s. Let f0[ 0 (f0\0).

773Then, if we choose

f0 �
1

T1ð0Þ
f0j j �

1

T2ð0Þ

	 

; ð6:19Þ

775775condition (6.15)1 holds. We choose f0 so that f ðsÞ\1,

776s 2 IRþ by choosing the inequalities in (6.19) to be

777strict. It follows that

M1 ¼ min
s2IRþ

f0½T1ðsÞ � T2ðsÞ� � 1j j[ 0: ð6:20Þ

779779Now, from (4.11), we have

�
G00ðsÞ

G0ðsÞ
2 ½a; b� 8s 2 IRþ; ð6:21Þ

781781where a, b are positive quantities, obeying a\b. Let

782f0[ 0. We put

f 0ðsÞ ¼ f0½�T3ðsÞ þ T4ðsÞ�;

T3ðsÞ ¼
P

Bi[ 0 Bivie
�vis � 0; T4ðsÞ ¼ �

P
Bi\0 Bivie

�vis � 0:

ð6:22Þ
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784784 Then (6.15)2 is satisfied if

f0½T3ðsÞ � T4ðsÞ�

f0½T1ðsÞ � T2ðsÞ� � 1j j
[ � a; ð6:23Þ

786786 or

f0½T3ðsÞ � T4ðsÞ�[ � a f0½T1ðsÞ � T2ðsÞ� � 1j j:

ð6:24Þ

788788 This will be true if

f0½T3ðsÞ � T4ðsÞ�[ � aM1: ð6:25Þ

790790 where M1 is defined by (6.20). Let

M2 ¼ min
s2IRþ

½T3ðsÞ � T4ðsÞ�: ð6:26Þ

792792 If M2 � 0, then (6.24) holds. If M2\0, we choose

f0\a
M1

M2j j
; ð6:27Þ

794794 to ensure that (6.15)2 holds. If f0\0, we define

M2 ¼ min
s2IRþ

½T4ðsÞ � T3ðsÞ�: ð6:28Þ

796796 and (6.27) is replaced by

f0j j\a
M1

M2j j
: ð6:29Þ

798798 For materials where n ¼ 1, all free energies which are

799 FMSs reduce to the same form [2]. It can be shown

800 easily that for LðsÞ given by (6.31) below, the

801 functional defined in (6.1) has this form, so that the

802 extra quadratic form involving f ðsÞ cannot contribute.

803 We see that (6.17) is given by

f ðsÞ ¼ f0 B0e
�v0s þ B1e

�v1s½ �;

B0 ¼ �
v0 þ a
v1 � v0

; B1 ¼
v1 þ a
v1 � v0

;

B0 ¼ 1� B1; B1[ 1;

ð6:30Þ

805805 for n ¼ 1. Using (5.52)1, it is straightforward to show

806 that the resulting contribution to (6.1) indeed vanishes.

807 If the material has branch cut singularities, then

808 f ðsÞ ¼ 0, s 2 IRþ is the only solution of (6.5), so that

LðsÞ ¼ �
1

G0ðsÞ
; s 2 IRþ; ð6:31Þ

810810 and the only possibility for a free energy given by a

811 single integral quadratic form is the quantity wF ,

812 introduced in [6]. This functional and the associated

813 rate of dissipation have the forms

wFðtÞ ¼ /ðtÞ �
1

2

Z1

0

½It1ðsÞ�
2

G0ðsÞ
ds; ð6:32Þ

815815and

DFðtÞ ¼ �
1

2

½It1ð0Þ�
2

G0ð0Þ
�
1

2

Z1

0

d

ds

1

G0ðsÞ

� �
½It1ðsÞ�

2
ds

¼ �
1

2

½It1ð0Þ�
2

G0ð0Þ
þ
1

2

Z1

0

G00ðsÞ
It1ðsÞ

G0ðsÞ

� �2
ds:

ð6:33Þ

817817These quantities are non-negative and wFðtÞ is a valid

818free energy if conditions (6.14) hold, not only for

819materials with branch point singularities, but for all

820materials. It is a relatively simple functional, conve-

821nient for applications.

822For materials with only isolated singularities, a more

823general choice of LðsÞ, given by (6.11), also produces

824valid free energy functionals, provided that the

825inequalities (6.15) are enforced. This can be done by

826ensuring that f0 obeys (6.19) and (6.27) or (6.29), for

827any given choices of the quantities vi, i ¼ 0; 1; . . .; n.

828The necessity to enforce such conditions renders these

829choices less convenient for practical applications.

8307 Double integral quadratic forms in terms of It

831derivatives: time domain representations

832We now discuss double integral quadratic forms for

833free energies and rates of dissipation. The time domain

834formulation is explored in this section, while the

835corresponding frequency domain relations are pre-

836sented in the next.

837Consider the form

wðtÞ ¼ /ðtÞ þ
1

2

Z1

0

Z1

0

It2ðsÞLðs; uÞI
t
2ðuÞdsdu; ð7:1Þ

839839There is no loss of generality in putting

Lðs; uÞ ¼ Lðu; sÞ: ð7:2Þ

841841The assumptions

Lð�; �Þ 2 L1ðIRþ 
 IRþÞ \ L2ðIRþ 
 IRþÞ;

lim
s!1

Lðs; uÞ ¼ lim
s!1

Lðu; sÞ ¼ 0
ð7:3Þ
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843843 will be adopted. It is understood that Lðs; uÞ vanishes

844 for negative values of s and u. We have from (2.13)

845 and (5.31)2 that

_wðtÞ ¼ _EðtÞ TeðtÞ þ
1

2

Z1

0

Z1

0

G00ðsÞLðs; uÞIt2ðuÞdsdu

2
4

þ
1

2

Z1

0

Z1

0

It2ðsÞLðs; uÞG
00ðuÞdsdu

3
5

þ
1

2

Z1

0

Z1

0

It3ðsÞLðs; uÞI
t
2ðuÞdsdu

þ
1

2

Z1

0

Z1

0

It2ðsÞLðs; uÞI
t
3ðuÞdsdu:

ð7:4Þ

847847 It is assumed that

Lð0; uÞ ¼ Lðs; 0Þ ¼ 0: ð7:5Þ

849849 This property greatly simplifies the next step of the

850 argument, making possible an analogy with the history

851 based formalism presented in [10].

852 The two integrals in brackets in (7.4) can be shown

853 to be equal by interchanging integration variables.

