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Abstract. 

Background: Horseradish Peroxidase (HRP) plays important roles in many 

biotechnological fields, including diagnostics, biosensors and biocatalysis. Often, it is 

used in immobilised form. With conventional immobilisation techniques, the enzyme 

adheres in random orientation: the active site may face the solid phase rather than 

bulk medium, impeding substrate access and leading to sub-optimal catalytic 

performance. The ability to immobilise HRP in a directional manner, such that the 

active site would always face outwards from the insoluble matrix, would maximise 

the immobilised enzyme’s catalytic potential and could increase HRP’s range of 

actual and potential applications.  

Results: We have replaced arginine residues on the face of glycan-free recombinant 

HRP opposite to the active site by lysines. Our strategy differs from previous reports 

of specific HRP immobilisation via an engineered affinity tag or single reactive 

residue. These conservative Arg-to-Lys substitutions provide a means of multipoint 

covalent immobilisation such that the active site will always face away from the 

immobilisation matrix. 

One triple and one pentuple mutant were generated by substitution of solvent-exposed 

arginines on the “back” of the polypeptide (R118, R159 and R283) and of residues 

known to influence stability (K232 and K241). Orientated HRP immobilisation was 

demonstrated using a modified polyethersulfone (PES) membrane; the protein was 

forced to orientate its active site away from the membrane and towards the bulk 

solution phase. 

Mutant properties and bioinformatic analysis suggested the reversion of K283R to 

improve stability, thus generating two additional mutants (K118/R159K and 

R118K/K232N/K241F/R283K). While most mutants were less stable in free solution 

than wild type rHRP, the quadruple revertant regained some stability over its mutant 

counterparts. A greater degree of immobilisation on CNBr-activated SepharoseTM was 

noted with increased lysine content; however, only marginal gains in solvent stability 

resulted from immobilisation on this latter matrix.  

Conclusions: Directional, orientated, immobilisation of rHRP mutants onto an 

activated, modified polyethersulfone membrane has been achieved with excellent 

retention of catalytic activity; however, re-engineering of acceptable stability 

characteristics into the “immobilisation mutants” will determine their applicability in 

diagnosis and biosensor development. 
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Background. 

The peroxidase from horseradish roots (Armoracia rusticana; HRP, isoform C) is the 

most widely studied peroxidase, due mainly to its many diverse uses in biotechnology 

[1]. Several reports of HRP immobilisation exist, commonly employing adsorption as 

the immobilisation technique [2, 3, and 4]. Although simple to implement, this 

approach suffers from several drawbacks, including the removal of adsorbed protein 

by stringent washing, high contamination (due to non-specific protein binding) and 

denaturation of proteins adsorbed onto hydrophobic surfaces [5]. Covalent 

immobilisation of proteins offers a more robust approach. Traditionally, 

immobilisation of plant HRP relied on periodate oxidation of the enzyme’s 

carbohydrates. In recent years, however, immobilisation technology has developed 

rapidly, primarily due to the increase in number and range of activated solid supports 

and the ability to engineer or chemically modify biomolecules to enable easier 

covalent attachment. Several protein-engineering strategies have introduced reactive 

amino acids to promote directed protein immobilisation, with lysine being the most 

common. Abian and co-workers [6] selected asparagine, glutamic acid or arginine 

residues of Pencillin G Acylase (PGA) for replacement by lysine; these substitutions 

resulted in improved thermal stability of the immobilised PGA, due to multipoint 

attachment to a glyoxyl agarose-activated solid phase. HRPC is a highly cationic 

protein that contains twenty-one arginine residues [7]; however, only Arg residues on 

the opposite side to the active site entrance were considered for substitution in the 

present study, as attachment to the solid phase via the “back” of the molecule should 

allow an orientated rHRP immobilisation. This primary condition was supplemented 

with additional structural criteria (e.g. avoidance of helices, position in relation to the 

active site entrance, exposure to solvents) and led to the substitution of Arg118, 

Arg159 and Arg283 (Figure 1) by lysines, thus permitting the investigation of 

orientated covalent attachment to two activated solid phases, polyethersulfone 

membrane and CNBr-activated SepharoseTM. 
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Results. 

