
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Dissertations School of Computer Science 

2018 

From Business Understanding to Deployment: An application of From Business Understanding to Deployment: An application of 

Machine Learning Algorithms to Forecast Customer Visits per Machine Learning Algorithms to Forecast Customer Visits per 

Hour to a Fast-Casual Restaurant in Dublin Hour to a Fast-Casual Restaurant in Dublin 

Odunayo David Adedeji 
Technological University Dublin, Ireland 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Adedeji, O.D. (2018). From Business Understanding to Deployment: An application of Machine Learning 
Algorithms to Forecast Customer Visits per Hour to a Fast-Casual Restaurant in Dublin. Dissertation 
M.Sc. in Computing (Data Analytics), DIT, 2018. 

This Dissertation is brought to you for free and open access by the School of Computer Science at ARROW@TU 
Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin. 
For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F130&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


An Automated Negotiation System for           

eCommerce Store Owners to Enable 

Flexible Product Pricing 

 

 

Jake O’Halloran 

 

 

 

A dissertation submitted in partial fulfilment of the requirements of 

Dublin Institute of Technology for the degree of  

M.Sc. in Computing (Advanced Software Development) 

 

January 2019 

 

 

 



 

  i 

 

 

 

 

I certify that this dissertation which I now submit for examination for the award of 

MSc in Computing (Advanced Software Development), is entirely my own work and 

has not been taken from the work of others save and to the extent that such work has 

been cited and acknowledged within the test of my work. 

 

This dissertation was prepared according to the regulations for postgraduate study of 

the Dublin Institute of Technology and has not been submitted in whole or part for an 

award in any other Institute or University. 

 

The work reported on in this dissertation conforms to the principles and requirements 

of the Institute’s guidelines for ethics in research. 

 

 

 

Signed:   __Jake O’Halloran____________________ 

 

 

Date:     4th January 2019 

 



 

  ii 

ABSTRACT 

If a store owner wishes to sell a product online, they traditionally have two options for 

deciding on a price. They can sell the product at a fixed price like the products sold on 

sites like Amazon, or they can put the product in an auction and let demand from 

customers drive the final sales price like the products sold on sites like eBay. Both 

options have their pros and cons. An alternative option for deciding on a final sales 

price for the product is to enable negotiation on the product. With this, there is a 

dynamic nature to the price; each customer can negotiate with the store owner on the 

price which allows the final sales price to both change over time and on a customer by 

customer basis. The issue with enabling negotiation in the context of eCommerce is the 

time investment needed from the store owner. A store owner cannot negotiate every 

time an offer comes in from a potential customer, the potential time investment would 

not be acceptable. Using software agents to automate the process of negotiation for the 

seller is a potential solution to enabling negotiation in eCommerce for store owners. In 

this research, a system such as the one just described is developed in a way that mirrors 

real life negotiations more closely and after evaluation, is found to be a potential 

solution for the enabling of negotiation in eCommerce. 

 

Key words: eCommerce, automated negotiation, software agents 

 



 

  iii 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere thanks to my supervisor Damian Gordon, whose 

guidance contributed enormously to the production of this dissertation. 

 

I would like to thank my Mam and Dad for their support and making this possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  iv 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................ II 

TABLE OF FIGURES ............................................................................................ VII 

TABLE OF TABLES ................................................................................................. X 

1 CHAPTER 1 INTRODUCTION ....................................................................... 11 

1.1 BACKGROUND .................................................................................................. 11 

1.2 RESEARCH QUESTION ....................................................................................... 12 

1.3 RESEARCH OBJECTIVES .................................................................................... 13 

1.4 RESEARCH METHODS ....................................................................................... 14 

1.5 PROJECT SCOPE ................................................................................................ 15 

1.6 LIMITATIONS .................................................................................................... 15 

1.7 THESIS OUTLINE ............................................................................................... 16 

2 CHAPTER 2. NEGOTIATION: AUTOMATED, NON-AUTOMATED, AND 

SATISFACTION ....................................................................................................... 17 

2.1 INTRODUCTION ................................................................................................. 17 

2.2 ECOMMERCE .................................................................................................... 17 

2.3 SOFTWARE AGENTS IN NEGOTIATION .............................................................. 18 

2.4 NEGOTIATION: BASICS ..................................................................................... 18 

2.5 EXISTING APPROACHES .................................................................................... 20 

2.5.1 Non-automated Approaches ................................................................. 20 

2.5.2 Automated Approaches ......................................................................... 22 

2.6 SATISFACTION IN NEGOTIATION ....................................................................... 28 

2.7 CONCLUSIONS .................................................................................................. 31 

3 CHAPTER 3. NEGOTIATION SYSTEM DESIGN ....................................... 32 

3.1 INTRODUCTION ................................................................................................. 32 

3.2 SOFTWARE DEVELOPMENT PROCESS ................................................................ 32 

3.2.1 Definition .............................................................................................. 33 

3.2.2 Traditional Development Processes ..................................................... 33 

3.2.3 Agile Development Processes ............................................................... 34 

3.2.4 Selection of Development Process ........................................................ 35 



 

  v 

3.3 SYSTEM TECHNOLOGIES ................................................................................... 37 

3.3.1 Front End .............................................................................................. 37 

3.3.2 Back End ............................................................................................... 44 

3.3.3 Selection ................................................................................................ 48 

3.3.4 System Architecture .............................................................................. 48 

3.4 USER INTERFACE DESIGNS ............................................................................... 50 

3.4.1 Initial Paper Designs ............................................................................ 50 

3.4.2 Refined Wireframe Designs .................................................................. 52 

3.5 EXPERIMENTAL DESIGN ................................................................................... 56 

3.5.1 Experiment 1 – Store Owner Satisfaction ............................................. 56 

3.5.2 Experiment 2 – Customer Satisfaction ................................................. 57 

3.6 SYSTEM DESIGN ............................................................................................... 59 

3.6.1 Use Case Diagrams .............................................................................. 59 

3.6.2 Entity Relationship Diagram ................................................................ 61 

3.6.3 Class Diagrams .................................................................................... 62 

3.7 CONCLUSIONS .................................................................................................. 67 

4 CHAPTER 4. SYSTEM IMPLEMENTATION AND EXPERIMENTS ...... 68 

4.1 INTRODUCTION ................................................................................................. 68 

4.2 FRONT-END IMPLEMENTATION ........................................................................ 68 

4.2.1 Front-End Project Structure ................................................................. 69 

4.2.2 Angular Specific Classes ...................................................................... 72 

4.2.3 Welcome Page ...................................................................................... 73 

4.2.4 Home Component ................................................................................. 75 

4.2.5 Negotiation Component ........................................................................ 77 

4.3 BACK-END DEVELOPMENT .............................................................................. 80 

4.3.1 Index Class............................................................................................ 80 

4.3.2 User Server ........................................................................................... 81 

4.3.3 Negotiation Agent ................................................................................. 82 

4.3.4 Negotiation Class ................................................................................. 83 

4.4 NEGOTIATION EVALUATOR SYSTEM ................................................................ 88 

4.4.1 Index Class............................................................................................ 88 

4.4.2 Negotiation Evaluator Class ................................................................ 89 

4.4.3 User Class ............................................................................................. 90 



 

  vi 

4.5 EXPERIMENTAL IMPLEMENTATION ................................................................... 92 

4.5.1 Store Owner Satisfaction Experiment ................................................... 92 

4.5.2 Store Owner Satisfaction Experiment ................................................... 94 

4.6 REFLECTION ON DEVELOPMENT ....................................................................... 95 

4.7 CONCLUSIONS .................................................................................................. 96 

5 CHAPTER 5. EVALUATION OF THE NEGOTIATION SYSTEM ........... 97 

5.1 INTRODUCTION ................................................................................................. 97 

5.2 CALIBRATION - RESULTS AND EVALUATION .................................................... 97 

5.2.1 Results ................................................................................................... 98 

5.2.2 Evaluation ........................................................................................... 102 

5.3 STORE OWNER SATISFACTION EXPERIMENT .................................................. 103 

5.3.1 Impacts of Increasing the Increment Value ........................................ 104 

5.3.2 Impacts of Increasing the Amount of Customers ................................ 106 

5.3.3 Impacts of Increasing the Amount of Negotiations............................. 108 

5.3.4 Impacts of Increasing the Store Owner Limit ..................................... 110 

5.3.5 Key Findings ....................................................................................... 112 

5.4 CUSTOMER SATISFACTION EXPERIMENT ........................................................ 113 

5.4.1 Participants......................................................................................... 113 

5.4.2 Experiment Results and Evaluation .................................................... 114 

5.5 CONCLUSIONS ................................................................................................ 115 

6 CHAPTER 6. CONCLUSIONS AND FUTURE WORK ............................. 116 

6.1 INTRODUCTION ............................................................................................... 116 

6.2 CONCLUSIONS ................................................................................................ 116 

6.2.1 Negotiation Research.......................................................................... 116 

6.2.2 System Design ..................................................................................... 117 

6.2.3 System Implementation ....................................................................... 118 

6.2.4 System Evaluation ............................................................................... 118 

6.3 CONTRIBUTIONS AND IMPACT ........................................................................ 119 

6.4 FUTURE WORK ............................................................................................... 120 

BIBLIOGRAPHY .................................................................................................... 123 

 



 

  vii 

TABLE OF FIGURES 

FIGURE 1 SAMPLE NEGOTIATION 1 ................................................................................ 19 

FIGURE 2 SAMPLE NEGOTIATION 2 ................................................................................ 19 

FIGURE 3 EAGORA SYSTEM CRITIQUING OFFER MADE TO USER ...................................... 21 

FIGURE 4 AGENT VS HUMAN NEGOTIATION SYSTEM PERFORMANCE FOR LAU (2007) ... 26 

FIGURE 5 PART OF THE POST NEGOTIATION QUESTIONNAIRE USED BY CURHAN ET AL... 29 

FIGURE 6 PART OF THE POST NEGOTIATION QUESTIONNAIRE USED BY YANG ET AL. ...... 30 

FIGURE 7 WATERFALL SOFTWARE DEVELOPMENT PROCESS .......................................... 34 

FIGURE 8 AGILE SOFTWARE DEVELOPMENT PROCESS ................................................... 35 

FIGURE 9 MVC FLOW (SCHLIN, 2019) .......................................................................... 39 

FIGURE 10 ANGULARJS ARCHITECTURE ("ANGULARJS ARCHITECTURE", 2019) .......... 39 

FIGURE 11 ANGULAR ARCHITECTURE ("ANGULAR ARCHITECTURE", 2019) ................. 41 

FIGURE 12 THE MYSQL ARCHITECTURE (LALIT, 2019) ................................................ 47 

FIGURE 13 SYSTEM ARCHITECTURE .............................................................................. 48 

FIGURE 14 PAPER DESIGN FOR WELCOME PAGE. ............................................................ 50 

FIGURE 15 PAPER DESIGN FOR HOME PAGE. ................................................................... 51 

FIGURE 16 PAPER DESIGN FOR NEGOTIATION MODAL. ................................................... 52 

FIGURE 17 WIREFRAME FOR THE WELCOME PAGE ......................................................... 53 

FIGURE 18 WIREFRAME FOR THE HOME PAGE ................................................................ 54 

FIGURE 19 WIREFRAME FOR NEGOTIATION PAGE ........................................................... 55 

FIGURE 20 SATISFACTION QUESTIONNAIRE USED BY CURHAN ET AL. (2006) ................ 58 

FIGURE 21 USE CASE DIAGRAM FOR CUSTOMER ............................................................ 59 

FIGURE 22 USE CASE DIAGRAM FOR NEGOTIATION AGENT ........................................... 60 

FIGURE 23 ERD DIAGRAM FOR NEGOTIATION SYSTEM AND ECOMMERCE SITE .............. 61 

FIGURE 24 INITIAL CLASS DIAGRAM FOR NEGOTIATION SYSTEM .................................... 63 

FIGURE 25 FINAL CLASS DIAGRAM FOR NEGOTIATION SYSTEM ...................................... 65 

FIGURE 26 CLASS DIAGRAM FOR NEGOTIATION EVALUATOR ......................................... 66 

FIGURE 27 WIREFRAME FOR THE HOME PAGE ................................................................ 69 

FIGURE 28 RIGHT CLICKING ON ‘SRC’ TO ADD A COMPONENT USING VISUAL CODE 

ANGULAR PLUGIN ................................................................................................... 70 

FIGURE 29 ANGULAR ECOMMERCE STORE PROJECT STRUCTURE ................................... 71 

FIGURE 30 APP MODULE CLASS ...................................................................................... 72 



 

  viii 

FIGURE 31 APP.COMPONENT CLASS ................................................................................ 72 

FIGURE 32 WELCOME COMPONENT ............................................................................... 73 

FIGURE 33 REGISTER FUNCTION IN HTTP SERVICE CLASS ............................................ 74 

FIGURE 34 LOGIN FUNCTION IN NAVBAR TYPESCRIPT CLASS ......................................... 74 

FIGURE 35 HOME COMPONENT ...................................................................................... 75 

FIGURE 36 NAVBAR CHANGES VIEW BASED ON WHETHER THE CUSTOMER IS LOGGED IN 75 

FIGURE 37 HOME COMPONENT TELLING THE BACKEND (VIA HTTP SERVICE CLASS) TO 

START THE NEGOTIATION ........................................................................................ 76 

FIGURE 38 STARTNEGOTIATION FUNCTION IN HTTP SERVICE CLASS ............................ 76 

FIGURE 39 HOME COMPONENTS MODAL CONTAINING NEGOTIATION COMPONENT ........ 77 

FIGURE 40 OFFERING 237 FOR PRODUCT IN MODAL CONTAINING THE NEGOTIATION 

COMPONENT ............................................................................................................ 77 

FIGURE 41 HTTP SERVICES SENDOFFER FUNCTION USED TO SEND CUSTOMER OFFERS TO 

THE NEGOTIATION SYSTEM ...................................................................................... 78 

FIGURE 42 NEGOTIATION SYSTEM ACCEPTED THE OFFER THE CUSTOMER SENT ............. 79 

FIGURE 43 NEGOTIATION SYSTEM RETURNED A COUNTER SET AS FINAL, CUSTOMER MUST 

ACCEPT OR REJECT IT .............................................................................................. 79 

FIGURE 44 INITIAL CLASS DIAGRAM FOR NEGOTIATION SYSTEM .................................... 80 

FIGURE 45 INDEX.PHP CLASS ......................................................................................... 81 

FIGURE 46 USERSERVER CONSTRUCTOR ....................................................................... 81 

FIGURE 47 SAMPLE ENTRIES IN THE NEGOTIATIONS TABLE ............................................ 82 

FIGURE 48 COUNTER METHOD FOR NEGOTIATIONAGENT CLASS ................................... 83 

FIGURE 49 NEGOTIATION CLASS CONSTRUCTOR ............................................................ 84 

FIGURE 50 NEGOTIATION CLASS GETNEGOTIATION METHOD ........................................ 84 

FIGURE 51 ENDNEGOTITION METHOD IN NEGOTIATION CLASS ...................................... 86 

FIGURE 52 ALL MESSAGES STORED IN A DATABASE FOR A NEGOTIATION OF ID 2 .......... 86 

FIGURE 53 GENERATE COUNTER METHOD IN NEGOTIATION CLASS ............................... 87 

FIGURE 54 INDEX.PHP RECEIVES THE FIELD VALUES FROM THE FRONT-END AND CREATES 

THE EVALUATOR WITH THEM .................................................................................. 88 

FIGURE 55 EVALUATORS FUNCTION FOR GENERATING CUSTOMERS TO NEGOTIATE WITH 

THE SYSTEM ............................................................................................................ 89 

FIGURE 56 AS THE ‘USERTYPE’ VARIABLE INCREMENTS, THE CUSTOMERS NEGOTIATION 

BEHAVIOUR CHANGES ............................................................................................. 89 

FIGURE 57 USER CONSTRUCTOR .................................................................................... 90 



 

  ix 

FIGURE 58 GENOFFER FUNCTION .................................................................................. 91 

FIGURE 59 SENDOFFER FUNCTION ................................................................................. 92 

FIGURE 60 MONETARY VALUE OF ALL COMBINED SALES FOR EACH SYSTEM VERSION .. 99 

FIGURE 61 AVERAGE SALES PRICE PER SYSTEM VERSION ............................................ 100 

FIGURE 62 PERCENTAGE OF NEGOTIATIONS THAT REACHED A SUCCESSFUL ENDING PER 

SYSTEM VERSION ................................................................................................... 101 

FIGURE 63 NUMBER OF NEGOTIATIONS THAT FAILED TO REACH A SUCCESSFUL ENDING 

PER SYSTEM VERSION ............................................................................................ 101 

FIGURE 64 TOTAL REVENUE FROM SALES FROM SUCCESSFUL NEGOTIATIONS WITH 

CUSTOMERS ........................................................................................................... 104 

FIGURE 65 NUMBER OF SUCCESSFUL NEGOTIATIONS AFTER EACH INCREMENT INCREASE

 .............................................................................................................................. 105 

FIGURE 66 AVERAGE SALES PRICE AFTER EACH INCREMENT INCREASE ....................... 106 

FIGURE 67 AVERAGE SALES WITH INCREASING CUSTOMER COUNTS ............................ 107 

FIGURE 68 PERCENTAGE OF NEGOTIATIONS THAT WERE SUCCESSFUL AFTER INCREASED 

NEGOTIATION COUNT ............................................................................................ 108 

FIGURE 69 AVERAGE SALES PRICE PER INCREASED NEGOTIATION COUNT .................... 109 

FIGURE 70 AVERAGE SALE AS STORE OWNER LIMIT WAS INCREASED .......................... 110 

FIGURE 71 PERCENTAGE OF SUCCESSFUL NEGOTIATIONS AS STORE OWNER LIMIT WAS 

INCREASED ............................................................................................................ 111 

 



 

  x 

TABLE OF TABLES 

TABLE 1 SUMMARY OF 5 EXPERIMENTS RAN BY CHENG (2006)..................................... 23 

TABLE 2 COMPONENTS OF THE ANGULARJS ARCHITECTURE ......................................... 40 

TABLE 3 PHP MAJOR RELEASES ................................................................................... 45 

TABLE 4 SATISFACTION QUESTIONNAIRE USED BY YANG ET AL. (2009) ........................ 58 

TABLE 5 VERSIONS OF THE NEGOTIATION SYSTEM ........................................................ 98 

TABLE 6 EXPERIMENT PARTICIPANTS .......................................................................... 113 

 

 



 

  11 

1 CHAPTER 1 INTRODUCTION 

1.1 Background 

Online marketplaces are websites that facilitate products trading between Internet 

buyers and Internet sellers (Ngai, 2007). Currently, the two most popular methods for 

trading products through these marketplaces are fixed price selling (e.g. Amazon) and 

online auctions (e.g. eBay). Despite their popularity, both methods have drawbacks for 

both sellers and their potential buyers. Fixed price selling lacks flexibility; a price must 

be set from the get-go and unless later updated, is the only price available to buyers. 

This requires sellers needing to decide on prices very carefully. Too high and buyers 

will be lost, too low and the sellers profit margin will fall. Online auctions fix this by 

allowing sellers to set a reasonably low starting price and letting demand drive price 

even higher. This reduces the fear sellers can have that setting a certain price point will 

drive away potential sales. However, if bidding in the auction is low, this can yield 

sales prices that are lower than if sellers would have used a fixed price. This is where a 

third method comes in, negotiation. Negotiation is a form of decision-making where 

two or more parties jointly explore possible solutions in order to reach a consensus 

(Rahwan, 2002). 

Sample negotiation: Alice is selling a product for €120.00 - the negotiation issue is the 

Product Price. 

1. Bob offers to pay a price of €50.00 

2. Alice counters Bobs offer with €105.00 

3. Bob offers to pay a price of €75.00 

4. Alice counters Bobs offer with €95.00 

5. Bob offers to pay a price of €82.00 

6. Alice counters Bobs offer with a final counter offer of €85.00 

7. Bob and Alice agree on €85.00 

Negotiation has become very interesting research issue (Fathey, 2005). A clear 

advantage when buying in a real world setting rather than online is the ability to 

negotiate. When buyers and sellers are face to face, negotiation can take place for a 

more mutually agreeable price. The potential advantages of which is the buyer gets a 



 

  12 

price they are more comfortable paying and the seller gets the opportunity to sell a 

product they might not of had the opportunity to sell if the price was fixed.  

Negotiation is becoming an emerging area in the evolution of electronic commerce 

(ecommerce) on the web. Having a system that can facilitate negotiations between 

sellers and buyers in the context of an e-commerce site would be very beneficial to 

both parties, as it would be a way to integrate the advantages of negotiation in real 

world marketplaces into online marketplaces.  

1.2 Research Question 

Research into negotiation systems that serve to aid both buyers and sellers has been 

well documented, but research into systems designed only for sellers is lacking.  

Furthermore, research into a negotiation system designed to specifically aid 

eCommerce store owners in negotiating with potential customers is currently absent. 

