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ABSTRACT

When modelling astrophysical fluid flows, it is often appropriate to discard the canonical mag-

netohydrodynamic approximation, thereby freeing the magnetic field to diffuse with respect

to the bulk velocity field. As a consequence, however, the induction equation can become

problematic to solve via standard explicit techniques. In particular, the Hall diffusion term

admits fast-moving whistler waves which can impose a vanishing time-step limit.

Within an explicit differencing framework, a multifluid scheme for weakly ionized plasmas

is presented which relies upon a new approach to integrating the induction equation efficiently.

The first component of this approach is a relatively unknown method of accelerating the

integration of parabolic systems by enforcing stability over large compound time-steps rather

than over each of the constituent substeps. This method, Super Time-Stepping, proves to be

very effective in applying a part of the Hall term up to a known critical value. The excess of the

Hall term above this critical value is then included via a new scheme for pure Hall diffusion.

Key words: MHD – shock waves – methods: numerical – ISM: clouds – dust, extinction.

1 I N T RO D U C T I O N

Dynamically important magnetic fields are commonplace in astro-

physics. In many cases, where these fields interact with fluids, re-

searchers have assumed that the equations of ideal magnetohydro-

dynamics (MHD) are sufficient in modelling the evolution of the

magnetic fields and the fluids with which they interact. There are

clear examples, however, where the assumptions underpinning the

equations of ideal MHD are not valid. In dense molecular clouds,

for example, the density of charged particles can be much lower

than that of the neutral species (Ciolek & Roberge 2002, hereafter

CR02). Under these conditions, coupling between the motions of

the fluids and the magnetic field is not perfect, and diffusive effects

become significant. Similarly, ideal MHD is not believed to be valid

in accretion discs around young stellar objects (Wardle 2004). The

latter point is particularly interesting given the importance attached

to the interaction between accretion discs and magnetic fields in the

launching of stellar jets and outflows (e.g. Shu et al. 1994; Fendt &

Camenzind 1996; Ouyed, Pudritz & Stone 1997; Lery et al. 1999;

Ferreira 2004). When modelling systems such as these therefore, a

full multifluid treatment permitting relative motions between differ-

ent component species should be adopted.

Many authors (Tóth 1994; Smith & Mac Low 1997; Stone 1997;

Chieze, Pineau des Forets & Flower 1998) have suggested schemes

for numerically integrating the multifluid equations in the limit of

pure ambipolar diffusion. In this regime, the charged species are

�E-mail: stephen.osullivan@ucd.ie (SOS); turlough.downes@dcu.ie (TPD)

firmly tied to the magnetic field lines as they diffuse through the

neutral gas. The problem becomes more technically challenging,

however, when charged species may be loosely attached to the field

lines and Hall diffusion can become important. Notably, it is thought

that Hall diffusion may play an important role in environments such

as the surfaces of neutron stars (Hollerbach & Rüdiger 2004), pro-

tostellar discs (Wardle 2004) and dense molecular clouds (CR02).

In their numerical studies of molecular clouds, CR02 assumed

that the ionization fraction is low and that the inertia of the charged

particles may be neglected. They were then able to integrate the gov-

erning equations for a multifluid problem including the presence of

several species of charge-carrying grain. Separately, Sano & Stone

(2002a,b) performed multifluid calculations designed to examine

the Hall effect in the context of the magnetorotational instability in

accretion discs. However, both of the schemes used by these authors

are subject to a rather stringent stability criterion which requires that

the time-step tends to zero as the Hall effect becomes large Falle

(2003, hereafter F03 ). To circumvent this constraint F03 presents a

scheme employing an implicit method of integrating the magnetic

field equation. This has the advantage of allowing time-steps up to

the limit dictated by the hyperbolic components of the equations.

However, since large-scale multifluid simulations are of obvious

interest, the inherent difficulty of parallelizing implicit schemes be-

comes a serious disadvantage.

In this work, we present a fully explicit numerical scheme for

solving the multifluid equations describing a weakly ionized plasma.

The usual stability restrictions are relaxed through a combination

of a technique known as Super Time-Stepping (STS) (Alexiades,

Amiez & Gremaud 1996) and a new method which we call the Hall
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1330 S. O’Sullivan and T. P. Downes

diffusion scheme (HDS). Crucially, since the scheme is explicit, it is

straightforward to parallelize and to implement on top of an adaptive

mesh refinement (AMR) engine.