854 Applying partial integrations and using (5.32), we

855 obtain

_wðtÞ ¼ _EðtÞ TeðtÞ þ

Z1

0

Z1

0

G00ðsÞLðs; uÞIt2ðuÞdsdu

2
4

3
5

�
1

2

Z1

0

Z1

0

It2ðsÞ½L1ðs; uÞ þ L2ðs; uÞ�I
t
2ðuÞdsdu:

ð7:6Þ

857857 It is assumed in general that

Z1

0

Z1

0

G00ðsÞLðs; uÞIt2ðuÞdsdu ¼

Z1

0

eGðsÞ _EtðsÞds;

ð7:7Þ

859859 for arbitrary choices of histories. Using (5.30)2, this

860 leads to the condition

Z1

0

Z1

0

G00ðsÞLðs; uÞG00ðuþ vÞdsdu ¼ eGðvÞ: ð7:8Þ

862862This can also be derived in an alternative manner. We

863observe from (2.14), (5.30)2 and (7.1) that

eGðs;uÞ¼

Z1

0

Z1

0

G00ðsþ s1ÞLðs1;u1ÞG
00ðu1þuÞds1du1:

ð7:9Þ

865865This relation corresponds to (6.6). Applying (2.16)

866gives (7.8). Let

mðuÞ ¼

Z1

0

G00ðsÞLðs; uÞds; ð7:10Þ

868868noting thatmð0Þ ¼ 0, by virtue of (7.5). Then, with the

869aid of a partial integration, (7.8) can be expressed as

Z1

0

G0ðsþ uÞf ðuÞdu ¼ 0; 8s 2 IRþ;

f ðuÞ ¼ 1� m0ðuÞ ¼ 1�

Z1

0

G00ðsÞL2ðs; uÞds

¼ 1þ

Z1

0

G0ðsÞL12ðs; uÞds;

ð7:11Þ

871871which corresponds to (6.5). Note that Remark 6.1 also

872applies here. Referring to (2.3)1 and (2.9), equation

873(7.6) can be written as

_wðtÞ þ DðtÞ ¼ TðtÞ _EðtÞ;

DðtÞ ¼
1

2

Z1

0

Z1

0

It2ðsÞRðs; uÞI
t
2ðuÞdsdu;

Rðs; uÞ ¼ L1ðs; uÞ þ L2ðs; uÞ ¼ Rðu; sÞ:

ð7:12Þ

875875The kernels Lðs; uÞ and Rðs; uÞ must be such as to

876render the integral terms in (7.1) and (7.12)2 non-

877negative.

878The work function cannot be expressed in terms of

879It2ðsÞ, s� 0, but can be given in terms of this quantity

880for s 2 IR. This follows from the frequency represen-

881tation (5.54). We write

WðtÞ ¼ /ðtÞ þ
1

2

Z1

�1

It2ðsÞJð s� uj jÞIt2ðuÞdsdu;

ð7:13Þ

883883where the kernel Jð uj jÞ is related to the inverse

884transform of the kernel in (5.54)3. Convergence issues

885in this context must be handled carefully.
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886 It follows from (2.10) that the total dissipation must

887 also depend on It2ðsÞ, s 2 IR. We write

DðtÞ ¼
1

2

Z1

�1

Z1

�1

It2ðsÞVðs; uÞI
t
2ðuÞdsdu;

Vðs; uÞ ¼ Vðu; sÞ; ð7:14Þ

889889 where, to satisfy (2.10), we must have

Vðs; uÞ ¼
Jð s� uj jÞ; s\0 or u\0;

�Lðs; uÞ þ Jð s� uj jÞ; s[ 0 and u[ 0:

�

ð7:15Þ

891891 Note that Vðs; uÞ is continuous at s ¼ 0 and u ¼ 0.

892 Also,

V1ðs;uÞþV2ðs;uÞ¼�L1ðs;uÞ�L2ðs;uÞ¼�Rðs;uÞ:

ð7:16Þ

894894 Differentiating (7.14) with respect to time and using

895 (5.34)2, we obtain

_DðtÞ ¼ DðtÞ; ð7:17Þ

897897 where DðtÞ is given by (7.12), provided that

Z1

�1

Z1

�1

o
2

os2
Gð sj jÞVðs; uÞIt2ðuÞdsdu ¼ 0: ð7:18Þ

899899 This condition must hold for arbitrary histories, which

900 yields

Z1

�1

Z1

�1

o
2

os2
Gð sj jÞVðs; uÞ

o
2

ou2
Gð uþ vj jÞdsdu ¼ 0:

v 2 IRþ: ð7:19Þ

902902 We see that Qðs; uÞ in (2.21) is given by

Qðs; uÞ ¼

Z1

�1

Z1

�1

o
2

os2
Gð sþ s1j jÞVðs1; u1Þ

o
2

ou2
Gð u1 þ uj jÞds1du1; ð7:20Þ

904904 so that (7.19) is equivalent to (2.26).

905 Relationships (7.13)–(7.20) are incomplete without

906 specifying the forms of the kernels more precisely.

907 This is difficult in the time domain. The natural

908 framework for a deeper treatment of such issues is the

909 frequency domain, as is clear from (5.54), and will be

910 further demonstrated in Sect. 8.

9117.1 Free energy kernel in terms of the dissipation

912kernel

913Results were obtained in [10] which allowed the

914kernel of the quadratic form (2.14) to be determined in

915terms of the kernel of (2.18). A corresponding theory

916was also given in terms of frequency domain quanti-

917ties, which proved more useful for applications. We

918now adapt this method to apply to functionals that are

919quadratic in It. It will emerge that the new technique

920does not lead to new free energies. However, it is

921useful in the context of dealing with the minimum free

922energy.

923Let us treat (7.12)3 as a first order partial differential

924equation for Lðs; uÞ; s; u 2 IRþ, where Rðs; uÞ; s; u 2

925IRþ is presumed to be known. We introduce new

926variables,

x ¼ sþ u� 0; y ¼ s� u; ð7:21Þ

928928in terms of which (7.12)3 becomes

o

ox
Lnðx; yÞ ¼

1

2
Rnðx; yÞ; Lnðx; yÞ ¼ Lðs; uÞ;

Rnðx; yÞ ¼ Rðs; uÞ; ð7:22Þ

930930with general solution

Lnðx; yÞ ¼ Lnðx0; yÞ þ
1

2

Zx

x0

Rnðx
0; yÞdx0 ð7:23Þ

932932where x0 is an arbitrary non-negative real quantity. It

933follows from (7.2) and (7.12)4 that

Lnðx; yÞ ¼ Lnðx;�yÞ ¼ Lnðx; yj jÞ;

Rnðx; yÞ ¼ Rnðx;�yÞ ¼ Rnðx; yj jÞ: ð7:24Þ

935935Observe that, by virtue of (7.5),

Lnðu; uÞ ¼ Lnðu;�uÞ ¼ Lnðu; uj jÞ ¼ 0; u 2 IRþ:

ð7:25Þ

937937Putting

x0 ¼ s0 þ u0 � 0; y ¼ s0 � u0 ¼ s� u; ð7:26Þ

939939we have

s0 ¼ 1
2
ðx0 þ yÞ; u0 ¼ 1

2
ðx0 � yÞ;

Rnðx
0; yÞ ¼ R 1

2
ðx0 þ yÞ; 1

2
ðx0 � yÞ

� �
;

ð7:27Þ

941941so that (7.23) and (7.25) give
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Lðs; uÞ ¼ Lnðx; yÞ ¼
1

2

Zx

yj j

Rnðx
0; yÞdx0

¼

Zminðs;uÞ

0

Rðs� v; u� vÞdv; ð7:28Þ

943943 which, as expected, obeys (7.5). Relation (7.1) gives

wðtÞ¼/ðtÞþ
1

2

Z1

0

Z1

0

It2ðsÞ

Zminðs;uÞ

0

Rðs� v;u� vÞdvIt2ðuÞdsdu

¼/ðtÞþ
1

2

Z1

0

Z1

0

Z1

0

It2ðsÞRðs� v;u� vÞIt2ðuÞdvdsdu;

ð7:29Þ

945945 since Rðs� v;u� vÞ¼ 0 for v[minðs;uÞ. Let us

946 assume that we have chosen Rð�; �Þ so that DðtÞ, given

947 by (7.12)2, is non-negative for any choice of It2. For

948 v�0 and arbitrary choices of It2, we have

Z1

0

Z1

0

It2ðsÞRðs� v; u� vÞIt2ðuÞdsdu

¼

Z1

0

Z1

0

It2ðs1 þ vÞRðs1; u1ÞI
t
2ðu1 þ vÞds1du1

¼

Z1

0

Z1

0

f ðs1ÞRðs1; u1Þf ðu1Þds1du1 � 0;

ð7:30Þ

950950 where f ðs1Þ ¼ It2ðs1 þ vÞ and is therefore arbitrary. It

951 follows that the integral in (7.29)2 is also non-

952 negative. Therefore, Lð�; �Þ, given by (7.28), has the

953 property that the integral term in (7.1) is non-negative.