When a customer enters a store and desires to negotiate for a lower price on a specific 

product, store owners may have had previous dealings with that specific customer. In 

real world negotiations, store owners can use information gathered from past 

negotiations to get better deals in future negotiations. For example, if the customers 

average goal within negotiations is known to the store owner e.g. the customer always 

agrees on any price that is 20% below the asking price or better, the store owner can 

use this information to both ensure they come to an agreement with the customer and 

sell the product to them for the highest price they can. As different customers negotiate 

in different ways, the negotiation strategy employed by the store owner when 

negotiating with one customer may be different when negotiating with another. 

Negotiation systems that use past negotiation results (Amgoud, 2005), customer data 

(Kulkami, 2017) and multiple negotiation strategies (Kexing, 2011) have already been 

researched. However, these have not been used in correlation with each other, not in a 

way that attempts to mimic real world negotiations more closely and not with the aim 

of trying to benefit ecommerce store owners exclusively. 

A huge issue with enabling negotiation for these store owners is the time investment 

needed from them. A store owner would have to take part in a negotiation each time an 

offer for a product is sent by a potential buyer. This process would create significant 

issues if store owners were to try to keep up with the influx of product offers 

(potentially thousands per day). As humans could not possibly do this work efficiently, 



 

  13 

software agents could be used as a way of taking care of this work in place of a store 

owner. Agents are software components that act on behalf of users, or group of users 

(Fathey, 2005). The use of agents to support Ecommerce operations, especially in 

automating the buying and selling process is promising (Yu, 2008).  

The project will explore automated negotiation and will focus on application of the 

research to the specific setting of eCommerce. A negotiation system will be created to 

enable negotiation functionality for ecommerce store owners. The negotiation system 

will allow customers to negotiate on the price of products, and the system will 

negotiate with the customers directly, in place of the store owner. The system will 

negotiate in a way that mimics real world negotiations more closely than other existing 

negotiation systems. Using a dynamic negotiation strategy influenced by a 

combination of negotiation and customer data attained by examining past negotiations 

with each customer individually, the system will attempt to agree on a price with 

customers that benefits the store owners. 

1.3 Research Object ives 

The research objectives of this project are as follows: 

• Review existing literature to get an understanding on the current knowledge 

and sentiments held in the field of automated negotiation. Use this to aid in the 

design and development of a new and alternative system. 

• Design and develop a basic negotiation system. This system will be capable of 

automating negotiations with customers for ecommerce store owners. This 

system will use a simple, static strategy when negotiating with customers. 

• Improve on the basic negotiation system, enabling it to utilize a dynamic 

strategy through analysing and evaluating past negotiations with individual 

customers so to achieve better results in its future negotiations with those same 

customers. 

• Prepare an experiment to allow evaluation of the negotiation systems 

performance. 

• Prepare a second experiment to evaluate the usability of the negation system.  

• Evaluate the results of the experiments and the interview and provide analysis. 



 

  14 

To accomplish the above objectives, the research question and hypothesis are defined 

as follows: 

• Null Hypothesis (H0): A negotiation system used in an ecommerce setting 

cannot use a negotiation strategy that mimics real life negotiations to provide 

better results for a store owner. 

• Alternate Hypothesis (H1): If a negotiation system can use a negotiation 

strategy that mimics real world negotiations to agree on prices with customers 

that are to the satisfaction of a store owner, then the system is an acceptable 

tool to enable negotiation in ecommerce.  

• Alternate Hypothesis (H2): If customers have positive experiences negotiating 

with the automated negotiations system, then the system is an acceptable tool 

to enable negotiation in ecommerce. 

 

“Can a negotiation system implemented in the context of an eCommerce site, use a 

combination of customer and past negotiation data to negotiate pricing with customers 

to the satisfaction of the owner of the website?”  

1.4 Research Methods 

The project will start with secondary research of the existing literature to gain a better 

understanding of both the topic of negotiation in eCommerce and the existing state of 

the art approaches to providing solutions for it. The secondary research will be focused 

on areas that could help with the research problem and included: Negotiations in 

eCommerce, automated negotiation systems and non-automated negotiation systems. 

Primary research will follow which will be a combination of both qualitative and 

quantitative methods. Combining both methods allows for the analysis to cover both 

the effectiveness of the system and its usability. Interviews with volunteers who agree 

to negotiate with the system allows for the capture of data that could be used to 

measure the usability of the negotiation system. Focusing on its ability to successfully 

integrate with an eCommerce site. Quantitative methods will be used to compare the 

results attained by the basic negotiation system with those attained by the improved 

negotiation system. 

 



 

  15 

1.5 Project Scope 

The scope of the research will be to design, develop and evaluate a negotiation system 

that uses past negotiation data and customer negotiation patterns in its negotiations 

with customers in relation to a negotiation system that does not use the data in its 

negotiations. The proposed negotiation system will only ever be tasked with 

negotiating on a singular issue: product price. When a customer negotiates with the 

proposed system, the system has only one goal: agree to sell the product to the 

customer for the highest price it can for owners of ecommerce stores. The system will 

not be concerned with coming to agreements on prices that benefit the customers, or 

agreements that are mutually beneficial. The system will aim to end negotiations with 

prices that most benefit the store owners. 

1.6 Limitations 

The first limitation of the system will be its inability to deal with customers with 

dynamic negotiation patterns. The negotiation system will operate under the 

assumption that the max percentage of the product price a customer is willing to pay 

during one negotiation will be the same for any follow up negotiations. Once the 

system learns a customer’s behaviour once, it will not relearn it going forward.  

A limitation when it comes to evaluating the system will be the fact that it will be 

necessary to create a large dataset of negotiation results from scratch. The system will 

be built from the ground up and so a dataset of negotiation results will have to be 

created for the new system before evaluation can begin. An existing dataset cannot be 

used due to the individual nature of the project. 

To evaluate the systems performance accurately, a great number of negotiations must 

be completed. The number of completed negotiations needed will be much larger than 

what could effectively be achieved by using real life volunteers to negotiate with the 

system. As such, mock customers will have to be created and made negotiate with the 

system in place of real-life customers. This will be a limitation on the research as the 

level of variety on the types of customers that can be created will be limited. In the 

end, only 16 customers with different negotiating behaviour will be created, which 



 

  16 

cannot completely capture the amount of potential variety in the negotiating behaviour 

between real life customers. 

With a system that will be biased towards achieving results that only satisfy the store 

owner, a potential limitation is whether customers will be able to detect this. If they 

can, this could have some potentially negative results. Customers may not engage in 

negotiations with a system they know to possess a bias against them.  

1.7 Thesis Outline 

Chapter 2 outlines the existing research on negotiation systems to form a foundation 

from which to begin the design and development on the proposed negotiation system 

and reveal ways to evaluate the system once it has been implemented. 

Chapter 3 describes the development process that will be used for the project and 

details the technology that will be used for the development before giving detailed 

designs for the negotiation system and its architecture. 

Chapter 4 explains how the negotiation system was implemented by breaking it down 

feature by feature and providing detailed explanations and code samples. The two 

experiments that were going to be used to evaluate the implemented negotiation 

system were described.  

Chapter 5 evaluates the results gathered from undertaking both the experiments. 

Through this, the system is described from the perspective of its abilities and 

limitations. 

Chapter 6 presents a conclusion to the thesis. The key points from each chapter are 

gathered together and discussed to give an overview of the findings and their 

contributions to the body of research into negotiation systems as they exist in the 

context of the internet. 



 

  17 

2 CHAPTER 2. NEGOTIATION: AUTOMATED, NON-

AUTOMATED, AND SATISFACTION 

2.1 Introduction 

In this chapter, multiple areas of research are studied to form a foundation from which 

to begin the design and development on the proposed negotiation system. Firstly, 

background information is given on certain topics to lay the groundwork for a better 

understanding on the existing negotiation system research. Once a basic understanding 

has been established, existing literature on previous approaches taken to creating 

negotiation systems are described, examined and evaluated. Reviewing the existing 

literature will reveal and explore two main approaches to providing solutions for 

negotiation systems; automated and non-automated. Lastly, the suitability and 

importance of using satisfaction with negotiation results as an evaluation measure for 

negotiations is explained and justified.  

2.2 eCommerce 

The internet has revolutionised how commerce is performed (Pease, 2001).  The 

Internet is a nearly perfect market because information is instantaneous, and buyers 

can compare the offerings of sellers worldwide (Srinivasan, 2002). The onset of this 

“nearly perfect market” came with it a new form of commerce; electronic commerce. 

There is no universal accepted definition of electronic commerce (Ngai, 2002). 

Electronic commerce (eCommerce) has been defined in several ways depending on the 

context and research objective of the author (Grandon, 2004). From an online 

perspective, eCommerce provides the capability of buying and selling products and 

information on the Internet and other online services (Ngai, 2002). It is undeniable that 

eCommerce has changed many things in the business; it not only has changed the way 

they sell, purchase or deal with their customers and suppliers but it has also changed 

the business perspective from “production excellence” to “customer intimacy” 

(Rahayu, 2015). eCommerce is an exciting area for research, because of its relative 

novelty and exploding growth (Ngai, 2002). 



 

  18 

2.3 Software Agents  In Negotiation 

When looking at literature that describes the approaches to designing negotiation 

systems, it becomes quite evident just how popular the use of software agents are as 

integral parts of the solutions. The jobs they are tasked with completing in each system 

differ on a system to system basis. In some systems such as the ones designed by 

Kersten et al. (2003) and Chen et al. (2005), the agents aid users in the negotiation by 

assessing and critiquing offers. Other systems such as the ones developed by Wang et 

al. (2006) and Cheng et al. (2006) use agents to negotiate on behalf of the users. 

Rahwan et al. (2002) used a combination of the two, not only would agents be used to 

negotiate on behalf of the users, other agents would also be given the responsibility of 

assessing and critiquing the offers made by these negotiation agents. 

When research on twelve existing negotiation systems was examined, all but one of the 

designs were found to use software agents either to aid the negotiations in their 

systems or to undertake the negotiations themselves. In all twelve of the systems, 

multiple agents were used and in all but one, agents were used to either represent or aid 

both the buyer and the seller. The set up for the agents varied among the twelve 

approaches, with many to many, one to many and one to one all being present among 

the research. 

2.4 Negotiation: Basics 

Negotiation is a process between buyers and sellers in a business transaction trying to 

reach an agreement on one or more issues (Junyan, 2007). In ecommerce, these issues 

traditionally include price, quantity or delivery. The negotiation process is an iterative 

back and forth of messages containing offers, counter offers, final offers and ends with 

either side rejecting or accepting an offer sent to them on a certain issue based on their 

goal for that issue.  

Presented in the figure below is an example of a negotiation on the issue of price on a 

product worth 100 euros. The buyer has a goal to agree on a price of 85 euros or 

below. The seller has a goal to agree on a price of 80 euros or above. After a third offer 

was sent to the seller, they once again countered it, but with the specification that it 

was the final offer, as any lower would result in them not achieving their goal. At this 



 

  19 

point, the buyer must either accept or reject the price of 80 euros. The negotiation ends 

as the buyer accepts the final offer of 80, as their goal was 85 euros or below. 

  

Message Number Buyer Message Seller Message 

1 Offer: 60 euros  

2  Counteroffer: 90 euros 

3 Offer: 65 euros  

4  Counteroffer: 87 euros 

5 Offer: 70 euros  

6  Final Offer: 80 euros 

7 Accept Offer  

               Figure 1 Sample Negotiation 1 

Presented in the figure below is another example of a negotiation between a buyer and 

seller on the issue of price on a product worth 100 euros. The buyer has a goal to agree 

on a price of 80 euros or below. The seller has a goal to agree on a price of 85 euros or 

above. Here the buyer sent a third offer to the seller, but with the specification that it 

was the final offer, as any higher would result in them not achieving their goal. At this 

point, the seller must either accept or reject the price of 80 euros. The negotiation ends 

as the seller rejects the final offer of 80, as their goal was 85 euros or above.  

 

Message Number Buyer Message Seller Message 

1 Offer: 60 euros  

2  Counteroffer: 90 euros 

3 Offer: 75 euros  

4  Counteroffer: 87 euros 

5 Final Offer: 80 euros  

6  Reject Offer 

             Figure 2 Sample Negotiation 2  

 

 



 

  20 

2.5 Existing Approaches  

In this section two distinct approaches to negotiation will be reviewed, first non-

automated approaches, and then automated ones. 

2.5.1  Non-automated Approaches  

Non-automated negotiation systems are used to simplify, aid or facilitate the process of 

negotiation for users.  

Kersten et al. (2003) developed a web-based negotiation environment designed to 

support negotiation via software agents and negotiation support/decision systems. The 

agents’ purpose in the system was to interpret the negotiation activities for the user and 

provide methodical advice based on them using game theory analysis. Agents offered 

assessment of each offer that was received during negotiations, along with a 

quantitative evaluation. After receiving feedback on the systems prototype from users, 

Kersten et al. concluded that negotiation software agents specific to negotiation are 

useful features when supporting internet-based negotiations.  

In a paper by Chen et al. (2005) an e-marketplace named eAgora was discussed. 

EAgora enabled buyers and sellers to engage in negotiations about a multitude of 

issues. Software agents generated and critiqued offers. The agents did not negotiate 

themselves, they would generate several different offers from which the human 

negotiator could pick from, hence aiding in the negotiation process. In this system 

fuzzy logic was used in the analysis of offer generation. Usability tests were held to 

gauge the usefulness of the agents. Participants were asked to use eAgora with agents 

help and without. Post experiment questionnaires revealed that 92% of users were in 

favour of using a system like eAgora to sell their products online. The tests also 

revealed a correlation in the number of successful negotiations when the agents were 

used versus when not, supporting Kersten et al. conclusion about agents being useful 

for supporting negotiations. Users of the system did note a desire for the system to 

utilize a multi-strategy negotiation protocol instead of just the 4 that were with the 

system during the test. 



 

  21 

 

            Figure 3 eAgora system critiquing offer made to user 

In a paper by Kulkami et al. (2017) it is stated that getting the best price for a product 

is what prospective buyers are focused on. In response, the paper proposed a system 

that e-negotiates by observing potential buyers’ surfing patterns. These patterns 

included sites visited and products surfed. The system provided custom discounts to 

potential buyers based on these patterns. The paper argued that providing a custom 

discounted price motivates buyers to make purchases. Kulkami et al. explained that 

this exploits the human psychology which craves for attention, by making the user feel 

special. That when a user whose patterns indicate they are interested in a product see a 

discount unique to themselves, they will be tempted to make the purchase. 

The sentiment held by Kulkami et al. about price being the focus for prospective 

buyers is supported by a paper by Ngai et al. (2002) where it is argued that conflicts 

related to the price of a product is usually the bottleneck in trading efficiently within 

online marketplace. In response, an embedded negotiation support system was 

proposed to allow buyers and sellers to negotiate with each other about product price 

through system interfaces, supposedly leading to greater efficiency within the trade. 

The system brought with it the issue of demanding lengthy user engagement time. This 

was fixed by introducing a semi-automated negotiation process. Regression test results 

proved that the introduction of semi-automation did not damage the original systems 

negotiation success rate, making the proposed system a potential solution to the 

bottleneck of product price deliberation.  



 

  22 

In a paper by Kumar et al. (2005), middleware to support online bilateral negotiation 

was implemented. The middleware was designed to be integrated with trading systems 

such as auctions, helping with the bidding and bargaining processes. To support 

various users of the system, multiple negotiation protocols were available to be utilized 

to achieve differing objectives the various users might have (find best deal, find fastest 

deal etc). The system used a pre-negotiation stage to enable negotiation of the rules of 

the negotiation. In addition, a platform was provided to allow users to add or delete 

issues of the negotiation (price, quantity etc), allowing for dynamic changes to be 

made to the process of the negotiation. This type of system has the advantage of 

supporting multi issue, where others described above seem fixated on the negotiation 

issue of price. 

2.5.2  Automated Approaches 

In automated approaches to negotiation, software agents are used in place of and to the 

benefit of the users within the negotiations. 

Karp et al. (2004) took a unique approach when presenting a strategy for automated 

negotiation. In this strategy, the same approach is taken as computer programs that 

play chess; a game tree is built. For every offer, every counteroffer is looked at, and 

every counteroffer to each of them, and so on. The strategy then selects the 

counteroffer with the larger expected payoff. Like the 2003 paper by Kersten et al., 

this paper showed that a game theory approach is a possible approach to negotiation 

but through experimentation, found it doesn’t provide any great advantage to 

alternative strategies. In fact, many problems arise from using the game theory 

strategy. For example, a ‘bad move’ e.g. ‘bad’ selecting a larger than ideal counter 

offer, could potentially penalize both the buyer and the seller, as this could result in the 

negotiation ending without an agreement being met.  

Offer and counteroffer selection described above has also been studied in a paper by 

Amgoud et al. (2005). This paper studied strategy for selecting which offers get made 

by agents during negotiation. A general setting was proposed for defining a strategy, 

with its parameters being what is argued as what should be the three mental states of 

an agent: its beliefs, its goals and its rejections. This paper argues that most work in the 



 

  23 

sector of offer selection only considers goals of the negotiation and instead rejections 

should also play a key role in offer selection.  

In a study by Cheng et al. (2006), a heuristic model was presented for making trade-

offs in automated negotiation. A fuzzy inference system was used to allow agents to 

tactically make trade-offs within a third-party e-marketplace. The proposed automated 

negotiation system was evaluated using five different experiments. The results of the 

experiments found the fuzzy system to be efficient in terms of the number of offers 

exchanged. The paper also noted that while in their system each negotiation is treated 

independently of the others, they think it could be advantageous if the agents could 

apply information from one negotiation to other negotiations. This information could 

include what was suggested above by Amgoud (2005), where it was suggested that 

negotiation rejections could play a role in offer selection.  

Experiment                           Description                  Results 

1 Negotiation success rate with different groups Average success rate: 94.31 

2 % of negotiations that reached optimal 

agreement 

Average: 93.86 

3 Issue weighting effect on negotiation results Number of Offers increases 

4 Effects of increasing number of issues Only effects were increased 

offers 

5 Quantitative vs Qualitative issues negotiated 

on 

System produced better 

results on purely qualitative 

issues  

                       Table 1 Summary of 5 experiments ran by Cheng (2006) 

Wang et al. (2006) presented a fuzzy logic based autonomous negotiation agent that 

was designed to reach mutual agreements efficiently and effectively by interacting 

with other such agents over various sets of issues on behalf of real-world parties. It is 

argued in this paper that conventual methods such as game theory that are utilized in 

systems such as the ones described above by Kersten et al. (2003) and Karp et al. 

(2004) are incapable of being used in automated negotiation in open environments like 

the internet where information is full of uncertainty, whereas fuzzy approaches are 

quite suitable. When evaluating the negotiations made by the agent, the researchers 

used the MATLAB fuzzy logic toolbox and concluded that their proposed offer 

evaluation techniques are acceptable and implementable. 



 

  24 

More et al. (2002) proposed a negotiation system for use between a provider and 

consumer that utilized the cloud. The cloud stored product and agent details for the 

system. In the system, both provider and consumer have agents that handle their side 

of the negotiation so that the negotiation process is fully autonomous.  Data on the user 

and their product requirements are used by the agents to negotiate on features or issues, 

with the agents provided ultimately notifying the users on the negotiation success or 

failure. They found the cloud to be beneficial to negotiation in ecommerce due to its 

inherent security and scalability which is needed for the data being stored and being 

able to handle the dynamic number of agents that would be needed for each consumer. 

Rahwan et al. (2002) presented a framework for enabling one to many negotiations via 

concurrent one to one agent negotiation. The system used a duel layer strategy by 

using individual and coordination agents. Agents negotiated on behalf of parties in a 

cyclic fashion. After each cycle, another agent would evaluate how each agent was 

doing and issued new instructions to them. This system was tested in an ecommerce 

environment with a personal computer trading scenario. Results from the test showed 

that one to many (“seller to buyers”) negotiation is possible by implementing a system 

that coordinated parallel one to one (“seller to buyer”) negotiations. The proposed 

framework solves the problem of scalability that was brought up above by More 

(2002) that is needed for ecommerce negotiation.  

In a paper by Huang et al. (2002), a model is presented for automated negotiation 

through agents on the internet. In this model, the process of negotiation is driven by 

the internal beliefs of the agents involved. Agents can change their behaviour (and 

results) by adjusting some critical parameters in an easy and flexible way. The 

different ‘personalities’ can be shown be easily plugging in subjective beliefs to the 

agent. The paper showed that having different ‘internal beliefs’ can result in agents 

behaving differently. Some humans are harder negotiators than others, and so it is 

argued that agents need dynamically adapt based on who they are representing. 

Through simulations, the strength of having internal belief updating for agents was 

demonstrated. 

The idea of a multi-strategy negotiation system discussed by Chen (2005) was also 

researched by Cao et al. (2015). They developed a prototype negotiation system based 

around agents and multi-strategy. In this system, the negotiation agent selected the 



 

  25 

appropriate strategy dynamically to deal with the ever-changing offers in order to get a 

successful agreement. To evaluate the protype, buyer and seller agents negotiated on a 

single price issue, with only the buyer agent having the strategy section ability and the 

seller agent according to a fixed negotiation strategy. Experiment results confirmed 

that multi-strategy negotiation selection leads to higher counterpart acceptance ratio. 