Immobilisation on PES Membrane. 

Use of a modified PES membrane permitted successful orientated rHRP 

immobilisation. Introduction of Arg to Lys substitutions (Mutant 1; Table 1) on the 

opposite face of the molecule to the active site, together with the removal of wildtype 

reactive lysine residues (Mutant 3, Table 1; see also Figure 1), forces the protein to 

orientate its active site away from the membrane and towards the bulk solution phase 

during covalent immobilisation. Figure 2 demonstrates faster and more intense colour 

development for Mutant 3 over an eighteen-hour period compared with wildtype. 

Densitometrical analysis (see Table 2) using Image J software confirms and 

underscores this point. Equal concentrations of Mutant 1, Mutant 2 (Mutant 1 with 

reversion at position 238), Mutant 3, Mutant 4 (see Table 1), and wildtype rHRP were 

applied (see Methods). Increased catalytic activity towards DAB substrate is 

attributed to optimal orientation of the rHRP molecule (Mutant 3), in contrast to the 

random orientation of wildtype rHRP or reduced binding capabilities of K283R 

revertants (Mutants 2 and 4). Furthermore, this experimental set-up also demonstrated 

reusability. Immobilised Mutant 3 was stained repeatedly (up to three times, data not 

shown) with TMB (non-precipitating substrate) over a period of several hours, with 

appreciable catalytic activity noted each time. 

Stability Properties of Arg→Lys Mutants. 

Stabilities in free solution of Mutants 1-4 were compared with wildtype. Mutant 1 

displayed almost identical thermal and solvent stabilities (except in MeOH) to 

wildtype rHRP. Mutant 3 was notably less stable (50% decrease in thermal and 20% 

decrease in MeOH stabilities). This was unexpected, as the chemically modifiable 

proximal lysine residues (232 and 241, [8]) had been mutated to the stabilising Phe 

and Asn respectively (Ryan and O’Fágáin, in preparation). Mutant 4 (Mutant 3 with 

reversion at position 283) displayed a 2.6-fold increase in t1/2 at 50oC over Mutant 3 

and a 1.3-fold increase versus wildtype. However, Mutant 1 (Arg at position 283) and 

Mutant 2 (reversion at position 283) displayed very similar thermal stabilities. Solvent 

stability was also affected by reversion to Arg at position 283: Mutant 2 exhibited a 

1/3 increase in C50 in DMF, but decreases in DMSO (1/6) and MeOH (1/5) tolerances 

compared with Mutant 1. Mutant 4 displayed decreased stabilities in DMSO (1/7) and 

MeOH (1/5).  
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Interestingly, both reversion mutants displayed greater H2O2 stability in free solution 

than their unreverted counterparts (16% for Mutant 2 versus Mutant 1 and 94% for 

Mutant 4 versus Mutant 3; see Tables 1 and 3). 

Immobilisation on CNBr-activated Sepharose. 

Increased lysine content correlated with increased immobilisation on CNBr-activated 

Sepharose: Mutant 4 (3 sites: Lys 118, 159, 174; 42% immobilisation) < wildtype (3 

sites: Lys 174, 232, 241; 50% immobilisation) < Mutant 3 (4 sites: Lys 118, 159, 174, 

283; 57% immobilisation) < Mutant 2 (5 sites: Lys 118, 159, 174, 232, 241; 69% 

immobilisation) < Mutant 1 (6 sites: Lys 118, 159, 174, 232, 241, 283; 86% 

immobilisation). These calculations were based on measured units of activity before 

and after immobilisation, assuming that no inactivation occurred during the mild 

immobilisation process. Immobilised wildtype demonstrated more than two-fold 

thermal stabilisation, whilst immobilised Mutant 2 displayed a marginal 5% increase. 

Mutant 1 (4-fold), Mutant 3 (1.25-fold) and Mutant 4 (1.25-fold) all displayed 

decreased thermal stability following immobilisation. 

Solvent stabilities of wildtype and mutant (both free and immobilised) are set out in 

Table 2. Small variations (< 2-fold) in solvent stabilities are noted. 

