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ABSTRACT 
 

Developing predictive models for classification problems considering imbalanced 

datasets is one of the basic difficulties in data mining and decision-analytics. A 

classifier’s performance will decline dramatically when applied to an imbalanced 

dataset. Standard classifiers such as logistic regression, Support Vector Machine (SVM) 

are appropriate for balanced training sets whereas provides suboptimal classification 

results when used on unbalanced dataset. Performance metric with prediction accuracy 

encourages a bias towards the majority class, while the rare instances remain unknown 

though the model contributes a high overall precision. There are chances where minority 

instances might be treated as noise and vice versa. (Haixiang et al., 2017). Wide range 

of Class Imbalanced learning techniques are introduced to overcome the above-

mentioned problems, although each has some advantages and shortcomings. 

This paper provides details on the behavior of a novel imbalanced learning 

technique Synthetic Informative Minority Over-Sampling (SIMO) Algorithm 

Leveraging Support Vector Machine (SVM) on small datasets of records less than 200. 

Base classifiers, Logistic regression and SVM is used to validate the impact of SIMO 

on classifier’s performance in terms of metrices G-mean and Area Under Curve. A 

Comparison is derived between SIMO and other algorithms SMOTE, Smote-Borderline, 

ADAYSN to evaluate performance of SIMO over others. 

 

Key words: Class imbalance, Class imbalance learning, Machine learning, Supervised 

learning, Small datasets. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Health informatics is defined as “all aspects of understanding and promoting the 

effective organization, analysis, management, and use of information in health care”. 

Whereas, Data mining is defined as “a process of nontrivial extraction of implicit, 

previously unknown and potentially useful information from the data stored in a database”, 

the core step in the Knowledge discovery in databases (KDD). It is the nontrivial process 

identifying valid, novel, potentially useful, and ultimately understandable patterns in data. 

The amalgamation of these two is becoming popular nowadays because with the help of an 

appropriate computer-based systems and efficient analytical methodologies one can 

meticulously discover the significant hidden knowledge from huge medical databases which 

includes finding correlations or patterns among different fields in large medical databases. 

(Kavakiotis et al., 2018) 

Predictive Analytics is nothing but the application of data mining techniques 

incorporating machine learning algorithms on historic data in predicting the future or the 

unknown. It is gaining a wide range of importance in various disciplines and healthcare 

domain is one among them. Machine learning can be formally defined as, A computer 

program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E. Application of predictive analytics in healthcare domain majorly includes, 

Prediction of presence or susceptibility of an individual to disease, mortality risks 

considering different scenarios, survivability of a patient after a medical treatment and so 

on. (Kavakiotis et al., 2018) 

Machine learning is classified into three categories namely Supervised learning, 

Unsupervised learning and Reinforcement learning. Unsupervised learning draw inferences 

from unlabeled datasets whereas Supervised learning predicts the unknown with a prior 

knowledge of the datasets. It uses labelled data. Classification is one of the supervised 



 

2 
 

learning method which is used to predict the target set which is dichotomous in nature. This 

can be achieved by available algorithms like Logistic regression, Super Vector Machine, 

Decision tree, Random forest, etc. (Sharma & Sharma, 2016) 

The usual problem faced by classification algorithms that would make its 

functionality worthless is Class imbalance problem. Standard Classifiers like Logistic 

regression and SVM works fine on balanced datasets but their performance deteriorates 

when it comes to working on Imbalanced datasets. Class imbalance is a scenario where the 

examples of one class significantly outnumbers the other and the branch of machine learning 

which deals with such problems is named Class Imbalance learning. Recent researches are 

more focused on imbalanced and overlapping datasets as real data is often skewed like 

medical diagnosis, oil blowout detection, financial fraud detection, network intrusion 

detection, spam detection, text classification, etc. Problem of small disjuncts and small 

sample size with high feature dimensionality causing classification errors are often 

encountered and these are closely related problems to class imbalance problem. 

Imbalance learning algorithm can be categorized into data-level approach and 

algorithm-level approach. The data-level approach occurs at the pre-processing phase 

whereas algorithm level is modifying the learning algorithms itself to perform efficiently 

on imbalanced data. Data-level approach includes Resampling which is again categorized 

into Oversampling and Under sampling techniques. Oversampling technique is a popular 

approach especially oversampling by synthetic data generation has gained a huge research 

importance, popular ones are SMOTE, Borderline-SMOTE, ADASYN. Many approaches 

have been proposed having its own merits and demerits wherein Oversampling by Synthetic 

data generation.  

 The problem of overfitting, overgeneralization of the models, chance of 

oversampling noise examples which will increase the misclassification rate are few 

drawbacks which most of the oversampling algorithms come across. To overcome these 

disadvantages Cost sensitive and Ensemble-based learning techniques are approached. 

Cost-sensitive methods assigns different costs to the samples of different classes to make 

minority examples more important during training process. Ensemble learning methods is 

the combination of ensemble learning algorithms and any of the above-mentioned 
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approaches. This includes, SMOTEBoost, SMOTEBagging, AdaCost and so on. (Peng, 

2015). 

 

 

1.2 Research Project 

The objective of the experiment is to evaluate the performance of novel imbalanced 

learning technique, Synthetic Informative Minority Over-Sampling (SIMO) Algorithm 

Leveraging Support Vector Machine (SVM) on small datasets. The performance 

comparison is carried out with existing imbalance learning techniques like SMOTE, 

SMOTE-Borderline and ADASYN which are considered as baseline algorithms for this 

research. Standard Supervised learning algorithms Linear algorithms and SVM is used to 

assess the impact of SIMO on these classifier’s prediction performance. To obtain optimized 

results from the classifiers GridsearchCV with five folds is used. Since the experiment 

involves small datasets of class imbalance problem, performance metrices G mean and Area 

Under Curve is considered for the evaluation and accuracy is prioritized the least. Five 

iterations are carried out and the mean G mean and AUC is tabulated to obtain visual 

representations for easier analysis. 

The research question which can be answered from this research is as stated below, 

“Can performance of the classifiers on small datasets, significantly improve on the 

application of ‘SIMO leveraging SVM’ over the application of baseline imbalanced 

learning algorithms?” 

**SIMO: Synthetic Informative Minority Over-Sampling 

**SVM: Support Vector Machine 

**Baseline imbalanced learning algorithms: SMOTE, SMOTE-Borderline1, 

SMOTE-        Borderline2 and ADASYN. 

**Performance metrices: Accuracy, G-mean and AUC 
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1.3 Research Objectives 

 

The key objective of this research is to evaluate the performance of novel 

imbalanced learning technique, Synthetic Informative Minority Over-Sampling (SIMO) 

Algorithm Leveraging Support Vector Machine (SVM) on small datasets.  To achieve 

the same four datasets are chosen which belongs to univariate classification problem 

and following steps are carried out, 

1. Data understanding comprising a detailed analysis of the datasets in terms of 

its distribution through graphs, minimum and maximum values, central 

tendency and standard deviation of the variables and the relationship they 

share with the target and themselves. 

2. Data cleaning involves removal of missing values and imputation. 

3. Data preparation is carried out which includes Standardization (Z-scores), 

One-hot Encoding. 

4. Data partition with a stratified split of 75 percent train data and 25 percent 

test data. 

5. Application of Oversampling techniques SMOTE, SMOTE-Borderline1, 

SMOTE-Borderline2, ADASYN and SIMO on train data. 

6. Resampled or oversampled data is trained using supervised learning 

algorithms Logistic Regression and SVM.  

7. The model results are recorded with respect to G mean, AUC obtained from 

ROC plots and Accuracy from confusion matrix. 

8. Graphical representation is obtained for model’s performance comparison 

on the application of imbalanced learning algorithms. 

9. Use of Wilcoxon Signed rank test to statistically asses the results and 

determine the rejection or acceptance of research hypothesis that answers 

research question. 
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1.4 Research Methodologies 

The key focus of this research is to evaluate the impact of novel imbalanced learning 

technique, Synthetic Informative Minority Over-Sampling (SIMO) Algorithm Leveraging 

Support Vector Machine (SVM) on classifiers performances for small datasets. Hence, 

existing datasets which are small in sample size and have moderate to high class imbalance 

are chosen.  

The type of research carried out is Secondary and the methodology involves a 

systematic empirical investigation of quantitative properties available in the collected 

information. The results obtained from the experiment will be used as a source of support 

in rejecting or retaining the hypothesis that will in turn answer the research question. 

1.5  Scope and Limitations 

The scope of the project is to examine the influence of novel imbalanced learning 

technique, Synthetic Informative Minority Over-Sampling (SIMO) Algorithm Leveraging 

Support Vector Machine (SVM) on small datasets. Usually domains like Biomedical and 

their related fields, health informatics will have small data to analyze and classifiers usually 

will fail to perform well as there will be no sufficient information available to learn. Small 

datasets with class imbalance can make classifier even worthless as they tend to misclassify 

minority examples as majority since majority examples are present in abundance.  The 

current study is focused on similar problem investigating the applicational effect of SIMO 

on four datasets with small sample size with class imbalance. 

Considering only four datasets to evaluate SIMO algorithm is the limitation of this 

research. Understanding and pre-processing of the datasets of records less than 150 without 

losing information and treating the class imbalance associated with it is another limitation 

to overcome.  

1.5 Document Outline 

The Report document includes following section and the contents covered in each 

section is descripted below. 
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Chapter 2 (Literature Review) gives an overview of the literatures related to Class 

Imbalance problem, its impact on classifiers and various learning methods proposed to 

overcome the limitations.  This section also discusses benefits and shortcomings of the 

proposed methods and how one is efficient than other. It also explains the working of SIMO 

algorithm, its merits and demerits in detail. 

Chapter 3 (Design and Methodology) outlines the design implemented in the research, 

techniques involved in the design and its purpose, its advantage and limitations, usefulness 

of its implementation. 

Chapter 4 (Results and Discussions) provides an account of results obtained on 

implementing the proposed design in the previous section. It provides a detailed discussion 

on the results obtained and provides comparison of model’s performance based on achieved 

results. Section also discusses the difference in expected and actual result of the experiment, 

difference in the observations found from current experiment with original literature. 

Chapter 5 (Conclusion) summarizes the research carried out, approaches used in the 

implementation and results obtained on the same. Contribution and the impact of proposed 

research is also accounted in this chapter. Furthermore, it discuses about the future work 

and recommendations. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides a review on the literatures available on imbalanced learning 

algorithms. This includes the definition of Class imbalance, effect of imbalanced datasets 

on learners, different methods involved in balancing a dataset and its performance and 

advantage over other methods. The section also explains the gap in the research which 

serves as a motive for this experiment.  

2.1 Class Imbalance 

Class imbalance is commonly found in classification problem field where a class 

examples significantly outnumbers the other and is not equally represented. The real-world 

data will always have imbalanced class distribution. There will be a substantial loss of 

performance due to skewed class distribution which is determined by imbalance ratio. 

Imbalance ratio is the ratio of majority class instances to the minority class instances. The 

level of imbalance could be as huge as106.  

The reliability of the model is dependent on quality of training data and hence it should 

be representative and should be informative for the learners. Training data with imbalanced 

class problem will significantly degrade the performance of the model with longer 

computational timing. Class imbalance can be usually found in medical diagnosis, financial 

fraud detection, spam detection, text classification and so on. (Mi, 2013) 

2.2 Effect of Class imbalance 

The problems which are usually faced while dealing with imbalanced datasets are lack 

of density, data shift, problem of overlapping, identification of noisy examples available at 

the borderline and its effect. In a classification problem, lack of density or information with 

small dataset will be an issue as learning algorithms will not have enough data to generalize 

about the distribution of samples which becomes even more difficult with high dimensional 

imbalanced data. Minority class can be underrepresented, and model used to learn this 
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dataspace becomes too specific resulting in overfitting and might also induce small 

disjuncts.  

In an empirical study conducted on the effect of imbalance ratio and noise on the 

classification algorithms and data sampling techniques, it is found that though the classifiers 

are more sensitive to noise, highly imbalanced data severely hinders the performance of 

both classifier algorithms and sampling techniques. Thus, it is also important to detect and 

discriminate between borderline examples and noise instances while sampling. (López, 

Fernández, García, Palade & Herrera, 2018) 

2.3 Machine learning: Class Imbalanced learning technique 

In Machine learning, there are many methods proposed to deal with class imbalance 

problem which can be categorized into data-level approaches and algorithm-level approach, 

cost-sensitive methods and ensemble of classifiers. Data-level approaches comes into 

picture while preprocessing the data, to diminish the effect of class imbalance. This includes 

sampling methods. Algorithm- level approaches create or modify learning algorithms to 

perform efficiently on class imbalanced datasets. This includes adaptive conformal 

transformation (ACT) algorithm proposed to change the kernel function of SVM, weighed 

Euclidean distance function to classify samples using kNN and so on. (Loyola-González, 

Martínez-Trinidad, Carrasco-Ochoa & García-Borroto, 2018) 

Cost-sensitive methods assigns different costs to the samples of different classes to make 

minority examples more important during training process. Ensemble learning methods is 

the combination of ensemble learning algorithms and any of the above-mentioned 

approaches. This includes, SMOTEBoost, SMOTEBagging, AdaCost and so on. (Peng, 

2015). This section covers the imbalance learning approach in data-level and hence the 

relevant and related research studies to the oversampling methods used in this experiment 

are explained and reviewed in brief.  
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2.4 Synthetic Data Generation Oversampling Method:  Random Minority 

Samples 

Sampling techniques are used to resample the dataset and achieve balanced class 

distribution. The method of removing the majority class instances to balance the dataset is 

called under sampling whereas increasing the minority class examples to reduce the degree 

of imbalanced data distribution is called Oversampling. The basic oversampling technique 

is random oversampling wherein the minority data points are randomly duplicated, and its 

major drawback is overfitting. However, oversampling is advisable over under sampling as 

there will be no chance of losing potentially useful piece of information. 

2.4.1 Synthetic Minority Over-Sampling Technique (SMOTE) Technique  

This method proposed by (Chawla, Bowyer, Hall & Kegelmeyer, 2002) is an 

efficient and widely used synthetic data generation oversampling technique in recent days. 

This method was proposed in place of oversampling with replacement method. Synthetic 

examples are generated by operating in ‘feature space’ instead of ‘data space. In this 

approach minority class is oversampled by introducing synthetic data points along the line 

segments joining k nearest neighbors. Neighbors from the k nearest neighbors are selected 

based on the oversampling ratio required.  

Xnew = X + (X- X’) * rand (0,1) 

where, X’ = k nearest neighbor, X = sample                                                                                 

Synthetic samples are generated by multiplying the calculated difference between 

feature vector and its nearest neighbor with a random number between 0 and 1 and is added 

back to the feature vector (sample). This results in the selection of a random point along the 

line segment between two specific features. SMOTE mechanism can be explained as shown 

in Figure 2.1. The advantage of SMOTE is that it makes the decision regions larger and less 

specific with a drawback that it generates synthetic instances considering minority examples 

alone.  