The researchers argue that strategy selection models should be requisite components in 

negotiating agent architectures, as their research demonstrates significant potential in 

enhancing the efficiency of negotiations in ecommerce. This supports the need for 

dynamic strategy among agents suggested by Huang et al. 

This is also mirrored in a paper by Junyan et al. (2007) that stated it is important for 

negotiation agents to choose a proper strategy that is based on negotiation factors to 

achieve its maximum utility with their negotiations. In this paper a negotiation model 

was presented that was based on four of these factors:  

• belief,  

• time,  

• competition, and  

• opportunity.  

Furthermore, an adaptive negotiation strategy based on this model was presented so 

that agents can increase either utility in negotiations. It was concluded after 

experimentation that this adaptive negotiation strategy is effective for getting the best 

negotiation satisfaction degree and both the buyer and seller agents can obtain their 

maximum utilities with it. 

Su et al. (2001) described the design and implementation of an internet-based 

negotiation server for ecommerce and e-business enterprises. The server could be 

installed by enterprises and it would represent their interests by having their individual 

negotiation policies and strategies inputted to use to conduct bargaining type 

negotiations on their behalf. With sellers publishing information about their goods and 

services online, buyers could identify the seller and if both had installed and registered 

with a negotiation server, the automated negotiation could begin. This system was 

found to be a potential alternative to agent-based systems as it makes use of a content 

specific language, which determines how information about goods and services is 



 

  26 

published via specifying the data characteristics. This allows buyers to find goods and 

services from different buyers with whom to begin to negotiate with. 

Lau et al. (2007) designed and developed a distributed service discovery and an agent 

based, multi-strategy negotiation system to streamline multi-party ecommerce. Much 

like the system proposed by Su et al. above, it provides a web service to centralise 

negotiation between buyers and sellers. This system takes it a step further by providing 

software agents to handle negotiations for both parties. An empirical study was 

conducted to evaluate such agent’s performance. Their performance was compared 

with that of their human counterparts. The study found that their negotiation agents 

outperformed their human counterparts in terms of both increased joint payoff and 

reduced total negotiation time. 

 

      

              Figure 4 Agent vs Human negotiation system performance for Lau (2007) 

Luo et al. (2003) argued that the focus of passed research on the topic of automated 

negotiation has been on the efficiency and effectiveness of the algorithms used to 

accomplish it (such as above with Lau et al.). Lou stated that this is only half the 

picture. Agents need to be able to represent their owners’ preferences to effectively 

negotiate on their behalf. This requires acquiring knowledge of these preferences. A 

case study was presented to combat this shortcoming. In it, it was indicated exactly 

how knowledge for a negotiation algorithm could be acquired. The study identified 

that user trade-off preferences play a fundamental role in negotiation and found that it 

is particularly important for negotiation agents to acquire them. 

A paper by Yan et al. (2007) mirrors Luo et al.’s above opinion about the importance 

of knowledge within automated negotiation. In this paper it is argued that knowledge 

plays a key role in automated negotiation. Knowledge Beads are suggested to represent 

knowledge in a way suitable for automated negotiation systems. Knowledge Beads are 



 

  27 

object-oriented knowledge representation schemes that are encapsulations of 

definition, behaviour, and data. A knowledge bead can be a composite object or an 

atomic part object, with each having their own data and methods. Knowledge Beads 

give a unified approach to representing data throughout the process of the negotiation. 

It was found that with this unified approach, it allows for stages of the process to be 

streamlined and data resulted from negotiation to be reused as knowledge in future 

negotiation.  

Badica et al. (2006) summarized a state-of-the-art implementation of an automated 

multi-agent ecommerce price negotiation system that utilized a rule-based approach. 

They argue that designs for automated negotiation typically follow the same formula 

of having negotiation protocols (“the rules of the encounter”) along with negotiation 

strategies (“achieve the desired outcome”). In this system, a rule-based approach is 

used for both. To evaluate the system, an experimental scenario was used which 

involved multiple buyer agents purchasing items in the style of a standard auction. The 

results found that rules are a feasible technology for approaching automated 

negotiation in ecommerce. 

Badica et al. (2006) presented an update to their initial implementation described 

above of an agent-based e-commerce system. In this updated system, a Dutch auction 

rule set was implemented into the negotiations to allow for multiple units of a product 

to be sold. Within “Dutch” auctions, bidding starts with a starting, extremely high 

price point. This gets progressively lowered until the item is claimed at the price by a 

buyer that calls “mine” by pressing a button that stops the clock. This “press and 

claim” rule set allows multiple units to be sold at once, with the first winner taking 

their prize and subsequent winners paying less. The researchers claim that combining 

common traditional auctions and “Dutch” auction rules together could lead to the 

formation of a set of core (reusable) rules applicable to a wide class of price 

negotiations. 

Yu et al. (2008) proposed a multi-agent automated intelligent shopping system to 

enhance and facilitate transaction and price negotiation within ecommerce. In this 

distributed system, human buyers and sellers used software agents to undertake the 

shopping tasks of buying and selling, presenting the results to the respective parties. 

The system had a multitude of different agents handling various tasks, such as a main 



 

  28 

agent to handle the creation of buyer/seller agents and various DB agents. The 

negotiation within the system followed the Dutch auction logic proposed above by 

Badica et al. wherein the price negotiation was continuous until, in this case, the 

buyer’s agent buys the product at the offered price or the seller agent reaches a 

reservation price. 

2.6 Satisfaction in Negotiation  

In this section, existing research on satisfaction in negotiation will be explored and 

evaluated to judge the importance of satisfaction with negotiation results. 

Najjar et al. (2016) proposed a multi agent automated negotiation with an aim of 

improving user satisfaction within software-as-a-service. The need for improving 

satisfaction was to combat the findings by Accenture, that stated about 81% of 

customers switched service providers due to the service not being satisfactory by failing 

to meet their expectations. The proposed system modelled user expectations and 

preferences and subjective satisfaction. An autonomous agent represented both end 

users, the user agent being used to increase the involvement of the user into the 

decision-making process. The idea being to evaluate whether increased user 

involvement lead to higher chances of getting a satisfactory service that met their 

expectations. The proposed approach found that as the integration of user preferences 

increased, the user’s satisfaction also increased. 

Schei et al. (2005) also mirrored the importance of satisfaction within the realm 

negotiation when they conducted simulated negotiations with students. They stated that 

satisfaction is important for a multitude of reasons e.g. in some situations an ‘objective 

evaluation criteria’ for negotiation outcomes may not exist and so satisfaction level 

must suffice. Satisfaction is also important in ensuring willingness to engage in future 

negotiation with the other parties. The paper stated that previous research in psychology 

and organizational behaviour showed that single-item measures of satisfaction produce 

acceptable validity, so to measure outcome satisfaction a post negotiation questionnaire 

was used, with satisfaction being rated on a 5-point scale. The results of the 

questionnaire stated that satisfaction was shown to be significantly related to individual 

outcome and not joint outcome. 



 

  29 

Curhan et al. (2006) investigated what exactly is valued by people who undertake 

negotiations. As part of the report a 'subjective value inventory' tool was suggested to 

systemize and encourage further research on the outcomes of negotiation. Previous 

examined areas such as trust, satisfaction, and justice were identified as potential 

variability across negotiations. Satisfaction with a negotiation was identified as a 

critical element of subjective value. Expectancy and social perception theories were 

used to argue that satisfaction for negotiators is driven by comparing the expected 

outcomes of a negotiation to the actual outcomes, a "better than/worse than" heuristic. 

There are two related values in this framework, satisfaction with the outcome of the 

negotiation and how much the outcome exceeded expectations. Both these values were 

used as factors within the SVI tool. A post negotiation questionnaire was used to attain 

the satisfaction with the outcome value, which was measured via a 7-point scale 

ranging from “Extremely dissatisfied” to “Extremely satisfied”. 

                

              Figure 5 Part of the post negotiation questionnaire used by Curhan et al. 

This same type of post negotiation questionnaire was used in a paper by Yang et al. 

(2009) and once again, echoes the importance of satisfaction. In this paper a model for 

strategic, automated agent to human negotiation is formalized. The paper integrates 

insights from psychological and behavioral research with a delayed acceptance and 



 

  30 

simultaneous offers negotiation strategy to deduce its impact on negotiation outcomes. 

The paper states that satisfaction is conceivably the most important subjective outcome 

in negotiation system research, as it reflects the belief that a negotiator has achieved a 

fair and effective outcome. The satisfaction level of the negotiation outcomes was 

evaluated using a post negotiation questionnaire. In this, the belief described above is a 

two-dimensional construct; the negotiators confidence with the solutions settlement 

efficiency and the perception that the negotiators outcome is fair when compared with 

his or her opponent.  

          

                Figure 6 Part of the post negotiation questionnaire used by Yang et al. 

Halpert et al. (2010) modelled the negotiation process to find a new way to look at the 

pre-existing negotiation research. The paper presented a model of the negotiation 

process and tested it via a series of meta-analysis and follow up path analysis.  

The model included seven variables: 

• relationship between negotiators 

• negotiator goals 

• expected cooperation 

• cooperation behaviour 

• negotiator profit 

• satisfaction with the negotiation 

• perceptions of the other party 

The model had three types of outcomes including profit, negotiator satisfaction, and 

negotiator perceptions of bargaining opponent. The intercorrelations of the seven 

variables were used to test the hypothesized model via path analyses. To test 



 

  31 

satisfaction, profits as well as the behaviors within the negotiation (satisfaction with 

the negotiation task, one’s own performance in the negotiation, and the fairness of the 

outcome) were considered. The results found that negotiator satisfaction was directly 

affected by profit, with satisfaction in the experiment being a self-reported measure by 

the negotiator after the negotiation ceased. 

2.7 Conclusions 

This chapter began by describing how the combination of the internet and business has 

created a whole new and rapidly growing form of commerce; eCommerce. With it, 

came research into the possibility and practicality of supporting negotiations in the 

context on the internet. Two main approaches were found as ways of enabling online 

negotiations; automated and non-automated. Non-automated negotiation systems are 

used to simplify, aid or facilitate the process of negotiation for users. In automated 

approaches to enabling negotiation, software agents are used in place of and to the 

benefit of the users within the negotiations. The use of software agents within these 

systems, regardless of it being automated or not, was found to be of extreme 

popularity. Automated approaches proved to be the more popular of the two. The 

inclusion of some form of automation for the seller and buyers using software agents 

was found to be very common. Within existing automated negotiation systems, it was 

common to use agents to represent both the buyer and seller. Mutual beneficial 

outcome was a common talking point and evaluation measure throughout the research, 

what was uncommon were systems that focused on achieving the best outcome for 

either the buyer and seller only. There was a clear lack of research into negotiation 

systems that only represented the sellers.  The importance of satisfaction within 

negotiations was described. The research on satisfaction revealed that negotiation 

satisfaction relies more on individual outcome (which needs to be a self-reported 

value) than joint outcome, suggesting once again a need for further research on system 

that focus on individual outcome and not the joint outcome systems that currently 

exist. Throughout the research, the idea of using information from one negotiation and 

applying it in other negotiations, although suggested, was not researched heavily. 

Research into systems that use data on their customers for negotiation purposes was 

suggested but once again, not researched heavily. 



 

  32 

3 CHAPTER 3. NEGOTIATION SYSTEM DESIGN 

3.1 Introduction 

In this chapter, a new type of negotiation system based on the findings from Chapter 2 

will be designed. This automated negotiation system will represent owners of 

eCommerce stores and using software agents, will negotiate with customers to get the 

best individual outcome for the seller with each negotiation. The system will use past 

negotiation and customer data in its strategy to aid in getting the highest sale amount 

during each negotiation. 

First, a software development process will be selected based on researching common 

methodologies, including iterative models such as waterfall and agile models such as 

feature driven development. Following this, suitable technologies for the development 

of the system will be explored, including: Angular, AngularJS, Bootstrap, PHP, 

NodeJS, Ruby on Rails and MySQL. After which, the architecture of the project can 

be described by breaking it up into three separate tiers and detailing the technologies 

which will comprise each tier. Next, the user interface of the system will be prototyped 

using both paper prototypes and wireframes. At this point, the experiments that will 

aid in the evaluation of the system from the perspective of both customers and the store 

owner will be discussed. Finally, the system will be modelled using an ERD (entity 

relationship diagram), class diagrams and use case diagrams, to provide a foundation 

for the implementation. 

3.2 Software Development Process 

In this section, the term software development process is defined and the two most 

common types; iterative and agile, are explained so to make an educated decision on 

which one to use for the duration of the research project. 

 



 

  33 

3.2.1  Definition 

A software development process is the process dividing up the work involved in 

software development into phases, with the aim of improving the design, development 

and product/project management. The software process models play a very important 

role in software development (Kaur, 2013). This process is sometimes known as a 

software development life cycle. The lifecycle focuses on the product, defining the 

state through which a product passes from when it starts to be built to when software 

enters operations and is finally retired (Scacchi, 2002). Numerous approaches to the 

software development process have been used to structure, describe and prescribe the 

software development process since the origin of information technology, but these 

various approaches usually belong to one of two main categories: traditional and agile. 

Development teams typically pick a software development process from one of the two 

main categories, though occasionally may combine them. 

3.2.2  Traditional Development Processes  

Traditional software development processes use pre-organized stages that flow from 

one to the other in a unidirectional nature. Traditional methodologies are plan driven in 

which work begins with the elicitation and documentation of a complete set of 

requirements (Awad, 2005). In the 1960s, “code and fix” was the approach taken by 

software developers. By the 1970s developers had added more stages to the process, 

and Winston Royce codified these into a model (that would later become known as the 

Waterfall Methodology); an approach that Royce warned was “risky” as software 

testing was only occurring at the later stages of the development process. The 

Waterfall methodology can sometimes be seen being used interchangeably with 

“traditional” software development process, due to its popularity within the traditional 

category. As with other traditional software development processes, waterfall has a set 

of phases with specific deliverables and documentation. Stage one is to gather the 

requirements of the system to be developed, the system is then designed, after which 

the implementation is developed, then tested and finally the system is maintained.  

Traditional development processes are best suited for projects with well understood 

requirements. The requirements of the system need to be given during the very first 

phase of the project, and new requirements cannot be added beyond this point. 

Solutions need to be determined early in the process and cannot be changed later down 



 

  34 

the line. Due to these restrictions, traditional approaches like Waterfall are only 

suitable when there is no chance of any major changes being made to the system at any 

point passed the initial stage of the process.  

 

Figure 7 Waterfall software development process 

3.2.3  Agile Development Processes 

Though waterfall can still be found being used today, developers found it to be 

frustrating and difficult even back during the 1970s. This resulted in various other 

software development process methodologies being developed in response to the 

difficulties faced with traditional approaches like waterfall. These methodologies and 

practices were based on iterative enhancements, a technique that was introduced in 

1975 and later become known as agile methodologies (Awad, 2005). 

Agile proposes an iterative, incremental approach to software development. Iterative 

development breaks the project into iterations of variable length, each producing a 

complete deliverable and building on the code and documentation produced before it 

(Cohen, 2003). The use of iterative development is common to all agile methods 

(Greer 2011). Developers can make changes to the system functionality throughout the 

development phases of the project. Agile methods aim to answer a need to develop 

software quickly, in an environment of rapidly changing requirements (Greer, 2011). A 

dominant idea in agile development is that a team can be more effective in responding 

to change if it can (Cockburn, 2001). 



 

  35 

Advantages of Agile over traditional include: 

• Although the software solution must be defined in advance, it can be modified 

at any stage. 

• The solution can be broken down into different modules which can be 

delivered periodically. 

• These modules can be turned into reusable components for future projects. 

• Documentation is less of a priority which leads to more development time and 

less expenditure. 

 

                                          Figure 8 Agile Software Development Process 

 

3.2.4  Selection of Development Process  

 

Deciding whether to utilize a sequential or an iterative development process requires 

looking at several factors in order to choose the most appropriate approach. An optimal 

software development process is regarded as being dependent on the situational 

characteristics of individual software development settings. Such characteristics 

include the nature of the application(s) under development, team size, requirements 

volatility and personnel experience (Clarke, 2012). 

 

As the negotiation system passes further through development and more and more 

aspects of the system are developed, the way negotiation and customer data can be 

used in tandem will be explored further and new ways to use them may be discovered. 

The result of which could ultimately lead to more features being developed than 

originally intended. If a traditional software development process is used and a 



 

  36 

discovery is made that could have a positive impact on the system, the system will not 

be able to be modified to utilize what is learned. Methodologies like waterfall do not 

allow for modifications to the original design and so an agile approach will be better 

suited for the project. Due to the relatively short development time available for the 

project, feature driven development seems like the perfect agile approach to take, as 

the norm for fast-cycle-time projects is a feature-driven iterative process, beginning 

with features and modelling, followed by design-and-build increments (Benoit, 1999). 

 

Feature driven development, devised by Jeff De Luca in 1997, is an incremental and 

iterative development process that blends several industry-recognized best practices 

together from a feature perspective. A feature, as a term, is used for describing a small 

piece of valuable (sometimes also attractive) capability/functionality (Pang, 2004). 

Feature driven development consists of 5 activities within a short iteration process. 

The first two activities being sequential, and the final 3 iterated for each feature. 

1. Develop the overall model – a walkthrough of the system is undertaken to settle 

on scope and context and then detailed domain models are created before 

merging them into one overall model. 

2. Build the feature list – a list of features is identified by breaking down the 

system into subject areas. These features should not take more than two weeks 

to complete or they should be broken down further. 

3. Plan by feature – a development plan is created, and feature development tasks 

are assigned to developers. 

4. Design by feature – each feature has a design package produced which includes 

sequence diagrams and information that can refine the overall model. Finally, 

design inspections are held. 

5. Build by feature – once the design inspection is successful, the code is 

developed and then unit tested and inspected. This feature then is added to the 

main build. 

 



 

  37 

3.3 System Technologies  

To evaluate the negotiation system from a functionality and suitability standpoint, it 

needs to be developed and then integrated with an ecommerce site. This website will 

be developed specifically for the purpose of aiding in the testing and evaluation of the 

negotiation system. The website needs not have the full functionality that would be 

traditionally expected to be present within an ecommerce site. The site only needs to 

allow for users to register and then select a product to negotiate on. Due to the 

website’s simplistic nature and need for bespoke functionality, the site will be 

developed from scratch. In this section, potential technologies that would be suitable 

options to develop the front and back ends of both the ecommerce website and the 

negotiation system will be described. Finally, as in some cases multiple suitable 

technologies for the project exist, the technology that will be used in the project will be 

selected so that the final project architecture can be described and explained.  

3.3.1  Front End 

In this section, suitable technologies for developing the front end will be described. 

 

AngularJS 

AngularJS is a front-end web application framework that aims to simplify both 

development and testing of web applications using a client-side model view controller 

architecture. AngularJS is not a library rather AngularJS is a JavaScript framework that 

embraces extending HTML into a more expressive and readable format (Jain, 2015). 

Mostly maintained by Google, AngularJS aims to address common challenges 

encountered when developing single paged applications. A Single Page Application 

(SPA) is composed of individual components that can be replaced or updated 

independently, without refreshing whole page so that the entire page does not need to 

be reloaded on each user action (Jadhav, 2015). The purpose behind this is to make the 

subsequent page loads very fast as compared to traditional Request-Response cycle 

(Jadhav, 2015). 

 

 

 



 

  38 

AngularJS provides many advantages to developers: 

• AngularJS only begins evaluating pages at the end of the loading processes so 

adding bits and pieces of angular on top of existing applications is very easy. 

Angular is one of the only major front-end frameworks that utilize plain old 

JavaScript objects (POJOs) for the model layer. This makes it extremely easy 

to integrate with existing data sources and play with basic data (Jain, 2015). 

• AngularJS is a very simplistic framework, it requires nothing more than a basic 

HTML document to be opened inside a browser to begin using its features. 

This provides a useful way to quickly create website mock-ups or pieces of 

functionality. AngularJS is the fastest road for us to implement the simplest 

website as well as most complicated web applications (Jadhav, 2015). 

• Angular has a very interesting and extensible components subsystem, and it is 

possible to teach a browser how to interpret new HTML tags and attributes 

(Kozlowski, 2013). Creating these custom attributes and elements allows you 

to extend the standard HTML vocabulary. With this, you can make custom, 

reusable components. 

 

AngularJS is a Model View Controller based framework. AngularJS’s architecture 

incorporates the basic principles behind the original MVC software design pattern into 

how it builds client-side web applications (Jain, 2015).  

 

Model View Controller (MVC) is a software design pattern for developing web 

applications. It is made up of the following separate parts: 

• Model – lowest level, maintains the application data. Responds from requests 

from view and instructions from controller. 

• View – displays the data to the user. 

• Controller – the code of the software that controls the model and views 

interactions between each other. Responds to user input by validating it and 

then sends instructions to the model 

 

MVC supports ‘separation of concerns’ as the applications logic is separated from the 

user interface layer. The controller receives the application requests and interacts with 



 

  39 

the model to prepare the data that is needed by the view. This data is used by the view 

to generate the final presentable response.  