In Section 2, the governing equations are described; Section 3

contains a detailed description and analysis of the numerical scheme;

Section 4 contains numerical tests demonstrating the reliability of

the scheme and in Section 5, the relevance of this work is discussed.

2 T H E M U LT I F L U I D E QUAT I O N S

We assume a weakly ionized plasma such that the mass density is

dominated by the neutral component of the gas. Then, relative to

the scalelength of the system, if particles of a given charged species

have small mean free paths in the neutral gas, or small Larmor radii,

their pressure and inertia may be neglected.

For convenience it is assumed there is no mass transfer between

species. It is straightforward, however, to insert the necessary terms

for a more general treatment to include mass transfer (for example,

see F03 and CR02) if desired. The equations governing the evolution

of the multifluid system (CR02; F03) can then be written as

∂ρi

∂t
+ ∂

∂x
(ρi q i ) = 0, (1)

∂ρ1q1

∂t
+ ∂

∂x
(ρ1u1q1 + p1I) = J × B, (2)

∂e1

∂t
+ ∂

∂x

[
u1

(
e1 + p1 + 1

2
ρ1q2

1

)]
= J · E +

N∑
i=1

Hi , (3)

∂B

∂t
+ ∂M

∂x
= ∂

∂x
R

∂B

∂x
, (4)

αiρi (E + q i × B) + ρiρ1 Ki 1(q1 − q i ) = 0, (5)

Hi + Gi 1 + αiρi q i · E = 0, (6)

∂Bx

∂x
= 0, (7)

N∑
i=2

αiρi = 0, (8)

N∑
i=2

αiρi q i = J. (9)

The subscripts denote the species, with a subscript of 1 indicating

the neutral fluid. The variables ρ i , q i ≡ (ui, vi, wi)
T and pi are

the mass density, velocity and pressure of species i. The identity

matrix, current density and magnetic flux density are represented

by I, J, B respectively. K i 1 describes the collisional interaction

between species i and the neutral fluid, α i is the charge-to-mass

ratio for species i , G i 1 is the energy transfer rate from species i
to the neutral fluid, Hi is the energy source or sink appropriate to

species i, R is the resistivity matrix and M is the hyperbolic flux of

B. See F03 and CR02 for a more detailed description of these terms.

Note that in general K i 1 and G i 1 may depend on the temperatures

and relative velocities of the interacting species. Equations (1)–

(6) are the equations governing the conservation of mass, neutral

momentum, neutral energy, magnetic flux, charged momentum and

charged energy. Equations (7)–(9) describe the divergence of B,

charge neutrality and current, respectively.

From Faraday’s law in one dimension ∂ Bx/∂t = 0 so that the triv-

ial Bx component may be dropped from equation (4). The hyperbolic

flux is then

M = (u1 By − v1 Bx , u1 Bz − w1 Bx ), (10)

and the resistivity matrix is

R =⎛⎝ (rO − rA)
B2

z
B2 + rA (rA − rO)

By Bz

B2 + rH
Bx
B

(rA − rO)
By Bz

B2 − rH
Bx
B (rO − rA)

B2
y

B2 + rA

⎞⎠ ,
(11)

where r O, r H and rA are the Ohmic, Hall and ambipolar resistivities,

respectively, and are defined by

rO = 1

σO

, (12)

rH = σH

σ 2
H + σ 2

A

, (13)

rA = σA

σ 2
H + σ 2

A

, (14)

with conductivities

σO =
N∑

i=2

αiρiβi , (15)

σH = 1

B

N∑
i=2

αiρi

1 + β2
i

, (16)

σA = 1

B

N∑
i=2

αiρiβi

1 + β2
i

, (17)

where the Hall parameter for species i is given by

βi = αi B

K1 iρ1

. (18)

3 N U M E R I C A L A P P ROAC H

3.1 The gas equations

Assuming a piecewise-constant solution at time tn on a uniform

mesh of spacing h, the solution at a later time tn+1 = tn + τ

is sought. The state in cell j represents the volume average over

( j − 1/2)h � x � ( j + 1/2)h.

It should first be noted that the charged particle pressures1 and

velocities (pn+1
i and qn+1

i for i > 1) can be obtained algebraically

through equations (5) and (6). This procedure is described in

Appendix A.