 

10 
 

2.4.2 Modified Synthetic Minority Oversampling Technique 

To improve the performance of SMOTE, a Modified Synthetic Minority 

Oversampling Technique (MSMOTE) was proposed by (Hu, Liang, Ma & He, 2009). 

Initially noise from the majority class is removed and the algorithm classifies minority 

instances into security samples, border samples and latent noise samples by calculating the 

distance between minority class samples and all the samples of the training dataset. If 

sample label in minority class is same as labels in k nearest neighbor then sample is security 

sample, sample is a noise in contrary and sample is borer if it doesn’t belong to any of the 

group. Furthermore, synthetic examples are generated for security samples by randomly 

choosing one of the k nearest neighbors and on application of this method, the results 

yielded was better than SMOTE. 

2.5 Synthetic Data Generation Oversampling Method: Borderline Minority 

Samples 

The examples on the borderline and the ones nearby are more likely to be 

misclassified by most of the classification algorithms which attempt to learn the borderline 

of each class during training process. Thus, the contribution of those examples farther away 

from the borderline are comparatively less than those which are present on and nearer to 

borderline. Pointing at these problems, (Han, Wang & Mao, 2005) proposed a technique 

named Borderline-SMOTE which included SMOTE-borderline1 and SMOTE-borderline 2 

approaches which are slightly different form each other. 

2.5.1 SMOTE- Borderline 1 

 In this approach, for every instance in the minority class, m nearest neighbor is 

calculated from the whole training dataset. The number of majority examples in the m 

nearest neighbors is denoted as m’. If all the m nearest neighbors are m’, then those 

examples are noise and is ignored from oversampling. If number of majority neighbors is 

greater than minority neighbors, then minority instances can be easily misclassified thus 

these are considered as instances at Danger. The minority instances can be considered safe 

if majority neighbors are less than minority neighbors. Likewise, the minority data points 

are categorized into noise, danger and safe before oversampling them. 
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Figure 2.1: SMOTE methodology in generating synthetic data points (Source: 

http://rikunert.com/SMOTE_explained) 

 

The minority examples which are categorized into ‘Danger’ are the borderline data 

of minority class and are oversampled using SMOTE approach.  Synthetic data is generated 

by multiplying the difference between each instance of the ‘Danger’ category with its s 

nearest neighbors from minority class itself with a random number between 0 and 1. 

Synthetic examples are generated along the line between minority border line examples and 

their nearest neighbors of the same class, thus oversampling the borderline examples. 

2.5.2 SMOTE- Borderline 2  

In this technique, minority class examples are categorized into ‘safe’, ‘noise’ and 

‘danger’ as categorized in previous approach. Synthetic data is generated by multiplying the 

difference between each instance of the ‘Danger’ category with its s nearest neighbors from 

minority class with a random number between 0 and 1. Likewise, Synthetic data is generated 
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by multiplying the difference between each instance of the ‘Danger’ category with its s 

nearest neighbors from majority class but with a random number between 0 and 0.5 which 

will be closer to the minority class. Therefore, oversampling the borderline minority 

examples. 

2.5.3 Safe-level-SMOTE 

 Safe-level-SMOTE was proposed by (Bunkhumpornpat, Sinapiromsaran & 

Lursinsap, 2009) to overcome the drawback of SMOTE and Borderline-SMOTE in 

generating synthetic instances in an unsuitable region where overlapping and noise exists 

degrading the performance of the classifiers. Here, each synthetic instance is generated in 

safe region by considering safe-level ratio of the instances. Initially, safe-level (sl) which is 

the number of minority instances in k-nearest neighbor is calculated followed by safe-level 

ratio. If the safe level is closed to 0 then it is nearly a noise and safe if it is closer to k.  

                                                       Safe-level ratio = 
𝑆𝑙𝑛

𝑆𝑙𝑝
                                                                   

where, Slp = the number of minority instances in k nearest neighbors for p in D 

Sln = the number of minority instances in k nearest neighbors for n in D 

p is the minority instances in D dataset 

n is the selected nearest neighbors of p. 

Five decisions are made on the values obtained for safe level ratio while oversampling 

minority examples and is given in the following table (table 1). 

SAFE LEVEL RATIO P, N INFERENCES 

Safe level ratio = infinity p = 0 p and n are noises 

Safe level ratio = infinity p != 0 n is noise 

Safe level ratio = 1 p = n Synthetic instance will be generated along the line between p and n 

because p and n are both safe. 
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Safe level ratio > 1 p > n synthetic instance is generated closer to p because p is safer than n. 

Safe level ratio < 1 p < n synthetic instance is generated closer to n because n is safer than p 

Table 2.1 : Safe-level SMOTE decision table 

 

The experiment had a better performance when compared to SMOTE and Border-line 

SMOTE indicating that synthetic instances generated in safe regions can improve prediction 

performance of classifiers dealing with class imbalance problem.  

2.6 Synthetic Data Generation Oversampling Method: Hard to Learn 

Minority Samples 

 (Garcia, 2008) proposed ADASYN which is used to adaptively generate minority 

data samples which are hard to learn by classifiers than those which are easy to learn. It is 

used to reduce the learning bias introduced by the imbalanced dataset and to adaptively shift 

the decision boundary to focus on those difficult to learn sample. Initially, the count of 

minority and majority samples are calculated followed by degree of class imbalance using, 

                                       d=minority class count / majority class count                                                 

where, d € (1,0) 

 

If the calculated degree of class imbalance is less than the threshold of maximum 

tolerated degree of imbalance, then the ADASYN approach is carried out which is as 

follows, 

1. Calculate the number of synthetic data examples to be generated for the minority 

class using the following, 

                            G = (majority class count – minority class count) * β 

where, β € (0,1) 
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β is the desired balance level to be maintained after the generation of synthetic 

points. If β = 1, fully balanced dataset will be created. 

 

2. For each instance in the minority examples, K nearest neighbors is calculated based 

on Euclidean distance in n dimensional space and the following ratio is calculated. 

                                                                         ri =  
𝛥𝑖

𝐾
    

where, i = 1 to instance in majority example count, 

Δ is the number of examples in K nearest neighbors that belongs to majority class 

examples. 

3. Normalize ri according to  

                             rˆi = ri /   ∑  ri 
𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 𝑑𝑎𝑡𝑎 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
𝑖=1     

where, rˆi is density distribution. 

 

4. The number of synthetic data examples to be generated for each minority example 

is calculated using the following, 

                                                        gi = ˆri * G                                                           

 

5. Synthetic data examples are generated by multiplying the difference between each 

randomly chosen minority data point with its k nearest neighbors of the same class 

with a random number between 0 and 1. The original data is updated with the 

addition of oversampled data. 

The experiment outperformed SMOTE in terms of G-mean and accuracy. 

2.7 SMOTE + SVM Classifiers 

2.7.1 SVM On Imbalanced Data 

 SVM when applied on highly imbalanced datasets, its performance deteriorates 

significantly. While training an imbalanced dataset using SVM, class-boundary learned by 

SVM will be severely skewed resulting in high false negative rate. However, SVM can 
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perform well with moderately imbalanced data sets and it is unaffected by non-noisy 

negative instances far away from the boundary regardless of its count as it only considers 

the instances which are close to boundary line. (Akbani, Kwek & Japkowicz, 2004) 

Causes of performance loss with Imbalanced dataset are: 

1. Positive Points Lie Further from the Ideal Boundary: In the case of imbalanced 

training data ratio wherein the negative instances outnumber positive instances, the 

minority data points might have situated farther away from the ideal boundary line 

as shown in the figure 2.2. Since, SVM considers the instances that is too close to 

the boundary, minority instances will be mis-classified as majority class instances. 

 

Figure 2.2: Positive instances lie further away from the ideal boundary (horizontal line) 

than the negative instances. As a result, SVM learns a boundary (slanted line) that is too 

close to the positive support vectors (Akbani, Kwek & Japkowicz, 2004) 

 

2. Weakness of Soft-margins: SVM is more focused in minimizing the mis-

classification error by maximizing the margin. During this course of time, the 

penalty constant, C the trade-off between the empirical error and the margin which 

minimizes the error should be tuned properly. It is advisable to set the values of C 

as high with respect to minority class instances. 

3. Imbalanced Support vector ratio: As the imbalanced ratio increases, ratio of support 

vectors will become more imbalanced. The neighborhood of a test instance close to 

the boundary will be more dominated by (majority class) negative support vectors 

and hence the decision function is more likely to mis-classify boundary point as 

majority class. To avoid this problem, increasing the weight of the minority class 

instances is advisable. 
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2.7.2 Synthetic Informative Minority Over-Sampling (SIMO) Algorithm Leveraging 

Support Vector Machine (SVM) 

A novel method ‘Synthetic informative minority over-sampling (SIMO) algorithm 

leveraging support vector machine’ is proposed by (Piri, Delen & Liu, 2018).  SIMO’s 

prime focus is on creating synthetic data points of informative minority data points alone. 

This can be achieved with the help of SVM, as data points that are close to the boundary of 

classes can be chosen as informative minority instances. The behavior of SVM on 

imbalanced datasets and use of these behavior in detecting informative instances during the 

application of SIMO is explained below. 

The first and foremost step in performing SIMO is partitioning the dataset into train and 

validation dataset. To avoid bias, partition is carried out in such a way that constant 

imbalanced ratio is maintained in both train and validation dataset. Imbalanced gap which 

is the difference in count of minority and majority data instances is calculated for training 

dataset. 

As briefed earlier, SVM misclassifies minority instances as majority instances when 

applied on highly imbalanced datasets. This might be because the minority data points lie 

further away from ideal boundary line due to which SVM tends to learn a boundary that is 

too close to the minority support vectors (Akbani, Kwek & Japkowicz, 2004). Thus, train 

data is trained using SVM and G-mean is computed. G-mean is the metrics which is usually 

calculated in the case of imbalanced data along accuracy. Higher the G-mean, better is the 

performance of the model. 

Furthermore, Euclidean distance is calculated between the data point and the SVM 

decision boundary. As our major focus is informative minority data points and as mentioned 

earlier, data points close to the boundary of classes are important and informative and hence 

those data points with least Euclidean distance from decision boundary is identified as 

informative minority data instances. Using delta parameter, range of the data points with 

least Euclidean distance is selected as informative minority data points to oversample. Delta 

value is between 0 to 1 and for example if delta of value 0.2 is chosen, then top 20 percent 

of minority data points with least Euclidean distance value will be chosen for oversampling. 
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Synthetic data points are generated on the application of SMOTE oversampling technique 

on the informative minority data instances. 

SIMO Algorithm 

Given D, delta and p 

Partition D into training and validation dataset. 

1. Calculate Imbalanced gap, Imbalanced_gap = Majority_count – Minority_count 

2. Develop initial SVM model on train dataset. 

3. Compute Gmean , 

𝐺 − 𝑚𝑒𝑎𝑛 =  √(𝑇𝑃𝑅 ∗ 𝑇𝑁𝑅) 

4. Initialize, SVM = initial_SVM,  

G_Mean=G_Mean_initial,  

generated_data_count =0 

While generated_data_count < Imbalanced_gap, 

5.          Calculate Euclidean distance of minority data points from Decision boundary.  

 

6.            Select top delta percent of minority data points close to boundary line based on 

calculated      Euclidean distance. This will be regarded as informative minority data points. 

(delta = 0 to 1) 

7.           Oversample the chosen percent of minority data points using SMOTE approach. 

8.           Calculate the number of synthetic generated data points generated. 

9.           Update the initial training dataset with the resampled data. 

10.           Apply SVM and compute G_mean. 

11.           Update G_mean_initial with computed G_mean 

12.           End 

13. Find the maximum G_mean and its index. 

14. Select the oversampled training dataset with maximum G_mean. 

15. Train the model of interest (Logistic regression and SVM linear) on final over-sampled 

training dataset 

16. Evaluate the model on test dataset by computing G_mean and AUC. 
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Notations: 

D – Imbalanced Data set 

delta – Top delta percent of minority data points that are close to decision boundary  

p –  Oversampling degree for minority informative data points at each iteration 

  

At this stage, the original imbalanced train data is updated with oversampled data. 

The number of synthetically generated data points and their indices will be recorded at each 

iteration. SVM will be applied on the updated training dataset. The decision boundary of 

this new SVM will be shifted toward the majority class data space closer to the ideal 

decision boundary as position of the SVM decision boundary only depends on the support 

vectors. The reason is that by generating synthetic minority examples, the imbalance ratio 

of the training dataset will be reduced along with an alleviated imbalance ratio of the support 

vectors. Performance of the SVM will be evaluated by computing the G mean and the 

Euclidean distance of the minority data points of an updated train dataset from the new SVM 

decision boundary is calculated, informative ones will be selected, and new synthetic 

minority data points will be generated. It is repeated until the number of synthetically 

generated examples reaches the imbalanced gap. 

The performance of the model depends on the structure and complexity of the 

dataset. In each iteration, dataset will be updated with new synthetic generated minority 

examples. Though SVM improves on updated data set in each iteration, it isn’t guaranteed 

the same for all kinds of datasets. Hence the performance parameters are recorded for each 

iteration and the iteration with higher G mean value is identified as the best performing 

model and the training dataset associated with that iteration will be selected as final 

oversampled training dataset. This novel approach performed well regardless of learner 

algorithms used and generated comparably less synthetic data instance than other 

oversampling methods as the focus was on oversampling informative instance alone and 

hence reducing the computational cost. 

2.7.3 Biased Support Vector Machine (SVM) And Weighed-SMOTE 

Similarly, (Hartono, Sitompul, Tulus & Nababan, 2018) proposed Biased support 

vector machine and weighed-SMOTE in handling class imbalance problem. It is the 
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combination of Biased SVM and weighed-SMOTE techniques. (Gonzalez-Abril, Angulo, 

Nuñez & Leal, 2017) designed a preprocessing technique of modifying the bias of a standard 

SVM to improvise its performance on imbalanced dataset by fixing minimum value for 

recall, to maximize specificity on the training set and named the outcome as BSVM (Biased 

SVM). It is designed for scenarios where it is non-critical to increase true positive rate in 

trade-off with increase in false positive rate. BSVM achieved better performance in 

sensitivity and reduction in accuracy and hence (Prusty, Jayanthi & Velusamy, 2017) used 

weighed-SMOTE along to overcome the drawback.  

The working of weighed-SMOTE is as shown in the figure 2.3. The Euclidean 

distance of each minority sample is collected with respect to the other minority data samples 

and then they are normalized using min-max normalization which is carried out to fit in the 

distance values in the range of 0 and 1. Remodeled Normalized Euclidean distance(RNED) 

represents that lesser Euclidean distance more the share it gets to generate synthetic samples 

out of total synthetic samples needs to be generated and hence RNED matrix can be given 

as the difference between normalized ED value of each minority data and sum of all the 

normalized ED values. Furthermore, weight matrix is calculated by dividing each minority 

data share fraction from the total sum of the shares in the RNED matrix, based on which 

Smote generation matrix is obtained. 