 

        Figure 9 MVC Flow (Schlin, 2019) 

 

The AngularJS architecture is comprised of the following: 

 

1. Root Module 

2. Module 

3. Config 

4. Routes 

5. Scope 

6. View 

7. Controller 

8. Factories 

9. Directives 

 

 

             Figure 10 AngularJS Architecture ("AngularJS architecture", 2019) 



 

  40 

Module / Root Module In AngularJS, a module is the way related things can be 

grouped together. A module, which can be an entire 

application or a single component of a larger application, is a 

collection of directives, services and configuration 

information. Each application must have one module, known 

as the root module. All others are descendant of this. 

Config Modules, services, providers etc all need to be registered 

before use within an angular application. This is where 

config blocks are used. 

Routes Routes allow an AngularJS application to be single pages. 

Routes are used to move to different pages in the application 

without the need for reloading. 

Controller AngularJS requires controllers to control the flow of data 

throughout the application. 

View Where the HTML for the application is contained. 

Scope Scope is an object that binds the view (HTML) and the 

controller (JavaScript). The scope contains one’s available 

properties and methods for the other. 

Factories A factory is used to return a class or ‘service’ that can then 

be injected into and used by modules. 

Directives AngularJS allows developers to extend basic HTML with 

attributes known as directives. There are built in directives 

that offer additional functionality to applications. AngularJS 

also allows for custom directives to be defined. 

     Table 2 Components of the AngularJS architecture 

 

Angular 

Angular (sometimes referred to as Angular 2) is a framework for creating front end 

web applications. An open source project led by Google, Angular is a ground up 

rewrite of AngularJS. Although sharing many similarities, major differences do exist. 

Scope and controllers are not present. It is not an MVC based architecture. Instead, 

components are used as a primary characteristic of its own differing architecture. Each 



 

  41 

component has an associated class that handles a specific aspect of the business logic. 

These components are tied to templates, which are replacement of views in AngularJS. 

Modules are much more of a core aspect of the framework, having more of the 

functionality moved to modules than were in AngularJS. No longer is the framework 

based in JavaScript, Angular uses Microsoft TypeScript language as its native 

language. 

 

Angular can perhaps be best explained by describing the conglomeration of sub 

systems and features that make up the framework, these include: 

1. Module 

2. Template 

3. Component 

4. Data Binding 

5. Metadata 

6. Directives 

7. Services 

8. Dependency Injection  

 

 

Figure 11 Angular Architecture ("Angular Architecture", 2019) 

Module: Angular has its own modularity system to enable the modularity of its 

applications. This system is called NgModule. Each Angular application has a class 

with a NgModule decorator to specify that it is the root module (named AppModule). 

Having these root modules is needed to enable bootstrapping. Bootstrapping is an 

essential process in Angular, it specifies where the application is loaded. Angular 



 

  42 

modules help organize the application into connected blocks of functionality and 

provide compilation context for components. 

 

Template: Templates are a form of HTML that tell Angular how to render components 

to the screen. Components are each mapped to one template. Regular HTML and 

templates look a lot like except for a few differences such as directives, data binding, 

events and component tags. 

 

Component: Components in Angular are the building blocks of the user interface. 

Components control parts of the screen. Each component is mapped to a template and 

contain methods, constructors, properties as well as events. Angular applications all 

have one root component that gets loaded initially and all others are child components 

of that one root. For example, root component can decide when to load a welcome 

component. This welcome component can represent a landing page and will have 

various other child components such as a navbar which will control the login 

functionality. Angular will create, update and destroy all components as the user 

moves through the application.  

 

Data Binding: To allow parts of a template to coordinate with the parts of a 

component, Angular supports various types of data binding.  

 

• Interpolation – used to view a components property on the user interface 

• Property Binding – used to update a HTML elements property 

• Event Binding – used to generate an event from an element such as when a 

button is clicked 

• Two-Way Data Binding – if a value is updated on screen, two-way data 

binding ensures it gets updated in the component also and vice versa 

 

Metadata: Metadata is used to ensure Angular knows what type of a class it is dealing 

with, so to ensure it processes it correctly. Metadata tells Angular how to process its 

classes by attaching metadata to components and modules, so to tell them apart. 

Directive: Templates in are dynamic and so when they are rendered by Angular, the 

effect they have on the DOM is specified by the instructions given by the directives. 

There are two types of directives in Angular: 



 

  43 

• Structural – change the structure of a DOM template (e.g. ensure the sign in 

box is only displayed when logged out) 

• Attribute – updates an attribute of a specific HTML form for example 

 

Service: Services are pieces of reusable functionality that get shared by components 

through an Angular application. They can also be used strictly as a data sharing class 

for components. The most common use for a service is to handle server-side web 

service calls. Services are asynchronous.  

 

Dependency Injector: When creating a new instance of a class that has dependencies, 

dependency injection supplies the class with the fully formed dependencies it needs to 

operate. Most dependencies in Angular are services, so in most cases dependency 

injection is used to provide components with the services they need. 

 

 

Bootstrap 

Bootstrap (sometimes referred to as ‘twitter bootstrap’) is a front-end open source 

framework created to help with the development and design of web applications. 

Designed at Twitter and released as an open source project on August 19th 2011, 

Bootstrap become one of the most watched GitHub projects with over 33k watchers 

(Cochran, 2012). Currently on its 4th iteration, Bootstraps contains an extensive list of 

features to aid in the development of website front ends, these include but are not 

limited to: 

• Responsive utility classes, allowing content to hide or change size/position 

dynamically based on the device its being viewed on 

• Prestyled components such as buttons, dropdowns, navigation and progress 

bars  

• Templates for rapid development or prototyping  

 

 

 



 

  44 

3.3.2  Back End 

In this section, suitable technologies for developing the back end will be described. 

 

PHP 

PHP (originally standing for Personal Home Page) is a server-side scripting language 

used for web development. Created in 1994 by Rasmus Lerdof, PHP is most 

commonly used for producing valid XHTML code and for processing form data 

submitted by users (Gosselin, 2010). PHP is flexible in that it can be embedded 

directly into HTML code or used in combination with web frameworks or content 

management systems on the web. PHP code itself is processed by an Interpreter that is 

typically a module in the web server. The standard interpreter for PHP is powered by 

what’s known as the Zend Engine. The Zend Engine compiles PHP code into an 

internal format which it can then execute. The web server can combine the results of 

the executed and interpreted PHP code, which can then result in the generation of a 

web page, an image or some other type of data.  

 

The main versions of PHP are: 

 

Version   Release Date                                           Main Notes 

1.0 8th of June 1995 A set of tools to aid in the development of simple yet 

dynamic web applications through the ability to: 

• Communicate with databases 

• Accelerate bug reporting 

• Extend and embed inside HTML 

• Handle forms 

2.0 1st of November 

1997 

PHP released as a standalone programming language. 

3.0  6th of June 1998 Updated Parser. 

4.0 22nd of May 2000 PHP became powered by Zend Engine 1.0 

5.0 13th of July 2004 Added greater support for OO programming and added 

the PDO extension for accessing databases more 

consistent and efficiently. 

6.0 Not Released Abandoned version. 



 

  45 

7.0 3rd December 

2015 

A more optimized and stabilized version of PHP 5. 

           Table 3 PHP Major Releases 

PHP can be deployed on most web servers and on almost every platform/operating 

system, all free of charge. This makes PHP a very popular choice for web 

development, as supported by the fact that it is used by 81.7% of all websites whose 

server-side programming languages are known (Prokofyeva, 2017). 

 

NodeJS 

JavaScript is primarily and typically used for client-side scripting. JS scripts are 

written and embedded into HTML and then using a web browser, are ran client side by 

a JS engine. Recently, new technology has started to push the use of JavaScript not 

only on the client side, but the server side as well. JavaScript has rapidly become one 

of the most popular programming languages and is now being used in several areas 

beyond its original domain of client-side scripting (Madsen, 2015). 

 

An example of this is technology is Node.js. Originally written by Ryan Dahl in 2009, 

Node.js is a JavaScript run-time environment that executes JS code outside of 

browsers. This enables developers to use JS for server-side scripting, allowing the 

production of dynamic web pages before the page gets sent to the client’s browser. 

Developers who use Node.js have the advantage of a unified web application, as both 

the front end and back end can be made with JavaScript instead of having to use 

separate languages. Node.js popularity surveys performed by official website indicate 

that the average downloads are over 35,000 since the version 0.10 released in March 

2013 (Lei, 2014). 

 

The main features of Node.js include: 

• Allows for the creation of web servers. 

• Servers are highly scalable without needing threading.  

• Inside these servers, “modules” can be created which can handle file IO, 

networking, cryptography and data streams. 



 

  46 

• An event driven architecture which is asynchronous to allow for greater 

throughput. 

 

Ruby-on-Rails 

Ruby-on-Rails is a server-side web application framework. The Rails application-

development framework is based on Ruby, an open source, object-oriented scripting 

language like Perl (Geer, 2006). Released as an open source project in July 2004, it 

had gained large popularity as by as early as January 2006 the Ruby on Rails 

development environment had been downloaded almost 230,000 times (Greer, 2006). 

An MVC based framework, Ruby on Rails provides default structures for such things 

as databases, web services and web pages. Ruby on Rails encourages the use of 

standards such as using XML or JSON for transferring data, and HTML, CSS and 

JavaScript for creating user interfaces. Ruby on Rails emphasizes the use of the 

software pattern don’t repeat yourself (DRY). DRY means writing less code for your 

application, keeping your code small means faster development and fewer bugs, which 

makes your code easier to understand, maintain, and enhance. Hibbs (2005). 

 

The main features of Ruby on Rails include: 

• MVC based architecture – enabling the separation of data from the 

presentation. 

• Ruby on Rails has a database access library which simplifies the data handling 

in databases, and maps tables/rows to classes/objects. 

• AJAX library functions are provided, and Ruby on Rails code can be used to 

generate the AJAX code 

• Detailed error logs for debugging are provided 

• Components can be created to store code to be reused later. 

 

MySQL  

Databases can be managed by relational database management systems (RDBMS). An 

RDBMS supports a database language to create and delete databases and to manage 

and search data (Williams, 2004). MySQL is an example of one such RDBMS. 

Development of MySQL began in 1994, with the first version appearing on 23rd May 



 

  47 

1995. The name ‘My’ is a combination of the name of Michael Widenius’, the co-

founders, daughter. ‘SQL’ is an abbreviation of Structured Query Language. Written in 

C++/C, MySQL works across many platforms including Linux, Windows, macOS and 

Solaris to name a few. MySQL is a component in the well-known, open source LAMP 

(Linux, Apache, MySQL, Perl/PHP/Python) web application software stack. Now 

owned by the Oracle corporation, the basic version is open source whilst several paid 

versions are available with additional functionality. MySQL has been used in such 

popular applications as WordPress and Drupal, whilst also being used in popular 

websites like YouTube, Google, Facebook and Twitter. MySQL’s architecture is very 

different from that of other database servers and makes it useful for a wide range of 

purposes. (Schwartz, 2012).  

 

Figure 12 The MySQL Architecture (Lalit, 2019) 

 

1. Client – The utility that connects to the server. 

2. Server – The MySQL instance, where the data storage and processing occurs. 

3. Connections/Thread Handling – manages the client sessions and connections.  

4. Query cache – If a query has been executed, its results are stored in this cache 

so that if it must be executed again, the results can just be returned in place of 

executing the query 

5. Parser – check the SQL syntax inside the SQL queries 

6. Table metadata cache – stores object metadata and information  

7. Optimizer – creates execution plans for queries, for added efficiency  

8. Storage engine buffer – manages the physical data (file management) 

9. Keys cache – stores the table indexes 

10. Storage engine – executes SQL statements 



 

  48 

3.3.3  Selection 

When selecting the technology to use for the project, it seems two options would be 

most suitable to use in correlation with Bootstrap and MySQL which will be used for 

certain. Option one is AngularJS with Node.js, and option two is Angular or AngularJS 

with PHP. AngularJS and Node.js would be a good choice to be used together due to 

them both being JavaScript based technologies. Using one language across the full 

software stack would simplify the development process. Despite this, PHP seems like 

it would be a better choice for the back end over Node.js as PHP integrates nicely with 

MySQL due to them both being part of the LAMP stack. Angular, being a component-

based architecture seems like it would be a better choice over AngularJS. The project 

involves constructing an eCommerce site and then a negotiation system. Constructing 

the negotiation system as a component would allow it to be integrated with the 

Angular website easily. 

 

3.3.4  System Architecture  

The negotiation system will be developed with a 3-tier architecture. Using HTTP, 

JSON messages containing data will be sent from tier 1, the front end, to tier 2, the 

backend server, and vice versa. Data stored in tier 3, a MySQL database, will be 

written to and read from by tier 2. 

 

 

Figure 13 System Architecture 



 

  49 

Tier One – The front-end of the system 

• Client – The clients in tier one will be the stores customers. 

• Browser – The customers will be able to interact with the negotiation system 

through their internet browser. 

• HTML – Will define the structure of the webpage being viewed by the 

customers. 

• CSS – Will help stylise the webpage to the benefit of the user interface. 

• Bootstrap – Is a framework that will be used to make the webpage responsive, 

to allow clients to view the site on various devices. 

• Angular – The front-end framework to speed up and enhance the development. 

• Application – The webpage will be an angular application, made up of various 

individual components such as product sections and a navbar. 

 

Tier Two – The back-end of the system 

• Server – Will contain the negotiation system and handle all database reading 

and writing required by the front-end/negotiation system. 

• Apache – Will parse the PHP code. 

• PHP – The language that the negotiation system will be built with. 

 

Tier Three – The systems database 

• MySQL – Relational database management system. 

 

 

 

 

 

 

 

 



 

  50 

3.4 User Interface Designs  

In this section, the user interface for the eCommerce site is designed initially on paper 

before wireframes are used to create a final design. 

3.4.1  Initial  Paper Designs 

The first versions of the designs for the UI were done quickly on paper so to get an 

idea of the needed elements and their possible placements. 

 

Welcome Page 

 

The welcome page is the first page the users will see. Below the brand will be two 

sections, a logging in section on the left, with email, username and password input 

boxes and a log in button below. On the right, passed some welcome to the site text 

will be the register section, containing the same input boxes as the log in section and a 

button below them that allow the users to register with the ecommerce site. 

 

                

Figure 14 Paper design for welcome page. 

 



 

  51 

Home Page 

 

The home page will be the main page of the ecommerce store. Accessible through log 

in, users will be able to browse and click negotiate on different products. As this 

‘store’ is needed only to enable testing of the negotiation system, the store will contain 

the bare minimal needed for this. Only a few different products will be displayed along 

with their price, image and name. The product type buttons change the category of the 

products shown on the right of the store. Each product will have a negotiate button 

(right of price) allowing users to, once clicked, be brought to the negotiation page to 

use the negotiation system to attempt to agree on a lower price than offered by the 

store. 

 

           

      Figure 15 Paper design for home page. 

 

 



 

  52 

Negotiation Modal 

 

The negotiation modal will pop up when the negotiate button for a product is selected. 

This modal is where users will interact with the negotiation system. The product the 

user wishes to negotiate on will be displayed on the right. The current price will be 

displayed on top, and to its right will be the button to close the negotiation modal. This 

current price gets updated with each counter offer the system sends to the user, with its 

final offer causing the ‘offer’ button to change to an accept button, to accept the deal. 

Closing the modal ends the negotiation, which also allows the users to reject the final 

price.  

          

       Figure 16 Paper design for negotiation modal. 

3.4.2  Refined Wireframe Designs  

The following designs are updated and more precise versions of the initial paper-based 

designs. The application will consist of 3 individual pages. With the use of Angular 

and its single page application support, the pages will have separate URL’s but the 

transition between them will not require any reloading, the transitions will be seamless. 

Each page’s basic layout will be described using wireframes. The utilization of 

bootstrap will allow different designs for both desktop and mobile users. 

 

 

 



 

  53 

Welcome Page 

The updated design for the welcome page will allow users to log into the ecommerce 

site using the sign in button on the far right of the navigation bar, once their email and 

password is verified. If the user hasn’t created an account previously, they can do so by 

entering in a unique username along with an email and password. Once the register 

button is clicked, their account gets created and they are taken to the home page. 

 

           

                 Figure 17 Wireframe for the welcome page 

 

 

 

 

 

 

 

 

 

 

 



 

  54 

Home Page 

 

The updated version will have no product categories, this will be simplified to just 4 

different products in a ‘popular’ section. 

 

                   

      Figure 18 Wireframe for the home page  

 

 

 

 

 

 

 

 

 

 



 

  55 

Negotiation Page 

 

The negotiation page is where users will interact with the negotiation system. The 

product the customer wishes to negotiate on and its original asking price will be 

displayed on the left. The current price will be displayed next to the add to cart button, 

this current price representing what the negotiation system has agreed to let the product 

go for i.e. its counter offer to the customers current offer for the product. To make an 

offer, the customer need only adjust the sider to the amount they desire and select the 

offer button. The negotiation systems counter to the customers offer will be 

represented by the current price’s updated value. If the negotiation system decides its 

counter Is its final ‘take it or leave it’ offer, “Current Price” gets replaced with “Final 

Offer” and the slider/offer button will be disabled. 

 

     

 

Figure 19 Wireframe for negotiation page 

 

 



 

  56 

3.5 Experimental Design 

The research question pertains to whether the negotiation system can negotiate on a 

level that is deemed satisfactory to the store owner. Despite this, not only does the 

store owners satisfaction need to be considered, the customers’ does as well.  If using 

the system to negotiate on a price is proved to be a negative experience for customers, 

then the negotiation system cannot possibly be satisfactory for the store owner. 

Customers having a negative experience with the system could potentially result in 

driving away customers. As such, the negotiation system needs to be proved to be an 

acceptable system to use by customers, to even begin proving it to be deemed a 

satisfactory system for the store owners. Therefore, two experiments need to take 

place. The first will experiment will involve the negotiation system itself. The results it 

can achieve while negotiating with a variety of customers will be evaluated to either 

support of refute hypothesis 1. The second experiment will involve the customers 

themselves. The customers experience negotiating with the system will be recorded 

and evaluated to either support or refute hypothesis 2. 

3.5.1  Experiment 1 –  Store Owner Satisfaction  

The proposed system will exist to aid the store owners, not the customers, in achieving 

the best sales price possible. With the purpose of the system being to specifically aid 

store owners, and the fact that negotiation satisfaction was shown to be significantly 

related to individual outcome and not joint outcome (Schei, 2004), evaluating the 

system based solely on the results of the negotiations from the perspective of the store 

owners is acceptable. The final sale price that the negotiation system agrees on with 

the customer is an acceptable measure of potential satisfaction for store owners as 

research in the area found that negotiator satisfaction was directly affected by the profit 

level achieved (Halpert, 2010). Final price / economic gain has been used as an 

evaluator of negotiator system effectiveness in multiple previous studies such as Ow et 

al. (2014) and Lau et al. (2007). The higher the price the negotiation system agrees to 

sell the products for, the greater the store owners’ profit will be. If price is to be used 

to determine the if the negotiation system is satisfactory for a store owner, then an 

acceptance zone will have to be used for the price. Although the final price agreed by 

the negotiator can vary, there will have to be a limit on how low a price the system can 

offer customers. Negotiation science identifies ‘limit’ as one of the key standards that 



 

  57 

drive the negotiator’s behaviour (Najjar, 2016). Limit is defined by Pruitt et al. (2010) 

as “a bargainers ultimate position, the level of benefit (or utility) beyond which he or 

she is unwilling to concede”, agreeing on a price below the limit is considered worse 

than no agreement (Raiffa, 1982). Different store owners may have varied limits. 

There is no one universal ‘limit’ that is used by all store owners. As such, the store 

owners’ preference for the limit value needs to be a dynamic within the system.  

 

An experiment will be carried out to evaluate the negotiation systems ability to settle 

on prices with customers who possess varying negotiating behaviour. If the system is 

capable of negotiating with customers and selling products to them for prices that are 

consistently above the limit set by the store owner, then the system can be deemed 

satisfactory. The negotiation system must be able to obtain satisfactory results even 

when: 

•  the number of customers the system must negotiate with is increased 

•  the limit the negotiation system must stick to is increased 

•  the number of negotiations the system must engage in with each customer is 

increased 

 

3.5.2  Experiment 2 –  Customer Satisfaction  

 

To evaluate customer satisfaction, an experiment will be held. A group of volunteers 

will negotiate with the system multiple times on various products. Each volunteer will 

be interviewed post-experiment in order to gauge their satisfaction with the system. 

The questions will be based on a combination of the usability heuristics for user 

interfaces from Nielson (1995) and the post negotiation questionnaires used by Yang et 

al. (2009) and Curhan et al. (2006). 



 

  58 

    

           

Table 4 Satisfaction questionnaire used by Yang et al. (2009) 

 

 

 

    

          Figure 20 Satisfaction questionnaire used by Curhan et al. (2006) 



 

  59 

3.6 System Design 

3.6.1  Use Case Diagrams 

When creating use case diagrams for an eCommerce environment, typically a store 

owner actor would be shown. As the eCommerce site will exist purely to enable the 

experiments, a store owner actor will not be needed. The products listed on the site do 

not need to be dynamic, they will be hardcoded. No admin page will exist. 

 

  

Figure 21 Use Case diagram for customer 

 

When a customer first uses the website, they will be required to register (‘Register’). 