All four mutants and wildtype show a dramatically decreased resistance to 

inactivation by H2O2 following immobilisation onto CNBr-activated Sepharose, 

approximating to a basal C50 value of 5 mM H2O2 (Table 3). This contrasts sharply 

with variations in H2O2 resistance noted in free solution (Mutants 2, 1 and 4 display a 

2.6, 2.2 and 2-fold increase in stability respectively compared to wildtype and Mutant 

3; Table 3). 
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Discussion. 

Lopez-Gallego and co-workers [9] recently proposed chemical modification to enrich 

the protein surface with reactive groups that would facilitate multipoint covalent 

attachment during protein immobilisation. The present work extends this concept by 

substituting additional lysines in a specific region of rHRP so as to facilitate directed, 

multipoint immobilisation onto a commercially available, modified polyethersulfone 

(PES) membrane. Lysines are often exploited for covalent immobilisation, as they 

occur frequently in proteins and are active nucleophiles when unprotonated, i.e. at 

alkaline pH. They are usually located on surface-exposed regions of proteins, due to 

their charged nature. This characteristic also allows for simple immobilisation 

reactions, as lysine residues do not require activation prior to immobilisation [10]. To 

allow directed immobilisation of rHRP to an activated matrix, arginine residues were 

selected for conservative substitution by lysine. Of the twenty-one arginine residues in 

rHRP, only three were deemed suitable for the proposed replacements: Arg118, 

Arg159 and Arg283 (see Methods). These positions are located on the opposite side 

of the molecule to the active site; hence, immobilisation via these “new” lysines 

forces the protein to orientate its active site away from the membrane and towards the 

bulk solution. Maximal colour development was noted during DAB catalysis for 

Mutant 3 (Lys 118, 159, 174 and 283 available), which can bind only in a uni-

directional manner: the reactive wildtype lysines 232 and 241 [8], on a different face 

of the molecule, have been removed. This directional immobilisation should allow 

optimal substrate access and product egress.  

Although introduction of additional lysines permits directional immobilisation, a 

stability penalty is incurred. Despite its conservative nature, an Arg-to-Lys 

substitution can alter hydrogen bonding, as lysine can form only a single hydrogen 

bond compared with Arg [11]. Reduced hydrogen bonding resulting from the loss of 

three Arg, coupled with substitution by a bulky aromatic Phe (K232F) residue, may 

explain the instability of Mutant 3 in free solution. Arg283 is located on the last turn 

of Helix J [12]. Simple reversion of this residue rescued (or even enhanced) poor 

thermal and H2O2 stabilities of the R283K rHRP mutant. Whilst this reversion 

reduced the number of potential immobilisation sites, the stabilising effect of the 

K232F and K241N mutations (Ryan and O’Fágáin, in preparation) was evidenced 

(Table 2; Mutant 4 versus Mutant 2 in free solution). Further protein engineering is 

required to re-introduce stability to the immobilisation mutants. The work of 
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Strausberg and co-workers [13] has parallels with the present study. They removed a 

Ca2+ binding loop from subtilisin so as to enhance its stability under metal-chelating 

conditions. Their initial “loop-less” mutant was much less stable than the wildtype, 

but it proved possible to “retro-engineer” stability into the mutant, such that it out-

performed wildtype under chelating conditions. 

 

Currently, there are very few reports of either direct or random immobilisation of 

recombinant HRP in the literature. Rojas-Melgarejo and colleagues [2] noted the 

difficulty in immobilising recombinant HRP expressed in E. coli to traditional 

adsorbent solid phases, since it lacks the carbohydrate residues commonly used for 

this type of immobilisation. Instead, cinnamic esters were successfully employed 

(63% immobilisation rate) as an immobilisation platform using physical adsorption in 

conjunction with glycosylation-independent hydrophobic interaction. Wildtype 

recombinant HRP immobilised in such a fashion yielded an 8% increase in thermal 

stability. Abad and co-workers [14] recently described directed recombinant HRP 

immobilisation via an N-terminal His tag–cobalt (II)-terminated gold nanoparticle 

interaction. Although no stability data were reported for this method, its potential 

application in the convenient attachment of rHRP onto gold electrodes for biosensing 

is obvious. Although our rHRP possesses a C-terminal His Tag, we chose not to 

exploit this feature for immobilisation and instead adopted the strategy outlined here. 