 

Figure 2.3: Block diagram of weighed-SMOTE (Hartono, Sitompul, Tulus & Nababan, 2018 
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In Biased support vector machine and weighed-SMOTE method, BSVM will 

classify classes into minority and majority support vectors(SV) sets and non-support 

vector(NSV) sets. Noises are removed from both minority and majority SV sets.  NSV of 

Majority instances and SV of minority instances are processed using weighed-SMOTE 

approach. The NSV and SV of minority classes are combined to obtain new minority sample 

sets similarly the majority sample sets are obtained. The outcome of this experiment yielded 

satisfactory results in handling class imbalance with minority class in a high priority.    

2.8 Cluster-Based Oversampling Methods  

 

2.8.1 Cluster-SMOTE 

An addition to the existing methods are cluster-based methods where the dataset is 

reduced to clusters of similar class examples and those clustered instances are oversampled 

or under sampled. These approaches are focused on oversampling hard-to-learn instances 

(important information for the classifiers) which are usually available near decision 

boundary or belong to small concepts in the datasets which is referred as within-class 

imbalance. Cluster-SMOTE was proposed by (Cieslak, Chawla & Striegel, 2006), where k-

means clustering is applied on the set of minority instances in the dataset and then SMOTE 

is applied on each cluster to oversample generating synthetic examples, and these are 

updated into the original dataset. These are advantageous in deriving the class regions and 

their borders for small group of minority examples which is as shown in the figure 2.4.  

 

Figure 2.4: (a) features a sparse majority class, a minority class region, and many minority outliers. 

(b) Cluster-SMOTE detects two clusters of minority points and uses this information to generate 

new synthetic examples, as shown in (c) (Cieslak, Chawla & Striegel, 2006) 
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2.8.2 Adaptive semi-unsupervised weighted oversampling (A-SUWO) 

A-SUWO a cluster-based oversampling method is proposed by (Nekooeimehr & 

Lai-Yuen, 2018).  Minority instances are clustered using semi-supervised hierarchal 

clustering approach, the size of the sub cluster is determined based on the complexity of the 

sub-clusters in being mis-classified. It can be determined by a measurement parameter based 

on standardized average error rate which is obtained on cross validation. Synthetic examples 

are generated on assigning weights to the minority instances based on the average Euclidean 

distance to their NN-nearest majority neighbor. The advantage of this method is that it 

avoids generating overlapping synthetic data examples. 

2.9 Oversampling + Under sampling approach 

(Cateni, Colla & Vannucci, 2018) proposed a new sampling method named 

Similarity-based Under Sampling and Normal Distribution-based Oversampling (SUNDO) 

to balance the data without losing much of the significant data or adding up too much of 

unwanted synthetic patterns and it outperformed SMOTE approach. The method is the 

combination of both undersampling and oversampling techniques in achieving balanced 

data. Parameters k0 and k1, which represents minority and majority classes respectively are 

to be set along with the number of N samples should be removed. N is calculated as follows, 

                                              N = round (k1 * n0) – (k0 * n1)                                             

3.0 Ensemble-based learning 

Ensemble-based learning algorithms are playing predominant role in machine 

learning problems, especially while addressing class imbalance problem in many 

applications as it can improve the classification performance of any weak classifier. 

Ensemble learning is method of inclusion and combination of several classifiers to obtain 

new, better performing classifier. Ensemble based learning is the combination of ensemble 

based leaning and any of the imbalance learning approaches.  

(Hao, Wang & Bryant, 2014) conducted an experiment with SMOTE coupled with 

GLMBoost to perform the classification of imbalanced datasets from PubChem BioAssay. 

The proposed experiment outperformed SMOTE in terms of performance metrices 
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Sensitivity and G-mean. Similarly, an empirical analysis to alleviate the class imbalance 

problem in heartbeat classification was carried out by (Rajesh & Dhuli, 2018), using data 

level sampling methods namely ROU, SMOTE+ RU and DBB and AdaBoost classifier and 

obtained significant performance measures. Henceforth, it can be concluded that, the 

application of data-level imbalance learning approach yielded better results with 

imbalanced dataset when combined with the learning algorithms irrespective of its 

complexity. 

3.1 Summary of the Literature Review 

The key focus of any sampling technique is to create a balance in the class 

distribution. Since, the dataset is small and highly imbalanced, the research is focused on 

the application of data-level imbalanced learning algorithms alone. Oversampling methods 

are advantageous over Under sampling as there will be no potential loss of information. 

Amongst the oversampling approaches, synthetic data generation is largely used, and its 

different approaches are reviewed in this section. 

The advantage of SMOTE is, it broadens the decision region being less specific and 

generates artificial data points unlike Random Oversampling method, replicating the 

minority samples. Borderline-SMOTE majorly focus on those minority samples available 

near the borderline for oversampling. Since there is a suspicion of unsafe regions which 

would contain noisy data near the borderline, to ignore and oversample safe instances alone, 

Safe-level SMOTE was proposed. ADASYN is designed to detect and adaptively 

oversample those instances which are hard to learn by classifiers whereas SIMO using SVM 

oversamples informative data instance alone considering G-mean as the deciding 

performance metric which will be usually misclassified by the standard classifiers. Biased 

SVM with SMOTE is also designed for the same with an added tuning to the classifier 

SVM. Cluster oversampling focus on oversampling hard to learn instances which are found 

within-class imbalance whereas ensemble-based learners treats imbalance data by using 

ensemble learners along sampling approaches.  

Although the methods are advantageous and yielded good performances there exist 

a shortcoming as well. Random oversampling might oversample noise minority data points 
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and is prone to problem of overfitting. The synthetic examples might be generated in 

overlapping and noise regions by Borderline-SMOTE. Problem of over generalization of 

synthetic data points that might lead to overlapping between classes can persist on the 

application of SMOTE.  There can be an interpolation of a new sample between noisy data 

and one of its nearest neighbors in modified-SMOTE and ADASYN approaches. The 

generated minority instances in ADASYN will be slightly higher than majority instances 

which is in contrary with SIMO approach. This can have an influence on learner, training 

with high or insufficient samples. Also, the behavior of SVM on imbalanced dataset, role 

of SVM in improving the performance of imbalanced learning algorithms was discussed in 

this section. 

In a nutshell, the extension and the adaption of SMOTE has produced improved 

results in terms of the model’s performance in treating minority class examples.  

3.2 Gap in the research 

Non-representative small dataset can hinder the performance of the classifiers as 

training size must be quite large and large test sample is essential to accurately evaluate 

classifier with low error rate. According to (Raudys & Jain, 1991), small sample size and 

small disjuncts are closely related topics. The lack of data, small disjuncts and noisy data 

are claimed to be interrelated challenges faced by researchers in imbalanced classification 

(Fernandez, Garcia, Herrera & Chawla, 2018).  

 ‘Synthetic informative minority over-sampling (SIMO) algorithm leveraging 

support vector machine’ technique is implemented in this experiment. The advantages of 

this method over other methods are low computational training cost as the amount of 

synthetic data generated will be less, avoidance of overfitting, focus on informative minority 

instances alone and the use of efficient learner SVM (Piri, Delen & Liu, 2018). However, 

the algorithm’s performance is mainly dependent on distribution complexity and size of the 

datasets. Originally, SIMO has dealt with datasets of records ranging from 300 to 1500, 

yielding better performances when compared to other approaches. But the experiment is 

still not implemented on big data and very small dataset. 
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The values which should be considered for the parameters delta and p is specified in 

the paper with respect to the severity of class imbalance present in the data. It is advised to 

consider the values between 30 to 40 percent for delta and between 25 to 50 percent for p 

in high class imbalance scenarios. But these values being same for different size of the data 

is still in question. Performance of the classifiers can be influenced by size of the data as 

well and hence it is necessary to study, if performance of the classifiers on the 

implementation of this approach varies when applied on small datasets. 

To study of the above-mentioned gaps following research question is proposed, 

“Can performance of the classifiers on small datasets, significantly improve on the 

application of ‘SIMO leveraging SVM’ over the application of baseline imbalanced 

learning algorithms?” 

**SIMO: Synthetic Informative Minority Over-Sampling 

**SVM: Support Vector Machine 

**Baseline imbalanced learning algorithms: SMOTE, SMOTE-Borderline1, 

SMOTE-        Borderline2 and ADASYN. 

**Performance metrices: Accuracy, G-mean and AUC 
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CHAPTER 3 

EXPERIMENT DESIGN AND METHODOLOGY 

 

This chapter will give an account of the plan and methodology used to answer the 

research question by implementing the process involved in CRISP-DM reference model, an 

overview of data mining project lifecycle. The research starts from business understanding 

followed by data understanding, data preparation, modeling and evaluation covering five 

phases of the reference model (figure 3.1). Scikit-learn machine learning package available 

in python programming language is used to obtain results in support of the decision to reject 

or retain the hypothesis. 

The objective of this research is to evaluate the performance of ‘Synthetic 

Informative Minority Over-Sampling leveraging SVM’ on the datasets of records less than 

150 with imbalance ratio ranging from 20 percent to 40 percent, over other imbalanced 

learning algorithms; SMOTE, SMOTE-Borderline and ADASYN. The balanced dataset is 

trained using base classifiers SVM-Linear and Logistic regression and its performance 

metrices are obtained for comparison. The methodology and design used to achieve the 

above, is explained in each section of this chapter with respect to the CRISP-DM framework 

in detail. 

 

 

                Figure 3.1: CRISP-DM framework 
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3.1 Business Understanding 

 The research is mainly focused on the performance of Synthetic informative minority over-

sampling (SIMO) algorithm leveraging support vector machine on very small imbalanced dataset of 

records less than 150, since the original paper has dealt with datasets of records more than 300. This 

novel algorithm have had performed comparatively better than others in the original paper, 

thus the aim of this paper is to measure its performance on very small datasets. Imbalanced 

learning algorithms like SMOTE, SMOTE- Borderline and ADASYN are chosen as 

baseline to compare and evaluate the hypothesis. The hypothesis to address the research 

question is as follows, 

H0: “The G-mean and AUC of the models built on the oversampled datasets using 

imbalanced learning algorithm SIMO is equal to the G-mean and AUC obtained from the 

models on application of baseline algorithms SMOTE, SMOTE-Borderline and ADASYN, 

with p-value < 0.05.” 

** SIMO: Synthetic Informative Minority Over-Sampling 

** SMOTE - Synthetic Minority Over-Sampling Technique 

** ADASYN - Adaptive Synthetic Sampling Approach 

** AUC – Area Under Curve 

 

3.2 Data Understanding 

Datasets 

Four datasets are used in this research paper out of which three are taken from UCI 

repository and one is collected in a time span of 5 years (2004 - 2009) from an European 

hospital. These are highly imbalanced data with records less than 150 and is chosen to 

validate performance improvement of the models when built on oversampled dataset by 

using a novel imbalanced learning algorithm, Synthetic informative minority over-sampling 

(SIMO) leveraging support vector machine over the models built by algorithms like 

SMOTE, SMOTE-Borderline and ADASYN which are readily available imbalanced 

learning packages in python. A brief description on the datasets is provided in the table 

below. 
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Dataset No. of 

records 

No. of 

features 

Imbalanced 

Ratio 

Minority 

class 

Majority 

class 

Biomarker 93 51 60:40 ‘Yes’ ‘NO’ 

Hepatitis 154 20 80:20 ‘DIE’ ‘LIVE’ 

Echocardiogram 131 13 70:30 ‘ALIVE’ ‘DEAD’ 

Immunotherapy 90 8 80:20 ‘NO’ ‘YES’ 

Table 3.1: Dataset description 

 

Dataset description:  

1. Biomarker: This dataset contains 93 records with 51 features with a class imbalance 

ratio of 60:40. The Target variable is ‘Death’ which represents the mortality risk in 

elderly patients as ‘yes’ or ‘no’ in presence of specific biomarkers which are the 

independent variables or predictors. The variable description is as shown in table 3.2 

below. 
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 Table 3.2: Biomarker dataset, C – Categorical variables, N – Numerical variables 
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2. Hepatitis: The dataset contains 154 records with 20 features with a class imbalance 

ratio of 8:2. The Target variable is ‘Class’ which represents whether a patient with 

hepatitis is dead or alive. The variable description is as shown in table 3.3. 

Attribute information:  

 

VARIABLES TYPE DESCRIPTION 

Class C DIE, LIVE 

AGE N 10, 20, 30, 40, 50, 60, 70, 80 

SEX C male, female 

STEROID C no, yes 

ANTIVIRALS C no, yes 

FATIGUE C no, yes 

MALAISE C no, yes 

ANOREXIA C no, yes 

LIVER BIG C no, yes 

LIVER FIRM C no, yes 

SPLEEN PALPABLE C no, yes 

SPIDERS C no, yes 

ASCITES C no, yes 

VARICES C no, yes 

BILIRUBIN N 0.39, 0.80, 1.20, 2.00, 3.00, 4.00 

ALK PHOSPHATE N 33, 80, 120, 160, 200, 250 

SGOT N 13, 100, 200, 300, 400, 500 

ALBUMIN N 2.1, 3.0, 3.8, 4.5, 5.0, 6.0 

PROTIME N 10, 20, 30, 40, 50, 60, 70, 80, 90 

HISTOLOGY C no, yes 

Table 3.3: Hepatitis dataset, C – Categorical variables, N – Numerical variables   
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3. Echocardiogram: This dataset contains 131 records with 13 attributes with a class 

imbalance ratio of 7:3. The target variable represents if the patient suffering from 

heart attack is dead (0) or is still alive (1). The description of independent variables 

is given in table 3.4. 

 

VARIABLES TYPE DESCRIPTION 

Survival N the number of months, patient survived if they are dead and has 

survived, if patient is still alive. 

still-alive C 0=dead,1=still alive 

 

Age N age in years when heart attack occurred 

pericardial-

effusion 

 

N Pericardial effusion is fluid around the heart.  0=no fluid, 1=fluid 

 

fractional-

shortening 

 

N a measure of contracility around the heart lower numbers are 

increasingly abnormal 

epss 

 

N E-point septal separation, another measure of contractility. Larger 

numbers are increasingly abnormal 

lvdd 

 

N left ventricular end-diastolic dimension.  This is a measure of the 

size of the heart at end-diastole. Large hearts tend to be sick hearts. 

 

wall-motion-score 

 

N a measure of how the segments of the left ventricle are moving 

wall-motion-index 

 

N equals wall-motion-score divided by number of segments seen.  

Usually 12-13 segments are seen in an echocardiogram.  Use this 

variable INSTEAD of the wall motion score. 

alive-at-1 

 

C Boolean-valued. Derived from the first two attributes. 0 means 

patient was either dead after 1 year or had been followed for less 

than 1 year. 1 means patient was alive at 1 year. 