Once their details have been entered and verified, the log in process is automatically 

triggered (‘Login’). Any further use of the website only requires logging in (‘Login’). 

The customer can now hit the negotiation button and start the negotiation (‘Start 

Negotiation’) for a product. Once begun, the customer can set an offer (‘Set Offer’) to 

send to the negotiation system (‘Make Offer’). If the offer they wish to send is the max 

they are willing to pay for a product, the customer can set the offer as their final offer 

(‘make final’). Once an offer is sent, the negotiation system can either accept it, reject 

it, or counter it (if it hasn’t been set as the customers final offer). If a counter offer is 

sent by the negotiation system, the customer can either accept it (‘Accept Counter’), 



 

  60 

reject it (‘Reject Counter’) or if the counter offer hasn’t been set as the negotiation 

systems final offer, the customer can set and make another offer. 

 

 

 

     Figure 22 Use Case diagram for Negotiation Agent 

 

Once a customer hits the negotiation button on a product, the negotiation agent starts 

the necessary preparation (‘Start Negotiation’) needed to field any and all offers for the 

product sent by the customer. It will, depending on the offer, either counter it 

(‘Counter Offer’), accept it (‘Accept Offer’) or reject it (‘Reject Offer’). Accepting or 

rejecting an offer sent by a customer will result in the negotiation agent ending the 

negotiation (‘End Negotiation’) and recording the result of it (‘Record Negotiation’) to 

use in future negotiations. Countering a received offer involves first generating the 

counter (‘Generate Counter’) based on any previous negotiation data on the customer 

(‘Get Previous Negotiation Data’), deciding if the counter is the final counter offer 

(‘Make Final’) or not and then recording the counter amount/final status (‘Record 

Counter’) before sending the counter offer to the customer (‘Counter Offer’). 

 

 

 



 

  61 

3.6.2  Entity Relationship Diagram 

 

 

     Figure 23 ERD diagram for negotiation system and eCommerce site 

 

1. Users – stores customer data for registration/logging in and negotiation system 

decisions 

o username – set during registration, used for logging in and 

differentiating which negotiation belongs to which customers  

o email – set during registration, used for logging in 

o password – set during registration, used for logging in 

o maxBelowAsking – if a customer sends a final offer, indicating a price 

is the most they will spend, this price gets converted to a % value below 

the asking price and gets stored for use in future negotiations (e.g. 

customer sends 450 as final offer for €1000 product, maxBelowAsking 

is 45%) 

2. Negotiations – stores information for each individual negotiation that occurs 

o id – unique id given to each negotiation that occurs in the system, 

autoincrements in the database as each subsequent negotiation starts 

o username – the customer who is negotiating with the system, the 

customer who ‘owns’ this negotiation database object 

o belowAsking – if an agreement is reached on a product between the 

negotiation system and the customer, the final price agreed by both 

parties is saved here as a % of the original product price, for use in 

future negotiations 

o productName – the product the customer and negotiation system are 

negotiating on 

3. Messages – stores each message that makes up each negotiation 



 

  62 

o id – unique id given to each negotiation message that occurs in the 

system, autoincrements in the database as each subsequent message in 

the negotiation is sent 

o negotiation – the id of the negotiation the message belongs to 

o offer – the offer sent to the negotiation system by a customer 

o counter – the counter the negotiation system has generated in response 

to the offer 

o level – the number of the message in the negotiation (e.g. ‘2’ would 

represent the second offer/counter message sent between the customer 

and the negotiation system) 

o final – true or false value representing if the message contains a final 

offer sent by either the negotiation system or the customer 

 

3.6.3  Class Diagrams 

The initial class diagram represents a version of the system that can negotiate with 

customers. This version has a very basic negotiate strategy: just stick to the limit set by 

the store owner. The final class diagram builds on top of the initial design, allowing 

the system to negotiate with customers with a more advanced strategy. A negotiation 

evaluator system will need to be implemented to aid in the evaluation of the 

negotiation system. This will also be designed with a class diagram. 

 

 

 

 

 

 

 

 

 

 

 

 



 

  63 

Initial Design 

 

 

 

Figure 24 Initial class diagram for negotiation system 

 

Index: The index class will be the entry point for the system. This class will receive 

JSON messages from the front end and forwards the data to the appropriate class. It 

contains instances of two classes; UserServer and NegotiationAgent. Index will 

forward the received messages data to the class it is meant for, e.g. a request to log in 

and the associated credential data will be sent to the UserServer and will trigger the 

Login class. 

 

UserServer: This class will handle all registration and log in logic. It will validate all 

the user credential data it receives and maintain an update variable to contain 

information such as an incorrect password being used or registration being successful. 

This variable will be returned to the front end by the index class. 

 



 

  64 

NegotiationAgent: This class represents the negotiation system agent. This agent 

receives 3 types of negotiation message from the index class. One that indicates a 

customer wants to negotiate, which triggers the agent to start the negotiation. One that 

indicates a customer has ended the negotiation, which triggers the agent to do the 

same. Finally, a message containing an offer on a product from a customer will prompt 

the agent to counter it. With each message that is received, a negotiation object gets 

instantiated so to contain the negotiations current state, as each message will affect a 

negotiation, having an object to represent the negotiation in its current state is needed. 

 

Negotiation: This class represents a negotiation, with each negotiation having a unique 

negotiationID. As PHP has no state, the negotiation class will get reinitialised after 

each negotiation message is received by the negotiation agent. This negotiation class 

will represent a single negotiation in its current state, before the message updates the 

negotiation (ends it, adds an offer/counter). If the negotiation is just beginning, the 

class will create a negotiation in the database. When updates are being made to a 

negotiation, the negotiation class gets the current state before updating. The act of 

updating creates a negotiation message instance, so to ensure whatever update is 

represented accordingly in the database. The negotiation class also stores the limit 

variable, which determines how low the system can let its products go for.  

 

NegotiationMessage: Whatever changes the negotiation class makes to a negotiation, 

based on the negotiation message sent to Negotiation Agent, the negotiation message 

class stores this message in the database. For example, a message is sent to the Agent 

that contains an offer of 100. The agent generates a counter of 90. This offer and 

counter are part of a single negotiation message. The negotiation message class takes 

this information and stores it in the database. 

 

Final Design 

The final class diagram has updated the initial design in the following ways: 

• Added a PastNegotiations class. 

• Removed PrevCounter operation from Negotiation and gave it to 

PastNegotiations. 

• Gave Negotiation 2 new operations (SetFinalPrice, RecordMax) 



 

  65 

• Gave Negotiation 3 new attributes (max, goal, increase) 

 

Figure 25 Final class diagram for negotiation system 

 



 

  66 

The final design of the negotiation class allows it to use the results of previous 

negotiations to aid future negotiations. Using the PastNegotiations class, Negotiation 

can get access to the previous settled amount with a customer so that it can add an 

increase amount on to it to form a goal for the current negotiation. Using 

PastNegotiations to get the customers max can allow Negotiation to get a max value, 

this value is the max a customer is willing to pay during a negotiation. If this value is 

set, then the Negotiation can use it to always get the most it can out of a customer 

during a negotiation.  

 

 

Negotiation Evaluator Design 

 

 

    Figure 26 Class diagram for negotiation evaluator 

 

Index: The index class is the entry point for the evaluation system. It receives data 

from a front end ‘evaluation’ page that contains the number of customers (custCount) 

the negotiation system will have to negotiate with, the number of negotiations the 

system will have to engage in (negsCount) with each customer and the amount of 

times the test should be ran (testCount). An instance of the NegotiationEvaluator class 

is created and these 3 variables are passed to it. 

 

NegotiationEvaluator: The NegotiationEvaluator classes responsibility is to create the 

requested number of users for each of the customer types and have them each negotiate 



 

  67 

with the system the specified number of times. The system will run the evaluation the 

amount of times specified by the testCount variable. The customer types, of which 

there will be 16, will each have different negotiating behaviour. The 

NegotiationEvaluator has one instance of a UserServer (detailed in 3.3.6.1) to register 

the users. The class has one instance of the User class that gets reinitialised for every 

new customer, with the customers unique negotiation behaviour specified by the 

UpdateUserDetails method. The user class instantiates the NegotiationAgent (detailed 

in 3.3.6.1) to use it to negotiate. After every completed negotiation, its results are 

saved to a text file. 

3.7 Conclusions 

In this chapter, the proposed automated negotiation system for store owners was 

designed. This system will represent the store owners using software agents and will 

negotiate on their behalf with their customer with the goal of achieving the best 

individual outcome for the seller with each negotiation. The system will use past 

negotiation and customer data in its strategy to aid in getting the highest sale amount 

during each negotiation. First, feature driven development was chosen as the software 

development process for the project. Using a software development process like FDD 

allows for each new feature to be tested after implementation, rather than at the end of 

development when the while system is complete. This may potentially lead to some 

interesting findings as the negotiation system is brought from using a simplistic 

strategy to making use of the past negotiation and customer data. Angular and PHP 

were chosen as the main development technologies due to Angulars component-based 

architecture and PHPs support for MySQL through PDOs. How they fit together was 

described in a project architecture diagram so to get a better understanding how they 

will interact with each other. The projects user interface was prototyped using 

wireframes and the negotiation system itself was modelled using a mixture of use case, 

ERDs and class diagrams so to provide a foundation from which the system could be 

implemented in chapter 4. Finally, the experiments that will be used to evaluate the 

proposed system were described. Two experiments, one to gauge the customers 

satisfaction with the system and another to gauge the store owner’s satisfaction with 

the system, will be used to gather results for evaluation. 



 

  68 

4 CHAPTER 4. SYSTEM IMPLEMENTATION AND 

EXPERIMENTS 

4.1 Introduction 

In this chapter, the front-end (the ecommerce store and negotiation system UI) and the 

back end (the negotiation system itself) will be implemented based on the designs 

shown in Chapter 3. The implementation must exist in the context of an eCommerce 

site and use a software agent to automate the negotiation on the prices with the 

customers. The software agent will represent the store owner and use a combination of 

customer and past negotiation data to in its negotiations so to achieve prices that are to 

the satisfaction of the store owner. Following this implementation, the development of 

a Negotiation Evaluator system to aid in the evaluation of the negotiation system will 

be described. This evaluator will be used during the main experiment to generate large 

datasets of negotiations from which to evaluate the system. The evaluator will also be 

used through the implementation of the negotiation system to test each new feature to 

ensure it is working correctly. The results these tests generate will also be used for 

evaluation purposes further down the line. How each of the two experiments were 

implemented will also be detailed. Using the two separate experiments allowed for 

both quantitative and qualitative analysis. Finally, the development process will be 

reflected on. Any problems encountered during the development will be discussed and 

the technology used will be judged on its effectiveness during implementation. 

 

4.2 Front-End Implementation 

The front-end implementation involves creating the welcome, home and negotiation 

pages described in the previous chapter. The front-ends messaging capabilities must 

also be implemented to allow data to be sent to and received from the back-end.  

 



 

  69 

                    

Figure 27 Wireframe for the home page 

 

4.2.1  Front-End Project Structure  

To develop the front-end, the Visual Code integrated development environment was 

used. Angular has a tool called the ‘CLI’ (command line interface) which allows 

developers to create new Angular Applications, add services/components/routes and 

run the application all through simple commands. Using the command CLI command 

‘ng new ecommerce’, a new Angular application called ‘ecommerce’ was created. This 

was then opened and inside Visual Code. The entirety of the front-end is an Angular 

application, with most of the front-end system being developed as angular 

components. Adding components and services to the project was easy due to Visual 

Code having plugins specifically for Angular.  



 

  70 

 

Figure 28 Right clicking on ‘src’ to add a component using Visual Code Angular plugin 

After adding five components and one service, the project structure for the front-end 

was organised as follows: one Angular app (‘app’) with two sub sections, one for 

pages and one for page elements. ‘Pages’ contains a home and welcome folder, each 

containing their respective component. ‘Elements’ contains a navbar and negotiation 

folder, both of which are also components. Each Angular component has one CSS, 

HTML, typescript and testing file, all autogenerated on creation and stored in their 

respective folder. One service was created, named http, to allow communication with 

the back-end negotiation system. A testing folder and corresponding component were 

also created (See Section 4.4 for details). The product images for the ecommerce site 

had to be stored in the assets folder, as this is where all assets must be stored for an 

Angular application. 



 

  71 

       

Figure 29 Angular Ecommerce store project structure 

Every Angular component must be declared in the app module class. Here, 

components are imported, declared, and added to the project’s routes array. In routes, 

each component is given a path (a name which when added to the URL, loads the 

content of the component without reloading). The base path is set to the welcome 

component, as this is the first page customers should see on the store. The HTTP 

service was added to the providers, so it could be used throughout the project. 

 

 

 

 

 

 

 

 

 

 

 

 



 

  72 

4.2.2  Angular Specific Classes  

 

       

Figure 30 app module class 

Each Angular application has an app-root. An app-root is the entry point for the 

application, this is the first component loaded up when the site is entered. This ‘app-

root’ is auto generated when the project is created, it gets, like all other components, a 

CSS, HTML, and typescript file. In the app.component.ts typescript file, you can see 

where it is declared as the app-root. 

      

Figure 31 app.component class 

The HTML for the app root is empty apart from one line: ‘<router-outlet></router-

outlet>’. The router outlet tag is used in Angular to control the flow between the 

components. The router-outlet displays whatever component the URL path is tied to. 



 

  73 

For example, in the routes array in the app module class, the welcome component is 

tied to the URL ‘/welcome’. As the default URL in routes is specified to go to the 

‘welcome’ path, the component associated with that path in the routes array, in this 

case the welcome component, gets displayed. 

4.2.3  Welcome Page  

 

       Figure 32 Welcome component 

The welcome component allows customers to register. Once the input fields have been 

filled with data, the register button is clicked which triggers the register function in the 

welcome components’ typescript file. This function sends the contents of the input 

fields to the HTTP service class to allow the customer to register with the site.  

 



 

  74 

      

     Figure 33 Register function in HTTP Service class 

The customers chosen email, username and password are packaged together with an 

action specifier and user marker before all are sent to the back end. The action tells the 

back end that it’s a message regarding the user (not for the negotiation system) and the 

user marker being set as ‘register’ tells the back end that the user wishes to register, not 

log-in. If the registration process is a failure, the error message (e.g. “Username 

taken”) is returned from the back end and alerted to the browser. If the registration is a 

success, the customer is logged in. If a log-in is detected, the welcome component uses 

the router to change the URL to ‘/home’ which signals to the router to update the 

display to the component associated with that URL, which is the home component.  

If the customer has already registered with the site, the navbar can be used to log-in. 

Once the username and password have been entered, the sign in button can be clicked. 

This triggers the login function in the navbars typescript file. 

       

 

         Figure 34 Login function in navbar typescript class 



 

  75 

The HTTP service and router are both injected into the navbar component through its 

constructor. The http services login function gets called which sends the entered 

username and password to the back end to be verified. As the backend needs to reply 

to the login request, subscribing to the login function prevents the login function from 

returning until the backend replies. This reply, if it contains the message “logged in”, 

stores the username for future use and changes the URL to ‘/home’. This update to the 

URL prompts the router to display the home component.  

4.2.4  Home Component  

 

          Figure 35 Home Component 

The one navbar component is used in both the home and welcome component; it 

changes which buttons appear based on where it is being viewed. The sign in inputs 

and button are hidden once the customer logs in, with check out and sign out buttons 

appearing in their place. 

 

               Figure 36 Navbar changes view based on whether the customer is logged in 



 

  76 

Customers can now select a product on the home page to negotiate on by clicking the 

negotiate button. This triggers a function that uses the http service to notify the 

backend to start a negotiation. 

 

Figure 37 Home component telling the backend (via HTTP service class) to start the 

negotiation 

 

 

Figure 38 StartNegotiation function in HTTP service class 

 

The HTTP service class (‘backend’ in home’s typescript class) takes in a product name 

and sends this to the back end with a piece of ‘action’ data with “start” associated with 

it. Once the back end reads the action and sees “start”, it will know that the customer 

has selected a product and wishes to begin a negotiation on its price. The product 

name, and the customer’s name are also both sent to the backend, so that the 

negotiation system can know who its negotiating with and on what. 

 



 

  77 

4.2.5  Negotiation Component  

Once the negotiation starts, the negotiation modal will open. The home components 

modal fills itself with the negotiation component, passing it the price of the product for 

initial display purposes. 

         

  Figure 39 Home components Modal containing negotiation component 

 

When the negotiation modal opens, the product price (the ‘store owners’ initial offer) 

is displayed on the right. The customer can then use the slider to set their offer, before 

sending it with the Offer button. If the customer wishes to send an offer that represents 

the most they are willing to pay for the product, the offer can be sent as the customers’ 

final offer, by clicking the final offer button. 

 

      Figure 40 Offering 237 for product in modal containing the negotiation component 

 



 

  78 

Once the offer or final offer buttons are pressed, the value of the offer is sent to the 

http service class to be sent to the back end.  

 

Figure 41 HTTP services SendOffer function used to send customer offers to the 

negotiation system 

The customer’s name is sent so the negotiation system knows who the offer is from, 

and a string to indicate if the offer from the customer is their final offer. The action is 

‘offer’, so the negotiation system knows what it just received was in fact, an offer. The 

negotiation system will reply to this offer with either a counter offer (which may or 

may not be final) or a true/false ‘accepted’ variable, true indicating the negotiation 

system accepted their offer, false indicating they rejected their offer (if the offer was 

final). The accepted variable can be empty, which indicates the customers offer want 

rejected or accepted, instead a counter offer was sent. This data is sent back to the 

negotiation component to process. If a counter offer is sent back, the slider is reset, the 

minimum offer the customer can now send is the previous sent offer + 1 and the 

maximum offer they can send is set equal to the just received counter offer. If the 

negotiation system sent back an accept or reject to the offer the customer is notified 

which via an alert, and the negotiation is ended. If the negotiation system sent back a 

counter and indicated it to be the final counter offer, the customer is given the option to 

accept or reject it. Either option ends the negotiation. Negotiations are ended via the 

HTTP services EndNegotiation method. 



 

  79 

 

      Figure 42 Negotiation system accepted the offer the customer sent 

 

      

 Figure 43 Negotiation system returned a counter set as final, customer must accept or 

reject it 

 

 

 

 

 

 

 

 

 



 

  80 

4.3 Back-End Development 

The back-end implementation involves creating a user server and negotiation agent to 

handle the user and negotiation requests that will be received from the front-end 

eCommerce site and negotiation component. 

 

 

  Figure 44 Initial class diagram for negotiation system 

4.3.1  Index Class  

All code for the back end was created inside Visual Code. The PHP classes were 

stored inside a PHP folder inside the main ‘ecommerce’ angular app folder. To begin, 

an index.php class was created. This class received the JSON messages from the front-

end. The messages were differentiated with an ‘action’ field. If the field was equal to 

user, then the message contents were sent to the UserServer class. If not equal to user, 

the message contents were meant for and sent to the NegotiationAgent. The 

UserServer was given a variable to hold any updates that need to be sent back to the 



 

  81 

front-end. As such, once index.php sends the message to UserServer, it grabs the latest 

update, wraps it in JSON format and echo’s it back to the front-end. 

  

     Figure 45 index.php class 

4.3.2  User Server  

 

        

 Figure 46 UserServer constructor 

 

UserServer takes in the data that the index passes it. UserServer check the ‘user’ field 

to see whether the request is to login or register. The class then uses the ValidData() 

method to verify the credentials are both present and in the correct format. If so, the 

class will either log-in or register the user, passing in cleaned versions of the 

credentials (special characters stripped, slashes stripped) to the respective function. 

The Register and Login functions attempt to do both and update the latestUpdate 

variable if it’s a success, or failure (and the reason why). 



 

  82 

If the request sent to index.php does not have the ‘action’ field set to user, then the 

request is for the negotiation agent.  

 

4.3.3  Negotiation Agent  

 

The negotiation agent takes in the request and reads another field called ‘action’. 

Action can be 1 of 3 possible values; “Start”, “Offer” or “End”. “Start” and “End” 

either start or end a negotiation. Start calls the StartNegotiation function, passing in the 

username for the customer who wishes to start negotiating, and the name of the 

product they wish to negotiate on. This results in a negotiation row being entered into 

the negotiations table in the database, with the negotiation being assigned a unique id 

and the username/product name being stored.  

 

       Figure 47 Sample entries in the negotiations table 

“End” results in the EndNegotiation function being called, the username of the 

customer who sent the request gets passed in, so the system knows which negotiation 

to end.  

“Offer” triggers the Counter function. This function is used when a customer wishes to 

make an offer on a product and so sends it to the negotiation system. The function 

takes in 3 variables; the username of the customer, their offer and a string indicating 

whether their offer is final or not. 

 



 

  83 

                  

     Figure 48 Counter method for NegotiationAgent class 

 

Like with the start and end negotiation function, the first thing that occurs is the 

instantiation of a negotiation class. The function indicates to this class that the 

negotiation already exists (as you must have already started a negotiation to send an 

offer) via ‘true’, and the username of the customer who is negotiating. The negotiation 

has already been created, so no product name needs to be sent to the negotiation class 

(hence the null). The function then calls the negotiation counter method, passing in the 

customers offer and whether it is their final offer or not. The negotiation systems 

counter to this offer is then returned in response to the customers offer. The function 

checks to see if the counter is the negotiating systems final counter, or if the system 

accepted the customers offer or not. This information is saved and returned to the 

index class to be sent back to the customer on the front-end. 