954 Thus, the basic strategy developed in [10] is valid here

955 also. The idea is to assign Rð�; �Þ so that the rate of

956 dissipation is non-negative. Then, the associated free

957 energy, i.e. that with kernel given by (7.28), also has

958 the required positivity property. It will emerge how-

959 ever that the strategy developed in [10] is not useful in

960 the present case, except in the context of the minimum

961 free energy.

962We note the similarity between the expression

963(7.28) and the kernel of the expression for the total

964dissipation in [10].

9658 Double integral quadratic forms in terms of It

966derivatives: frequency domain representations

967The initial results presented here are analogous to

968those in [10]. We define

Lþ�ðx1;x2Þ ¼

Z1

0

Z1

0

Lðs; uÞe�ix1sþix2udsdu

¼ Lþ�ðx2;x1Þ;

Rþ�ðx1;x2Þ ¼

Z1

0

Z1

0

Rðs; uÞe�ix1sþix2udsdu

¼ Rþ�ðx2;x1Þ;

VFðx1;x2Þ ¼

Z1

�1

Z1

�1

Vðs; uÞe�ix1sþix2udsdu

¼ VFðx2;x1Þ;

ð8:1Þ

970970where L is introduced in (7.1), R is defined by (7.12)3
971and V by (7.15). The functions Lþ�ðx1;x2Þ and

972Rþ�ðx1;x2Þ are analytic in the lower half of the x1

973complex plane and in the upper half of the x2 plane.

974The quantity VFðx1;x2Þ may have singularities

975anywhere in the x1 and x2 complex planes. Inverting

976Fourier transforms in (8.1) yields that

Lðs;uÞ¼
1

4p2

Z1

�1

Z1

�1

Lþ�ðx1;x2Þe
ix1s�ix2udx1dx2;

Rðs;uÞ¼
1

4p2

Z1

�1

Z1

�1

Rþ�ðx1;x2Þe
ix1s�ix2udx1dx2;

Vðs;uÞ¼
1

4p2

Z1

�1

Z1

�1

VFðx1;x2Þe
ix1s�ix2udx1dx2:

ð8:2Þ

978978Note that, for complex values of the frequencies,

Lþ�ðx1;x2Þ ¼ Lþ�ð�x1;�x2Þ ¼ Lþ�ðx2;x1Þ;

ð8:3Þ
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980980 with analogous relations for Rþ�ðx1;x2Þ and

981 VFðx1;x2Þ. We define

L0ðsÞ ¼ L1ð0; sÞ ¼ L2ðs; 0Þ;

Rðs; 0Þ ¼ Rð0; sÞ ¼ RðsÞ ¼ L0ðsÞ;

L0þðxÞ ¼

Z1

0

L0ðsÞe
�ixsds;

RþðxÞ ¼

Z1

0

RðsÞe�ixsds ¼ L0þðxÞ:

ð8:4Þ

983983 Relations (7.5) and (7.12)3 have been used in deriving

984 these connections. We have

lim
x!1

ixL0þðxÞ ¼ L0ð0Þ ¼ Rð0; 0Þ: ð8:5Þ

986986 Equations (7.5), (7.12)3 and (8.1) give

iðx1 � x2ÞLþ�ðx1;x2Þ ¼ Rþ�ðx1;x2Þ; ð8:6Þ

988988 which yields

Lþ�ðx1;x2Þ ¼
Rþ�ðx1;x2Þ

iðx�
1 � xþ

2 Þ
; ð8:7Þ

990990 on using the notation of (4.8). This choice, rather than

991 that in (4.7), is dictated by the analytic properties of

992 Lþ�ðx1;x2Þ. We refer to the analogous formula for

993 the kernel of the total dissipation in [10].

994 Also

iðx1 � x2ÞVFðx1;x2Þ ¼ �Rþ�ðx1;x2Þ; ð8:8Þ

996996 by virtue of (7.16). This gives an equation for

997 VFðx1;x2Þ similar to (8.7) for Lþ�ðx1;x2Þ. The

998 question which arises is whether the quantity in the

999 denominator is x�
1 � xþ

2 , as in (8.7), or xþ
1 � x�

2 .

1000 These are the only two possibilities. What they mean

1001 respectively is specified after (4.7). Now, the first

1002 choice would yield a quadratic form for the total

1003 dissipation equal to the negative of the integral term in

1004 the expression for the free energy (see (8.19) below).

1005 This would yield a meaningless result, so we take

VFðx1;x2Þ ¼ �
Rþ�ðx1;x2Þ

iðxþ
1 � x�

2 Þ
: ð8:9Þ

10071007 Another derivation of this result is given below; see

1008 (8.21).

1009 Relation (8.1)2 and the asymptotic behaviour of

1010 Fourier transforms [1, 10] yield that

Rþ�ðx1;x2Þ	

L0þðx1Þ
�ix2

as x2 ! 1;

L0þðx2Þ
ix1

as x1 ! 1;

8
><
>:

ð8:10Þ

10121012where L0þðxÞ is defined in (8.4). It follows from (8.7)

1013that

Lþ�ðx1;x2Þ	

�
L0þðx1Þ

x2
2

as x2 ! 1;

�
L0þðx2Þ

x2
1

as x1 ! 1:

8
>><
>>:

ð8:11Þ

10151015The asymptotic behaviour of VFðx1;xÞ is similar to

1016(8.11), by virtue of (8.9). The condition corresponding

1017to (7.5) is

Z1

�1

Lþ�ðx1;xÞdx1

¼

Z1

�1

Lþ�ðx;x2Þdx2 ¼ 0 8x 2 IR;

ð8:12Þ

10191019which follows from Cauchy’s theorem and (8.11).

1020It is shown in [10] that the free energy, the rate of

1021dissipation and total dissipation, in terms of histories,

1022are given by

wðtÞ ¼ /ðtÞ þ
1

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞeGþ�ðx1;x2Þ

_Et
þðx2Þdx1dx2;

DðtÞ ¼ �
1

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞKþ�ðx1;x2Þ _E

t
þðx2Þdx1dx2;

DðtÞ ¼
1

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞQþ�ðx1;x2Þ _E

t
þðx2Þdx1dx2;

¼
i

8p2

Z1

�1

Z1

�1

_Et
þðx1ÞKþ�ðx1;x2Þ _E

t
þðx2Þ

x�
1 � xþ

2

dx1dx2;

ð8:13Þ

10241024where eGþ�ðx1;x2Þ. Kþ�ðx1;x2Þ and Qþ�ðx1;x2Þ

1025are the Fourier transforms of eGðs; uÞ in (2.14), Kðs; uÞ

1026in (2.18), (2.19) and Qðs; uÞ in (2.21). These are

1027Fourier transforms as defined in (8.1).