Table 3.4: Echocardiogram dataset, C – Categorical variables, N – Numerical variables 
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4. Immunotherapy: It is a dataset of 90 records and 8 attributes with class imbalance 

ratio of 8:2. The target variable represents the response status of the patients on 

Immunotherapy treatment (wart treatment). This helps medical professionals in 

proceeding with the treatment if there is a positive response to the treatment from 

patient which is denoted as ‘Yes’ or to stop the treatment if the response is negative, 

represented as ‘No’. It saves time and money of both patients and the hospital.  

 

VARIABLES TYPE DESCRIPTION 

Sex C “Man” = 1, “Women” = 2  

Age N Age in years 

Time N Time elapsed before treatment (month) 

Number_of_Warts N 1 to 19 

Type C Common, Plantar, Both 

Area N Surface area of the warts (mm2) (6 – 900) 

induration_diameter N 5 - 70 

Result_of_Treatment C Yes, No 

Table 3.5: Immunotherapy, C – Categorical variables, N – Numerical variables 

 

An overview on the dataset can be derived from the following, 

1. Descriptive statistics: This is carried out to obtain the details on central tendency 

(mean), median, mode, Inter-Quartile range, range, standard deviation and the 

skewness of the variables. 

2. Missing value analysis:  gives an account of missing value count and its percentage 

in the dataset with respect to each variable. 

3. Exploratory data analysis: includes histograms to understand the distribution of 

numeric variables and to find out if there is any presence of outliers, frequency plots 

to analyze the relationship between categorical and numerical variables and 

correlation matrix to understand the relationship between numerical variables. 
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Based on the insights obtained from the above analysis, data preparation is carried out 

which is explained in the next phase in detail. The above analysis and visualization is carried 

out using available functions and packages in the python scikit-learn machine learning 

library. 

 

 

 

 

  

 

 

 

                                     

                                 

 

 

 

 

 

 

 

 

Figure 3.2: Design 
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3.3 Data Pre-Processing 

 

In this phase, based on the understandings obtained from previous section, 

necessary data preparation methods are carried out which involves the following. 

3.3.1 Data Imputation 

Missing value analysis gives an overview on the missing value counts and its 

percentage with respect to each variable in the dataset. Data imputation is carried out on 

those whose values are missing. While imputation of numerical attributes, the histograms 

are also analyzed to detect if the data is prone to outliers as mean imputation will introduce 

a bias and is not advisable. On such cases median imputation will be carried out for 

continuous variables whereas mode imputation will be carried out for categorical variables. 

3.3.2 Standardization: Z-Score 

Numerical variables will have different impact on the predictive model in 

accordance with their ranges. Higher the range, higher the influence in prediction as 

predicters. Thus, the data should be scaled to fall under common range using Z-score 

standardization to improve the predictive accuracy. Standardization refers to shifting the 

distribution of each attribute to have a mean of zero and a standard deviation of one. It can 

be calculated as given below, 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑋−𝑋′

𝜎
                                                                                                                                                       

Where, X = sample 

X’ = mean of the sample 

σ = standard deviation of the sample 

 

The standard normal distribution of a dataset is as shown in the figure below (figure 

3.3), which looks like a bell and thus called ‘Bell Curve’. It has a symmetry about the center 

which is referred as ‘mean’ whereas standard deviation is the measure of quantifying the 

amount of dispersion of the data. Low standard deviation values usually will be closed to 

the mean whereas high standard deviation values denote how spread out the values are. 
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Figure 3.3: Bell Curve 

 

3.3.3 One-Hot Encoding: Treating Categorical Variables 

Datasets containing categorical variables should be treated before training models 

like Regression and Support vector machine. Otherwise, these variables will not make a 

meaningful contribution when trained with any learner based on standard distance metrics 

such as k-nearest neighbors as they get confused with the state of predictors. This can be 

eliminated by creating dummy variables, the process which is called one-hot encoding. This 

is carried out in the experiment by using function readily available in python’s Pandas 

library named get_dummies(). 

 

3.3.4 Data Partition 

Once the imputation of missing values, standardization of numerical variables and 

one-hot encoding of categorical variables are carried out, the data is partitioned into training 

and test dataset. Training data is used to train the model and the prediction is made on the 

test data. This avoids the problem of peeking in turn avoids overfitting. In this, experiment 

we have split the dataset into 75 percent of training data and 25 percent of test data with 

stratification of class variable to maintain the same imbalance ratio in test and train. 
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3.3.5 Imbalanced Learning Algorithms – Balanced Dataset 

Since the chosen datasets are facing class imbalance problem; on modelling, the 

accuracy obtained will be inaccurate because of the bias introduced while training the model 

and the cost of misclassifying minority classes will be high. Thus, to overcome such 

problem the dataset should be balanced either by oversampling minority class or under 

sampling majority class in the dataset. In this experiment, oversampling is carried out using 

a novel technique named SIMO and its performance is compared with baseline imbalanced 

learning algorithms SMOTE, Borderline-SMOTE and ADASYN readily available in 

python scikit-learn library. 

3.4 Modelling 

Logistic regression and SVM are the base classifiers used to obtain predictive models 

in the experiment as the target variable is dichotomous (binary) in nature. These are 

commonly used classifiers in classification problems regardless of the records the dataset 

contains. Since the objective is to compare the performance of imbalanced learning 

algorithms used in balancing the dataset, these two basic supervised learning algorithms are 

chosen. Logistic regression tries to optimize loss function of training data by minimizing 

the least-square error and Support vector machine by regularized hinge loss.  

Logistic regression is a statistical model used when the target variable is binary (0,1) 

and explains probability of an event, which is the linear combination of dependent and 

independent variables (figure 3.4). It is the task of estimating log odds of an event and is 

usually prone to overfitting on addition of more variables into the model. The logistic 

function is of the form, 

hθ(x) = 
1

1 + 𝑒−𝑧
 

where, z is logit                                                                                                                                
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Figure 3.4: Logistic regression 

 

Support Vector machine (SVM) is a statistical learning theory developed by the 

Russian scientist Vladimir Naumovich Vapnik and colleagues in 1962. It is generally used 

to tackle regression and classification problems. Support vector machines are computational 

algorithms that creates an optimal hyperplane or a set of hyperplanes in a high or infinite 

dimensional space that separates positive and negative instances with a maximum margin 

(figure 3.6). They are advantageous over other classifiers in terms of accuracy, robustness 

and efficacy in working on small data sets. Also, it shows greater ability in generalization 

and aims at minimizing mis-classification errors by maximizing the margin between 

separating hyperplane and the datasets. Its application ranges from image retrieval, 

handwriting recognition to text classification. 

 

Linear SVM decision boundary is as shown in the figure 3.5. Classes in the dataset 

is represented as dots and stars. The data points which lie on the margins at either side of 

the decision boundary which are marked within circles are called support vectors. w is found 

normal to the decision boundary and b/|w| is the perpendicular distance of the decision 

boundary from the origin. The distance of a point represented as star which is misclassified 

as dot (as shown in the figure 3.5) from the decision boundary can be written as −ε/|w|. The 

decision boundary of the SVM can be formulated as wTx + b = 0. 

 

 



 

37 
 

 

Figure 3.5: w is a weight vector, x is input vector and b is the bias. 

 

 

Figure 3.6: Linear Classification: H1, H2, H3 - Separation hyperplanes. H1 does not separate the 

two classes; H2 separates but with a very tinny margin between the classes and H3 separates the 

two classes with much better margin than H2 

 

 

3.5 Evaluation 

 



 

38 
 

Performance evaluation of the model is conducted using the evaluation parameters; 

Accuracy, Precision, Recall and F- score. Accuracy given an account of correctly predicted 

observations amongst total observations. Precision defines how many of the positively 

classified instances are relevant. Sensitivity/recall explains how good a model is at 

detecting the positives. F-score is the harmonic mean of precision and recall. It is a measure 

of test accuracy. These parameters can be calculated using Confusion matrix. 

 

 

Confusion matrix:  

 

 

To plot ROC: 

                                                            𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
    ,   𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                 

(9) 

 

Metrices:                                     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                              

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
         

 

                                                     𝐹 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
             

Where , 

• True positive (TP):  actual and predicted target values, both are true. 

• True negative (TN): actual and predicted target values, both are false. 



 

39 
 

• False negative (FN): actual value is true but predicted target value is false. 

• False positive (FP): actual value is false but is predicted as true. 

• TPR: True Positive rate, FPR: False Positive rate. 

 

While evaluating the performance of the learner in imbalanced datasets, along with the 

generally used metric ‘Accuracy’, ‘G-mean’ should be measured as well. G-mean is the 

geometric mean of positive and negative accuracy which is TPR and TNR respectively. 

While training imbalanced dataset, as majority class examples outnumbers minority 

examples learner will tend to misclassify minority class examples as majority class 

examples. In such cases, the prediction accuracy will be higher which is quite misleading. 

Thus, along with Accuracy it is safe to consider G-mean whose values will be low if the 

model’s performance is poor on either positive or negative examples. 

                                            

𝐺 − 𝑚𝑒𝑎𝑛 =  √(𝑇𝑃𝑅 ∗ 𝑇𝑁𝑅) 

 

Performance evaluation can also be carried out using Receiving Operator Characteristic 

chart. It is the plot of true positive rate (TPR) against the false positive rate (FPR) at various 

threshold settings which in turn is used to discard suboptimal models and select the optimal 

models which reduces the cost. Good model is expected to have higher TPR value and less 

FPR. ROC chart is as shown in the figure 3.7, where diagonal divides ROC space and points 

above diagonal signifies good classification results and its contradict by those which lie 

below the diagonal. It is a visual representation of trade-off between benefits and costs. 
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Figure 3.7: ROC chart 

 

The G-mean and accuracy values obtained for logistic regression and SVM models 

on application of imbalanced learning algorithms SMOTE, SMOTE-borderline, ADASYN 

and SIMO is tabulated. The statistical significance of each experiment in support of 

rejecting or retaining the hypothesis is found using non-parametric statistical test ̀ Wilcoxon 

Signed-Rank Test' with p value set to 0.05. It is used to compare the repeated measurements 

on single sample to asses if there is any difference. If the results obtained are statistically 

significant (p < .05) then null hypothesis will be rejected concluding that there is a 

performance difference on the application of SIMO over the application of other baseline 

imbalanced learning algorithms like SMOTE, SMOTE- Borderline and ADASYN on the 

datasets. 

 

3.6 Strengths and Limitation 

 

The section summarizes the strength and limitations of the design and methods used 

in the experiment. The design is proposed to evaluate the performance of novel imbalanced 

learning approach SIMO on small datasets of record less than 150 as approach is tested on 

dataset with the records in the range 300 to 1500. Since the chosen dataset is very small and 

faces class imbalance problem, classifier might not perform better as there is an inadequate 

information available for learning. As datasets chosen are underrepresented, obtaining 



 

41 
 

better predictive model for the same is quite challenging. Usually, data gathered from the 

domains like biomedical and clinical trial results often face the problem of having small 

sample size and class imbalance which is the motive of this experiment. 

Dataset is partitioned into 75 percent of train set and 25 percent of test set. Stratified 

sampling is carried out as we are dealing with class imbalance problem. Usually while 

dealing with small datasets other data partition approaches like leave-one-out cross 

validation, k-fold cross validations are highly advisable, but here the data samples are quite 

small and training data is again split into 80 percent train and 20 percent validation set in 

method SIMO. This can pose scarcity of data and the classifier might not get sufficient data 

to learn and end up overfitting the model or performing worst. The entire design approach 

is executed five times in tradeoff with the cross-validation approaches to evaluate the 

reliability of the models. 

 Another limitation of this design is all the variables present in the datasets are chosen 

as predictors. No feature selection is carried out on the dataset to consider relevant and 

related predictors in the prediction of target. The reason is again the size of the data and the 

number of attributes it is dependent on. Losing potentially informative data isn’t in the 

interest of this experiment and the chosen datasets have limited attributes and thus feature 

selection isn’t termed mandatory. 

Amongst the imbalance learning approaches discussed in literature earlier, SIMO is 

chosen because of the less computational training cost it will incur and avoidance of 

overfitting and overgeneralization which are the drawbacks of other approaches. Its major 

focus is on informative data instances and leveraging SVM in the approach is advantageous 

in obtaining those instances for oversampling. Also, the parameters included in the approach 

namely ‘delta’ and ‘p’ make it flexible to oversample the data to desired amount and to 

carefully select the percentage of informative class instances closer to the SVM decision 

boundary to oversample. Also, only those samples on which SVM had a better performance 

(evaluated by performance metric G-mean in each iteration till the imbalanced gap is met) 

is chosen.  
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GridSearchCV is used to choose the hyperparameters for Logistic regression and 

SVM to optimize their performance. However, use of SVM is limited to linear kernel alone 

and other kernels are not used in this experiment. Initially the idea is to keep the approach 

simple and study the behavior of base classifiers on the application of SIMO. This can also 

be a hindrance in studying the advantage of SIMO thoroughly. Performance metrices G-

mean and ROC- AUC plot is obtained in addition with accuracy since there exist class 

imbalance problem. As design is executed five times, average of these metrices values are 

computed and used for comparison. Also, to support this, a non-parametric statistical test 

`Wilcoxon Signed-Rank Test' with p value set to 0.05 is carried out to find out if there is 

any difference in model’s performance on the application of chosen imbalance learning 

algorithms. 
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CHAPTER 4 

IMPLEMENTATION, RESULTS AND DISCUSSIONS 

The research is carried out to evaluate the performance of novel imbalanced learning 

algorithm, Synthetic informative minority over-sampling (SIMO) leveraging support vector 

machine on very small datasets of records less than 150. The proposed design is repeated 

for five times and the average values of performance metrices are obtained to evaluate the 

reliability of the models when trained on different train-test sets. The performance 

comparison is carried out with other baseline imbalanced learning algorithms like SMOTE, 

SMOTE- Borderline and ADASYN. The results obtained on implementing the design 

explained in previous section as shown in (Figure 3.2) is covered in this chapter. 

4.1 Data Understanding 

The section includes Descriptive statistics and Missing value analysis report of 

each dataset used in the experiment. Also, the visual representation of each variable is 

provided for data distribution analysis, outlier detection and correlation analysis. 

4.1.1 Biomarker 

 

The descriptive statistics results for data ‘biomarker’ is as shown in the tables 4.1, 

4.2, 4.3 &4.4. From table. 4.5, it can be observed that, variables are having a very less 

percent of missing values which can be imputed. Median Imputation is carried out on 

numerical variables to avoid the impact of outliers on the same whereas Mode imputation 

on categorical variables. Once the imputation is carried out, the distribution plots of each 

numerical variables are obtained to investigate if they are normally distributed or not. From 

figure. 4.1, it can be concluded that variables Age, chol, skinf, w_h, NEU, LY, HB, HTC, 

Clear, FT3 and FT4 are normally distributed with higher skewness with traces of outliers. 

To check if non-normally distributed variables can be fit into normal distribution on 

transforming, Standardization is carried out. No much improvement is found, and hence 

Non-parametric tests are carried out in future to derive correlation and other statistical 

results. 