 

Regardless of whether a user wishes to start a negotiation, end a negotiation or send an 

offer for an existing negotiation, a negotiation class instance is always created.  

4.3.4  Negotiation Class  

The negotiation class is the main class of the system. It is used by the negotiation agent 

to start or end negotiations and counter any offers sent its way.  

 



 

  84 

       

    Figure 49 Negotiation class constructor 

If the negotiation has already started, then the GetNegotiation method is called which 

returns the negotiation id for the negotiation the customer is currently engaged in. If 

not, the CreateNegotiation method is called so a negotiation entry is added to the 

database for the customer and the product they are negotiating on, which in turn gets a 

unique negotiation id assigned to the negotiation to allow future updates to update the 

correct negotiation. The limit for the system is hardcoded here, this represents the 

lowest price the negotiation agent can let the product go for. The increment percentage 

variable is set to 4, which is used to calculate what the increase should be to the 

negotiation agents price goal following each successful negotiation. The ‘goal’ for the 

current negotiation gets calculated in the GetNegotiation method. 

 

 

     Figure 50 Negotiation class GetNegotiation method 



 

  85 

The PastNegotiations class can be used to get past negotiation data about the customer. 

Using this, the goal is retrieved. The goal represents the last successful negotiation the 

system reached with the customer, if any. This value is represented as a % below the 

original asking price. If none exist, the negotiation agents limit is set as the goal for the 

current negotiation. If one does exist, the goal is calculated for the current product 

price and an increase is added on, so to ensure the goal of the system is higher than the 

previous agreed upon price.  The past negotiation class is also used to retrieve the 

customers maximum offer, if it is known. If the max offer the customer is known to go 

to is known, the system will just offer that as the final price to the customer, if it is 

above the limit. Asking the customer for more than the max could result in a rejection 

from the customer, and asking for less than the max could result on a settlement price 

lower than the system could have gotten.  

 

The negotiation class was also created to be used by the negotiation agent to calculate 

the appropriate counter for a given offer. A counter function in the negotiation class is 

called by the negotiation agent for this very purpose. The function takes in the 

customers offer and a bool representing if the customers offer was their final offer or 

not. The counter function makes the following decisions in order: 

1. If the offer is the customers final offer, record it, so it can be known in future 

negotiations that this offer is the most a customer will pay during a negotiation. 

2. If the offer is final, check to see if the offer is greater than or equal to the 

negotiation systems limit. In the case of final offers, the limit takes precedence 

over the goal. At this point, since the offer is final, we know this is the most the 

customer will pay (i.e. their limit). There is no point in the system using the 

goal value (previous negotiation agreed amount + increment) to decide whether 

to accept the customers final offer if the customers limit. If the customers limit 

is below the systems goal but above the systems limit, by right a negotiation 

could have been reached but by using the goal, the negotiation was ended 

without an agreement. The system should always prioritise reaching an 

agreement over reaching a better agreement than last time. 

3. If the offer is final and is above or equal to the systems limit, accept the offer, 

and store it as a message in the negotiation. At this point, end the negotiation. 

4. If the offer is final but is below the systems limit, reject the offer, and store it as 

a message in the negotiation. At this point, end the negotiation. 



 

  86 

                        

                                 Figure 51 EndNegotition method in Negotiation class 

 

Ending a negotiation can be done by either the negotiation agent or the customer 

themselves. The customer variable is a true false value indicating if the customer is the 

one ending the negotiation or not. If not, it’s the agent, and the final price agreed on 

with the customer gets recorded for future negotiations (only if the agent accepted the 

final price). Likewise, if the customer ends the negotiation the final price they agreed 

on needs to be recorded for future negotiations (again, only if the price was accepted). 

Negotiations ending with one side rejecting the others final offer do not have their 

resulting price recorded. Due to the stateless nature of PHP, by time the customer 

accepts or rejects the agents offer on the front-end, this offer amount is already lost. 

PastNegotiations must be used to get the last counter sent by the negotiation agent, as 

this will have been the price accepted or rejected by the customer. 

5. If the offer sent by the customer is not final, the system checks to see if it is 

greater than or equal to the systems goal. If so, the offer is accepted, the offer is 

stored as a message in the negotiation and the negotiation is ended. 

 

          

                       Figure 52 All messages stored in a database for a negotiation of id 2 



 

  87 

6. If the offer is less than the goal of the system, the system generates a counter 

via the GenerateCounter function, stores it as message in the negotiation and 

returns it to index.php to be sent to the customer. 

 

        

       Figure 53 Generate Counter method in Negotiation class 

 

Counter generation in the negotiation system involves making the following decisions: 

1. If the max percentage of the product price a customer is willing to pay during 

negotiations is known, the counter is set to this, and returned as the final offer 

by the negotiation system. 

2. If the max is not known (is null), the PastNegotiations class is instantiated and 

used to get the previous counter sent by the system in the current negotiation.  

3. If it turns out this is the first offer the system has received by the customer in 

the current negotiation (previous counter doesn’t exist), the first offer is 

generated, set as a maximum of 5 percent below starting price, and returned. 

4. If a previous counter in the negotiation exists, the next counter is selected as a 

number between the previous counter minus 1 and the systems goal. 



 

  88 

5. If the generated counter is equal to the systems goal for the negotiation, the 

counter is set as the final before being returned. As at this point, the system 

can’t offer anything lower or it won’t reach its goal. 

4.4 Negotiation Evaluator System 

4.4.1  Index Class 

The negotiation evaluator system was created to both test the negotiation system 

during the development process and as an aid in the evaluation of the negotiation 

system after development is completed. A simple Angular component was created with 

three input fields. One field allowed the number of customers to be set, another field 

sets how many negotiations each customer is made perform and the final field sets the 

amount of the times the evaluator is ran.  

The HTTP service class sends these values to an index.php class to start the evaluator. 

   

 

Figure 54 index.php receives the field values from the front-end and creates the evaluator 

with them 

 

 

 

 

 



 

  89 

4.4.2  Negotiation Evaluator Class  

Once the NegotiationEvaluator is instantiated, it begins to run.  

       

 Figure 55 Evaluators function for generating customers to negotiate with the system 

The NegotiatonEvaluator constructor calls the GenerateUsers function. Here, the 

customers behaviour variables are updated to whichever the current customer type the 

evaluator is creating. 

       

Figure 56 As the ‘userType’ variable increments, the customers negotiation behaviour 

changes 

The evaluator will, for each of the 16 customer types, run a set number of times for 

each customer type (decided by ‘runCount’ value). The evaluator will create a set 



 

  90 

number of customers for each of the types (decided by ‘customerCount’ value). The 

evaluator will have each of these customers negotiate a set number of times (decided 

by the ‘negsPerUser’ value). For example, a ‘runCount’ of 5 with a ‘customerCount’ 

and ‘negsPerUser’ of 4 and 3 respectively, will result in 3 negotiations for each of the 

4 customers for each of the 16 types. This will be repeated 5 times for a total of 960 

negotiations (3 negotiations x 4 customers x 16 types x 5 runs).  

 

4.4.3  User Class  

When a user is created, it is given the negotiation behaviour set by the current type and 

is registered with the negotiation system (is added to the database like when a real 

customer registers). The user class is instantiated and negotiates with the negotiation 

system. The result of the negotiation result is saved to a file, and the user is removed 

from the database. 

The User class negotiates with the negotiation system in a way specified by the 

behaviour give to it.  

           

Figure 57 User constructor 

The increment min and max specify the range which the user can generate its 

increments to its offers. The startingPercentage specifies the percentage of the products 

price the user will send as its first offer to the system and the discount goal is the price 

the user tries to reach in the negotiation. For example, a min of 20 and max of 30, a 

product price of 1000, a starting percentage of 50 and a discount goal of 30 are used. 



 

  91 

This means the users first offer is 50% of 1000, any following offers will be the 

previous offer plus a random value between 20 and 30 and the user is trying to get a 

price 30% below the asking which is 700. Anything below 700 is not acceptable to the 

user.  

Before starting the negotiation, the user has some basic set up. This includes 

initialising some variables and instantiating the negotiation agent. The user sends a 

message to the negotiation agent that it wishes to start the negotiation and so the 

Negotiate function is called to begin. 

The user generates the first offer using its GenOffer function.  

       

Figure 58 GenOffer function 

The GenOffer function checks to see if the user has sent an offer in the negotiation. If 

they haven’t, the starting offer is used as the current offer. If the user has sent an offer 

before, the increment is calculated as a percentage of the previous offer and added on 

(e.g. previous offer was 100, increment generated as 22, so 22% of 100 is added onto 

100 to make the current offer). If the offer is greater than the current price of the 

product, it is fixed. If the offer goes over the goal of the user (e.g. max 700), the offer 

is set to the max and the user specifies that the offer is their final offer they are going 

to make. This offer is returned and sent to the negotiation agent via the SendOffer 

function.  



 

  92 

         

        Figure 59 SendOffer function 

The negotiation agent counter function is sent the users offer and the agents counter 

offer is saved. This counter offer, like it does for real customers, can contain counters, 

final counters, accepts or rejects. If the agent accepts or rejects the users final offer, the 

negotiation is ended, and the evaluator saves the result before moving on to the next 

user. If the user receives a counter offer, it will send another offer to try get a better 

price. If the counter was final and above the user’s goal (above 700), the user will 

reject the negotiators final offer. If the agent’s final offer is equal to or below the goal, 

the user will accept it. 

 

4.5 Experimental Implementation  

Two experiments were implemented. The main experiment, which focused on the store 

owner’s satisfaction, was quantitative. The ancillary experiment, which focused on the 

customers satisfaction, was qualitative. 

4.5.1  Store Owner Satisfaction Experiment  

For the negotiation systems performance to be deemed satisfactory to a store owner, 

the negotiation system must obtain satisfactory results (achieve sales above limit) 

regardless of how many customers it must negotiate with, how many negotiations with 

each customer it must have and regardless of what its limit is set to. As such, the 

experiment consisted of 4 steps: 



 

  93 

Step one: The negotiation evaluator was used to figure out what percentage increase to 

each subsequent negotiation, following a successful negotiation, generated the best 

results. This number needed to be figured out first, as the system needed to be set to 

use this number in the following 3 steps. The evaluator was used 7 times for this step, 

each time with one customer of each type negotiating 30 times. Each time a higher 

increase was set in the system than the previous. The increases were 1%, 2%, 3%, 4%, 

5%, 10% and 20%. Step one was executed 10 times to get the average results for each 

increase. 

Step two: Record the systems results when the number of customers the system must 

negotiate with is increased. The negotiation evaluator was used 6 times for this step, 

each time the customers of each type only had to negotiate 1 time each, but the number 

of customers was increased with each use. The step started with 1 customer, then 5, 10, 

50, 100 and finally 250. Step two was executed 5 times to get the average results for 

all customer increases.  

Step three: Record the systems results when the number of negotiations the system 

must engage in with each customer is increased. The negotiation evaluator was used 7 

times for this step. Each time one customers of each type had to negotiate with the 

system, but the number of negotiations they had to do was increased with each use. 

The customers began having to do 1 negotiation, then this was increased to 5, then 10, 

25, 50, 100 and finally 250. Step three was executed 5 times to get the average results 

for all negotiation increases. 

Step four: Record the systems results when the limit the negotiation system must stick 

to when negotiating with each customer is increased. The negotiation evaluator was 

used 6 times for this step. Each time the limit was increased, starting with a limit 

below the max the customers were willing to pay and ending above it. 1 customer of 

each type had to negotiate with the system 10 times for each of the different limits. The 

price of the product remained the same at 1000 but the limit started at 500, and was 

then increased to 550, then 600, 700, 950 and finally 995. Step four was executed 5 

times to get the average results for all negotiation increases. 

 



 

  94 

4.5.2  Store Owner Sat isfaction Experiment  

5 volunteers were used to take part in this experiment. 5 people is considered enough 

in many situations for collecting user feedback (Nielson, 2000). 

The volunteers were presented with the ecommerce stores welcome page and given 

limited instructions, which were as follows: 

1. Register with the eCommerce store. 

2. Choose a product. 

3. Negotiate on its price. 

4. Record the results of the negotiation. (Reached agreement? For how much?) 

5. Repeat steps 2, 3 and 4 10 times. 

 

The system’s ability to learn each customer max price that they are willing to pay 

during negotiations was disabled. This feature wasn’t designed to deal with customers 

who engage in dynamic negotiation strategies, and since the volunteers could employ 

any negotiation strategy, they saw fit to use, the feature had to be disabled. The feature 

to demand greater amounts with each successful negotiation with a customer remained 

enabled. 

 

Part Two: 

The volunteers were interviewed post experiment to gather knowledge about their 

satisfaction with the negotiation system and the systems usability. The questions asked 

were as follows: 

1. With all successful negotiations, how satisfied were you with the agreed prices 

at the end of the negotiations? (1-Extremely dissatisfied; 4-Indifferent; 7-

Extremely satisfied) 

2. With all successful negotiations, what did you think of the final agreement, in 

relation to your goal for the negotiation? (1-Much worse than expected, 4-As 

expected; 7-Much better than expected) 

3. Did you ever feel like you “lost” in any of the negotiations? (1-Not at all; 4-A 

moderate amount; 7-A great deal) 

4. With all successful negotiations, do you feel the final agreements were fair? (-5 

Agreements heavily biased towards seller, 0 Agreements were fair, +5 

Agreements heavily biased towards yourself) 



 

  95 

5. How important was the final price to your satisfaction with the system (1-Not 

at all; 4-A moderate amount; 7-A great deal) 

6. Did you feel like the system kept you informed on what was going on, and 

within reasonable time? (1-Not at all; 4-A moderate amount; 7-A great deal) 

7. Did the system support ways for you to undo any mistakes you made? (1-Not at 

all; 4-A moderate amount; 7-A great deal) 

8. Do you feel the system did a good job of preventing you from making 

mistakes? (1-Not at all; 4-A moderate amount; 7-A great deal) 

9. Was the system intuitive, did everything function the way you expected it to? 

(1-Not at all; 4-A moderate amount; 7-A great deal) 

10. Do you think the design was minimalistic, only showing what was relevant to 

the situation? (1-Not at all; 4-A moderate amount; 7-A great deal) 

 

4.6 Reflection on Development 

Both PHP and Angular proved to be effective technology to develop the project with. 

Angular allowed the front-end development to be a lot quicker than initially expected. 

The ability to make each piece of the front-end a component, and so in turn to develop 

each piece in isolation of the others, made the development process much simpler. The 

fact that the negotiation systems front-end could be made after the ecommerce store 

had already been built and could be integrated so effortlessly into the already existing 

project is a testament to how powerful and helpful the Angular technology is. Back 

end development with PHP. PHP was very simple and straightforward to use. Its PDO 

functionality made reading and writing to the database very quick and easy. However, 

developing the negotiation system was quite tricky due to the stateless nature of PHP. 

As PHP is designed to receive requests and respond to them, keeping track of which 

request belonged to which negotiation was more convoluted than anticipated. This 

stateless nature required a design that would have to figure out and load up its current 

state every time a negotiation message was received from the front-end. This involved 

finding which negotiation the message belonged to and where in the sequence of 

negotiations messages the newly received message belonged. This process had to 

repeat itself every time an offer was sent to the system. This effects of this began to 



 

  96 

show when some parts of the experiment were executed. One part of an experiment 

required the system to take part in 200,000 negotiation. This took around 11 hours to 

execute. Debugging PHP proved to be a bit of an issue. With Angular, printing to the 

console could help solve most bugs. With PHP, outputting to the Apache logs seemed 

to be the only option, which was a time-consuming process. In the end a logging 

functionality was created to output debug statements to a file located in the PHP 

folder. This helped greatly. Finally, feature driven development proved to be a very 

suitable development process to use and follow. Different pieces of the project needed 

to be developed and tested in an iterative fashion, so feature driven development 

allowed for this perfectly.  

4.7 Conclusions 

In this chapter, the implementation of the front and back end of both the ecommerce 

site and the negotiation system was documented. An eCommerce site was 

implemented so the negotiation system could be given the correct context. A basic and 

an advanced negotiation system were implemented so the negotiation results that could 

be achieved with and without the use past negotiation and customer data could be seen 

clearly. Various screenshots highlighted the main code blocks for each piece of the 

project’s main functionality. The use of PHP, Typescript, HTML and MySQL in these 

code blocks demonstrated the use of each within the context of the research project. A 

system to aid in the evaluation of the negotiation system was described before the two 

experiments, one which relied on the evaluation system, were described in greater 

detail, detailing exactly how they were implemented and undertaken. The main 

experiment involved the creation of mock customers to negotiate with the system to 

generate a dataset of negotiations that could then be evaluated. The second experiment 

used volunteers to gather information on the usability of the negotiation system. 

Finally, a reflection on the development process was given. Using Angular for the 

front end proved to be the correct decision as the ease in which the negotiation system 

could be integrated with the eCommerce site was a direct result of Angular’s 

component-based architecture. Using PHP for the negotiation system, though effective 

as allowing for the implementation of the negotiation system, proved to be an 

inefficient choice due to the added overhead brought on by its stateless nature. 



 

  97 

5 CHAPTER 5. EVALUATION OF THE NEGOTIATION 

SYSTEM  

5.1 Introduction 

In this chapter the results of the two experiments detailed in Chapter 4 will be 

described, analysed and evaluated. The first experiment is the main experiment, and it 

is a quantitative one, and the second experiment is an ancillary one, and it is 

qualitative. The first experiment is the main experiment and it aimed to evaluate the 

negotiation system itself through 4 different steps. These steps would help to provide 

insight into how the negotiation system performed with increasing customer counts, 

negotiation counts and pre-set store owner limits. After completion of the four steps, 

the results presented paint a clear picture on whether the system could be satisfactory 

to an eCommerce store owner. The second experiment is an ancillary experiment and 

is aimed at evaluating the customers’ reaction and experience using such a system. 

Before the experiments were ran, the results of the system tests ran throughout 

development are show and evaluated as they proved to be very useful with providing 

detailed knowledge on the impact on the addition of each new feature to the system. 

 

5.2 Calibration - Results and Evaluation 

Throughout the development of the negotiation system, the negotiation evaluator was 

used for extensive testing after each new feature was implemented. These tests not 

only ensured each new feature was working correctly, but also revealed just how much 

of an impact the inclusion of each new feature had on the results the negotiation 

system was able to obtain. 

Six different versions of the system were tested with the negotiation evaluator over the 

course of the development. This range of versions represent an evolution of the 

negotiator from Version 1, a “dumb” negotiator that simply sticks to the pre-specified 

limits and doesn’t learn from the previous transactions, to Version 6, a very 



 

  98 

sophisticated negotiator that considers a wide range of environmental and contextual 

factors to achieve a best price negotiation. 

 
 

Version Features of the Version 

1 System sticks to the store owner limit during its negotiations. 

2 Version 1 + each successful negotiation with a customer makes the 

negotiation result the goal for the next negotiation with the customer. 

3 Version 2 + addition of 1% of the product price on top the successful 

negotiation result for each successive successful negotiation with a customer 

4 Same as version 3, but addition of 4% used instead of 1%. 

5 System uses the customers max percentage of product price they are willing 

to spend during negotiations as its first and final counter offer in any future 

negotiations with customer, if the max is discovered.  

6 Version 5 + if customer sends a final offer, accept it if it’s above the store 

owner limit, regardless of the systems current goal based on the increment 

from version 3. 

Table 5 Versions of the negotiation system 

Using each of the above versions of the negotiation system, the negotiation evaluator 

system ran the same test 5 times: 10 customers of each of the 16 customer types 

negotiated 10 times each on a product worth €1000. The negotiation system had a store 

owner pre-set limit of €600 for each negotiation, regardless of version. Each customer 

type had a goal that was above the limit of the of the store owner, meaning the system 

should achieve a sale during every negotiation. 

 

5.2.1  Results 

As each version of the system was given the same limit while being tasked with the 

same amount of negotiations, with the same number of customers, all on the same 

product, the results each achieved can be directly compared to gauge the effectiveness 

of each version of the system. 



 

  99 

 

  Figure 60 Monetary value of all combined sales for each system version 

In Figure 60, the result of each negotiation (i.e. the final agreed amount between the 

customer and the negotiation system) the system engaged in for every negotiation with 

each customer of every type were added together to see how much revenue the 

negotiation system would have made for the store owner if the negotiations were with 

real customers for real products.  

• Version 1 made ~ 5.2 million worth of product sales. This was the most basic 

version of the system and so could be treated as the baseline.  

• Version 2 was made to be a simple improvement to Version 1, so it only 

managed a slight increase in of ~3%.  

• Version 3 saw a decrease in performance from Version 1 (~6.5%) and an even 

more drastic decrease in performance from Version 2, achieving ~10% less in 

revenue for the store owner in comparison.  

• This trend in decreased performance continued with Version 4. When 

compared with system Version 2 (which had achieved the best results at the 

time), Version 4 made ~20% less for the store owner.  