The immobilisation of enzymes can increase protein stability [15]; however, by 

implementing orientation-dependent protein immobilisation, researchers may not only 

stabilise a protein, but also promote superior performance in applications such as 

biosensors. Recent developments in the biosensing area focus on the type of bio-

recognition involved in immobilisation. Traditionally, lysines (as in this study) or 

cysteines can be engineered into a protein backbone to allow for immobilisation; 

however, research has progressed towards controlled deposition and orientation of 

immobilised recombinant oxidoreductases for optimal Direct Electron Transfer 

(DET). The shorter the electron transfer distance, the greater the chance of DET 

occurring in a biosensor configuration; hence, controlled directional immobilisation of 

enzymes is important for the progression of third generation biosensors. Typically, 

physical adsorption is utilised for peroxidase immobilisation onto a metal electrode; 

however, other methods such as entrapment [16] and direct covalent attachment [17] 

are employed. Often, these methods lead to the formation of a randomly orientated 
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layer, either on the surface of the electrode (metal) or within cavities (carbon). 

Physical adsorption may result in enzyme denaturation, due to multiple contacts with 

the solid phase. Binding of ligands, or substrate / product access and egress, may also 

be hindered, all resulting in poor bioelectrocatalytic activity [18]. Self-assembled 

monolayers (SAM) are an attractive alternative for controlled, directed enzyme 

immobilisation. These highly organised monomolecular layers form spontaneously 

upon submersion of a solid phase into a solution containing amphifunctional 

molecules. The lengthy hydrophobic chain of the SAM can be altered and terminated 

with a functional group that will interact only with a specific residue on an enzyme 

backbone [19]. In this instance, a site directed mutation could be utilised to dictate the 

location of the specific residue and, hence, control the orientation of the molecule (e.g 

additional Cys residue for thiol immobilisation [20]). This concept has recently been 

adapted for use with chemically-modified plant-derived HRP by Suarez and co-

workers [21]. 

Other methods of immobilisation have developed in recent years, from His-tag 

chelation to biotin-avidin interaction. Polypeptide scaffolds comprise a topical generic 

immobilisation method, employing a hydrophobic anchor attached to a leucine-zipper 

protein capture domain utilised to directionally immobilise several different proteins 

to a hydrophobic solid phase [22]. 

 

Fuentes and colleagues [23] recently noted that the rate of plant HRP immobilisation 

depended exponentially on the concentration of reactive groups both on the protein 

and the support. Hence, a protein is mainly immobilised by an area of its surface 

having the highest density of reactive groups. Lysine is the key amino acid 

responsible for protein immobilisation onto CNBr-activated Sepharose [24], as 

reflected in the present study. Only bound Mutant 4 displayed improved stability over 

free-solution figures, suggesting that multipoint attachment, most evident in the case 

of Mutant 1, increases strain on the rHRP molecule. This, combined with restricted 

flexibility, leads to a notable decrease in thermal stability for the mutants. Previous 

reports of destabilising multipoint immobilisation of glucoamylase also cite increased 

protein strain as reason for decreased thermal stability [25], while the type of 

immobilisation resin can also destabilise the immobilised protein [26]. Our results 

contrast with previous reports of increased thermal stability following multipoint 

attachment [6]. However, Abian and co-workers [6] focused their mutations on a 
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lysine-rich area of Pencillin G Acylase, which previous chemical modification studies 

had proven not to be critical for protein stability, and so minimised the chance of a 

deleterious mutation in this area. This group also utilised a glyoxyl agarose-activated 

solid phase for protein immobilisation. Plant-derived glycosylated HRP has 

previously been immobilised onto a variety of solid phases, by a range of different 

techniques, to increase thermal stability. For example, Rojas-Melgarejo and co-

workers [27] noted increased thermal stability (30%) for plant HRP absorbed onto 

cinnamic carbohydrate esters, similar to that noted in this study for wildtype rHRP 

(27%), covalently immobilised onto CNBr-activated Sepharose. 