1028We can write the frequency domain version of

1029(7.12)2 in the form
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DðtÞ ¼
1

8p2

Z1

�1

Z1

�1

It2þðx1ÞRþ�ðx1;x2Þ

It2þðx2Þdx1dx2

¼
1

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2Þ

It2Fðx2Þdx1dx2

¼
1

8p2

Z1

�1

Z1

�1

ItFðx1Þx
2
1x

2
2Rþ�ðx1;x2Þ

ItFðx2Þdx1dx2:

ð8:14Þ

10311031 where It2þ, I
t
F and I

t
2F are defined in (5.50)2;4 and (5.44)

1032 respectively. The second form of (8.14) relies on

1033 (5.51) and the fact that

Z1

�1

Rþ�ðx1;x2ÞI
t
2�ðx2Þdx2

¼

Z1

�1

It2�ðx1ÞRþ�ðx1;x2Þdx1 ¼ 0; ð8:15Þ

10351035 which are consequences of (8.10) and Cauchy’s

1036 theorem. Using (5.44)3, we can write (8.14)3 as

DðtÞ ¼
1

2p2

Z1

�1

Z1

�1

_Et
þðx1ÞHðx1ÞHðx2Þ

Rþ�ðx1;x2Þ _E
t
þðx2Þdx1dx2

¼
1

2p2

Z1

�1

Z1

�1

_Et
þðx1ÞHðx1ÞHðx2Þ

Rþ�ðx2;x1Þ _E
t
þðx2Þdx1dx2;

ð8:16Þ

10381038 on interchanging integration variables. Comparing

1039 with (8.13)2, we deduce that

� 4Hðx1ÞHðx2ÞRþ�ðx2;x1Þ ¼ Kþ�ðx1;x2Þ

þ k2þðx1;x2Þ þ k1�ðx1;x2Þ;

ð8:17Þ

10411041 where k2þðx1;x2Þ has singularities on the x2 com-

1042 plex plane only in X
ðþÞ and k1�ðx1;x2Þ has singular-

1043 ities on the x1 plane only in X
ð�Þ. They must also

1044decay to zero at large x1, x2 but are otherwise

1045arbitrary. This is an expression of the non-uniqueness

1046of the kernels in the frequency domain, which is

1047explored in [10], and which indeed apply to

1048Rþ�ðx1;x2Þ and Lþ�ðx1;x2Þ in the present context.

1049Using such non-uniqueness leads however to kernels

1050that do not have the analytic properties possessed by

1051Rþ� and Lþ�.

1052By analogy with (8.14) and (8.15), the frequency

1053domain version of (7.1) takes the forms

wðtÞ ¼ /ðtÞ þ
1

8p2

Z1

�1

Z1

�1

It2þðx1ÞLþ�ðx1;x2Þ

It2þðx2Þdx1dx2

¼ /ðtÞ þ
1

8p2

Z1

�1

Z1

�1

It2Fðx1ÞLþ�ðx1;x2Þ

It2Fðx2Þdx1dx2

¼ /ðtÞ þ
1

8p2

Z1

�1

Z1

�1

ItFðx1Þx
2
1x

2
2Lþ�ðx1;x2Þ

ItFðx2Þdx1dx2:

ð8:18Þ

10551055Note the all free energies and dissipations of the form

1056(8.13) are expressible as quadratic forms in ItFðxÞ, by

1057virtue of (5.44). However, in general, the analytic

1058properties of the resulting kernels will not be given as

1059in (8.14) and (8.18), so that the special forms (8.14)1
1060and (8.18)1 do not hold. It follows from (8.7) and

1061(8.18) that

wðtÞ ¼ /ðtÞ �
i

8p2

Z1

�1

Z1

�1

It2þðx1ÞRþ�ðx1;x2ÞI
t
2þðx2Þ

x�
1 � xþ

2

dx1dx2

¼ /ðtÞ �
i

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x�
1 � xþ

2

dx1dx2:

ð8:19Þ

10631063By virtue of the result proved in subsection 7.1, if Rþ�

1064is such thatDðtÞ, given by (8.14), is non-negative, then
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1065 wðtÞ � /ðtÞ, given by (8.19), is also non-negative. Let

1066 us use (3.19) with respect to the integral in (8.19)2 over

1067 x1 to obtain

wðtÞ ¼ /ðtÞ �
i

8p2
P

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x1 � x2

dx1dx2

þ
1

8p

Z1

�1

It2FðxÞRþ�ðx;xÞI
t
2FðxÞdx:

ð8:20Þ

10691069 The frequency domain version of (7.14), combined

1070 with (8.9), yields

DðtÞ¼
i

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

xþ
1 �x�

2

dx1dx2

¼
i

8p2
P

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x1�x2

dx1dx2

þ
1

8p

Z1

�1

It2FðxÞRþ�ðx;xÞI
t
2FðxÞdx:

ð8:21Þ

10721072 Alternatively, we can obtain this result by substituting

1073 for Kþ�ðx1;x2Þ in (8.13)4 from (8.17), noting that

1074 k2þðx1;x2Þ and k1�ðx1;x2Þ do not contribute. This

1075 expression cannot be reduced to a quadratic form in

1076 It2þðxÞ.

1077 Relations (8.20), (8.21) and (5.54)3 give (2.10) or

wðtÞ þDðtÞ ¼ /ðtÞ þ
1

4p
Z1

�1

It2FðxÞRþ�ðx;xÞI
t
2FðxÞdx ¼ WðtÞ; ð8:22Þ

10791079 provided we put

Rþ�ðx;xÞ ¼
1

2x2HðxÞ
; ð8:23Þ

10811081 which is similar to a relation forKþ�ðx;xÞ, derived in

1082 [10]. Indeed, it can be seen from (8.17) that the two

1083conditions are consistent if and only if k2þðx;xÞ

1084þk1�ðx;xÞ ¼ 0. Furthermore, if Rþ�ðx1;x2Þ is

1085replaced by an equivalent kernel, using the non-

1086uniqueness arguments referred to after (8.17), then

1087(8.23) is typically no longer valid.

1088From (5.45), (8.14)2;3 and (5.50)4, we obtain

_DðtÞ ¼ DðtÞ ¼
1

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þdx1dx2;

ð8:24Þ

10901090if

i

8p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

xþ
1 � x�

2

dx1dx2

þ
i

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2ÞHðx2Þ

xþ
1 � x�

2

dx1dx2 ¼ 0:

ð8:25Þ

10921092The two terms on the left are complex conjugates of

1093each other, and can be shown to be individually real, so

1094that we can express this condition as

i

8p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

xþ
1 �x�

2

dx1dx2 ¼ 0:

ð8:26Þ

10961096Let us apply (3.20) to the integral over x1 in (8.26).

1097This gives, with the aid of (8.23) and (5.50)4,

i

8p2
P

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x1 � x2

dx1dx2

¼ �
1

8p

Z1

�1

HðxÞRþ�ðx;xÞI
t
2FðxÞdx

¼
1

16p

Z1

�1

ItFðxÞdx

ð8:27Þ

10991099It follows from (8.19)2, (5.45) and (2.13) that
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_wðtÞ ¼ �
1

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRþ�ðx1;x2Þ

It2Fðx2Þdx1dx2 þ _EðtÞ TeðtÞ þ
i

2p2

�

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x�
1 � xþ

2

dx1dx2

�
;

ð8:28Þ

11011101 where the reality of the last integral has been invoked.