 

44 
 

Table 4.1: Descriptive statistics of variables 

 

  EBV HPA LE MO NEU Ly CRP E HB HTC MCV 

count 93 93 93 93 93 93 93 93 93 93 93 

mean 135.58 32.6 6.62 8.09 51.95 35.45 5.34 4.32 134.70 0.39 91.03 

std 50.23 51.4 1.51 2.25 9.83 8.99 3.45 0.41 12.45 0.032 5.02 

min 15.8 2.3 4.06 3.6 28 18.4 0.8 2.63 91 0.28 66.5 

25% 121.2 6.2 5.61 6.5 45.4 27.8 3.8 4.08 127 0.37 88.6 

50% 170 9.8 6.81 8 50.9 35.5 4.4 4.36 136 0.4 90.9 

75% 170 29.5 7.65 9.3 59 42.2 5 4.57 141 0.41 93.7 

max 170 200 9.93 15.7 73.3 57.7 24.5 5.37 167 0.47 106.1 

Table 4.2: Descriptive statistics of variables 

 

  FE ALB Clear HOMCIS RF VITB12 FOLNA INS CORTIS PRL 

count 93 93 93 93 93 93 93 93 93 93 

mean 14.68 46.1 1.69 12.35 27.8 284.33 20.71 23.21 374.59 124.57 

std 5.14 3.13 0.45 3.80 82.86 158.78 8.52 17.08 122.38 120.38 

min 5 33.1 0.72 5 9 97.8 6.5 5.9 180.3 14.57 

25% 10.9 44.4 1.41 9.6 9 197 15.1 14.9 278.9 56.84 

50% 14 46.5 1.63 11.8 9 247 19.5 18.9 362.6 105.83 

75% 18 48.2 2.01 14.5 9 306 25 26.6 433 137.85 

max 40 53 3.21 25.9 677 885.6 43.9 149.7 812.1 838.18 

Table 4.3: Descriptive statistics of variables 

 

  TSH FT3 FT4 GAMA ANA IGE 

count 93 93 93 93 93 93 

mean 2.03 5.46 14 12.47 29.08 135.91 

std 2.59 0.53 2.21 2.29 34.98 245.58 

min 0.024 4.35 8.92 7.9 7 2 

25% 0.96 5.17 12.3 10.9 14 16.3 

50% 1.47 5.42 13.8 12.3 18.9 57 

75% 2.19 5.72 15.9 13.7 32 143 

max 22.7 7.96 18.9 21.3 300 1782 

Table 4.4: Descriptive statistics of variables 

 

  ID age Fglu HbA1c Chol HDL BMI wh skinf MMS CMV 

count 93 93 93 93 93 93 93 93 93 93 93 

mean 47 67.7 6.52 5 6.18 1.44 29.04 0.951 33.36 25.12 6.22 

std 26.99 7.96 2.1 4.72 1.38 0.37 4.2 0.066 7.377 3.48 3.6 

min 1 47 4.6 2.89 3 0.87 20.24 0.76 16 14 0.06 

25% 24 63 5.3 3.82 5.2 1.14 26.33 0.91 28 23 3.4 

50% 47 68 5.7 4.14 6.2 1.4 29.38 0.95 33 25 5.7 

75% 70 73 6.7 4.55 7.1 1.7 31.65 1.01 39 28 8.1 

max 93 89 13.9 48.3 8.9 2.53 43.1 1.11 50 30 17.8 
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Numerical Missing Percent 

OSP 18 0.193548 

anticoag 1 0.010753 

Death 0 0 

Psy 0 0 

neo 0 0 

derm 0 0 

analg 0 0 

draller 0 0 

allerd 0 0 

COPB 0 0 

CVD 0 0 

statins 0 0 

DM 0 0 

hypert 0 0 

Sex 0 0 

 Categorical Missing Percent 

TSH 1 0.010753 Ly 0 0 

Clear 1 0.010753 E 0 0 

CRP 1 0.010753 ANA 0 0 

IGE 0 0 FOLNA 0 0 

MMS 0 0 GAMA 0 0 

NEU 0 0 FT4 0 0 

MO 0 0 FT3 0 0 

LE 0 0 PRL 0 0 

HPA 0 0 CORTIS 0 0 

EBV 0 0 INS 0 0 

CMV 0 0 VITB12 0 0 

skinf 0 0 HB 0 0 

wh 0 0 RF 0 0 

BMI 0 0 HOMCIS 0 0 

HDL 0 0 ALB 0 0 

Chol 0 0 FE 0 0 

HbA1c 0 0 MCV 0 0 

Fglu 0 0 HTC 0 0 

age 0 0 ID 0 0 

 Table 4.5: Missing value Analysis report   

 

Spearman Correlation statistical test is carried out to analyze the relationship 

between variables and the target. A medium negative correlation exists between variables 

‘skinf’ and ‘age’, ‘skinf’ and ‘MO’, ‘age’ and ‘clear’, ‘HOMCIS’ and ‘VITB12’, 

‘HOMCIS’ and ‘FOLNA’. A strong negative correlation exists between ‘Clear’ and 

‘HOMCIS’, ‘E’ and ‘MCV’, ‘NEU’ and ‘LY’. Target variable share weak correlation with 

the independent variables. (Correlation matrix results are provided in the appendix) 
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Figure 4.1: Histogram plots obtained before Normalization – Normality check 

 

From fig. 4.3, it is found that, the categories of the Target variable ‘Death’ 

represented as ‘TARGET’ in the graph has a class imbalance where number of examples of 

class 0 exceeds the other. If there is a trace of biomarker ‘aller_d’ in an elderly patient, 

mortality risk is null which is not so representative of the behavior of the variable. Also, the 

relationship between target and variables follows class imbalance and hence biased 

information is observed.  
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Figure 4.2: Histograms obtained after Normalization -  Normality check 

 

Figure 4.3: Frequency plot - Relation between Categorical and target variable 
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4.1.2 Hepatitis dataset 

 

Descriptive Statistics is obtained as shown in the table 4.6. The count is same as the 

records in the dataset because the missing values are denoted by ‘?’, as stated in data 

description retrieved from UCI repository which serves as the source of this dataset. Thus, 

empty class or any with ‘?’ and ‘NA’ are replaced with value ‘nan’. On missing value 

analysis (table 4.7), it is observed that variable PROTIME have more count of missing 

values followed by ALK_PHOSPHATE, ALBUMIN, LIVER_FIRM and LIVER_BIG 

which should be treated with necessary imputation methods. Median Imputation is carried 

out on numerical variables to avoid the impact of outliers whereas Mode imputation on 

categorical variables. 

  Class AGE SEX ANTIVIRALS HISTOLOGY 

count 154 154 154 154 154 

mean 1.79 41.27 1.097 1.84 1.45 

std 0.40 12.57 0.29 0.36 0.49 

min 1 7 1 1 1 

25% 2 32 1 2 1 

50% 2 39 1 2 1 

75% 2 50 1 2 2 

max 2 78 2 2 2 

Table 4.6: Descriptive Statistics 

 

. 

 

 

 

 

 

 

 

Table 4.7: Missing value analysis report 

 Missing Percent 

PROTIME 66 0.42 

ALK_PHOSPHATE 29 0.18 

ALBUMIN 16 0.10 

LIVER_FIRM 11 0.07 

LIVER_BIG 10 0.064 

BILIRUBIN 6 0.038 

SPLEEN_PALPABLE 5 0.032 

SPIDERS 5 0.032 

ASCITES 5 0.032 

VARICES 5 0.032 

SGOT 4 0.025 

ANOREXIA 1 0.0064 

MALAISE 1 0.0064 

FATIGUE 1 0.0064 

STEROID 1 0.0064 

SEX 0 0 

AGE 0 0 

HISTOLOGY 0 0 

ANTIVIRALS 0 0 

Class 0 0 
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Histogram of each continuous variable is obtained to analyze the distribution of the 

data (fig. 4.4). It is found that variable AGE and PROTIME are normally distributed, 

however kurtosis value of the variable PROTIME is high. The remaining continuous 

variables have skewness and should be normalized. On transforming numerical variables 

into its standardized form, following plot is obtained(figure) and no much improvement is 

found. As the variables follow non-normal distribution of data, non-parametric statistical 

tests are conducted in finding the correlation between independent variables, target and 

itself. From figure it is observed that there exists a class imbalance as the count of category 

‘2’ in target variable ‘Class’ outnumbers the other. The representation of categorical 

variables follows the same distribution fashion as variable ‘Class’ which isn’t much 

informative thus there exists a need of oversampling the training data. 

 

Figure 4.4:  Histogram plots obtained before Normalization – Normality check 

 



 

50 
 

 

Figure 4.5: Histogram plots obtained after Normalization – Normality check 

 

 

Figure 4.6: Frequency plot - Relation between Categorical and target variable 
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Spearman correlation, a non-parametric statistical test is carried out to find out if 

there is any correlation between the independent variables and the target which is 

represented through a heat map as shown in figure. Following observations are obtained, 

1. A moderate positive correlation between the target ‘Class’ and independent variable 

‘ALBUMIN’. 

2. A negative moderate correlation between the target and ‘BILIRUBIN’. 

3. A moderate correlation between independent variables ‘ALBUMIN’ and 

‘PROTIME’ similarly between ‘BILIRUBIN’ with ‘SGOT’.  

4. Variable ‘ALBUMIN’ have a moderate negative correlation with ‘BILIRUBIN’ and 

‘ALK_PHOSPATE’. 

5. Negative moderate correlation between ‘BILIRUBIN’ and ‘PROTIME’. 

 

 

Figure 4.7: Correlation matrix represented in a heat map. 

4.1.3 Echocardiogram 

 From the Descriptive statistics, central tendency, range, standard deviation is 

obtained for numerical variables as shown in the table 4.8. On finding the unique values 
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present in each variable unexpected value ‘2’ and ‘77’ were obtained for categorical 

variables. Hence, those values along  

with empty cells and cells with value ‘NA’ (if any) were replaced with the value ‘nan’.  

 

Table 4.8:  Descriptive statistics 

 

 

Also, categorical variable, ‘group’ with missing value percent of 23 percent should 

be treated with necessary imputation. However, the data description obtained from UCI 

repository states that, variable ‘group’, ‘mult’ and ‘name’ can be ignored and ‘aliveat1’ is 

related to the variable ‘alive’ and hence these are dropped form the dataset. Median 

Imputation is carried out on numerical variables to avoid the impact of outliers on the same 

whereas Mode imputation on categorical variables. 

 

survival age fractionalshortenin epss lvdd w_score w_index 

count 133 133 133 133 133 133 133 

mean 22.55 62.65 0.21 12.02 4.75 14.51 1.35 

std 15.478 8.024 0.103 6.91 0.77 4.80 0.43 

min 0.03 35 0.01 0 2.32 5 1 

25% 10 58 0.15 7.6 4.29 11.67 1 

50% 24 62 0.205 11 4.65 14 1.2 

75% 33 67 0.26 14.8 5.25 16 1.5 

max 57 86 0.61 40 6.78 39 3 
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Table 4.9: Missing Value Analysis Report 

 

Histogram plots are obtained for numerical variables and is observed that, variable 

‘age’ and ‘lvdd’ follows normality with higher kurtosis. Rest of the variables are not 

distributed normally and are positively skewed problem of higher kurtosis (figure 4.8). 

Transformation is carried out using ‘Standardization’ method on these numerical variables 

and this attempt failed to fit data into normal distribution (figure 4.9). Thus, Non-parametric 

statistical tests are carried out to obtain correlation matrix. 

 

Figure 4.8: Histogram plots obtained before Normalization – Normality check 

 

 Missing Percent 

aliveat1 59 0.443609 

group 23 0.172932 

epss 16 0.120301 

lvdd 12 0.090226 

fractionalshortening 9 0.067669 

age 8 0.06015 

mult 6 0.045113 

w_index 6 0.045113 

w_score 6 0.045113 

survival 5 0.037594 

name 2 0.015038 

pericardialeffusion 2 0.015038 

alive 2 0.015038 
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Figure 4.9:  Histogram plots obtained after Normalization – Normality check 

 

From figure 4.10, it is observed that there exists a class imbalance in the target 

variable ‘alive’. Because of which there is no clera representation of the influence of 

variable ‘pericardialeffusion’ on target variable. If the fluid is presentaround the heart, then 

there is a 50-50 chances of being alive or dead.  

 

Figure 4.10: Frequency plot- Relation between Categorical and target variable 
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Non-parametric test Spearman Correlation is carried out to understand the relationship 

between independent variables and the target since the data is non-normally distributed. It 

is represented through a heat map which describes the correlation with correlation 

coefficient values. Correlation coefficients ranging from 0.1 to 0.3 is considered weak, 0.3 

to 0.5 as moderate and 0.5 to 0.8 as strong in describing the relationship between variables. 

‘+’ indicates positive correlation and ‘-‘ indicates negative correlation. The results obtained 

are as briefed below, 

1. A strong negative correlation exists between target variable ‘alive’ and survival. 

2. A strong positive correlation exists between the variables epss and lvdd. 

3. A strong positive correlation is found between independent variables w_score and 

w_index. 

4. A negative moderate relationship is observed between variable survival, epss and 

w_index. 

5. A moderate positive correlation exist between target variable, epss and w_index. 

6. Variable fractionalshortenening share a moderate negative correlation with epss and 

lvdd. 

 

 

 

Figure 4.11: Correlation matrix represented in a heat map. 
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4.1.4 Immunotherapy 

 

Descriptive statistics obtained for the dataset is as shown in table 4.10. Results 

generated from the missing value analysis had no traces of presence of missing values in 

the dataset and hence the data is clean (table 4.11). 

 

  age Time Number_of_Warts Area induration_diameter 

count 90 90 90 90 90 

mean 31.04 7.23 6.14 95.7 14.33 

std 12.23 3.09 4.21 136.61 17.21 

min 15 1 1 6 2 

25% 20.25 5 2 35.5 5 

50% 28.5 7.75 6 53 7 

75% 41.75 9.93 8.75 80.75 9 

max 56 12 19 900 70 

 Table 4.10.: Descriptive statistics 

 

 

  Missing Percent 

Result_of_Treatment 0 0 

induration_diameter 0 0 

Area 0 0 

Type 0 0 

Number_of_Warts 0 0 

Time 0 0 

age 0 0 

sex 0 0 

Table 4.11: Missing value analysis report 

 

It can be inferred form the histogram plots obtained for numerical variables, that the 

data is not normally distributed, positive and negative skewness is found (fig. 4.12). 

Normalisation is carried out by transforming each numerical variables into its Z-scores. The 

outcome is as shown in the figure 4.13 and still the data follws non-normal distribution. 