• It wasn’t until Version 5 that the performance began to rebound. Version 5 

made almost 25% more than Version 4, but still underperformed when 

compared to Version 2 (albeit by a very small amount, <1% difference).  



 

  100 

• Version 6 made 5% more for the store owner than Version 5 but more 

importantly, was the first version of the system that outperformed Version 2, 

achieving ~4.5% more in total revenue for the store owner in comparison.  

        

 

     Figure 61 Average sales price per system version 

 

Each negotiation on the product worth €1000 had to either end with a successful sale 

of the product for a price between €600 (the store owners limit pre-set in the system) 

and €1000 (the products asking price) or end with a rejection of a final offer from 

either the customer or the negotiation system. These rejections were counted as sales 

of €0, as by right it’s a missed sale since both the customers and negotiation systems 

had goals that were compatible with each other’s. Figure 61 shows the average price 

each system version attained for all the negotiations with all the customers of various 

types. The orange line represents the average sales price if the unsuccessful sales 

(rejections resulting in sales prices of €0) were ignored. The blue line takes these sales 

into account when calculating the average sales price for the system versions. 

When the unsuccessful sales are not considered, the system version have a clear 

gradual increase in the average sales price they achieved. All versions, except from 



 

  101 

Version 4 which had a 1% decrease in its average sales price than the previous system 

version, performed better than its previous version.  

   

 Figure 62 Percentage of negotiations that reached a successful ending per system version 

               

 

 Figure 63 Number of negotiations that failed to reach a successful ending per system 

version 

This is far from the same story when the unsuccessful negotiations are considered 

when calculating the averages. Versions 1 and 2 only had successful negotiations, but 

Version 3, despite its successful sales being higher on average, failed to reach a 



 

  102 

successful ending to its negotiations over 15% of the time (according to Figure 62), 

having over 1250 unsuccessful negotiations in total (according to figure 63). Version 4 

performed even worse, after upping the increase to each successful negotiations’ 

subsequent negotiation from 1% to 4%, over 25% of its negotiations were 

unsuccessful, whilst also having an average sales price ~20% lower (according to 

figure 61) than Version 2. Version 5 performed much better than Version 4 on all 

accounts. Its average sales price (not including unsuccessful negotiations) was almost 

4% higher and when unsuccessful negotiations are considered that number jumps to 

around 20%. It had 1275 more successful negotiations (according to Figure 63), 

around a 16% increase in successful negotiations. The final version of the system, 

Version 6, did even better than Version 5. Version 6 achieved an average sale larger 

than Version 5 both when unsuccessful negotiations were and were not considered. It 

achieved 4% more successful negotiations than Version 5 and was the first version to 

achieve a higher average negotiation sales price than Version 2 when the unsuccessful 

negotiations are included. 

The results presented throughout this section allow for an evaluation of the different 

Versions of the system. 

 

5.2.2  Evaluation 

For the longest time throughout development, it seemed version 2, despite using an 

extremely simplistic negotiation strategy, would achieve the best results for the store 

owner, as it attained the highest combined sales amount with the customers. Although 

Versions 3 and 4 achieved higher average sales among their successful negotiations by 

implementing the ‘addition to each successful negotiation’ goal-based behaviour, they 

did not exceed or even reach the same amount of revenue with their customers as 

Version 2, as they each had large amounts of unsuccessful negotiations, which were 

missed opportunities for sales. Although Version 2 had lower than average successful 

sales than Versions 3 and 4, the fact it always reached a deal with its customers more 

than made up for it. What became clear was that despite each new version of the 

system completing negotiations with higher prices with customers than their previous 

versions, they showed that the increase in not coming to agreements with customers as 



 

  103 

often has drastic impacts on the final combined sales amount that their system versions 

could achieve for the store owner.  

Implementing the customer max functionality and using it in Version 5 resulted in a 

drastic reduction in the number of unsuccessful negotiations. This allowed Version 5 

to achieve results that were very close to Version 2; averaging a sales price of €662.84 

vs €666.56 and total combined sales of €5,302,734 vs €5,332,573, despite 8% of 

Version 5’s negotiations being unsuccessful. Version 6 showed that better results can 

be achieved if at times an offer above the store owners limit is accepted despite it 

being lower than the systems goal. When the system didn’t always prioritize trying to 

get as much from the customers as possible (Version 6), the results were better across 

the board, despite 5% of the negotiation being unsuccessful.  

This does not mean Version 2 and its results should be discounted. Testing System 2 

revealed that making the goal for each subsequent negotiation with a customer equal to 

the final sales price of the previous negotiation resulted in positive results for the store 

owner. For such a simple strategy, it resulted in 100% successful sales and 2.8% 

higher average sales than version 1 of the system which only had one goal; stick to the 

store owners’ limit.  

 

5.3 Store Owner Satisfaction Experiment  

This experiment was broken down into 4 individual steps which aimed at investigating 

the impacts on the negotiation systems performance when 

Step 1: the increment value was increased. 

Step 2: the number of customers was increased. 

Step 3: the number of negotiations was increased. 

Step 4: the pre-set store owner limit was increased. 

 



 

  104 

5.3.1  Impacts of Increasing the Increment Value  

The difference in the results between Version 3 and 4 achieved above shows how 

important the choice of increment is to achieving satisfying results for a store owner. 

In the negotiation system, the increment is the percentage of the product price that is 

added on top of the sales price of any successful negotiation, so to provide a new, 

higher goal for the system to aim for the next time it negotiates with the customer who 

was involved in the successful negotiation. Therefore, before going forward with the 

other 3 steps in the experiment, an increment value to use during the next 3 steps must 

be decided on.  

In this step of the experiment, Version 6 of the negotiation system was used with an 

ever-increasing increment value. The negotiation evaluator system was used 5 times 

for each of the different increment values, with the results being averaged and shown 

below. For each 10 customers of each of the 16 customer types negotiated 10 times on 

a product worth €1000. The negotiation system had a store owner pre-set limit of €600 

for each negotiation. Each customer type had a goal that was above the limit of the of 

the store owner, meaning the system should achieve a sale during each negotiation.  

                       

        Figure 64 Total revenue from sales from successful negotiations with customers 

 

When the total sales achieved when changing the increment percentage are compared, 

a steady decline is seen. Increasing the increment percentage between successful 

negotiations had a clear negative impact on the total sales the system can achieve when 

negotiating with its customers. Increasing the increment from 1% to 5% shows a 



 

  105 

decrease in total sales revenue by 4.7%. Increasing the increment by a further 5% 

shows a decrease in total sales by 5.3%. What’s interesting is the correlation between 

the increase percentage and the total loss in sales compared to the 1% increment. 

Setting the increment to 10% results in sales revenue of around 10% (9.7%) less and 

setting the increment to 20% results in sales revenue of around 20% (18.8%) less. 

 

 

Figure 65 Number of successful negotiations after each increment increase 

Figure 65 shows exactly why the decline in sales revenue occurs when the increments 

are increased. As increments are increased, the number of successful negotiations the 

system can achieve declines steadily. Interestingly, there seems to be a correlation 

between the percentage of successful negotiations that reduces during each increment 

increase and the number the increment is increased by. Each time the increment 

percentage increases a single percentage, there is on average around a single 

percentage decrease in the amount of successful negotiations the system can attain. 

Increasing the increment to 20% even results in around a 20% (~18%) decrease in 

successful negotiations. 

 



 

  106 

       

      Figure 66 Average sales price after each increment increase 

Figure 66 paints the same picture as the previous two Figures. The average sales price 

gets lower and lower the higher the increment percentage gets. Upping to 5% alone 

reduces the average sales price the system negotiates with the customer by around 5% 

(4.7% to be exact). This is expected given the decline in total revenue and percentage 

of successful negotiations. What is not expected is when only the successful sales are 

considered (orange line), there is a decline there as well from increment percentage of 

4% onwards. It would be expected for the sales price to decrease (when unsuccessful 

sales are included) as there is a decline in the successful negotiation percentage, but the 

fact that even just the successful negotiations don’t see any benefit to the increment 

increase is very surprising. Not only is there not an increase in the sales prices of the 

successful negotiations only, but from 1% increment to 20% increment there is a 

decrease of 2.1% in the average sales price of the successful sales. 

 

5.3.2  Impacts of Increasing the Amount of Customers  

In this step of the experiment, the number of customers the system had to negotiate 

with were incremented to evaluate how the system handled different customer 

amounts. As the number of customers increased, the number of negotiations the system 

had to complete also went up. Therefore, the amount of sales was not be comparable 

between each run. Due to each customer only negotiating once each, there were no 

unsuccessful negotiations. Using Version 6 of the negotiation system with an 

increment amount of 1%, the negotiation evaluator system was used 5 times for each 



 

  107 

of the different customer numbers, with the results being averaged and shown below. 

For each customer, one of each of the 16 customer types negotiated on a product worth 

€1000. The negotiation system had a store owner pre-set limit of €600 for each 

negotiation. Each customer type had a goal that was above the limit of the store owner, 

meaning the system should have achieved a sale during each negotiation. Each 

customer only negotiated once so the increment to each subsequent successful 

negotiation was not a factor for this step in the experiment. 

          

 Figure 67 Average sales with increasing customer counts 

Figure 67 shows that the negotiation system produces average sales per customer with 

larger variance when the number of customers who negotiate with the system is low. 

There is a 0.4% difference between the results achieved by 1 customer versus the 

results achieved by 10 customers, whilst the difference between 50 customer and 250 

customers is 0.02%. The results also demonstrate that the system does not treat each 

customer differently to any degree of statistical significance. The difference between 

the average of one customer when compared with the average of 250 customers is only 

0.33%. There is a very slight trend upwards after the system gets to and above 10 

customers, the growth between the results with 10 customers and 250 customers is 

0.04%. The difference is slight enough that it could be just circumstantial but the fact it 

goes in an uptrend and at no point in a downtrend is noteworthy. As each customer 

only ever negotiated once, the feature which causes the system to increase its desired 

amount after each successful negotiation had no impact on the results. The system 



 

  108 

learning the customer max and using it to get the highest sales price for each 

negotiation with not a factor in this step in the experiment due to only have one 

negotiation with each customer. What is interesting is that even without help from the 

two main features integrated to provide better results for the store owners than just the 

sticking to the limit, the system still averaged sales around 8% above the limit when 

negotiating with 250 customers of 16 types, 5 times. 

 

5.3.3  Impacts of Increasing the Amount of Negotiations  

In this step of the experiment, the number of negotiations the system had to have with 

each customer was incremented to evaluate how the system handled different 

negotiation amounts. Using version 6 of the negotiation system with an increment 

version of 1%, the negotiation evaluator system was used 5 times for each of the 

different negotiation numbers, with the results being averaged and shown below. One 

of each of the 16 customer types negotiated on a product worth €1000. The negotiation 

system had a store owner pre-set limit of €600 for each negotiation. Each customer 

type had a goal that was above the limit of the of the store owner, meaning the system 

should achieve a sale during each negotiation. 

     

 Figure 68 Percentage of negotiations that were successful after increased negotiation 

count 

When each customer negotiated with the system a low number of times, the system 

demonstrates a decline in the amount of successful negotiations it reached. The was a 



 

  109 

little less than 5% decrease in the successful negotiations reached when customers 

negotiated with the system once vs 10 times. At this point, the declining trajectory of 

unsuccessful negotiations reversed. As each customer negotiated with the system from 

the 10th time onwards, the system produced less and less unsuccessful negotiations. By 

time each customer had negotiated with the system for the 250th time, over 99% of all 

negotiations were reaching successful conclusions. 

           

          Figure 69 Average sales price per increased negotiation count 

Figure 69 also shows positive results for the store owner the more that the customers 

negotiate with the system. Both all negotiations and only the successful negotiations 

showed a positive upwards trend as the number negotiations each customer had with 

the system increased. At only 10 negotiations, the negotiation system was averaging 

sales of €697. At 500 negotiations, that number had increase by ~10%. When 

unsuccessful sales were excluded from the average sales, a 5.5% increase showed 

between 10 and 500 negotiations. The results in unsuccessful negotiations accounting 

for only 1% of all negotiations when customers reach 500 negotiations shown in figure 

x explains why there isn’t much of a difference between the average sales price when 

unsuccessful sales are considered versus when they are not. The difference between the 

two gets lower and lower as the negotiations count per customer increases. At on 10 

negotiations, there is a difference of 4.6% while at 500 negotiations, the difference is 

only 0.7%. 



 

  110 

5.3.4  Impacts of Increasing the Store Owner Limit  

In this step of the experiment, the store owners limit that the system had to adhere to 

was gradually incremented to evaluate if the system could maintain an average sales 

price that wouldn’t go below the limit, regardless of if the customers the system had to 

negotiate with had a goal that was lower than the limit that was set. For this step, only 

concerned the average of the successful sales are of concern. Some of the customers 

will have goals that are below what some of the limits are and so unsuccessful 

negotiations will occur. We will not include these in the average sales as we will learn 

nothing from them. This step uses version 6 of the negotiation system, the negotiation 

evaluator system was used 5 times for each of the different customer numbers, with the 

results being averaged and shown below. 5 customers of each of the 16 customer types 

negotiated on a product worth €1000, 5 times each.  

 

          

Figure 70 Average sale as store owner limit was increased 

The figure above shows that at no point did the system ever fail to stick to its set limit, 

regardless of how low or high it was set. Regardless of what the limit was set to, the 

system always not only adhered to it, but outperformed it. The higher the limit was set, 

the higher the average sales price reached. However, as the limit got closer and closer 

to the product price, the percentage above the limit the average sales price got was 

smaller and smaller each time. With a limit of €500, the average sales price was a little 

over 35% above the limit, but with a limit of €750, the average sales price was only 

8.5% above the limit. 



 

  111 

          

     Figure 71 Percentage of successful negotiations as store owner limit was increased 

Figure 71 demonstrates that as the store owner limit gets increased further and further 

towards the product price, the number of negotiations the system can reach a 

successful conclusion for get reduced. When the limit was set to €500 (50% of the 

product price) the system only failed to reach a successful conclusion in 1.4% of its 

negotiations. When the limit was 50% and was increased to 55%, there was only a 

0.5% increase in the amount of negotiations failing to reach a successful conclusion. 

However, when the limit was set to €700 (70% of product price) and there was the 

same increase of 5% to bring it to a limit of 75% of the product price, there was a 

7.05% increase in the amount of negotiations failing to reach a successful conclusion. 

This shows that the limits the store owner set for the system have more and more of an 

impact on the percentage of successful negotiations the higher up they go. Going from 

a 50 – 55 percent limit produced far less unsuccessful negotiations than going from 70 

– 75%.  

 

 

 



 

  112 

5.3.5  Key Findings  

Now that the above experiment has been completed, the results allow for several 

findings have been uncovered.  

1. The negotiation system not only can handle an increasing number of 

negotiations, but the results it achieves get better as the number of negotiations 

with each customer increases. Both the number of successful negotiations and 

the average agreed amount between the customers and the system increase as 

more negotiation occur. This could be considered a double-edged sword, 

however. As this improvement in results as negotiations increase means for the 

system to attain the best results, the customers must negotiate with it many 

times. The results attained when the negotiations count is relatively low (<10 

negotiations) do provide results that would be deemed satisfactory to the store 

owner though, as they are above the limit, by 8% on average when negotiating 

with the 16 types of customers generated for the experiment. 

2. The negotiation system proved be able to handle large amounts of customers. 

The system provided results when having to negotiate with one versus 250 

customers with a difference of less than 0.3%, with evidence of a very slight 

uptrend after negotiating with 10 customers. When gathering these results, the 

customer max and increment to each successful negotiation were not used as 

each customer only negotiated once. Despite this, the system produced 

negotiation results that were again, 8% above the store owners limit on 

average.  

3. The experimental results indicate that adding an incremental percentage to the 

result of the previous negotiation (to create a price goal for the next 

negotiation) does not generate satisfying results for the store owner. Using an 

increment proved to lower all of the following: sales revenue, the number of 

successful negotiations and the average sales price of the negotiations. The 

only benefit that could be taken from using the increments is the fact that by 

upping the negotiation goal after each successful negotiation with a customer, 

the system can find out the customers max below asking quicker. The tests ran 

during the development of the system showed how much of a benefit learning 



 

  113 

the customer max is, as Version 5 (the version which began using customer 

max) had results that were 25% better than before using the max. 

4. The negotiation system is fully capable of sticking to and respecting the store 

owners limit. Once a limit is set by a store owner, the system will never agree 

to sell a product for a price that breaks the limit. The experiment did reveal that 

as the percentage of the product that the limit gets set to increases, the system 

fails to reach as many successful conclusions to negotiations. The experiment 

also revealed that the lower the limit is set, the higher above the limit the 

average of each sale gets. With a product worth €1000, the system on average 

negotiated on a sales price over 35% above the limit if the limit was set to 50%. 

When the limit was 75%, the average sales price was only 8.5% above the 

limit.  

5.4 Customer Satisfaction Experiment 

The set of 10 questions outlined in Section 4.5.2 were used to evaluate both the 

usefulness and the usability of the system in a qualitative manner. 

5.4.1  Participants 

Five participants were invited to have multiple engagements with the negotiation 

system using the eCommerce site. After which, the participants provided feedback via 

semi-structured interviews. The interview questions focused on getting feedback on the 

usability of the negotiation system integrated with the eCommerce site and their 

satisfaction with their experiences negotiation with the system.  

 

Code Age Gender Familiarity with eCommerce 

F1 Early 20s F Purchases from eCommerce sites most months 

F2 Early 50s F No experience with eCommerce 

M1 Mid 40s M Browsed eCommerce sites before but never purchased 

F3 Late 20s F Purchases from eCommerce sites a few times a year 

M2 Late 50s M Purchases from eCommerce sites once every few years  

         Table 6 Experiment participants 



 

  114 

5.4.2  Experiment Results and Evaluation  

The participants answer to questions 1 and 2 revealed that only some were satisfied 

with the results of the negotiations they had with the system. There was a noticeable 

trend among the level of satisfaction each participant had with their attained results and 

their age. F1 and F3 (the youngest participants) were the most satisfied with their 

results. F2 and M2 (the oldest participants) were the least satisfied with their results, 

despite having differing experience levels with eCommerce.  

The answers participants gave to questions 3 and 4 provided insight into how revealing 

is the negotiation systems goal bias towards the store owner is. None of the 

participants felt like the system was set up against them, none felt like they “lost” in 

any of the negotiations, despite only 40% of the participants indicating in the prior 

questions that they were satisfied with the results they had achieved during the 

negotiations. All participants indicated during question 4 that they felt the system was 

fair. 

The answers participants gave to question 5 revealed how important final price is to 

their level of satisfaction with the system. This would suggest that a negotiation system 

biased towards providing the best results to the store owner might not work out. If the 

customers final price is not seen as important to the system, this could be interpreted as 

a disregard for the importance of the customers satisfaction. However, responses to 

questions 3 and 4 showed that the participants found the system to be fair. This would 

suggest that no participants were able to detect that the system was designed to get the 

best result for the store owner only. If they had, the responses to question 5 would 

suggest that the answers to questions 1 and 2 would be far lower than they were.  This 

brings up an interesting situation. Customers could potentially be very against a system 

that favours the results of the store owners, but if they are unaware of this, is this still 

an issue? 

The second set of question were related to the usability of the system based on 

Nielsen’s heuristics. Participant F2 and M2 had limited experiences with eCommerce. 

There was a trend with these participants to answer with scores 3 and 4 to the usability 

questions. This could be a default response; as they might not have known just how 

usable or unusable the website/negotiation system were. Age could have been a factor 

here, but since M1 is close to their age but has more experience, his scores are slightly 



 

  115 

higher for the usability questions, suggesting experience and familiarity with 

eCommerce played a factor when judging the systems usability, not age. This is 

supported further with F1 and F3 who had the most experience with eCommerce 

systems and scored the website and negotiation system high based on the usability 

questions scale. A lack of instructions was given to participants prior to using the 

system. Despite this, the participants themselves considered the design minimalistic. 

This is evidence of the systems usability. 

5.5 Conclusions 

Two separate experiments were undertaken to judge how much satisfaction the 

negotiation system could provide to both the store owner and its customers. 

Experiment 1, the main experiment, revealed that the negotiation system does meet the 

store owner’s satisfaction. Not only does the system stick to the limits provided to it, 

the system achieves higher sales on average than just the limit. The system was proved 

to be capable of maintaining its performance level when the number customers was 

increased and showed even showed an increase in performance when the amount of 

negotiations increased. Experiment 2, the ancillary experiment, revealed that the 

negotiation system provided satisfying results to participants, but only participants 

who have had prior experience with eCommerce. The experiment also revealed that the 

participants were unable to detect the system was biased towards the store owner, even 

despite the it not always providing the most satisfying results for them. In terms of 

usability, the system was deemed minimalistic and intuitive by the participants. 

 

 



 

  116 

6 CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

 

6.1 Introduction 

 
The aim of this research was to examine the possibility of using an automated 

negotiation system to negotiate with customers to enable flexible product pricing in 

eCommerce. The negotiation system would use past negotiation and customer data to 

help achieve satisfactory results for the store owner when it came to the prices the 

system would agree to sell the products to the customers for.  