1102 Since (2.9) or (7.12)1 must be satisfied, we require that

i

2p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x�
1 � xþ

2

dx1dx2

¼
1

2p

Z 1

�1

ItFðxÞdx ¼ ½TðtÞ � TeðtÞ� _EðtÞ;

ð8:29Þ

11041104 by virtue of (5.47). Now, using (3.19), we find that

i

2p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x�
1 �xþ

2

dx1dx2

¼
i

2p2
P

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x1�x2

dx1dx2

þ
1

2p

Z1

�1

HðxÞRþ�ðx;xÞI
t
2FðxÞdx

¼
i

2p2
P

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2ÞI
t
2Fðx2Þ

x1�x2

dx1dx2

þ
1

4p

Z1

�1

ItFðxÞdx:

ð8:30Þ

11061106 Using (8.27), we see that (8.29) is satisfied.

1107 Of the relations (8.23), (8.25) and (8.29), any two

1108 implies the third.

1109 We can show directly that (8.29) is the frequency

1110 domain equivalent of (7.7). Using (8.2)1 and (5.47),

1111 we can write (7.7) as

1

4p2

Z1

�1

Z1

�1

G00
þðx1ÞLþ�ðx1;x2Þ

It2þðx2Þdx1dx2 ¼
1

2p

Z1

�1

ItFðxÞdx: ð8:31Þ

11131113With the help of (8.11), (8.12) and the property

Z1

�1

G00
þðx1ÞLþ�ðx1;x2Þdx1 ¼ 0; ð8:32Þ

11151115which follows by closing the integral on X
ð�Þ, we

1116conclude from (3.5) that G00
þðx1Þ can be replaced by

1117�2Hðx1Þ. Also, we can replace It2þ by It2F , as

1118concluded in relation to (8.18). Thus, the left-hand

1119side of (8.31) becomes

�
1

2p2

Z1

�1

Z1

�1

Hðx1ÞLþ�ðx1;x2ÞI
t
2Fðx2Þdx1dx2

¼
i

2p2

Z1

�1

Z1

�1

Hðx1ÞRþ�ðx1;x2Þ

x�
1 �xþ

2

It2Fðx2Þdx1dx2;

ð8:33Þ

11211121where (8.7) has been invoked. Therefore, (8.31) is

1122equivalent to (8.29).

1123Similarly, we can show, using (8.9), that (8.26) is

1124the frequency domain equivalent of (7.18).

1125We can write (8.29) in the form

1

2p2

Z1

�1

Z1

�1

Hðx1ÞLþ�ðx1;x2Þx
2
2

ItFðx2Þdx1dx2 ¼
1

2p

Z1

�1

ItFðxÞdx; ð8:34Þ

11271127with the aid of (5.50)4.

1128Let us now explore possible solutions of (8.34),

1129leading to new free energies. This equation must be

1130true for an arbitrary history, so that, on using (5.44),

1131we obtain the relations

1

p

Z1

�1

Hðx1ÞLþ�ðx1;xÞHðxÞdx1 ¼
HðxÞ

x2
þ S�ðxÞ;

ð8:35Þ
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11331133 where S�ðxÞ is an arbitrary function that is analytic in

1134 X
þ and goes to zero at infinity, since, byCauchy’s theorem,

Z1

�1

S�ðxÞ _E
t
þðxÞdx ¼ 0: ð8:36Þ

11361136 Recall that (7.8) has the same relationship with (7.7)

1137 that (8.35) has with (8.34).

1138 The frequency version of (7.11) has the same form

1139 as (8.35) and indeed (6.7). Comparing these latter two

1140 equations, we see that

fþðxÞ ¼
x

pi

Z1

�1

Hðx1ÞLþ�ðx1;xÞdx1 �
1

ixþ

¼ �
x

p

Z1

�1

Hðx1ÞRþ�ðx1;xÞ

x1 � xþ dx1 �
1

ixþ ;

S�ðxÞ ¼ �
1

2
JþðxÞ:

ð8:37Þ

11421142 Relations (8.37)1;2 and (8.23) are constraints on

1143 Lþ�ðx1;xÞ and Rþ�ðx1;xÞ, which derive from

1144 (7.11) or ultimately (2.16).

1145 The quantity fþðxÞ is given by (6.9) for discrete

1146 spectrum materials, and is zero if the material has

1147 branch points.

1148 Alternatively, we can argue that (8.26) must be true

1149 for arbitrary history _Et
þðxÞ, so that, instead of (8.35),

1150 we have

1

ip

Z1

�1

Hðx1ÞRþ�ðx1;xÞHðxÞ

x1 � x� dx1 ¼ S�ðxÞ;

ð8:38Þ

11521152 and (8.37)2 is replaced by

fþðxÞ ¼ �
x

p

Z1

�1

Hðx1ÞRþ�ðx1;xÞ

x1 � x� dx1: ð8:39Þ

11541154 Using (8.23), (3.19) and (3.20), we see that (8.39) is

1155 equivalent to (8.37)2.

1156 9 Quadratic forms for wf ðtÞ in terms of It

1157 Consider the quadratic forms (4.7) and (4.9). These

1158 can be replaced by quadratic forms in terms of It2FðxÞ,

1159using (5.51)1. The question discussed in this section is:

1160can they be expressed as quadratic forms in It2þðxÞ,

1161which would provide examples of (8.14)1 and (8.19)1
1162or, in the time domain, (7.1) and (7.12)2. It emerges in

1163Sect. 9.1 that only the minimum free energy wmðtÞ

1164corresponding to f ¼ 1 can be expressed in such a

1165manner. This property ofwmðtÞ is discussed in detail in

1166Sect. 9.2.

1167This is consistent with the fact that wmðtÞ is a FMS.

1168However, it is also true that all the wf ðtÞ are FMSs. It

1169will be shown how this property holds even though the

1170wf ðtÞ for f [ 1 are not expressible as quadratic func-

1171tionals of It2þðxÞ or in the time domain, It2ðsÞ, s[ 0.

11729.1 Quadratic forms for wf ðtÞ

1173We will base our discussion on (4.2) and (4.3).

1174Referring to (4.3) and (5.51), we put

PftðxÞ ¼
iHf

�ðxÞ

x
_Et
þðxÞ ¼

1

2ix�H
f
þðxÞ

" #
It2FðxÞ
� �

:

ð9:1Þ

11761176There is no singularity at x ¼ 0 because of the factor

1177x2 in It2FðxÞ, given by (5.50)4. The superscript on x
�

1178is chosen for convenience. The last form of Pft is the

1179product of two functions both in L2ðIRÞ. For f ¼ 1, the

1180first factor has all its singularities in XðþÞ, by virtue of

1181the property that the zeros ofH
f
þ are inXðþÞ. However,

1182for other values of f , the zeros of H
f
þ can be in XðþÞ or

1183X
ð�Þ. Using (5.51)2, we obtain

PftðxÞ ¼
1

2ix�H
f
þðxÞ

½It2þðxÞ þ It2�ðxÞ� ð9:2Þ

11851185The quantity pðftÞ� ðxÞ in (4.2) and (4.3) will now be

1186considered in more detail. Let us write

1

2ix�H
f
þðxÞ

¼ AþðxÞ þ A�ðxÞ; ð9:3Þ

11881188where, as indicated by the notation, A�ðxÞ has all its

1189singularities in X
ð�Þ respectively. For discrete spec-

1190trum materials, H
f
þðxÞ is given by (4.20) and

1

H
f
þðxÞ

¼
1

h1
þ
Xn

i¼1

V
f
i

x� iq
f
i

;

V
f
i ¼ lim

x!iq
f

i

x� iq
f
i

H
f
þðxÞ

; i ¼ 1; 2; . . .; n: ð9:4Þ
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11921192 Thus, 2ixAþðxÞ is equal to the sum of terms with

1193 q
f
i ¼ þci and 2ixA�ðxÞ consists of terms where

1194 q
f
i ¼ �ci.