1 It is actually temperatures of the charged species which are derived as their

pressures are not explicitly necessary under the assumptions made here.
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Multifluid magnetohydrodynamics 1331

To obtain the full solution at time tn+1, finite volume methods

are applied to equations (1)–(8). The time integration is multiplica-

tively operator split into five operations, with each carried out to

second-order accuracy in space and time. The order is permuted

over successive time-steps such that second-order temporal accu-

racy is maintained over the full step (Strang 1968). In the following,

the five necessary operations for finite volume integration are de-

scribed.

(i) Equations (1)–(3) (with i = 1 for the mass equation) form a

system of equations for the neutral gas. Working in terms of the

primitive variables P = (ρ 1, q 1, p1)T, fluxes are evaluated from a

piecewise-constant solution Pn via a hydrodynamic Riemann solver.

A time-centred solution, Pn+1/2, obtained from these fluxes is then

reconstructed to a second-order piecewise-linear solution, P̄
n+1/2

,

using van Albada non-linear averaging for the gradients. Fluxes

may then be derived from P̄
n+1/2

which are second-order accurate

in space and time (for further details see, for example, Falle 1991).

These fluxes are then applied to the conserved variables.

(ii) The source terms on the right-hand sides of equations (2) and

(3) are applied.

(iii) The charged particle mass fluxes are applied using equation

(1) with i > 1 in a second-order upwind procedure similar to that

used for the neutral gas.

(iv) The hyperbolic flux on the left-hand side of equation (4) is

applied via a centred approximation

M j+1/2 = 1

2
(M j+1 + M j ). (19)

This has the disadvantage of not coupling the bulk fluid to the

magnetic field through a Riemann problem, however, it is necessary

in order that purely hydrodynamic subshocks may be properly cap-

tured. As remarked by F03, as long as the magnetic field appears

continuous on the grid, as should be the case with finite resistivities,

this is perfectly acceptable.

(v) The resistive term on the right-hand side of equation (4) is

applied. Discussion of this procedure is deferred to the following

section since it is of special interest.

3.2 Magnetic diffusion

Splitting the hyperbolic flux term ∂ M/∂x from the induction equa-

tion (4) and linearizing yields

∂B

∂t
= R

∂2 B

∂x2
. (20)

Note that the linearized form is assumed for convenience in the

following analysis and in practice generalized discretizations of the

non-linear diffusion term are used.

3.2.1 Standard discretization

The usual explicit discretization for a diffusion term applied to equa-

tion (20) yields

Bn+1
j = Bn

j + τ

h2
Rn

j

(
Bn

j+1 − 2Bn
j + Bn

j−1

)
. (21)

Assuming rO to be negligible, the relative importance of the re-

maining resistivities can be parameterized by η ≡ r A/|r H|. F03

showed the above scheme has an amplification matrix with eigen-

values which are real when η � η∗ and complex otherwise. The

transition point η∗ is given by

η∗ = 2|cos θ |/ sin2 θ, (22)

where θ is the pitch angle of the field with respect to the x-axis. In

the real regime, the stability limit on the time-step is

τ̄ R = 2
√

1 + η2

η(1 + cos2 θ ) + 2|cos θ |
√

(η/η∗)2 − 1
(23)

where τ̄ ≡ τ/τ⊥ and τ⊥ is the characteristic cell-crossing time for

diffusion perpendicular to the magnetic field given by

τ⊥ = h2

2|rH|
√

1 + η2
. (24)

However, below the transition point the stability limit becomes

τ̄ C = 1 + cos2 θ

2 cos2 θ

η√
1 + η2

. (25)

In either case the stable time-step limit goes as h2 since this is an

explicit discretization of a diffusion equation, however, a potentially

more severe constraint is that while this limit increases as η → η∗

in the real regime, it rapidly drops to zero as η → 0 in the complex

regime.

3.2.2 Numerical strategy

Our strategy is to split rH into two parts such that

rH = ra
H + rb

H (26)

where ra
H ≡ η

η∗ rH is the maximum allowable Hall resistivity in the

real regime and rb
H is the excess. The induction equation is then inte-

grated in two parts using a technique to accelerate the time-stepping

for the standard discretization with Hall resistivity ra
H. The excess

Hall resistivity rb
H is then applied using a different discretization

with suitable stability properties.