In this chapter, the conclusions gathered from each of the thesis chapters are 

summarised and the key findings from each chapter will be presented.  Following this, 

the contributions of the findings to the existing body of work are then discussed so that 

their impact can be gauged. The findings will show a clear potential for a negotiation 

system such as the one presented in this research to be used in the context of 

eCommerce. The research will show that the results such a system can produce are 

enough to satisfy the store owner the system represents.  

Finally, potential future work that can form a continuation to the research findings is 

suggested to allow for further research into the areas discussed and examined 

throughout the research project. The potential future work includes enhancements to 

the negotiation strategy used by the researched negotiation system and covers work 

that could be carried out to improve the evaluation process of such a system. 

 

6.2 Conclusions 

6.2.1  Negotiation Research 

Chapter 2 revealed that an automated approach with software agents is the most 

common method of developing negotiation systems and so would be an appropriate 

route to take for developing a negotiation system for use in an eCommerce site. 



 

  117 

Examining the existing research revealed the possibility of using past negotiation 

results and customer data as the backbone for the development of the negotiation 

system that mirrors real life negotiations more closely. The use of satisfaction as a 

method of evaluation for such a system from the perspective of a store owner was 

detailed and justified. 

The key findings for chapter 2 were: 

• The use of software agents for automation was found to be of extreme 

popularity within existing negotiation systems. 

• It was very common among existing negotiation systems to use agents to 

represent both the buyer and seller. 

• There was a gap in the research for negotiation systems that only represented 

the sellers. 

• Further research was needed into negotiation systems which focused on 

individual outcome and not joint. 

• The possibility of using past negotiation and customer data to aid in future 

negotiations is suggested in existing research, but not thoroughly researched. 

 

6.2.2  System Design 

Chapter 3 detailed designs for both the negotiation system and an eCommerce site for 

which to provide the system the correct context. Features that use data from the past 

negotiation results and customer patterns were included in these designs. Finally, 

experiments were introduced that would provide results from which the proposed 

system could be evaluated to determine if the proposed system would be satisfactory 

for eCommerce store owners. 

The key findings for chapter 3 were: 

• Feature driven development allows for each new feature to be tested after 

implementation, rather than at the end of development. This could lead to some 

interesting findings as the negotiation system is brought from using a simplistic 

strategy to the strategy that makes use of the past negotiation and customer 

data. 



 

  118 

• Angulars’ component-based architecture could be a perfect solution for the 

integration of the negotiation system into the context of eCommerce. 

• PHP would be an appropriate choice of technology for the negotiation system 

due to its support for MySQL through PDOs. 

 

 

6.2.3  System Implementation 

Chapter 4 provided in depth descriptions for the implementation of the designs 

detailed in chapter 3. Through code blocks and explanations, the inner workings of 

both the eCommerce site and the proposed negotiation system were provided. Close 

attention was given to how the system used past negotiation and customer pattern data. 

How both experiments suggested in the previous chapter were undertaken were 

described before finally giving a detailed review of the development process. 

The key findings were: 

• Both Angular and PHP were capable tools for implementing the eCommerce 

site and the negotiation system. 

• Angular proved to be a huge aid in the integration of the negotiation system 

into the eCommerce site due to its component-based architecture. 

• Using PHP for the negotiation system resulted in an inefficient system due to 

its stateless nature. 

 

 

6.2.4  System Evaluation  

Chapter 5 evaluated the negotiation system implemented in chapter 4 with the two 

separate satisfaction level gathering experiments. Multiple versions of the negotiation 

system were compared so to see the impact each new feature implementation had on 

the results the system could achieve. The results of the experiments proved that the 

system provided satisfactory results to customers who had previous experience with 

eCommerce. The negotiation system was able to provide results that were to the 



 

  119 

satisfaction of the store owner as the negotiation system never failed to maintain the 

product limit given to it.  

The key findings were: 

• The negotiation system was successfully able to be integrated into the context 

on an eCommerce site. 

• Using the evaluator system, the system version which used the basic 

negotiation strategy was proven to be less effective at achieving satisfying 

results than the version which used the advanced strategy. 

• Using past negotiation and customer pattern data, the system was able to 

achieve sales that were 8% above the limit on average.  

 

6.3 Contributions and Impact  

 
The contributions to the existing body of work that this research project consists of 

include: 

 

• The research examined the performance of a system that focuses on individual 

outcome in negotiation, instead of the more heavily researched joint outcome. 

Most of the existing body of research focuses on negotiation systems that 

attempt to aid both the buyers and sellers to reach mutually beneficial (‘joint’) 

outcomes. The research here focused specifically on creating a negotiation 

system that aided the seller exclusively to reach an outcome beneficial to them 

individually.  

• The research added to the body of knowledge of using software agents in the 

context of negotiation systems. In this research project, only one software agent 

was used in the negotiation system, for the seller, instead of the much more 

common approach of using one or many agents to represent or aid both the 

buyers and the seller. This approach allowed for the research into focus the 

much less explored human to agent negotiation systems, rather than agent to 

agent negotiation systems. 

• The research examined the potential for a negotiation system to exist in the 

context of an eCommerce site. Plenty of research exists for systems that enable 



 

  120 

negotiation in the context of the internet. Research into systems that enable 

negotiation in the more specific context of eCommerce sites is much more 

limited. This research project focused on the development of a system that was 

directly integrated into an eCommerce site that was then evaluated. 

• The research helped push forward the jump into using past negotiation data in 

negotiations. The idea of using past negotiation data, such as the results or 

rejections, to aid in future negotiations has been suggested as a topic for future 

work in multiple existing research projects. This research investigated the 

possibility of using the results of previous negotiations with individual 

customers as foundations from which to start future negotiations with those 

individual customers. 

• The research investigated the potential of mirroring the negotiations that would 

take place in eCommerce more closely with the negotiations that would take 

place in stores in real life. As store owners can remember customers and their 

negotiation patterns, the negotiation system developed during this research 

attempted to do the same by learning each customers value for the max below 

asking price percentage they tended to aim for during their negotiations. This 

research project then evaluated the use of this value when being used by the 

negotiation system to try get the best deal possible during future negotiations 

with the customer. 

 

6.4 Future Work 

 
Several avenues for future research presented themselves at the cessation of this 

research project: 

 

1. The negotiation system currently only learns each customer max below asking 

price value once for each customer. This works fine when customers have only 

one value for this which they never change. If a customer wished to be more 

dynamic and change this value either over time or on a product by product 

basis, the system has no way of dealing with this as it does not look to relearn 

the value once it is already found. Future work could deal with this limitation 



 

  121 

by extending the current system to allow for the recalculation of the value for 

each customer on a dynamic basis. 

2. Further work on using rejections in future negotiations could be looked at. The 

negotiation system researched for this project used rejections only as an 

indicator to reduce the systems goal for the negotiation with each individual 

customer. This could be expanded on further by making it so that if a customer 

rejects a final offer sent by the negotiation system, this offer is never again 

offered to the customer. A ‘ceiling’ value for each individual customer could be 

maintained by the system so that future offers don’t go above the ceiling i.e. 

make an offer the customer has a history with rejecting, thus throwing away a 

potential sale. 

3. Further work could also be carried on creating a ‘floor’ value and having it be 

maintained by the system. The negotiation system as it currently stands restarts 

the process of creating a negotiation goal for a customer when the customer 

rejects an offer made by the system. After the goal for the customer has been 

continuously increased after each successful negotiation with the customer, it 

takes only one reject for the negotiation system to go back to the goal before 

any of the increases. If the system has a floor value, i.e. a value that represents 

an offer that the system knows the customer will accept, the system could 

retreat to this value as the goal after a rejection instead of using the store 

owners limit as the goal after a rejection. This has the potential to ensure all 

future successful negotiations after failed negotiations achieve a higher sales 

price than what they achieve now. 

4. To combat the limitation brought on by needing to create mock customers to 

negotiate with the system to gather enough negotiation data to allow for 

accurate evaluation of the system, future work could include a step where a 

large group of volunteers are gathered to act as real customers. These 

customers could negotiate with the system enough times to build both a larger 

and more accurate dataset of negotiations. This would successfully combat the 

limitation in the evaluation of the researched negotiation system where only 16 

types of ‘customers’ were created. 16 types of customers are nowhere near 

what is needed to get an accurate representation of the vast potential variance in 

negotiation strategy between potential customers. 



 

  122 

5. As an alternative to the incrementally increasing goal that the research project 

implemented, future work could include creating a value for a goal based on 

feedback from real life store owners. The negotiation system researched for this 

project uses a dynamic limit that can be changed as the base goal of the system. 

Real store owners could be interviewed so to find out if there is a goal that is 

most common among them (e.g. 60% of the asking price is revealed to be a 

satisfactory goal for 85% of store owners). This goal could be used as the base 

goal in the system, in place of the limit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  123 

BIBLIOGRAPHY 

Amgoud, L., & Kaci, S. (2005, July). Strategical considerations for negotiating agents. 

In Proceedings of the fourth international joint conference on Autonomous agents and 

multiagent systems (pp. 1215-1216). ACM. 

 

Angular Architecture. (2019). Retrieved from 

https://www.ngdevelop.tech/angular/architecture/ 

 

Angularjs architecture, core concepts - AngularJS example. (2019). Retrieved from 

https://codesjava.com/angularjs-architecture-overview-core-concepts-advantages-

disadvantages 

 

Ananthanarayanan, R., & Kumar, M. (2005, July). Negotiation support in online 

markets, with competition and co-operation. In E-Commerce Technology, 2005. CEC 

2005. Seventh IEEE International Conference on (pp. 42-49). IEEE. 

Awad, M. A. (2005). A comparison between agile and traditional software 

development methodologies. University of Western Australia. 

Badica, C., Ganzha, M., & Paprzycki, M. (2006, June). Rule-Based automated price 

negotiation: overview and experiment. In International Conference on Artificial 

Intelligence and Soft Computing (pp. 1050-1059). Springer, Berlin, Heidelberg. 

Badica, C., Ganzha, M., Gawinecki, M., Kobzdej, P., & Paprzycki, M. (2006). 

Utilizing Dutch Auction in an Agentbased Model E-commerce System. In Proceedings 

of the 14th International Enformatika Conference, World Enformatika Society (pp. 7-

12). 

Benoit, M., Anthony, R., & Wee, L. B. (1999). Feature-driven development. 

Cao, M., Luo, X., Luo, X. R., & Dai, X. (2015). Automated negotiation for e-

commerce decision making: a goal deliberated agent architecture for multi-strategy 

selection. Decision Support Systems, 73, 1-14. 

Chen, E., Vahidov, R., & Kersten, G. E. (2005). Agent-supported negotiations in the e-

marketplace. International Journal of Electronic Business, 3(1), 28-49. 

Cheng, C. B., Chan, C. C. H., & Lin, K. C. (2006). Intelligent agents for e-

marketplace: Negotiation with issue trade-offs by fuzzy inference systems. Decision 

Support Systems, 42(2), 626-638. 

Clarke, P., & O’Connor, R. V. (2012). The situational factors that affect the software 

development process: Towards a comprehensive reference framework. Information 

and Software Technology, 54(5), 433-447. 

Cockburn, A., & Highsmith, J. (2001). Agile software development, the people 

factor. Computer, 34(11), 131-133. 

Cochran, D. (2012). Twitter bootstrap web development how-to. Packt Publishing Ltd. 



 

  124 

Cohen, D., Lindvall, M., & Costa, P. (2003). Agile software development. DACS 

SOAR Report, 11, 2003. 

Curhan, J. R., Elfenbein, H. A., & Xu, H. (2006). What do people value when they 

negotiate? Mapping the domain of subjective value in negotiation. Journal of 

personality and social psychology, 91(3), 493. 

Fathey, A., & Moawad, R. (2005, December). E-commerce agents and online 

negotiation process. In Information and Communications Technology, 2005. Enabling 

Technologies for the New Knowledge Society: ITI 3rd International Conference 

on (pp. 435-444). IEEE. 

Geer, D. (2006). Will software developers ride ruby on rails to 

success?. Computer, 39(2), 18-20. 

Gosselin, D., Kokoska, D., & Easterbrooks, R. (2010). PHP Programming with 

MySQL: The Web Technologies Series. Cengage Learning. 

Grandon, E. E., & Pearson, J. M. (2004). Electronic commerce adoption: an empirical 

study of small and medium US businesses. Information & management, 42(1), 197-

216. 

Greer, D., & Hamon, Y. (2011). Agile software development. Software: Practice and 

Experience, 41(9), 943-944. 

Halpert, J. A., Stuhlmacher, A. F., Crenshaw, J. L., Litcher, C. D., & Bortel, R. (2010). 

Paths to negotiation success. Negotiation and Conflict Management Research, 3(2), 91-

116. 

Hansson, D. H. (2009). Ruby on rails. Website. Projektseite: http://www. rubyonrails. 

org. 

Hibbs, C. (2005). Rolling with ruby on rails. The Open Source Web Platform onlamp. 

com. 

Huang, P., & Sycara, K. (2002, January). A computational model for online agent 

negotiation. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii 

International Conference on (pp. 438-444). IEEE. 

Jadhav, M. A., Sawant, B. R., & Deshmukh, A. (2015). Single page application using 

angularjs. International Journal of Computer Science and Information 

Technologies, 6(3), 2876-2879. 

Jain, N., Bhansali, A., & Mehta, D. (2015). AngularJS: A modern MVC framework in 

JavaScript. Journal of Global Research in Computer Science, 5(12), 17-23. 

Junyan, Z., Jiang, T., & Gang, D. (2007, November). Agent-based multi-factors 

adaptive negotiation in e-commerce. In Grey Systems and Intelligent Services, 2007. 

GSIS 2007. IEEE International Conference on (pp. 1528-1532). IEEE. 

Karp, A. H., Wu, R., Chen, K. Y., & Zhang, A. (2004, May). A game tree strategy for 

automated negotiation. In Proceedings of the 5th ACM conference on Electronic 

commerce (pp. 228-229). ACM. 



 

  125 

Kaur, R., & Sengupta, J. (2013). Software process models and analysis on failure of 

software development projects. arXiv preprint arXiv:1306.1068. 

Kersten, G. E., & Lo, G. (2003). Aspire: An integrated negotiation support system and 

software agents for e-business negotiation. International Journal of Internet and 

Enterprise Management, 1(3), 293-315. 

Kexing, L. (2011). A Survey of Agent Based Automated Negotiation. 2011 

International Conference On Network Computing And Information Security, 24- 27. 

http://dx.doi.org/10.1109/ncis.2011.103 

Kozlowski, P. (2013). Mastering Web Application Development with AngularJS. Packt 

Publishing Ltd. 

KPI. (2019). Traditional vs. Agile Software Development Methodologies. Retrieved 

from http://www.kpipartners.com/blog/traditional-vs-agile-software-development-

methodologies 

Kulkami, S., Roy, B., & Iyer, S. (2017, April). E-negotiator based on buyer's surfing 

pattern. In Communication Systems, Computing and IT Applications (CSCITA), 2017 

2nd International Conference on (pp. 48-53). IEEE. 

Lalit. (2019). MySQL Architecture and Components. Retrieved from 

https://lalitvc.wordpress.com/2016/11/03/mysql-architecture-and-components/ 

Lau, R. Y. (2007). Towards a web services and intelligent agents-based negotiation 

system for B2B eCommerce. Electronic Commerce Research and Applications, 6(3), 

260-273. 

Lei, K., Ma, Y., & Tan, Z. (2014, December). Performance comparison and evaluation 

of web development technologies in php, python, and node. js. In 2014 IEEE 17th 

International Conference on Computational Science and Engineering (CSE)(pp. 661-

668). IEEE. 

Luo, X., Jennings, N. R., & Shadbolt, N. (2003, September). Knowledge-based 

acquisition of tradeoff preferences for negotiating agents. In Proceedings of the 5th 

international conference on Electronic commerce (pp. 138-149). ACM. 

Madsen, M., Tip, F., & Lhoták, O. (2015, October). Static analysis of event-driven 

Node. js JavaScript applications. In ACM SIGPLAN Notices (Vol. 50, No. 10, pp. 505-

519). ACM. 

More, A., Vij, S., & Mukhopadhyay, D. (2014). Agent Based Negotiation Using 

Cloud–An Approach in E-Commerce. In ICT and Critical Infrastructure: Proceedings 

of the 48th Annual Convention of Computer Society of India-Vol I (pp. 489-496). 

Springer, Cham. 

Najjar, A., Gravier, C., Serpaggi, X., & Boissier, O. (2016, October). Modeling User 

Expectations & Satisfaction for SaaS Applications Using Multi-agent Negotiation. In 

Web Intelligence (WI), 2016 IEEE/WIC/ACM International Conference on (pp. 399-

406). IEEE. 



 

  126 

Ngai, E. W., & Wat, F. K. T. (2002). A literature review and classification of 

electronic commerce research. Information & Management, 39(5), 415-429. 

Ngai, L., Mak, P., Ni, W. C., Liu, L. C., & Wu, C. (2007, October). A Semi-automated 

negotiation process to improve the usability for online marketplaces. In Computer and 

Information Technology, 2007. CIT 2007. 7th IEEE International Conference on (pp. 

253-258). IEEE. 

Nielsen, J. (1995). 10 usability heuristics for user interface design. Nielsen Norman 

Group, 1(1). 

Ow, T. T., O’Neill, B. S., & Naquin, C. E. (2014). Computer-aided tools in 

negotiation: negotiable issues, counterfactual thinking, and satisfaction. Journal of 

Organizational Computing and Electronic Commerce, 24(4), 297-311. 

 

Pang, J., & Blair, L. (2004). Refining Feature Driven Development-A methodology for 

early aspects. Early Aspects: Aspect-Oriented Requirements Engineering and 

Architecture Design, 86. 

Pease, W. (2001). E-commerce enabling technologies. e-Commerce in Regional 

Australia Update 2001. 

Prokofyeva, N., & Boltunova, V. (2017). Analysis and practical application of php 

frameworks in development of web information systems. Procedia Computer 

Science, 104, 51-56. 

Pruitt, D. G. (2013). Negotiation behavior. Academic Press. 

Raiffa, H. (1982). The art and science of negotiation. Harvard University Press. 

Rahayu, R., & Day, J. (2015). Determinant factors of e-commerce adoption by SMEs 

in developing country: evidence from Indonesia. Procedia-Social and Behavioral 

Sciences, 195, 142-150. 

Rahwan, I., Kowalczyk, R., & Pham, H. H. (2002, January). Intelligent agents for 

automated one-to-many e-commerce negotiation. In Australian Computer Science 

Communications(Vol. 24, No. 1, pp. 197-204). Australian Computer Society, Inc. 

Scacchi, W. (2002). Process models in software engineering. Encyclopedia of software 

engineering. 

Schei, V., & Rognes, J. K. (2005). Small group negotiation: When members differ in 

motivational orientation. Small group research, 36(3), 289-320. 

Schlin, B. (2019). What the f**k is MVC? Explained with easy analogy – Blake Schlin 

– Medium. Retrieved from https://medium.com/@blakeschlin/what-the-f-k-is-mvc-

explained-with-real-world-analogy-e088a9a8b787 

Schwartz, B., Zaitsev, P., & Tkachenko, V. (2012). High performance MySQL: 

optimization, backups, and replication. " O'Reilly Media, Inc.". 

Srinivasan, S. S., Anderson, R., & Ponnavolu, K. (2002). Customer loyalty in e-

commerce: an exploration of its antecedents and consequences. Journal of 

retailing, 78(1), 41-50. 



 

  127 

Su, S. Y., Huang, C., Hammer, J., Huang, Y., Li, H., Wang, L., ... & Lam, H. (2001). 

An internet-based negotiation server for e-commerce. the VLDB Journal, 10(1), 72-90. 

Wang, X., Shen, X., & Georganas, N. D. (2006, May). A fuzzy logic based intelligent 

negotiation agent (FINA) in ecommerce. In Electrical and Computer Engineering, 

2006. CCECE'06. Canadian Conference on (pp. 276-279). IEEE. 

Williams, H. E., & Lane, D. (2004). Web Database Applications with PHP and 

MySQL: Building Effective Database-Driven Web Sites. " O'Reilly Media, Inc.". 

Yan, Z., Yan, F., & Fong, S. (2007, September). Incorporating Knowledge into e-

Commerce Automated Negotiation. In Database and Expert Systems Applications, 

2007. DEXA'07. 18th International Workshop on (pp. 600-604). IEEE. 

Yang, Y., Singhal, S., & Xu, Y. C. (2009). Offer with choices and accept with delay: a 

win-win strategy model for agent based automated negotiation. ICIS 2009 Proceedings, 

180. 

Yu, L., Masabo, E., Tan, L., & He, M. (2008). Multi-Agent Automated Intelligent 

Shopping System (MAISS). The 9Th International Conference For Young Computer 

Scientists, 665-670. http://dx.doi.org/10.1109/icycs.2008.35 

 



 

  128 

  


	From Business Understanding to Deployment: An application of Machine Learning Algorithms to Forecast Customer Visits per Hour to a Fast-Casual Restaurant in Dublin
	Recommended Citation

	MSc KM Template Dissertation Doc