Henceforth, Non-parametric statistical test is carried out to obtain the correlation matrix. 
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Figure 4.12: Histogram plots obtained before Normalization – Normality check 

 

 

 

Figure 4.13: Histogram plots obtained after Normalization – Normality check 
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Figure 4.14 shows the relationship between categorical variables and the target. The 

target variable ‘Result_of_treatment’ shows class imbalance between its categories where 

0 indicates the patient’s negative response to the treatment whereas 1 indicates the opposite. 

Types of warts is categorized into type 1(plantar), type 2(common) and type 3(both) and 

there seems to be a relationship between the variable type and target.  

 

Since dataset is not normally distributed, Spearman correlation a non-parametric 

statistical test is carried out to find the realtionship between target , the independent 

variables and itself. From the heat map (fig. 4.15), it can be infered that, a negative moderate 

correlation exists between the target and the variable ‘Time’ and the rest share weak 

correlation. 

 

 

Figure 4.14: Frequency plot- Relation between Categorical and target variable 
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Figure 4.15: Correlation matrix represented in a heat map. 

 

4.2 Data Preprocessing and Modelling 

 

From the insight obtained in the previous section, suitable pre-processing techniques 

are applied on datasets, modeled and the results are documented. 

Dataset is partitioned into 75 percent of training data and 35 percent of test data with 

a stratification of class variable to maintain the same imbalance ratio in test and train. The 

design as shown in figure 3.2 is ran for 5 times so that the data partition in each iteration 

will be random. Furthermore, Standardization of numerical variables is carried out on 

training data to scale all the values into common range. Dummy variables are created for 

each categorical variable in the dataset using the available function get_dummies in python 

Scikit-learn machine learning library. Similarly, target variables are label encoded into 0 

and 1 using LabelEncoder module available in the same library. 

Once the initial data cleaning is completed, various oversampling-methods are 

carried out on the same which includes SMOTE, SMOTE-Borderline, ADASYN and 

SIMO. Equal amount (1:1) of minority and majority instances were obtained in resampled 

balanced dataset on the application of SMOTE, SMOTE- Borderline 1 and SMOTE-

Borderline 2 whereas the ratio of minority class obtained was higher than the majority class 
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instances in the new resampled balanced dataset obtained on the application of ADASYN.  

Since our major focus is on SIMO and as mentioned in the literature that less synthetics 

instances will be generated as the motive is to oversample informative minority instances 

alone, following is tabulated for observation. 

Dataset: Biomarker 

Iterations SIMO parameters SIMO, Balance ratio 

1 delta = 0.8, p = 0.6 0: 43, 1: 28 

2 delta = 0.8, p = 0.6 0: 43, 1: 52 

3 delta = 0.8, p = 0.6 0: 43, 1: 47 

4 delta = 0.8, p = 0.6 0: 43, 1: 35 

5 delta = 0.8, p = 0.6 0: 43, 1: 15 

Table 4.12:  Details on SIMO parameter settings and the resampled ratio 

Dataset: Hepatitis 

Iterations SIMO parameters 
SIMO, Balance ratio 

 

1 delta = 0.4, p = 0.5 0:60, 1:73 

2 delta = 0.4, p = 0.5 0:60, 1:73 

3 delta = 0.4, p = 0.5 0:60, 1:73 

4 delta = 0.4, p = 0.5 0:60, 1:73 

5 delta = 0.4, p = 0.5 0:60, 1:73 

Table 4.13:  Details on SIMO parameter settings and the resampled ratio 

Dataset: Echocardiogram 

Iterations SIMO parameters 
SIMO, Balance ratio 

 

1 delta = 0.2, p = 0.25 0:53, 1:34 

2 delta = 0.2, p = 0.25 0:53, 1:48 

3 delta = 0.2, p = 0.25 0:53, 1:40 

4 delta = 0.2, p = 0.25 0:53, 1:41 

5 delta = 0.2, p = 0.25 0:53, 1:40 

Table 4.14:  Details on SIMO parameter settings and the resampled ratio 
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Dataset: Immunotherapy 

Iterations SIMO parameters 
SIMO, Balance ratio 

 

1 delta = 0.8, p = 0.6 0:46, 1:42 

2 delta = 0.8, p = 0.6 0:18, 1:42 

3 delta = 0.8, p = 0.6 0:47, 1:42 

4 delta = 0.8, p = 0.6 0:46, 1:42 

5 delta = 0.8, p = 0.6 0:29, 1:42 

Table 4.15:  Details on SIMO parameter settings and the resampled ratio 

 

It can be inferred from the tables that the synthetic data generated at each iteration 

varied and with respect to balanced ratio achieved, generated minority points were either 

half or less the majority points (Highlighted cells in the table) or higher than majority points 

present in the train set. Also, the obtained number of resampled records is less than induced 

training set as in the SIMO approach, training data is again split into 80 percent of training 

and 20 percent of validation set. Thus, oversampling is carried out only on the split 80 

percent of train set.  

SIMO parameters, ‘delta’ is used to choose percentage of informative minority data 

examples located at the boundary of the SVM for oversampling and ‘p’ is used to regulate 

the amount of synthetic data to be generated by SIMO on oversampling. Sample size of the 

chosen datasets had an impact on these parameters where the small datasets demanded 

higher delta and p value to perform oversampling. An error example found during execution 

is shown below, 

Error: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6 

Meaning, there is no sufficient neighbors to generate synthetic examples by KNN.  

Thus, values to the parameters was increased in steps of 0.5 and was continued till there 

was no error thrown by SIMO. The discussed problem was found while working on datasets 

Biomarker and Immunotherapy or records 90. 
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The proposed design in the experiment is executed five times to thoroughly evaluate 

classifier’s performance. The base classifiers, Logistic regression and SVM is used to have 

a simple approach in investigating the performance of imbalanced learning technique SIMO 

on small datasets. GridSearchCV along with the specified supervising learning algorithms 

is used to improve the performance of the classifiers by selecting best hyperparameters out 

of given ones. A range of values selected for tuning parameters ‘C’, ‘penalty’ and ‘gamma’ 

is as shown in the table below.  

 

 

 

Table 4.16: Tuning parameters for Logistic Regression 

 

 SVM 

C 1, 2, 3, 4, 5, 6,7, 8, 9, 10 

gamma 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.2, 0.3,0.4, 0.5 

Table 4.17.: Tuning parameters for SVM 

 

4.3. Results and Discussions 
 

4.3.1 Results 

 

Evaluation of the models is carried out in terms of performance metrices obtained 

from confusion matrix; Accuracy, Precision, Recall, F-score, G-mean and ROC-AUC plots. 

Since the chosen datasets are facing class imbalance problem, Accuracy, G-mean and ROC 

plots are carefully observed for performance comparison. Consideration wise, Accuracy 

comes the last. The metrices are obtained when data is modelled using classifiers Logistic 

regression and Support Vector Machine. 

Logistic regression and SVM is trained on both balanced and imbalanced sets and 

the results are obtained on test set. The design is iterated for 5 times and the table with 

 Logistic Regression 

C 0.001, 0.01, 0.1, 1, 10, 100, 1000 

Penalty 'l1' and 'l2' 
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average values of Accuracy, G-mean and AUC is generated. To make evaluation easier 

graphs are obtained for the same.  

1. Dataset: Biomarker 

 

From the figure 4.16 and 4.17, it can be reported that, models performed well 

on the application of approaches SMOTE, SMOTE-Borderline and ADASYN when 

compared to SIMO. Models obtained 100 percent accuracy on both balanced and 

imbalanced train sets. SIMO fetched good results for Logistic regression (92 percent 

AUC and 91 percent G-mean) and moderate for SVM (76 percent G-mean and 77 

percent AUC).  

 

 

Figure 4.16: Performance Comparison bar graph: Biomarker – Logistic regression 
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Figure 4.17: Performance Comparison bar graph: Biomarker - SVM 

 

2. Dataset: Hepatitis 

 

Accuracies obtained for the models trained on data oversampled by each 

approach is almost the same (figure 4.18). But, difference between accuracy and 

other two metrices G-mean and AUC does exist, largely in the case of SVM. Models 

performances on the application of baseline imbalance learning approaches are 

slightly similar and better than SIMO (70 percent – G-mean, 72 percent – AUC).  
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Figure 4.18: Performance Comparison bar graph: Hepatitis – Logistic Regression 

 

However, approach SIMO outperformed the other baseline learning algorithms on 

modelling resampled data set using SVM (figure 4.19).  SMOTE-R and ADASYN has 

performed the worst in terms of G-mean and AUC. 

 

 

Figure 4.19: Performance Comparison bar graph: Hepatitis - SVM 

 

 

3. Dataset: Echocardiogram 
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From figure 4.20, performance of Logistic regression scored highest with the 

approach SMOTE, followed by SIMO and ADASYN performing equally (G-mean: 81 

percent and AUC: 82 percent). 

 

Figure 4.20: Performance Comparison bar graph: Echocardiogram – Logistic Regression 

 

 

Figure 4.21: Performance Comparison bar graph: Echocardiogram - SVM 
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SIMO outdid the other approaches when trained with SVM with a G-mean, AUC 

and Accuracy of 81 percent. SMOTE-Borderline 2 scored the second in performance (figure 

4.21). 

  

3. Dataset: Immunotherapy 

 

 

Figure 4.22: Performance Comparison bar graph: Immunotherapy – Logistic regression 

 

Logistic regression models build on the train set resampled by the approaches SIMO, 

SMOTE, SMOTE- Borderline1 and SMOTE-Borderline 2 has equally performed in terms 

of G-mean (62 percent) with a slight difference in their AUC values (figure 4.22).  However, 

on application of SIMO, SVM has performed well when compared to other models (figure 

4.23). Other models have performed worst with respect to G-mean. Neither of the models 

performed better on this dataset as there were instances of zero G mean and 50 percent of 

AUC in the performed iterations. 
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Figure 4.23: Performance Comparison bar graph: Immunotherapy - SVM 

 

4.3.2 Statistical Significance and Hypothesis Evaluation 

 

`Wilcoxon Signed-Rank Test’, a statistical test is carried out to check if the results 

obtained are statistically significant or not with the chosen cut-off value p = 0.05. This is 

performed in support of rejecting or retaining the stated hypotheses stated below, 

 

Hypothesis: 

 

H0: “The G-mean and AUC values of the models built on the oversampled datasets using 

imbalanced learning algorithm SIMO is equal to the G-mean and AUC values obtained from 

the models on application of baseline algorithms SMOTE, SMOTE-Borderline and 

ADASYN, with p-value < 0.05.” 

** AUC – Area Under Curve 

** SIMO - Synthetic Informative Minority Over-Sampling leveraging SVM 

** SMOTE - Synthetic Minority Over-Sampling Technique 

** ADASYN - Adaptive Synthetic Sampling Approach 
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The results are obtained by comparing the G mean and AUC values of SIMO with 

values of other approaches obtained from Logistic regression and SVM models in each 

iteration.  

From table 4.18,  

1. Hypothesis is rejected for dataset biomarker, meaning there is a statistically 

significant difference in the performance of the models on the application of SIMO 

over the other baseline approaches (p < 0.01). But, the difference is the performance 

of the SIMO is poorer than others. 

2. Hypothesis is true and can be retained for model Logistic regression in all the 

datasets except for Biomarker. There is no statistically significant difference found 

between the logistic regression models trained on different approaches. 

3. Hypothesis is false and can be rejected for SVM models in the dataset hepatitis, as 

there is a statistically significant difference between the performance of the 

imbalanced learning algorithms. (p < 0.01) 

4. In Echocardiogram dataset, there is no statistically significant difference between 

SMOTE-Borderline 2 and SIMO (p = 0.54 for G mean and p = 0.45 for AUC). 

Meaning there is no performance difference. 

5. In the dataset Immunotherapy, statistically significant difference doesn’t exist 

between the algorithms SIMO and baseline algorithms SMOTE with respect to AUC 

(p= 0.139) and SMOTE-Borederline2 with respect to G mean (p = 0.07) and hence 

hypothesis can be retained. 
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Dataset LR SVM 

BIOMARKER G mean AUC G mean AUC 

  
t-

statistics  
p 

t-

statistics 
p 

t-

statistics  
p 

t-

statistics 
p 

SMOTE 2 0.0015 1 0.0012 0 0.0007 0 0.0006 

SMOTE_B1 2 0.0015 1 0.0012 0 0.0007 0 0.0006 

SMOTE_B2 0 0.001 0 0.001 14 0.0089 1 0.0012 

ADASYN 3 0.0019 1 0.0012 0 0.0007 0 0.0006 

                  

IMMUNOTHERAPY G mean AUC G mean AUC 

  
t-

statistics  
p 

t-

statistics 
p 

t-

statistics  
p 

t-

statistics 
p 

SMOTE 41 0.47 49 0.8259 22 0.055 34 0.139 

SMOTE_B1 37 0.191 44.5 0.3781 18 0.017 17.5 0.0157 

SMOTE_B2 27 0.06 32 0.1115 28.5 0.0732 20 0.022 

ADASYN 51.5 0.629 57.5 0.8869 13.5 0.0143 14 0.0089 

                  

HEPATITIS G mean AUC G mean AUC 

  
t-

statistics  
p 

t-

statistics 
p 

t-

statistics  
p 

t-

statistics 
p 

SMOTE 41 0.75 47 0.7297 5 0.0017 12.5 0.0069 

SMOTE_B1 47.5 0.75 50 0.8751 1 0.0008 10.5 0.0049 

SMOTE_B2 57 0.86 57.5 0.887 1 0.0008 7 0.0026 

ADASYN 57 0.86 55.5 0.7981 8 0.0031 18 0.017 

                  

ECHOCARDIOGRAM G mean AUC G mean AUC 

  
t-

statistics  
p 

t-

statistics 
p 

t-

statistics  
p 

t-

statistics 
p 

SMOTE 33 0.3812 32.5 0.6052 5 0.0046 6 0.0056 

SMOTE_B1 31 0.31 45 0.971 18.5 0.0184 17.5 0.015 

SMOTE_B2 59 0.9546 48 0.777 49.5 0.549 40.5 0.4495 

ADASYN 49.5 0.85 48.5 0.8012 0 0.001 0 0.001 

Table 4.18: Wilcoxon Signed-Rank Test results 

 

4.3.3 Discussions 

 

  The study’s key focus was to validate the performance of novel imbalance learning 

algorithm SIMO on small datasets. From the results obtained it can be concluded that, 

training Logistic regression on train resampled by SIMO fetched bad results for dataset 

‘Biomarker’, moderate metrices values for datasets; ‘Immunotherapy’ and ‘Hepatitis’ and 
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better for dataset ‘Echocardiogram’. Also, SVM trained on resampled train sets by SIMO 

outperformed baseline imbalance learning algorithms in all the datasets except for 

‘Biomarker’.  

 

 The results obtained for Biomarker by the application of baseline algorithms are 

brilliant when compared to SIMO, yet suspicious to overfitting as the average AUC, 

Accuracy and G-mean values obtained are 100 percent. On the other edge, SIMO’s 

performance is moderate scoring average of approximately 92 percent when trained with 

logistic regression and approximately 78 percent with SVM. These two scores seem quite 

moderate and acceptable. On the similar note, either there existed an overfitting or the SIMO 

performed bad. 