3.2.3 Super Time-Stepping

STS is a technique which can be used to accelerate explicit schemes

for parabolic problems. Essentially a Runge–Kutta–Chebyshev

method, it has been known for some time (see Alexiades et al.

1996), although it remains relatively unknown in computational as-

trophysics.

A superstep τ STS is a composite time-step built up from a series

of N STS substeps such that

τ STS =
NSTS∑
j=1

dτ j . (27)

Judicious choice of the dτ j yields stability for the superstep while

the normal stability restrictions on the individual substeps are re-

laxed. Exploiting the properties of Chebyshev polynomials provides

a set of optimal values for the substeps given by

dτ j = τ X

[
(−1 + ν) cos

(
2 j − 1

NSTS

π

2

)
+ 1 + ν

]−1

, (28)

where τ X is the normal explicit time-step limit and ν is a damping

factor. Note that τ STS →N 2
STSτ

X as ν → 0. The method is unstable

in the limit ν = 0. For a more detailed discussion, see Alexiades

et al. (1996) and references therein.

In order to apply STS to second order in time Richardson extrap-

olation is used.

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 366, 1329–1336



1332 S. O’Sullivan and T. P. Downes

Table 1. Test calculation parameters.

Case A

Right state ρ1 = 1 q 1 = (−1.751, 0, 0) B = (1, 0.6, 0) ρ2 = 5 × 10−8 ρ3 = 1 × 10−3

Left state ρ1 = 1.7942 q 1 = (−0.9759, −0.6561, 0) B = (1, 1.74885, 0) ρ2 = 8.9712 × 10−8 ρ3 = 1.7942 × 10−3

α2 = −2 × 1012 α3 = 1 × 108 K 2 1 = 4 × 105 K 3 1 = 2 × 104 a = 0.1

ν = 0.05 N STS = 5 N HDS = 0

Case B

Right state As case A

Left state As case A

α2 = −2 × 109 α3 = 1 × 105 K 2 1 = 4 × 102 K 3 1 = 2.5 × 106 a = 0.1

ν = 0 N STS = 1 N HDS = 8
Case C

Right state ρ1 = 1 q 1 = (−6.7202, 0, 0) B = (1, 0.6, 0) ρ2 = 5 × 10−8 ρ3 = 1 × 10−3

Left state ρ1 = 10.421 q 1 = (−0.6449, −1.0934, 0) B = (1, 7.9481, 0) ρ2 = 5.2104 × 10−7 ρ3 = 1.0421 × 10−2

α2 = −2 × 1012 α3 = 1 × 108 K 2 1 = 4 × 105 K 3 1 = 2 × 104 a = 1

ν = 0.05 N STS = 15 N HDS = 0

3.2.4 Hall diffusion scheme

Having advanced the induction equation with a Hall resistivity ra
H,

it is necessary to find an efficient scheme to impose the excess

Hall diffusion rb
H. Since multiplicative operator splitting yields a

composite scheme with an amplification factor equal to the product

of the amplification factors of the basis schemes this task can be

reduced to one of finding a scheme for pure Hall diffusion.

The key observation to make is that R has zero entries on the

diagonal when pure Hall diffusion is being considered. With this in

mind, equation (21) may be used to advance one component of the

magnetic field explicitly, followed by an implicit-like discretization

of the alternate component. We call this the HDS as we are not aware

of an instance of this approach elsewhere in the literature. Hence the

discretization of equation (21) for the pure Hall excess rb
H becomes

Bn+1
y j = Bn

yj + τ

h2
db

H

(
Bn

zj+1 − 2Bn
zj + Bn

zj−1

)
(29)

followed by

Bn+1
z j = Bn

zj − τ

h2
db

H

(
Bn+1

y j+1 − 2Bn+1
y j + Bn+1

y j−1

)
, (30)

where the cosine term is absorbed by defining db
H = rb

H cos θ . It

seems to make little difference which component is advanced first.