The reduced solvent stabilities of the mutants can similarly be ascribed to increased 

strain and lack of protein flexibility. Due to the confined nature of the immobilised 

protein, organic solvent molecules that have stripped and replaced water molecules 

are maintained in close proximity to the protein surface, leading to accelerated protein 

denaturation [27]. It is well known that many enzymes can function in organic 

solvents [28]; however, protein denaturation often occurs in water-miscible solvents, 

by a process referred to as “water-stripping” . Gorman and Dordick [29] described 

how T2O (tritiated water) is desorbed from HRP by organic solvents such as MeOH 

and DMF. DMF, despite its higher dielectric constant, desorbed significantly less T2O 

than did MeOH. The difference is possibly due to structural similarities between  

MeOH and H2O, which allow MeOH to strip and replace water molecules close to the 

protein surface. There is a major requirement for water for HRP activity [29], so any 

water removal will have a detrimental effect on enzyme activity. Small losses of 

solvent stability (e.g. Mutant 3) can be attributed to the reduced number of potential 

attachments for covalent immobilisation. Hence, the immobilisation of Mutant 3 is 

not as rigid as that of Mutant 1, permitting some protein flexibility. 

Immobilisation on CNBr-activated Sepharose notably decreased H2O2 tolerance of 

rHRP wildtype and mutants: the basal C50 value was 5 mM H2O2, much lower than 

any free-solution value. Previous immobilised HRP H2O2 tolerance results depend on 

the type and reactivity of the activated solid phase. Rojas-Melgarejo and co-workers 

[27] report increased H2O2 tolerance for HRP adsorbed onto cinnamic carbohydrate 

esters when the stability analysis was carried out at pH 7.0; at pH 4.5, however, there 

was a dramatic loss of H2O2 stability. Those authors believe that reactive oxygen 

species such as superoxide, generated during H2O2 catalysis, may have been absorbed 

by the cinnamic support at pH 7.0 instead of attacking the essential enzyme residues. 
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At lower pH, however, carbonyl groups are oxidised and do not provide a sink for 

oxidising reactive oxygen species, leading to dramatic enzyme destabilisation [27]. 

 

 

Conclusions. 

Directional orientated immobilisation of rHRP mutants onto an activated, modified 

polyethersulfone (PES) membrane has been achieved with excellent retention of 

catalytic activity. Despite some loss of thermal, solvent and H2O2 stabilities both in 

free solution and following immobilisation onto CNBr-activated Sepharose, 

orientated rHRP immobilisation has many potential applications including diagnostics 

and biosensor development. Ultimately, use in these applications will require re-

engineering acceptable stability characteristics into the “immobilisation mutants”. 

 

 

 

 

Materials and Methods: 

Materials. The HRP gene was a generous gift from Prof. Frances H. Arnold (Caltech, 

CA, USA). The pQE60 vector was purchased from Qiagen (Valencia, CA); XL 10 

Gold cells and QuickChangeTM Mutagenesis Kit were purchased from Stratagene (La 

Jolla, CA). Pall UltraBindTM PES modified membranes were obtained from AGB 

Scientific (Dublin, Ireland). All other reagents (including CNBr-activated Sepharose) 

were purchased from Sigma Aldrich and were of analytical grade or higher. 

 

Cloning. The HRP gene was directionally cloned into the pQE60 vector as a fusion 

with the N-terminal pectate lyase (PelB) leader sequence [30] and a C-terminal hexa-

histidine purification tag, to generate the plasmid pBR_I. Initially, the PelB leader 

was cloned via a Nco I – BamH I double restriction. This introduced a novel Not I site 

5’ to the existing BamH I site in the modified pQE60 vector. The HRP gene was then 

Not I – Bgl II directionally cloned into a Not I – BamH I restricted PelB-modified 

pQE60 vector. This cloning strategy incorporated the poly-His tag, present in the 

pQE60 vector, at the C-terminus of HRP. 

 



11 

Bacterial Strains and Plasmids. E.coli XL 10 Gold was used as host strain to express 

the HRP protein. The plasmid (pBR_I), carrying the HRP gene and coding for the 

HRP fusion protein, was used for expression and site directed mutagenesis. 