 

Dataset ‘Biomarker and Immunotherapy’ are of the records 93 and 90 with an 

imbalance ratio are 60:40 and 80:20 respectively. The SIMO parameters ‘delta’ and ‘p’ is 

set to 0.8 and 0.6 respectively for these two datasets which are of higher than those 

suggested in the literature. Factors of the dataset that are influencing the parameters of 

SIMO is unknown. However, on careful observation it is found, the dataset ‘Hepatitis’ of 

record 154 sharing the same imbalance ratio as ‘Immunotherapy’, performed well with 

‘delta’ value set to 0.4 which signifies the role of sample size on ‘delta’. This is in contrary 

to what the author had observed while experimenting on datasets of range 300 to 1500 and 

concluded reporting, ‘SIMO is not very sensitive to the value of its parameters’. (Piri, Delen 

& Liu, 2018) 

 

‘Biomarker’ dataset, though its imbalance ratio is 60:40 which is moderate, 

demanded higher values of delta and p. SIMO algorithm threw an error of insufficient data 

availability to generate the required synthetic examples during the experiment. This is 

because SIMO adopts SMOTE approach and on inadequate availability of informative 

minority points (minority points in general) to generate synthetic data the technique will fail 

to oversample. Hence, on setting higher values for ‘delta’, larger number of minority 

examples will be selected and oversampled using SMOTE approach. Increase in ‘p’ will 

increase the iterations but there will be a possibility of picking more relevant informative 
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examples located near decision boundary on every application of SVM on the updated 

sample in the loop till the imbalanced gap is reached (SIMO Algorithm). Thus, both the 

sample size and class imbalance ratio will have an influence on determining the parameters 

for SIMO. This can be supported by the dataset ‘Echocardiogram’ of records 131 and 

imbalance ratio of 70:30 performing well at ‘delta’ set to 0.2 and ‘p’ to 0.25. 

 

Feature selection isn’t used in the experiment as data is very small and attributes are 

of acceptable dimension. This could be a possible reason for the suspicious performance 

results obtained for dataset ‘Biomarker’ on the application of baseline imbalanced learning 

algorithms, hinting the presence of overfitting. Models performed moderate yet poorly on 

dataset ‘Immunotherapy’ which needs further investigation. 

 

 In a nutshell, SVM models trained on data resampled by SIMO fetched satisfactory 

results as the algorithm can be better or even worse based on the size and complexity of the 

sample. The approach either outperformed or performed equivalent to other approaches. 

Dataset Biomarker is exceptional. The use of datasets is limited to four because of time and 

data availability constraints. From the obtained fluctuating results, it is hard to comment on 

the efficiency of the algorithm as it performed moderate yet better than all other approaches 

for ‘Immunotherapy’ and performed bad for ‘Biomarker’ compared to all other approaches. 

Thus, considering more datasets will be convenient in deriving a conclusion. 

 

Evaluation of the models involved analyzing performance metrices obtained from 

the models. These were obtained from Confusion matrix. Accuracy isn’t given much 

importance in this experiment because in class imbalance problem, classifiers tend to 

misclassify minority into majority and end up giving higher accuracy. Thus, G-mean and 

AUC values are taken into consideration. AUC results are fetched from ROC plots. In 

support of the explanation, it can be observed from the graphs that, AUC and G-mean values 

closely followed each other, meaning they had similar values or with slightly different 

values. While, the difference between Accuracy and the duo (AUC and G-mean) was higher 

and quite noticeable. 
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Strengths 

 

1. Avoidance of overfitting. 

2. Adaptability to any range of small datasets and ratio of class imbalance due to the 

availability of parameter setting options ‘delta’ and ‘p’. 

3. Oversampling technique with an advantage of SVM in selecting informative 

minority instances available near decision boundary and G-mean in retrieving the 

fine oversampled dataset. 

4. Performed better with small datasets of high class imbalance ratio with supervised 

learning algorithm Support Vector Machine. 

5. Except for biomarkers, satisfactory results were obtained when compared to 

SMOTE, SMOTE-Borderline and ADASYN. 

 

Limitations 

1. Use of four datasets to evaluate the efficiency of the algorithm. 

2. Other machine learning algorithms like decision tree, random forest is not used in 

this experiment which would have given the broader understanding on the behavior 

of SIMO on these classifiers. 

3. Synthetic data generated was not always lesser and computational training time 

wasn’t less as mentioned in the literature (Piri, Delen & Liu, 2018).  
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CHAPTER 5 

CONCLUSION 
 

5.1 Research Overview 
 

The research is carried out to analyze the impact of novel imbalanced learning 

technique ‘Synthetic informative minority over-sampling (SIMO) algorithm leveraging 

support vector machine’ on the performance of classifiers when applied on very small 

dataset. Initially the research is started with a literature review, discussing the available 

imbalanced learning algorithms, its merits and demerits over each other, problem of class 

imbalance and its impact on the classifiers. Also, the approach used in this experiment, is 

explained in detail along with its merits over other approaches. 

Four small datasets of records less than 150 is collected and is analyzed and 

preprocessed by standardizing numerical variables and one-hot encoding categorical 

variables. As the dataset is very small train-test split of ratio 75:25 is obtained. To evaluate 

the performance of the SIMO on classifiers, baseline imbalance learning algorithms 

SMOTE, SMOTE-Borderline, ADASYN are also implemented in this study. Base 

classifiers Logistic regression and SVM-linear is used to keep the approach simple. 

GridSerachCv with 5-folds is used to choose hyperparameters for classifiers to improve 

their performance. The design is iterated for five times to investigate the performance of the 

models thoroughly for its reliability and stability. Performance of the models are evaluated 

using the metrices calculated from confusion matrix. G-mean, Accuracy and ROC plots are 

of the main focus to examine model’s performance in this research. The average of metrices 

is calculated, tabulated and graphs are obtained to assess the performance difference of the 

learners on the application of SIMO and other oversampling techniques. 

5.2. Problem Description  
 

Developing predictive models for classification problems considering imbalanced 

datasets is one of the basic difficulties in data mining and decision-analytics. A classifier’s 

performance will decline dramatically when applied to an imbalanced dataset. Standard 
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classifiers such as logistic regression, Support Vector Machine (SVM) are appropriate for 

balanced training sets whereas provides suboptimal classification results when used on 

unbalanced dataset. Performance metric with prediction accuracy encourages a bias towards 

the majority class, while the rare instances remain unknown though the model contributes 

a high overall precision. There are chances where minority instances might be treated as 

noise and vice versa. (Haixiang et al., 2017) 

Class imbalance and small datasets are the problems which is dealt in this research 

and losing any piece of informative data isn’t affordable. There are several oversampling 

methods available with their own benefits and limitations. On reviewing several literatures, 

it is found that either the technique will be prone to overfitting or overgeneralization. The 

benefits of SIMO include less computational training time and avoidance of overfitting with 

consideration of informative instances alone for sampling. Also, the approach outperformed 

the other approaches reviewed in the literature (like SMOTE, Smote-Borderline, Safe-level 

SMOTE) when applied on datasets of records in the range 300 to 1500 and hence this 

approach is implemented in the research to examine if the performance will be similar in 

case of small datasets with high class imbalance. 

To investigate the same, following research question is posed, 

“Can performance metrices of the classifiers on small datasets, significantly 

improve on the application of ‘SIMO leveraging SVM’ over the application of baseline 

imbalanced learning algorithms?” 

**SIMO: Synthetic Informative Minority Over-Sampling 

**SVM: Support Vector Machine 

**Baseline imbalanced learning algorithms: SMOTE, SMOTE-Borderline1, 

SMOTE-        Borderline2 and ADASYN. 

**Performance metrices: Accuracy, Recall, Precision, G-mean and ROC  

 

5.3 Contribution and Impact 

 

To analyze the performance of the imbalanced learning technique SIMO on small 

dataset with class imbalance, dataset serving the same criteria is used. The records used are 
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no more than 150, similar patterns can be obtained in the domain of biomedical and related 

fields. Limited datasets were available for classification problems of this requirement, since 

our interest was on Univariate class examples alone, four datasets are finalized for this 

experiment. 

Data is meticulously examined for missing and irrelevant values. The distribution of 

the data is observed carefully to decide on the imputation method to be used. Since the data 

was non-normally distributed, and as it followed the same distribution even after 

transformation, median imputation is carried out on numerical variables to avoid effect of 

outliers and mode imputation on categorical.  

Dataset is partitioned into 75:25 train test sets instead of using cross-validation 

methods, to make enough data available for the classifiers in learning. Also stratified 

partitioning is carried out to avoid bias and overfitting. Standardized (Z-score) and one-hot 

encoded train set is oversampled using SMOTE, SMOTE-Borderline, ADASYN and SIMO. 

The aim is to compare the performance of SIMO over other mentioned algorithms when 

applied n small datasets. To keep the approach simple, base classifiers Logistic regression 

and SVM are chosen along with GridSearchCv (five folds) to obtain optimal model result. 

On evaluation it is noticed that, Logistic regression trained on SIMO oversampled 

data fetched satisfactory results, however poor results were obtained for dataset ‘biomarker’ 

when compared to other models trained on of baseline imbalanced learning algorithms 

oversampled train set. SVM modelled on SIMO oversampled train data, outperformed all 

the other baseline algorithms except for dataset ‘Biomarker’. The possible reason for the 

poor results when implemented on dataset ‘Biomarker’ is discussed in Results and 

Discussions section. In a nutshell, SIMO was consistent in its performance for all the range 

of datasets and imbalance ratio while other approaches failed to give better results. 

5.4 Future Work and Recommendations 

 

The aim of the study was to examine the performance of imbalanced learning 

algorithm, ‘Synthetic informative minority over-sampling (SIMO) algorithm leveraging 

support vector machine’ on small datasets. During the study the major limitation was 

dealing with the small dataset itself. As losing any information wasn’t in the interest of this 
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experiment and due to time constraint, feature selection wasn’t included in the design of the 

experiment. This can be considered as a future work in investigating the performance of the 

implemented algorithm on the use of feature selection. Also, as data is very small and again 

there will be data partition in SIMO, use of cross validation is avoided which can also be a 

part of future work. 

The experiment is constrained to four datasets due to time constraint and the data 

availability. The experiment can be extended including more datasets of different sample 

size and class imbalance scenarios. This can be accompanied with having other supervised 

learning algorithms like random forest and decision tree to investigate SIMO performance 

on different classifiers. Modifications to the SIMO algorithm can be done by using Biased 

SVM instead SVM which might provide a different direction to the research. Idea of Biased- 

SVM is derived from (Hartono, Sitompul, Tulus & Nababan, E. ,2018) which also explains 

Cluster-SVM. On thorough research of mentioned topics, future research can be carried out 

on replacing SVM with Biased SVM if viable in contributing to the class imbalance field.  

 From the results obtained in this study, the novel imbalance learning technique 

‘Synthetic informative minority over-sampling (SIMO) algorithm leveraging support vector 

machine’ cannot be recommended to oversample small datasets. The focus is on 

oversampling informative minority samples which are noise free thus eliminating the 

problem of overfitting.  Parameter settings is an added advantage which is helpful in dealing 

with different small data samples and varied imbalance ratio. But, the results obtained are 

questionable for dataset Biomarker and Immunotherapy the datasets of records 90 which 

are comparably very smaller than the other two chosen in the experiment. 

Since it is known that the algorithm performance varies accordingly with small 

samples and its complexity, the limitation of the experiment in using only four datasets is 

insufficient to draw a conclusion because of varied performances obtained in the 

experiment. 
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APPENDIX 
 

Sources of Datasets 

Dataset Biomarker: 

https://www.researchgate.net/publication/322832878_Dataset_biomarkers 

Dataset Hepatitis: https://archive.ics.uci.edu/ml/datasets/Hepatitis 

Dataset Immunotherapy: https://archive.ics.uci.edu/ml/datasets/Immunotherapy+Dataset 

Dataset Echocardiogram: https://archive.ics.uci.edu/ml/datasets/Echocardiogram 

 

Code written in python for SIMO algorithm, 

 

# importing the packages and modules 

from sklearn import svm 

from collections import Counter 

from sklearn.metrics import confusion_matrix 

import Euclidean 

from sklearn.model_selection import train_test_split 

from imblearn.over_sampling import SMOTE 

from math import ceil 

import numpy as np 

import pandas as pd 

from math import sqrt 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_curve, auc 

 

#defining the function SIMO 

def SIMO(X,y, delta = 0.8, p = 0.5):      # delta and p value varies with the data 

    X_train, X_val, y_train, y_val = train_test_split(X, y, stratify = y, test_size = 0.20)         

    c = Counter(y) 

    minority_class = 0 if c[0] < c[1] else 1 

     

https://www.researchgate.net/publication/322832878_Dataset_biomarkers
https://archive.ics.uci.edu/ml/datasets/Hepatitis
https://archive.ics.uci.edu/ml/datasets/Immunotherapy+Dataset
https://archive.ics.uci.edu/ml/datasets/Echocardiogram
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    minority_indices = [] 

    for ix, item in enumerate(y_train): 

        if item == minority_class: 

            minority_indices.append(ix) #finding minority data points index in training data 

    Minority_Count= len(minority_indices) 

    Majority_Count= len(y_train) - Minority_Count 

    Imbalanced_gap=Majority_Count-Minority_Count 

     

# training SVM to obtain informative data instances 

    clf = svm.SVC(kernel='linear') 

    clf.fit(X_train,y_train) 

    predicted1 = clf.predict(X_val) 

    w = clf.coef_ 

    b = clf.intercept_ 

     

# initialization 

    CM_initial = confusion_matrix(y_val,predicted1) 

    TN_initial = CM_initial[0][0] 

    FN_initial = CM_initial[1][0] 

    TP_initial = CM_initial[1][1] 

    FP_initial = CM_initial[0][1]    

    TPR = TP_initial/(TP_initial+FN_initial) 

    TNR = TN_initial/(TN_initial+FP_initial) 

    x = TPR * TNR 

    G_Mean_initial = sqrt(x) 

 

    G_Mean=G_Mean_initial                  

    Generated_Data_Count=0 

    SVMModel=clf 

    Predictors= np.array(X_train) 

    Target=np.array(y_train) 
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    G_Mean_variation=G_Mean_initial 

    Generated_Data=Imbalanced_gap 

#creating a list 

    X_list = [] 

    y_list = [] 

    g_mean_list = [] 

  

# loop terminates once generated synthetic instances equals imbalanced gap 

    while  Generated_Data_Count < Imbalanced_gap: 

        ind = [ix for ix, item in enumerate(Target) if item == minority_class]  #finding minority data 

points index 

        majority_ind = [ix for ix, item in enumerate(Target) if item != minority_class] 

        #import pdb; pdb.set_trace() 