For clarity of notation the superscript b is dropped from the fol-

lowing analysis of the stability properties of the scheme. The resis-

tance matrix for pure Hall diffusion is

R =
(

0 dH

−dH 0

)
. (31)

Assuming a numerical wave of the form

Bn
j = Bneiω j (32)

in equations (29) and (30) yields an amplification matrix

A =
(

1 −d̂H

d̂H 1 − d̂2
H

)
, (33)

where d̂H ≡ ξdH and

ξ = 2τ (1 − cosω)

h2
. (34)

The eigenvalues of A are given by

λ = 1 − 1

2
d̂2

H ± i
1

2
d̂H

√
4 − d̂2

H, (35)

and hence HDS is neutrally stable for |d̂H| � 2. Taking the most

restrictive case of ω = π gives a stable time-step limit of

τ̄ HDS =
√

1 + η2

|cos θ |(1 − η/η∗)
. (36)

Note that τ̄ HDS → 1/|cos θ | as η → 0 in contrast to the standard

discretization for which τ̄ C → 0.

The extension of the HDS to more than one dimension is straight-

forward although we defer a detailed discussion to a later paper. For

an outline of the scheme in three dimensions the reader is referred

to Appendix B.

In practice, ordinary (unaccelerated) subcycling of HDS, using

N HDS subcycles, is applied in conjunction with STS. This com-

pound scheme (referred to as ‘STS/HDS’ hereafter) usually allows

the time-step limit imposed by the hyperbolic terms to be reached

efficiently (see Section 4.4).

4 N U M E R I C A L T E S T S

Following F03, the dynamic algorithm described here is tested

against solutions of the steady isothermal multifluid equations.

These steady-state equations are solved using an independent code,

the details of which are outlined in Appendix C. The conditions for

each of the tests are given in Table 1.

4.1 Case A: ambipolar dominated

In this test r O = 2 × 10−12, r H = 1.16 × 10−5 and r A = 0.068 giving

η = 5.86 × 103 and hence it can be expected that ambipolar diffusion

will dominate the solution. Fig. 1 shows plots of the x-component of

the neutral velocity, along with By for both the dynamic and steady-

state solutions. The calculation shown has h = 5 × 10−3. It can

be seen that the agreement between the two solutions is extremely

good.

Since the algorithm is designed to be second order it is worthwhile

measuring the convergence rate of the dynamic solution against the

solution from the steady-state solver. The comparison is made by

minimizing the L1 error norm, e1, between a section of the dy-

namical solution and the steady-state solution. Working from the

downstream side, the section x L � x � x R is fixed about the point

x∗ where the deviation from the downstream state first exceeds

50 per cent of the maximum variation in the solution. Using

x L = x∗ − 0.44 and x R = x∗ + 0.56 yields e1 = 3.90 × 10−5 for

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 366, 1329–1336
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Figure 1. Neutral fluid x-velocity and y-component of magnetic field for

case A with h = 5 × 10−3. The solution from the steady-state equations, as

a line, is overplotted with points from the dynamic code.

h = 5 × 10−3, and e1 = 1.56 × 10−4 for h = 1 × 10−2. This gives

e1 ∝ h2.0 – showing second-order convergence as expected.

4.2 Case B: Hall dominated

The Hall term dominates in this test, requiring the Hall diffu-

sion to be split and applied in part via HDS. The parameters are

r O = 2 × 10−9, r H = 0.0116, r A = 5.44 × 10−4 with η = 0.0046

� 1.2 Fig. 2 shows the results of the calculations for the test with

h = 2 × 10−3. For standard explicit codes the conditions lead to

prohibitive restrictions on the time-step. However, the use of HDS

allows us to maintain a time-step close to the Courant limit imposed

by the hyperbolic terms throughout the calculations.

As with case A, the dynamic solution is tested to ensure it

has the correct second-order convergence characteristics. With

x L = x∗ − 0.15 and x R = x∗ + 0.95, we find e1 = 4.95 × 10−3

for h = 2 × 10−3 and e1 = 1.15 × 10−3 for h = 1 × 10−3 , giving

e1 ∝ h2.1. Again, this is close to the second-order convergence rate

expected.

4.3 Case C: neutral subshock

This test is similar to case A, but with a higher sound speed and

upstream fast Mach number. As a result, a subshock develops in the

2 If the Hall diffusion is increased much further, it appears that the approxi-

mation of negligible charged particle inertia breaks down.
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x

Figure 2. Neutral fluid x-velocity and y-component of magnetic field for

case B with h = 2 × 10−3. The solution from the steady-state equations, as

a line, is overplotted with points from the dynamic code.

neutral flow because the interactions between the charged particles

and the neutrals are not strong enough to completely smooth out

the strong initial discontinuity in the neutral flow. The ability of the

algorithm described to deal with discontinuities in the solution is

therefore tested.