 

Recombinant DNA Techniques. All DNA manipulations were carried out by standard 

techniques [31]. Site directed mutagenesis was carried out as described by Wang and 

Malcom [32] utilising the QuickChangeTM method. Mutant primers were supplied by 

MWG-Biotech (Germany). Mutations were confirmed by commercial di-deoxy 

sequencing (Fusion Antibodies, Belfast, Northern Ireland). 

 

Expression and Purification. A single cell transformed with pBR_I (or mutant 

derivative) was grown in LB medium containing 100 µg/mL ampicillin and 2% w/v 

glucose until the OD600nm reached 0.4; the cells were removed via centrifugation at 

2,000 × g for 5 min and resuspended in fresh LB supplemented with 100 µg/mL 

ampicillin, 1mM δ-ALA and 2mM CaCl2. The cells were then allowed to grow at 

30oC, 220 rpm for 16 h. Following overnight expression, the cells were centrifuged at 

2,000 × g for 5 min and the supernatant was treated with 50% w/v (with respect to the 

original supernatant volume) ammonium sulphate for 2 h at room temperature. The 

cells were periplasmically lysed [33] and the periplasmic contents were similarly 

treated with ammonium sulphate. Proteins precipitated by 50% w/v ammonium 

sulphate were collected via centrifugation, resuspended in 50mM phosphate buffer pH 

8.0 and dialysed versus the same buffer overnight at 4oC. Sodium chloride (1M) and 

GnCl (200mM) were added to the dialysed fractions, and these latter were subjected 

to nickel affinity chromatography at room temperature. Sodium acetate (25mM, pH 

4.5) was utilised to elute the bound HRP. The eluted HRP was again dialysed versus 

50mM phosphate buffer pH 7.5 overnight at 4oC, after which the protein was 

concentrated (Amicon-Plus 20 concentrator tubes), filter sterilised and stored at 4oC. 

 

Substitution residue selection. Arginine residues in the wildtype were pinpointed for 

conservative replacement by the reactive side chain lysine, since both have similar 

size and charge; this should result in minimal secondary structure rearrangement [11]. 

The twenty-one arginines present in wildtype HRP were viewed in DeepView [34] 

and assessed for suitability based on secondary structure and location. Beta sheet-
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forming residues were preferred over alpha-helical ones, and surface-exposed residues 

were selected in preference to buried ones. Only residues on the plane opposite to the 

active site entrance were considered. These criteria resulted in the selection of R118, 

R159 and R283 as targets for replacement by lysines (see Figure 1). Of the six 

wildtype lysines, only 174, 232 and 241 are available for immobilisation under mild 

conditions [8]. Lys 174, modified to only 20 % compared with 100 and 85 % for 232 

and 241 [8], was left intact throughout this study, but positions 232 and 241 were 

altered in some of the mutants (see Results section and Figure 1). 

 

rHRP immobilisation.  

(a) Pall UltraBindTM Modified PES Membrane possesses activated aldehyde 

functional groups tailored for amine-based covalent immobilisation. HRP (plant or 

recombinant) was resuspended in 50 mM sodium phosphate buffer, pH 7.5 (enzyme 

concentration 30 pM), and directly spotted onto the activated membrane; the latter 

was allowed to air-dry completely at room temperature for 10 min. The remaining 

binding sites were then blocked with 1% w/v solution of food-grade non-fat dry milk 

in 50 mM sodium phosphate buffer, pH 7.5, for 1 hour at room temperature. The 

membrane was then washed with 50 mM sodium phosphate buffer, pH 7.5, and 

allowed to air-dry completely at room temperature for 10 min. DAB (precipitating 

chromogen) and TMB (non-precipitating chromogen) were utilised to locate 

immobilised HRP prior to imaging. 

 

PES Immobilised HRP-Imaging: Developed membranes were imaged with a Hewlett 

Packard Scanjet 5590, connected to a Dell Optiplex Computer with the following 

parameters: output type, true colour (24 bit); output scale, 100%; output resolution, 

2400 dpi; sharpen level, extreme; scan form, scanner glass; highlights, -100; shadows, 

-100; and midtones, -100. True colour images were converted to greyscale using 

Hewlett Packard Scanjet 5590 image software. 

 

Image J Analysis. 