        Mino = Predictors[ind]  #minority data points 

        Mino_Target=Target[ind] 

        majority_predictors = Predictors[majority_ind] 

        majority_targets = Target[majority_ind] 

 

#defining and calculating the minority data point distance from the decision boundary 

        dis = [] 

        for i in range(Mino.shape[0]): 

            #import pdb; pdb.set_trace() 

            dis.append(Euclidean.EucledianDistance(Mino[i],w,b)) 

            #import pdb; pdb.set_trace() 

 

 #finding informative minority data points 

        dis_sort = np.sort(dis) 

        dis_top_delta = dis_sort[0: int(ceil(delta * Mino.shape[0]))] 

        # dis_top_delta=dis_sort[ceil(delta*size(Mino))] 

        inf_p_ind=[]    #informative minority data points 

        non_inf_p_ind = [] 

        for index, distance in enumerate(dis): 
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            if distance in dis_top_delta: 

                inf_p_ind.append(index) 

            else: 

                non_inf_p_ind.append(index) 

        inf_predictors = Mino[inf_p_ind] 

        inf_target = Mino_Target[inf_p_ind] 

        non_inf_predictors = Mino[non_inf_p_ind] 

        non_inf_target = Mino_Target[non_inf_p_ind]         

        new_predictors = np.concatenate([inf_predictors, majority_predictors], axis = 0) 

        new_target_list = list(inf_target) 

        new_target_list.extend(list(majority_targets)) 

        new_target = np.array(new_target_list) 

 

# callable function is written to decide on ‘p’ 

        def _handle_p(y): 

            class_counter = Counter(y) 

            minority_class = 0 if class_counter[0] < class_counter[1] else 1 

            minority_count = class_counter[minority_class] 

            class_counter[minority_class] += int(ceil(minority_count * p)) 

            #import pdb; pdb.set_trace() 

            return class_counter 

     

# Over-sampling the informative minority data points using SMOTE 

        sm = SMOTE(kind='regular', ratio = _handle_p, ) 

        Mino_Xres1, Mino_yres1 = sm.fit_sample(new_predictors, new_target) 

        #import pdb; pdb.set_trace() 

        Generated_Data_Count += len(Mino_Xres1) - len(new_predictors) 

        Predictors =  np.concatenate([non_inf_predictors, Mino_Xres1], axis = 0) 

        new_target_2_list = list(Mino_yres1) 

        new_target_2_list.extend(list(non_inf_target)) 

        new_target_2 = np.array(new_target_2_list) 
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        Target = new_target_2 

         

        # train SVM on resampled data 

        clf = svm.SVC(kernel='linear') 

        clf.fit(Predictors,Target)        

        predicted2 = clf.predict(X_val) 

        w = clf.coef_ 

        b = clf.intercept_ 

 

        CM = confusion_matrix(y_val,predicted2) 

        TN = CM[0][0] 

        FN = CM[1][0] 

        TP = CM[1][1] 

        FP = CM[0][1]  

        TPR = TP/(TP+FN) 

        TNR = TN/(TN+FP)   

        x = TPR * TNR 

        G_Mean = sqrt(x) 

        G_Mean_variation=G_Mean 

        g_mean_list.append(G_Mean) 

        X_list.append(Predictors) 

        y_list.append(Target) 

     

# to find sampled data which fetched maximum g_mean on training SVM     

    max_g_mean_index = g_mean_list.index(max(g_mean_list)) 

    final_resampled_X = X_list[max_g_mean_index] 

    final_resampled_y = y_list[max_g_mean_index] 

     

    #final_resampled_X = final_resampled_X.to_records(index=False) 

    #final_resampled_X = np.array(final_resampled_X.tolist()) 

    Generated_Data=Generated_Data_Count 
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    return final_resampled_X, final_resampled_y 

Code for Euclidean function used in SIMO     

import numpy as np 

def EucledianDistance(x, w, b): 

    w_square= [] 

    for i in w: 

        w_square.append(i**2) 

    w_square  

    k = (np.dot(w, np.transpose(x)))+b 

    t = np.sqrt(np.sum(w_square)) 

    euc_d = abs(k)/t 

    return euc_d  

 

Code for Modelling 

import numpy as np 

import pandas as pd 

from sklearn.preprocessing import LabelEncoder 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from imblearn.over_sampling import SMOTE 

from imblearn.over_sampling import ADASYN 

from sklearn.linear_model import LogisticRegression 

from sklearn import model_selection 

from sklearn import metrics 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

import matplotlib.pyplot as plt 

from sklearn.svm import SVC 

import SIMO_B 
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from collections import Counter 

from sklearn.model_selection import GridSearchCV 

from scipy import stats 

 

data = pd.read_csv('C:\\Document\\D17124483\\Dissertation\\Imbalanced 

dataset\\echocardiogram.csv', sep = ',') # changes for each dataset 

data.shape # to find the dimensions 

 

# fetching unique values of each variable to check if there are any irrelevant figures 

[data[col_name].unique() for col_name in data.columns] 

 

# replace if any unique values are found in the previous step 

data = data.replace(2, np.nan)  #data dependent 

data = data.replace('', np.nan) 

data = data.replace('NA', np.nan) 

data = data.replace(77, np.nan)  #data dependent 

 

# common code for all the datasets in fetching missing value report, descriptive statistics 

report and to build predictive models using Logistic regression and SVM 

class Analysis():      

   def exp_analysis(X): 

        descriptive_analysis = X.describe() 

        print('\n\n Descriptive analysis \n\n',descriptive_analysis) 

        print(X.shape)      #exploratory data analysis 

   

    def missing_values(X): 

        print ("\n\nMissing value analysis:")         

        quan = list(X.loc[:,X.dtypes != 'object'].columns.values ) 

        qual = list(X.loc[:,X.dtypes == 'object'].columns.values) 
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        print("quan:\n\n", quan) 

        print("\n\nqual:\n\n", qual)     

        print ("\n\n Numerical variables:") 

        total_quan = X[quan].isnull().sum().sort_values(ascending=False) 

        percent_quan = (X[quan].isnull().sum() / 

X[quan].isnull().count()).sort_values(ascending=False) 

        missing_data_quan = pd.concat([total_quan, percent_quan], axis=1, keys =['Missing', 

'Percent']) 

        print(missing_data_quan) 

        print("**"*40)     

        print ("\n\n Categorical variables:") 

        total_qual = X[qual].isnull().sum().sort_values(ascending=False) 

        percent_qual = (X[qual].isnull().sum() / 

X[qual].isnull().count()).sort_values(ascending=False) 

        missing_data_qual = pd.concat([total_qual, percent_qual], axis=1, keys =['Missing', 

'Percent']) 

        print(missing_data_qual)  # missing value analysis 

 

# Logistic regression 

    def predictive_models_LR(X_train, y_train, X_test, y_test): 

        param_grid = [{'C': [0.001, 0.01, 0.1, 1, 10, 100, 1000]}, {'penalty' : ['l1','l2']}] 

        logreg = GridSearchCV(LogisticRegression(), param_grid, cv = 5) 

        logreg.fit(X_train, y_train)    

        predict = logreg.predict(X_test) 

        accuracy = metrics.accuracy_score(y_test, predict) 

        print('test accuracy:', accuracy) 

        print(confusion_matrix(y_test, predict)) 

        print(classification_report(y_test, predict))         

        CM = confusion_matrix(y_test,predict) 

        TN = CM[0][0] 
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        FN = CM[1][0] 

        TP = CM[1][1] 

        FP = CM[0][1]    

        G_Mean = ((TP/(TP+FN))*(TN/(TN+FP)))**(1/2) 

        print('G_Mean', G_Mean) 

        print('G_Mean', G_Mean)  

        print("TP", TP) 

        print("FP", FP) 

        print("FN", FN) 

        print("TN", TN) 

        FPR = FP/(FP+TN) 

        print("FPR", FPR)         

 

         # View best hyperparameters 

        print('Best Penalty:', logreg.best_estimator_.get_params()['penalty']) 

        print('Best C:', logreg.best_estimator_.get_params()['C'])       

   

        # calculate the fpr and tpr for all thresholds of the classification 

        fpr, tpr, threshold = metrics.roc_curve(y_test, predict) 

        roc_auc = metrics.auc(fpr, tpr) 

 

        # ROC plot 

        plt.title('Receiver Operating Characteristic') 

        plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) 

        plt.legend(loc = 'lower right') 

        plt.plot([0, 1], [0, 1],'r--') 

        plt.xlim([0, 1]) 

        plt.ylim([0, 1]) 
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        plt.ylabel('True Positive Rate') 

        plt.xlabel('False Positive Rate') 

        plt.show() 

      

# SVM    

    def predictive_models_SVM(X_train, y_train, X_test, y_test): 

        param_grid = [{'kernel': ['linear']},{'C': [1, 2, 3, 4, 5, 6,7, 8, 9, 10]},  

                      {'gamma':[0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.2, 0.3,0.4, 0.5]}] 

        SVM_linear = GridSearchCV(SVC(), param_grid, cv =5)         

        SVM_linear.fit(X_train, y_train)  

        predict = SVM_linear.predict(X_test) 

        accuracy = metrics.accuracy_score(y_test, predict) 

        print('test accuracy:',metrics.accuracy_score(y_test, predict)) 

        print(confusion_matrix(y_test,predict)) 

        print(classification_report(y_test,predict))  

        CM = confusion_matrix(y_test,predict) 

        TN = CM[0][0] 

        FN = CM[1][0] 

        TP = CM[1][1] 

        FP = CM[0][1]    

        G_Mean = ((TP/(TP+FN))*(TN/(TN+FP)))**(1/2) 

        print('G_Mean', G_Mean)  

        print("TP", TP) 

        print("FP", FP) 

        print("FN", FN) 

        print("TN", TN) 

        FPR = FP/(FP+TN) 

        print("FPR", FPR) 
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        # View best hyperparameters 

        print('Best Gamma:', SVM_linear.best_estimator_.get_params()['gamma']) 

        print('Best C:', SVM_linear.best_estimator_.get_params()['C']) 

         

        # calculate the fpr and tpr for all thresholds of the classification 

        fpr, tpr, threshold = metrics.roc_curve(y_test, predict) 

        roc_auc = metrics.auc(fpr, tpr) 

 

        # ROC plot 

        plt.title('Receiver Operating Characteristic') 

        plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) 

        plt.legend(loc = 'lower right') 

        plt.plot([0, 1], [0, 1],'r--') 

        plt.xlim([0, 1]) 

        plt.ylim([0, 1]) 

        plt.ylabel('True Positive Rate') 

        plt.xlabel('False Positive Rate') 

        plt.show()  

         

# calling the class to retrieve necessary information 

Analysis.missing_values(data) 

 

# Imputation- dataset dependent 

data.alive.fillna(data.alive.mode()[0], inplace=True) 

data.epss.fillna(data.epss.median(),inplace=True) 

data.lvdd.fillna(data.lvdd.median(),  inplace=True) 

data.pericardialeffusion.fillna(data.pericardialeffusion.mode()[0],  inplace=True) 
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data.fractionalshortening.fillna(data.fractionalshortening.median(),  inplace=True) 

data.age.fillna(data.age.median(),  inplace=True) 

data.w_score.fillna(data.w_score.median(),  inplace=True) 

data.w_index.fillna(data.w_index.median(), inplace=True) 

data.survival.fillna(data.survival.median(),  inplace=True) 

 

#calling after imputation to fetch descriptive statistics 

Analysis. exp_analysis(data) 

 

# segregate independent and target variables into X and y 

X= data.drop('alive', axis=1)  # target is data dependent 

y = data['alive'] 

 

# data partition 

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.25) 

 

#Normalising the data 

quan = list(X_train.columns[X_train.dtypes != 'object']) 

scaler = StandardScaler() 

X_train[quan] = scaler.fit_transform(X_train[quan]) 

X_test[quan] = scaler.transform(X_test[quan]) 

 

#one hot encoding 

print("\n\nOne hot Encoding......\n") 

label_encoder = LabelEncoder() 

y_train = label_encoder.fit_transform(y_train) 

y_test = label_encoder.transform(y_test) 

qual = list(X_train.loc[:,X_train.dtypes == 'object'].columns.values) 
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X_cat1 = pd.get_dummies(X_train[qual]) 

X_train = pd.concat([X_train, X_cat1], axis=1) 

X_train = X_train.drop(qual,axis =1) 

print(X_train) 

print(y_train) 

 

X_cat2 = pd.get_dummies(X_test[qual]) 

X_test = pd.concat([X_test, X_cat2], axis=1) 

X_test = X_test.drop(qual,axis =1) 

print(X_test) 

print(y_test)         

 

# building Models for imbalanced data set 

print("Imbalanced_Linear......") 

Analysis.predictive_models_LR(X_train, y_train, X_test, y_test) 

print("Imbalanced_SVM......") 

Analysis.predictive_models_SVM(X_train, y_train, X_test, y_test)     

 

 #SMOTE oversampling 

sm1 = SMOTE(kind = 'regular', ratio = 'minority' ) 

X_res1, y_res1 = sm1.fit_sample(X_train, y_train) 

sm2 = SMOTE(kind = 'borderline1', ratio = 'minority' ) 

X_res2, y_res2 = sm2.fit_sample(X_train, y_train) 

sm3 = SMOTE(kind = 'borderline2', ratio = 'minority' ) 

X_res3, y_res3 = sm3.fit_sample(X_train, y_train)  

 

# building models on SMOTE resampled data 

print("SMOTE-regular-LR......") 
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Analysis.predictive_models_LR(X_res1, y_res1, X_test, y_test) 

print("SMOTE-borderline1-LR......") 

Analysis.predictive_models_LR(X_res2, y_res2, X_test, y_test) 

print("SMOTE-borderline2-LR......") 

Analysis.predictive_models_LR(X_res3, y_res3, X_test, y_test) 

 

print("SMOTE-regular-SVM......") 

Analysis.predictive_models_SVM(X_res1, y_res1, X_test, y_test) 

print("SMOTE-borderline1-SVM......") 

Analysis.predictive_models_SVM(X_res2, y_res2, X_test, y_test) 

print("SMOTE-borderline2-SVM......") 

Analysis.predictive_models_SVM(X_res3, y_res3, X_test, y_test) 

 

#ADASYN 

print("ADASYN-LR......") 

ada = ADASYN() 

X_resampled, y_resampled = ada.fit_sample(X_train, y_train) 

Analysis.predictive_models_LR(X_resampled, y_resampled, X_test, y_test) 

print("ADASYN-SVM......") 

Analysis.predictive_models_SVM(X_resampled, y_resampled, X_test, y_test) 

 

#SIMO 

print("SIMO-LR......") 

X_simo, y_simo = SIMO_B.SIMO(X_train, y_train) 

Analysis.predictive_models_LR(X_simo, y_simo, X_test, y_test) 

print("SIMO-SVM......") 

Analysis.predictive_models_SVM(X_simo, y_simo, X_test, y_test)          
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Correlation matrix for dataset ‘Biomarker’ 
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