1195 If f ¼ 1, then A�ðxÞ will vanish, while for f ¼ N

1196 (yielding the maximum free energy referred to after

1197 (4.9); see also remark 7.1 of [10] and [1], p 343) AþðxÞ

1198 is zero. For all values of f , p
ft
�ðxÞwill be given by (4.3)

1199 with

Pftðx0Þ ¼ Aþðx
0ÞIt2þðx

0Þ þ A�ðx
0ÞIt2þðx

0Þ

þAþðx
0ÞIt2�ðx

0Þ þ A�ðx
0ÞIt2�ðx

0Þ:

ð9:5Þ

12011201 The relation for pðftÞ� ðxÞ can be simplified to give

pðftÞ� ðxÞ ¼
1

2pi

Z1

�1

Aþðx
0ÞIt2þðx

0Þ þ A�ðx
0ÞIt2þðx

0Þ þ A�ðx
0ÞIt2�ðx

0Þ

x0 � xþ dx0

¼
1

2pi

Z1

�1

Aþðx
0ÞIt2þðx

0Þ þ A�ðx
0ÞIt2Fðx

0Þ

x0 � xþ dx0:

ð9:6Þ

12031203 The first form follows by observing that if we evaluate

1204 the term with Aþðx
0ÞIt2�ðx

0Þ by closing the contour on

1205 X
ð�Þ then, by Cauchy’s theorem, the result is zero.

1206 Consider the second form. For the case of the

1207 minimum free energy, only the first term of the

1208 integrand is non-zero and it follows immediately that

1209 wmðtÞ can be expressed as a quadratic form in It2þðxÞ,

1210 as noted above.

1211 We now seek to show that pðftÞ� ðxÞ (and therefore

1212 wf ðtÞ) is a FMS even if f [ 1, for which the second

1213 term in the denominator of (9.6)2 is non-zero. The

1214 argument will be presented for discrete spectrum

1215 materials (Remark 5.2) but is in fact more general.

1216 The first term in (9.6)2 contributes a sum of simple

1217 poles at the points �ial, l ¼ 1; 2; . . .; n by virtue of

1218 (5.53)2, in an expression involving _Et
þðxÞ evaluated

1219 only at x ¼ �ial. This can be seen by closing the

1220 contour on X
ð�Þ. In the second term, the singularities

1221 of A�ðx
0Þ are cancelled by It2Fðx

0Þ because of the

1222 factor Hðx0Þ in this quantity, defined by (5.51). This

1223 can be shown by using (9.4) to evaluate A�ðxÞ, and by

1224 taking the product of H
f
�ðxÞ, given by (4.20). The

1225cancellation would not be manifest if It2F were

1226expressed in terms of It2�. Closing on X
ð�Þ again, we

1227find that the only contributing singularities are those at

1228�iai in HðxÞ, in spite of the fact that It2F is not a FMS.

1229One again obtains an expression where the only

1230dependence on _Et
þðxÞ is through _Et

þð�iajÞ,

1231j ¼ 1; 2; . . .; n, as required by Remark 5.3.

1232However, the point we wish to emphasize here is

1233that pðftÞ� for f 6¼ 1 or f 6¼ N is linear in both It2þ and It2F ,

1234so that wf is quadratic in these quantities, as we see

1235from (4.2).

1236One could also have approached the above argu-

1237ment from another point of view, by expressing (4.7)

1238as a quadratic functional in It2F , using (5.51). With the

1239aid of arguments similar to those after (9.6), one again

1240obtains a quadratic functional of It2þ and It2F . This

1241approach is developed explicitly for the minimum free

1242energy in Sect. 9.2.

1243These quadratic functionals can be expressed also

1244in terms of time domain quantities, as shown for the

1245minimum free energy in Sect. 9.2.

1246For f ¼ N, giving the maximum free energy, the

1247quadratic form depends only on It2F .

1248Thus, for all linear combinations of the wf ðtÞ

1249involving terms with f [ 1, we need to include It2F ,

1250and the property of being a FMS is dependent on a

1251special cancellation, which is a specific property of the

1252kernel associated with those given by (4.10), where at

1253least one kf for f [ 1 is non-zero. This will not

1254necessarily hold for a quadratic form in It2þ and It2F
1255with a general kernel.

12569.2 The minimum free energy as an explicit

1257functional of It

1258It has already been shown in subsection 9.1 that the

1259minimum free energy can be expressed as a quadratic

1260form in It2þðxÞ or I
t
2ðsÞ, s 2 IRþ. Derivations of the

1261explicit form of this functional were given in [1, 6].

1262We give a different derivation of this result here. Also,

1263we show that the conditions (8.23) and (8.29) are

1264obeyed.

1265Consider firstly the frequency domain representa-

1266tion. Recalling (5.51), we can write (4.7)–(4.9) (for

1267f ¼ 1, corresponding to the minimum free energy) in

1268the form (after exchanging x1 and x2)
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wmðtÞ ¼ /ðtÞ �
i

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRmþ�ðx1;x2ÞI
t
2Fðx2Þ

x�
1 � xþ

2

dx1dx2;

DmðtÞ ¼
1

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRmþ�ðx1;x2Þ

It2Fðx2Þdx1dx2;

DmðtÞ ¼
i

8p2

Z1

�1

Z1

�1

It2Fðx1ÞRmþ�ðx1;x2ÞI
t
2Fðx2Þ

xþ
1 � x�

2

dx1dx2;

Rmþ�ðx1;x2Þ ¼
1

2x�
1 Hþðx1Þx

þ
2 H�ðx2Þ

:

ð9:7Þ

12701270 The quantity Rmþ�ðx1;x2Þ is analytic with respect to

1271 x1 in X
þ and with respect to x2 in X

�. We now

1272 replace It2F in these two relations by the right-hand side

1273 of (5.51)2. It follows from Cauchy’s theorem, by

1274 closing the contour on X
ðþÞ, that

Z1

�1

Rmþ�ðx1;x2ÞI
t
2�ðx2Þ

x�
1 � x2

dx2 ¼ 0: ð9:8Þ

12761276 Similarly, It2�ðx1Þ may be dropped from (9.7)1 on

1277 integration over x1 and we obtain

wmðtÞ ¼ /ðtÞ �
i

8p2

Z1

�1

Z1

�1

It2þðx1ÞRmþ�ðx1;x2ÞI
t
2þðx2Þ

x�
1 � xþ

2

dx1dx2

¼ /ðtÞ þ
1

8p2

Z1

�1

Z1

�1

It2þðx1ÞLmþ�ðx1;x2ÞI
t
2þðx2Þdx1dx2;

Lmþ�ðx1;x2Þ ¼
Rmþ�ðx1;x2Þ

iðx�
1 � xþ

2 Þ
;

ð9:9Þ

12791279 which is the explicit quadratic form implied by (9.6)

1280 for f ¼ 1. A similar argument yields that

DmðtÞ ¼
1

4p2

Z1

�1

Z1

�1

It2þðx1ÞRmþ�ðx1;x2Þ

It2þðx2Þdx1dx2

¼
1

4p2

Z1

�1

It2þðxÞ

2xþH�ðxÞ
dx

������

������

2

¼
1

4p2

Z1

�1

It2FðxÞ

2xH�ðxÞ
dx

������

������

2

:

ð9:10Þ

12821282Observe that (8.23) is true for (9.7)4.