Saved greyscale images were opened in Image J software [35]. The background was 

subtracted from the image using the Process>subtract background function. A rolling 

ball radius of 50 and a white background were selected. The image threshold was also 

automatically adjusted to black and white. The image was cropped and desitometrical 
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analysis carried using the ‘Analyse’ function. The results were expressed as a %age of 

the wildtype value. 

 

(b) CNBr activated Sepharose® 4B: HRP was suspended in coupling buffer (0.1 M 

NaHCO3/Na2CO3 containing 0.5 M NaCl, pH 8.5; enzyme concentration 30 pM). 

CNBr-activated Sepharose® 4B was aliquoted into a clean purification column (2 x 8 

cm), then washed and swollen in cold 1 mM HCl for at least 30 min. The resin was 

then washed with 10 column volumes of distilled water and, finally, with coupling 

buffer. Immediately, the resin was transferred to the solution containing HRP and 

mixed on an end-over-end rotator for 2 hours at room temperature. After coupling, 

any unbound protein was removed using several washes of coupling buffer. Any 

remaining unreacted groups on the Sepharose particles were blocked with 0.2 M 

glycine, pH 8, for 2 hours at room temperature. Extensive washing with high (A: 0.1 

M NaHCO3/Na2CO3 buffer containing 0.5 M NaCl, pH 8.5) and low (B: 0.1 M acetic 

acid-sodium acetate buffer, pH 4) pH buffers, A and B respectively, removed the 

glycine and consolidated the HRP-to-resin covalent bonds. 

 

H2O2 and Thermal Tolerance Analysis: H2O2 stability of recombinant HRP, and 

mutant variants, was determined as described in ref. [36]. In brief, rHRP (360 nM in 

50 mM phosphate buffer, pH 7.0) was incubated with increasing concentrations of 

H2O2 (0–100 mM). H2O2 concentrations were determined spectrophotometrically at 

240nm using 43.6 M-1cm-1 as the extinction coefficient [37]. Samples were exposed to 

the relevant H2O2 concentration for 30 min at 25 oC in a temperature-controlled 

waterbath. Residual catalytic activities were then measured (below). (Note that the 

H2O2 concentration used with a reducing co-substrate in the activity assay below was 

significantly lower than the concentration of H2O2 as sole substrate that led to 50% 

inactivation (C50) [38].) The thermal stability parameters of recombinant HRP and 

mutant variants were determined as follows. A single peroxidase stock solution was 

placed for 10 min at progressively increasing temperatures, at which time aliquots were 

withdrawn, chilled on ice and eventually assayed under optimal conditions. This 

procedure gives T50, or the temperature of 50% inactivation. For thermal inactivation at 

a constant 50oC, a single peroxidase stock solution (room temperature) was plunged 

into a waterbath held at 50oC and aliquots were withdrawn every minute for ten minutes 

onto ice and later assayed under optimal conditions. The solvent parameters of 
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recombinant HRP and mutant variants were determined as described for plant HRP 

[39] except that the solvents employed were methanol, dimethylsulfoxide and 

dimethylformamide.  

Following temperature, solvent or H2O2 incubation, aliquots (50 µL) were withdrawn 

and the remaining catalytic activities were assayed using a standard microtitre-based 

TMB assay. This comprised 150 µL of 32 mM TMB substrate (in 100 mM citric acid 

buffer, pH 5.5, containing 3 mM H2O2) and 50 µL of rHRP in each well. The 

microplate was shaken as the initiating enzyme was added and the absorbance at 620 

nm was recorded after 6.5 min reaction time. The C50 value (mM H2O2 or % v/v 

solvent where 50% of maximal HRP activity still remains) was utilised to compare 

H2O2/solvent stabilities across the mutant matrix, whilst the t1/2 (half-life) was 

employed to compare mutant thermal stabilities (see Table 3). 

 

 

Abbreviations. 