Fig. 3 shows the results of the calculations for h = 1 × 10−3.

The subshock in the neutral flow is clearly visible as a disconti-

nuity in u1, while there is no corresponding discontinuity in By.

Fig. 4 contains a plot of the x-component of the velocity of the neg-

atively charged fluid. As expected, there is no discontinuity in this

variable, but there are some oscillations at the point where the dis-

continuity in the neutral flow occurs. These errors are remarkably

similar to those encountered by F03 and do not affect the global

solution.

It can be expected that, since there is a discontinuity in

the solution of this test, the rate of convergence of the dy-

namic solution will be close to first order, at least for reso-

lutions high enough to discern the subshock in the solution.

In this test x L = x∗ − 0.13 and x R = x∗ + 0.15. We find

e1 = 3.41 × 10−2 for h = 5 × 10−3 and e1 = 5.25 × 10−3 for

h = 1 × 10−3 yielding e1 ∝ h1.16 – close to the first order ex-

pected, although clearly the error from around the subshock is not

completely dominating at this resolution. At h = 5 × 10−4 we find

e1 = 2.73 × 10−3 giving e1 ∝ h0.94 with respect to the error at

h = 1 × 10−3. We suspect that the deviation from first order is due

to a discontinuity in the electric field at the subshock causing an
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Figure 3. Neutral fluid x-velocity and y-component of magnetic field for

case C with h = 1 × 10−3. The solution from the steady-state equations, as

a line, is overplotted with points from the dynamic code.

error in the charged velocities since smoothing the solution with

some artificial viscosity is found to improve the convergence.

4.4 Comparative timings

In this section, comparison is made between the performances of

standard explicit, STS/HDS and implicit (Crank–Nicolson) dis-
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Figure 4. Negatively charged fluid x-velocity for case C with

h = 1 × 10−3. The solution from the steady-state equations, as a line,

is overplotted with points from the dynamic code.

Table 2. The speed-up factors in processor time usage

achieved via the implicit and STS/HDS discretizations

of the induction equation relative to the standard explicit

discretization.

Case A Case B Case C

STS/HDS 1.9 14.8 1.9

Implicit 1.9 23.3 2.7

cretizations of the induction equation. The different methods are

applied in otherwise identical codes to the high-resolution trials of

the preceding test cases. Since the neutral gas equations are treated

explicitly in all cases, the corresponding Courant condition on the

integration of the hyperbolic terms imposes a hard limit on the time-

step.

As a benchmark, we use the standard explicit discretization sub-

cycled to the same degree as the STS/HDS method. The speed-up

factors of the STS/HDS and implicit methods in terms of processor

time usage are presented in Table 2. Clearly, either technique offers

a significant improvement in efficiency and both achieve time-steps

close to the limit introduced by the hyperbolic terms. The implicit

method is slightly faster for case C due to the high degree of sub-

cycling used for the STS and significantly so for case B because

of the very large Hall term. Otherwise, the STS/HDS and implicit

methods yield similar speed-up factors indicating that overall ef-

ficiency is dominated by the other parts of the schemes. It should

be emphasized that these are steady-state problems which suit im-

plicit methods particularly well and for non-steady state problems

accuracy constraints may reduce the efficiency of implicit schemes.

5 C O N C L U S I O N S

A new explicit scheme for integrating the multifluid equations in

the limit of low ionization has been presented. The usual explicit

stability limit imposed by the induction equation is relaxed by means

of the STS algorithm applied for a portion of the Hall diffusion up

to a critical limiting value.

Beyond this limiting value the standard explicit discretization

becomes subject to a stability constraint requiring that the time-step

vanish as the Hall diffusion becomes large. In order to circumvent

this constraint, the excess Hall diffusion above the critical value is

split off and applied via a new method which we have called HDS.

It has been demonstrated that, for the case of an isothermal flow,

the algorithm is accurate and converges to second order when the

solution is smooth and to first order when the solution contains a

discontinuity. The extension of this scheme to non-isothermal flow

does not present any obvious difficulties, although a modification of

the discretization used for the magnetic flux evolution is necessary.