1283Consider now the time domain representations. We

1284seek to express DmðtÞ and wmðtÞ as quadratic func-

1285tionals of ItðsÞ, s 2 IRþ. Let us define the quantity

1286MðsÞ by

MðsÞ ¼
1

2p

Z1

�1

1

2ix�HþðxÞ
eixsdx; s 2 IR:

ð9:11Þ

12881288This is a real quantity which vanishes for s 2 IR��.

1289The integrand has a quadratic singularity near the

1290origin, due to the explicit pole term and the factor x in

1291HþðxÞ which is taken, for consistency, to be x
�. This

1292gives a finite contribution.

1293Let us write the time domain version of (9.9)2 in the

1294form

wmðtÞ ¼ /ðtÞ þ
1

2

Z1

0

Z1

0

It2ðuÞLmðu; vÞI
t
2ðvÞdudv;

ð9:12Þ

12961296corresponding to (7.1), where Lmðu; vÞ is given by

1297(8.2)1 in terms of Lþ�ðx1;x2Þ. The rate of dissipation

1298given by (9.10) becomes, in the time domain, (c.f.

1299(4.6))

DmðtÞ ¼ KðtÞj j2; KðtÞ ¼

Z1

0

MðuÞIt2ðuÞdu; ð9:13Þ

13011301on using Parseval’s formula. Therefore

DmðtÞ ¼

Z1

0

MðuÞIt2ðuÞdu

������

������

2

¼

Z1

0

Z1

0

It2ðuÞMðuÞMðvÞIt2ðvÞdudv; ð9:14Þ
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13031303 so that

Rðs; uÞ ¼ 2MðsÞMðuÞ: ð9:15Þ

13051305 It follows from (7.28) that

Lmðu; vÞ ¼ 2

Zminðu;vÞ

0

Mðu� zÞMðv� zÞdz ¼ Lmðv; uÞ:

ð9:16Þ

13071307 The following two results are of interest.

1308 Proposition 9.1 We seek to show that (8.29)1 holds

1309 for the minimum free energy. This implies that the

1310 equivalent time domain version (7.7) is also true.

1311 Proof Substitute Rmþ�ðx1;x2Þ, given by (9.7)4, into

1312 the left-hand side of (8.29). By integrating around

1313 X
ðþÞ, we obtain

i

2p2

Z1

�1

H�ðx1Þ

x1ðx1 � xþ
2 Þ

dx1 ¼ �
1

p

H�ðx2Þ

x2

; ð9:17Þ

13151315 and (8.29)1 follows immediately, on noting the last

1316 relation of (5.50). h

1317 Proposition 9.2 The quantity fþðxÞ in (8.37) or

1318 (8.39) vanishes in the case of the minimum free energy

1319 Proof For (8.39), closing the x1 contour over XðþÞ

1320 gives zero. For (8.37)2, the two terms cancel. h

1321 Thus, this property, which is true for all free

1322 energies in materials with branch cut singularities,

1323 holds also for materials with only isolated singularities

1324 in the case of the minimum free energy.

1325 Proposition 9.3 The minimum free energy is the

1326 only free energy functional for which the rate of

1327 dissipation is given by a simple product. This is in

1328 effect the result that the factorization of HðxÞ, given

1329 by (3.8) and (3.9), where both zeros and singularities

1330 ofH�ðxÞ are inX
� respectively, is unique up to a sign

1331 ([1], p 240).

1332 Proof Let

Rþ�ðx1;x2Þ ¼ rþðx1Þr�ðx2Þ; ð9:18Þ

13341334 under the condition

rþðxÞj j2¼
1

2x2HðxÞ
: ð9:19Þ

13361336Equation (8.39) reduces to

Z1

�1

Hðx1Þrþðx1Þ

x1 � x� dx1 ¼ �
fþðxÞp

xr�ðxÞ
¼ F�ðxÞ;

ð9:20Þ

13381338since the zeros of r�ðxÞ are inX
ð�Þ. Using the Plemelj

1339formulae (3.19) and (3.20), we can write (cf. (4.3))

Hðx1Þrþðx1Þ ¼ q�ðx1Þ � qþðx1Þ;

q�ðx1Þ ¼
1

2pi

Z1

�1

Hðx1Þrþðx1Þ

x1 � x� dx1; ð9:21Þ

13411341and (9.20) is the requirement that qþðxÞ ¼ F�ðxÞ.

1342Both sides vanish at infinity, so that both must be zero

1343everywhere, by Liouville’s theorem (for example, [1],

1344p 534). Thus, we have that

Hþðx1Þrþðx1Þ ¼
q�ðx1Þ

H�ðx1Þ
: ð9:22Þ

13461346Multiplying across by a factor x1, we see that both

1347sides must be equal to a constant k, by Liouville’s

1348theorem, giving

rþðx1Þ ¼
k

xHþðx1Þ
: ð9:23Þ

13501350It follows from (9.19) that kj j2¼ 1=2, and (9.23),

1351substituted into (9.18), yields (9.7)4. Thus, the mini-

1352mum free energy is the only possibility associated with

1353(9.18). The requirement that F�ðxÞ vanishes implies

1354that, in agreement with proposition 9.2, we have

1355fþðxÞ ¼ 0. h

135610 General form of free energies that are FMSs:

1357discrete spectrum materials

1358We now present quadratic forms in terms of the

1359minimal state functionals It for discrete spectrum

1360materials, just as (5.25) and (5.28) apply to

1361quadratic forms in terms of histories. Let us

1362consider the form (8.14)1 for It2þðxÞ given by

1363(5.53)2. We obtain
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DðtÞ ¼
1

2
w>ðtÞRwðtÞ

wðtÞ ¼ ðw1ðtÞ;w2ðtÞ; . . .;wnðtÞÞ; wiðtÞ ¼ a2iGieiðtÞ;

Rij ¼
1

4p2

Z1

�1

Z1

�1

Rþ�ðx1;x2Þ

ðx1 þ iaiÞðx2 � iajÞ
dx1dx2

¼ Rþ�ð�iai; iajÞ; i; j ¼ 1; 2; . . .; n;

ð10:1Þ

13651365 where eiðtÞ is defined by (5.24) and the last relation is

1366 deduced by integrating over Xð�Þ on the x1 plane and

1367 X
ðþÞ on the x2 plane. Relations (10.1) can also be

1368 obtained from (7.12) and (5.52).

1369 The free energy functional (7.1) has the form

wðtÞ ¼ /ðtÞ þ
1

2
w>ðtÞLwðtÞ

Lij ¼
1

4p2

Z1

�1

Z1

�1

Lþ�ðx1;x2Þ

ðx1 þ iaiÞðx2 � iajÞ
dx1dx2

¼ Lþ�ð�iai; iajÞ ¼
Rij

ai þ aj
; i; j ¼ 1; 2; . . .; n;

ð10:2Þ

13711371 by virtue of (8.7). The quantities R and L are

1372 symmetric. Using (5.27), we see that

_wiðtÞ ¼ �aiwiðtÞ þ zi _EðtÞ;

zi ¼ a2iGi; i ¼ 1; 2; . . .; n:
ð10:3Þ

13741374 It follows that (2.9) holds, provided that

Xn

i¼1

wiðtÞ

a2i
1�

Xn

j¼1

a2i Lija
2
jGj

" #
¼ 0; ð10:4Þ

13761376 which is (7.7) for discrete spectrum materials. Let us

1377 put

Lij ¼
lij

a2i a
2
j

; i; j ¼ 1; 2; . . .; n; ð10:5Þ

13791379 in terms of the matrix l. Relation (10.4) holds for all

1380 histories, so that we must have

Xn

j¼1

lijGj ¼ 1; i ¼ 1; 2; . . .; n: ð10:6Þ

13821382 Referring to (5.26), we see that if l ¼ C�1, then (10.6)

1383 holds. The form (10.6) corresponds to the Laplace

1384transform of (7.11)3 for discrete spectrummaterials, at

1385the points iai, where, from (6.9), we know that

1386fþðiaiÞ ¼ 0, i ¼ 1; 2; . . .; n.