ABTS, 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid; δ-ALA, delta 

aminolevulinic acid; C50, concentration of H2O2 leading to 50% inactivation after 30 

min at 25oC; DAB, diaminobenzidine; DMF, dimethylformamide; DMSO, 

dimethylsulfoxide; dpi, dots per inch; HRP, horseradish peroxidase isoenzyme C; 

GnCl, guanidine hydrochloride; LB, Luria-Bertani medium; MeOH, methanol; rHRP, 

recombinant horseradish peroxidase isoenzyme C; PES, polyethersulfone; t1/2app, 

apparent half-life; T50, temperature leading to 50% inactivation after 10 min; t1/2, half-

life; TMB, 3,3’,5’5-tetramethyl benzidine; v/v, volume per volume; w/v, weight per 

volume. 
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Table 1: HRP mutants described in this paper. 
R, Arg; K, Lys. The numbering system is based on the HRP structure with the PDB accession number 1ATJ. 

 
 
 
 
 
 
 

 
 
Table 2: % Relative densitometrical analysis of modified PES immobilisation. 
 Plant, WT, Wildtype; Mutant 1, R118K/R159K/R283K; Mutant 2, R118K/R159K; Mutant 3, 
R118K/R159K/K232N/K241F/R283K; Mutant 4, R118K/R159K/K232N/K241F. % values were calculated 
using the ‘Analyse’ function of ImageJ software package [35]. 
 

Name % Relative Densitometry Values 
Plant 94 
WT 100 
Mutant 1 127 
Mutant 2 140 
Mutant 3 163 
Mutant 4 138 
 
 

Name Mutations 
Mutant 1 R118K, R159K, R283K. 
Mutant 2 R118K, R159K. 
Mutant 3 R118K, R159K, K232F, K241N, R283K. 
Mutant 4 R118K, R159K, K232F, K241N. 
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Table 3: Stability Characteristics of HRP Immobilisation Mutants in free solution and immobilised on CNBr-activated Sepharose. WT, Wildtype; Mutant 1, 
R118K/R159K/R283K; Mutant 2, R118K/R159K; Mutant 3, R118K/R159K/K232N/K241F/R283K; Mutant 4, R118K/R159K/K232N/K241F. Modelled k-values were 
calculated using the EnzfitterTM software package (Version 1.05. Cambridge UK: Biosoft Ltd.; 1987). Values are the mean of three independent determinations in each 
case. SD, standard deviation. Standard deviations were < 5% for solvent and < 10% for H2O2 studies. Units of C50 are % v/v for solvents and mM for H2O2. 
 
 

 Thermal Stability  Solvent and H2O2 Stability 

Mutant T50 (
oC) 

k-value 

(min-1) 

SD 

(min-1) 

t1/2 

(min) 
 

DMSO 

C50 

MeOH 

C50 

DMF 

C50 
 

H2O2 

C50 

Free Solution           

WT 50 0.0559 ± 0.0034 12  35 53 14  17 

Mutant 1 51 0.0535 ± 0.0005 12  34 44 12  38 

Mutant 2 50 0.0568 ± 0.0057 12  30 35 16  44 

Mutant 3 48 0.0109 ± 0.0007 6  35 45 25  17 

Mutant 4 50 0.0445 ± 0.0003 17  30 35 16  33 

           

Immobilised           

WT - 0.0255 ± 0.0023 27   32 40 14  6 

Mutant 1 - 0.0223 ± 0.0020 3  24 32 17  5 

Mutant 2 - 0.0544 ± 0.0044 13  28 38 10  5 

Mutant 3 - 0.0152 ± 0.0017 5  42 43 29  5 

Mutant 4 - 0.0491 ± 0.0049 14  28 38 15  5 
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Figure One: The twenty-one arginine residues in HRP. Those shown in black are the three (R118, R159, 
R283) selected for mutation to lysine, to enable orientated rHRP immobilisation. The arrow indicates the 
active site entrance, whilst the substituted lysine residues are also highlighted (232, Ψ; 241, �) 
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Figure Two: Scanned images of DAB-stained, spotted immobilised rHRP activity. WT, Wildtype; Mutant 1, 
R118K/R159K/R283K; Mutant 2, R118K/R159K; Mutant 3, R118K/R159K/K232N/K241F/R283K; Mutant 
4, R118K/R159K/K232N/K241F. Time points indicated on the left are in hours. DAB coloration indicates 
peroxidase activity; this was noted within minutes for the immobilisation mutants, whereas plant and 
wildtype recombinant HRP required a longer time to develop any coloration. 
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