Since all discretizations used in the scheme presented here are

explicit, it is a straightforward matter to implement in a multidimen-

sional parallelized codes using AMR. This is a crucial advantage for

large-scale simulations of astrophysical systems in which multifluid

effects are thought to be important such as dense molecular clouds

and protostellar accretion discs.
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A P P E N D I X A : C H A R G E D V E L O C I T I E S

For this work, the collisional coefficients K i 1 are assumed to

be independent of velocities and temperatures. The following

derivation (S.A.E.G. Falle private communication) is included for

completeness.

Transforming to the frame co-moving with the neutral gas, equa-

tion (5) can be written as

q ′
i × B − κi q

′
i = −E′ − q1 × B, (A1)

where κ i ≡ρ 1 K i 1/α i and E ′ = E + q 1 × B.

Then choosing i = 2 as a reference species, the general solutions

for velocities of the remaining charged species are given by

q ′
i = A−1

i A2q ′
2, (A2)

where

Ai =
( −κi Bz −By

−Bz −κi Bx

By −Bx −κi

)
. (A3)

To derive the charged velocities, all that remains is for the refer-

ence velocity to be evaluated, this can be done by using equation

(9) and Ampère’s law to give

q ′
2 =

[
I −

(
N∑

i=3

αiρi

α2ρ2

A−1
i

)
A2

]−1

∇ × B

α2ρ2

. (A4)

If the collisional coefficients are in fact dependent on the ve-

locities of the charged species, this procedure can be carried out

iteratively using the values from the previous time-step as a starting

point.

Should the collisional coefficients depend on the temperatures of

the charged species, some additional calculation is necessary before

the next iteration: using equation (6) and inserting the specific form

of the function G i 1, N − 1 equations are obtained which may be

solved readily for the N − 1 charged temperatures.

Finally, it is worth noting that superior results are obtained by

interpolating the primitive quantities to the cell edges before calcu-

lating the charged velocities rather than by calculating the velocities

at the cell centres and interpolating from these to the edges.

A P P E N D I X B : H A L L D I F F U S I O N S C H E M E I N

T H R E E D I M E N S I O N S

Equation (5) can be used in conjunction with equation (9) to write

the electric field for pure Hall diffusion as

E = rH

J × B

B
. (B1)

Then, using Faraday’s law, we can write

∂B

∂t
= −∇ × (rH J × b), (B2)

where b ≡ B/B.

This equation can be expanded out and linearized to give

∂B

∂t
= GB, (B3)

where, using J = ∇ ×B, the matrix operator G is given by

G = −rH(b · ∇)∇ × . (B4)

Hence G is antisymmetric and we can write the generalized HDS

scheme as

Bn+1
x = Bn

x + τ
(

Gn
x y Bn

y + Gn
x z Bn

z

)
, (B5)

Bn+1
y = Bn

y + τ
(

Gn
y z Bn

z + Gn
y x Bn+1

x

)
, (B6)

Bn+1
z = Bn

z + τ
(

Gn
z x Bn+1

x + Gn
z y Bn+1

y

)
, (B7)

where Gn is the discretized form of the matrix operator G at time

level n.

The generalized HDS scheme in three dimensions is analogous

in construction to the one-dimensional case in that equation (B5)

is an explicit first step and equation (B7) is an implicit-like final

step. Additionally, we now have an intermediate step of mixed ex-

plicit/implicit character. Numerical tests indicate that the method

retains its favourable stability properties in three dimensions.

A P P E N D I X C : S T E A DY- S TAT E S O LV E R

Assuming an isothermal flow, as is the case for the tests presented

in this work, setting all derivatives with respect to time to zero in

the multifluid equations gives us

ρi ui = Qi = constant, (C1)

ρ1u2
1 + a2ρ1 + B2

2
= Px = constant, (C2)

ρ1u1v1 − Bx By = Py = constant, (C3)

ρ1u1w1 − Bx Bz = Pz = constant. (C4)

In addition the reduced momentum equations for the charged species

(equation 5) yield three equations for each charged species, and the
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charge neutrality condition is also used. Finally, the equation for B

yields

M − MR = R
dB

dx
(C5)

with MR (=ML) being the flux in the right (left) state.

For the cases considered here, with two charged species, the above

equations constitute one ordinary differential equation for B and

seven equations which, once B is known at a given point in space, can

be used to solve for all the other variables. The ordinary differential

equation (ODE) for B is solved using the Runge–Kutta method of

order 4.

The initial conditions (at x = 0) are a saddle point of the ODE

for B. These conditions are perturbed slightly and the system then

evolves through phase space to a sink point.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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