1387We can also see that (8.37)1 gives

fþðxÞ ¼ ix
Xn

i¼1

a2iGiLþ�ð�iaj;xÞ �
1

ixþ

¼ �x
Xn

i¼1

a2iGiRþ�ð�iaj;xÞ

xþ iai
�

1

ixþ

ð10:7Þ

13891389on using (4.14)2, (8.12) and by closing the contour on

1390X
ð�Þ. Putting x ¼ iaj yields (10.6).

1391The expressions (10.1) and (10.2) are not helpful in

1392characterizing quadratic forms in terms of It2ðsÞ, s 2

1393IRþ because they are, in effect, quadratic forms in the

1394eiðtÞ; while the free energies wf , given by (4.7), and

1395discussed in Sect. 9, can also be expressed as such

1396quadratic forms, even though they depend on It2FðxÞ in

1397the frequency domain, or It2ðsÞ, s 2 IR, in the time

1398domain.

139911 Proof that no new free energies can be

1400expressed in terms of It

1401The approach adopted in [10] was based on product

1402formulae in the time domain, and more particularly in

1403the frequency domain, for the kernel of the rate of

1404dissipation, which ensure that this quantity is non-

1405negative. They also ensure that the resulting free

1406energy has the correct non-negativity properties. In

1407principle, the same approach should apply in the

1408present context, as demonstrated in Sect. 7.1. How-

1409ever, as we will now show, there are no free energy

1410functionals expressible as quadratic forms in It other

1411than the minimum free energy. This is a generalization

1412of the conclusion of Sect. 9.1 that, of the family wf ðtÞ,

1413only wmðtÞ has this property. It further indicates how

1414restrictive the requirement is that a free energy

1415functional be expressible in the form (7.1) or (8.18)1.

1416Proposition 11.1 The only possible choice of

1417Lþ�ðx1;x2Þ obeying (8.37) is the kernel

1418Lmþ�ðx1;x2Þ, given by (9.9)3.

1419Proof We express Lþ�ðx1;x2Þ in the form

Lþ�ðx1;x2Þ ¼ Lmþ�ðx1;x2Þ þ L1þ�ðx1;x2Þ:

ð11:1Þ

Meccanica

123

Journal : Medium 11012 Dispatch : 29-5-2014 Pages : 29

Article No. : 9967 h LE h TYPESET

MS Code : MECC-D-14-00146 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

14211421 The case of materials with only discrete spectrum

1422 singularities (remark 5.2) will be considered first. The

1423 quantity Lmþ�ðx1;x2Þ is a solution of (8.37)1;2 for

1424 fþðxÞ ¼ 0 (proposition 9.2), so that we have

fþðxÞ ¼ UðxÞ;

UðxÞ ¼
x

pi

Z1

�1

Hðx1ÞL1þ�ðx1;xÞdx1

¼
x

pi

Z1

�1

Hþðx1ÞH�ðx1ÞL1þ�ðx1;xÞdx1;

8x 2 IR:

ð11:2Þ

14261426 The quantity fþðxÞ is given by (6.9); it vanishes at

1427 �iai, i ¼ 1; 2; . . .; n, and has singularities at ivi,

1428 i ¼ 0; 1; . . .; n, where the parameters vi are arbitrary

1429 positive quantities. The kernel L1þ�ðx1;xÞ must

1430 depend on the vi, since Hðx1Þ is independent of them.

1431 Let us seek forms of L1þ�ð�; �Þ which are solutions of

1432 (11.2)1, for any choices of the vi.

1433 The simplest way of ensuring that the zeros ofUðxÞ

1434 are consistent with the location of the zeros of fþðxÞ is

1435 to assume that L1þ�ðx1;xÞ vanishes at each point

1436 x ¼ iai. Alternatively, if L1þ�ðx1;xÞ is not zero at a

1437 given point x ¼ iai, then it is still possible that UðiaiÞ

1438 could vanish, for given values of vi, thus achieving

1439 consistency with (11.2)1. Thus, we take the quantity

1440 L1þ�ðx1;xÞ to be zero at each point x ¼ iai for most

1441 values of the parameters vi, i ¼ 1; 2; . . .; n.

1442 Let us consider a given set of values vj, j 6¼ k as

1443 fixed parameters, and regard UðxÞ as a function of vk,

1444 denoted by Uðx; vkÞ. Now, Uðiai; vkÞ may have

1445 discrete roots, in other words, may vanish at discrete

1446 values of vk. However, this does not allow us to drop

1447 the assumption that L1þ�ðx1; iaiÞ is zero at these

1448 values of vk, since such an assumption would intro-

1449 duce anomalous discontinuities in the function

1450 L1þ�ðx1; iaiÞ, regarded as a function of vk, because

1451 it is zero for almost all choices of this parameter and

1452 non-zero at certain isolated values.

1453 It follows that L1þ�ðx1;xÞmust be taken to vanish

1454 at each point x ¼ iai, i ¼ 1; 2; . . .; n. Relation (8.3)

1455 then implies that it is zero at each point x1 ¼ �iai,

1456 i ¼ 1; 2; . . .; n, and the singularities of H�ðx1Þ, as

1457 given by (4.18)3, are cancelled by L1þ�ðx1;xÞ in

1458 (11.2)3. The remaining singularities of the integrand

1459are all in X
ðþÞ. Therefore, by closing the contour on

1460X
ð�Þ and recalling (8.11), we find that the right-hand

1461side of (11.2) vanishes.

1462Thus, there are no kernels that are consistent with a

1463non-zero choice of fþðxÞ. Any acceptable choice of

1464L1þ�ðx1;xÞ must obey the equation

Z1

�1

Hþðx1ÞH�ðx1ÞL1þ�ðx1;xÞdx1 ¼ 0; 8x 2 IR:

ð11:3Þ

14661466The only way to ensure this condition for all x is to

1467assign to L1þ�ðx1;xÞ the property that it vanishes at

1468each point x1 ¼ �iai, and thereby cancels the singu-

1469larities in H�ðx1Þ. But these points are the singular-

1470ities of It2þðx1Þ in (8.18), so that the quadratic form

1471with kernel L1þ�ðx1;xÞ would give a zero contribu-

1472tion to the free energy, as can be seen by integratingx1

1473over a contour on X
ð�Þ.

1474We conclude that fþðxÞ must be zero, even for

1475materials with only isolated singularities and

1476L1þ�ðx1;xÞ in (11.1) makes no contribution to the

1477free energy functional.

1478For materials with some branch cuts, the quantity

1479fþðxÞ vanishes, in any case, and we must have a

1480relation of the same form as (11.3). Then, there will be

1481some branch cuts in L1þ�ðx1;xÞ as a function of x1.

1482These must be in X
ðþÞ. There will also be branch cuts

1483in H�ðx1Þ , which must be in X
ð�Þ. There is no

1484mechanism whereby these can neutralize or cancel

1485each other. The only remaining possibility is that

1486L1þ�ðx1;xÞ vanishes. h
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