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ABSTRACT
The process of diffusive shock acceleration relies on the efficacy with which hydromagnetic

waves can scatter charged particles in the precursor of a shock. The growth of self-generated

waves is driven by both resonant and non-resonant processes. We perform high-resolution

magnetohydrodynamic simulations of the non-resonant cosmic ray driven instability, in which

the unstable waves are excited beyond the linear regime. In a snapshot of the resultant field,

particle transport simulations are carried out. The use of a static snapshot of the field is

reasonable given that the Larmor period for particles is typically very short relative to the

instability growth time. The diffusion rate is found to be close to, or below, the Bohm limit for

a range of energies. This provides the first explicit demonstration that self-excited turbulence

reduces the diffusion coefficient and has important implications for cosmic-ray transport and

acceleration in supernova remnants.

Key words: acceleration of particles – instabilities – MHD – turbulence – cosmic rays.

1 I N T RO D U C T I O N

Supernova remnants (SNR) have long been identified as possible

locations for the production and acceleration of galactic cosmic

rays. The diffusive shock acceleration mechanism provides a natu-

ral explanation for the observed power-law spectrum for these cos-

mic rays. Acceleration to high energies relies on confinement of

relativistic particles to the accelerating region close to the shock.

Pitch-angle scattering from self-produced hydromagnetic waves can

provide a suitable mechanism, but a detailed analysis demonstrates

that the spectrum still falls short of the cosmic-ray knee at ≈1015 eV

(Lagage & Cesarsky 1983). However, theory dictates that the max-

imum energy of the cosmic rays is determined by the diffusion co-

efficient, which is assumed to scale with the strength of the ambient

magnetic field. Therefore, in the quasi-linear framework, amplifi-

cation of the apparent ambient magnetic field in the vicinity of the

shock facilitates acceleration to higher energies.

To within an order of magnitude, the time-scale for the diffu-

sive shock acceleration of a particle is tacc ≈ κ/v2
sh where κ ≡

limt→∞〈�2r〉/2t is the asymptotic spatial diffusion coefficient

where �r is the spatial displacement over time interval t. The con-

ventional approximation for transport of particles of speed v via

scattering is Bohm diffusion which assumes a single scattering event

occurs during each Larmor time.

In the region upstream of a shock, the scattering of particles is

due to resonant collisions with slowly moving magnetic irregular-

ities which, in turn, are amplified by such interactions themselves.

These turbulent irregularities, until recently, have been assumed to

�E-mail: brian.reville@mpi-hd.mpg.de

saturate at levels δB � B0 (McKenzie & Völk 1982). With such

turbulence, Bohm diffusion can be taken as a lower limit for the

diffusion coefficient, κ � κBohm. In highly turbulent fields, however,

numerical investigations suggest that particle transport properties

may differ significantly from this approximation (Casse, Lemoine

& Pelletier 2002).

Bell & Lucek (2001) proposed a process of resonant amplifica-

tion of the magnetic field driven by the pressure gradient of cosmic

rays, allowing rapid transfer of energy into the Alfvén waves. Am-

plification factors of δB/B0 ∼ 1000 were estimated from the linear

theory, although this value is possibly excessive as the analysis most

likely does not hold beyond δB/B0 ∼ 1. Nevertheless, a more de-

tailed non-linear analysis does suggest acceleration up to Emax ∼
1016 eV. In particular, under expansion into a stellar wind, it may

even be possible to achieve proton energies of the order of Emax ∼
1017 eV via this process.

Moving beyond this result, Bell (2004) identified a non-resonant

instability driven by streaming, positively charged cosmic rays

that operate on length-scales much shorter than the Larmor radius

rg ≡ p/eB0 of the driving particles (where p is the particle momen-

tum, e is the electronic charge and B0 is the mean magnetic field

magnitude). Crucially, under typical conditions in the precursor of

a high Alfvén–Mach number supernova remnant shock, the growth

rate for this non-resonant instability can be several orders of magni-

tude greater than that of its resonant counterpart. Indeed, numerical

magnetohydrodynamic (MHD) simulations carried out in the same

work confirmed that field amplification by a factor of an order of

magnitude is possible.

Only recently have analytical approaches to particle transport

achieved results consistent with numerical approaches. In the case of

interplanetary shocks, it has been shown that using detailed models

C© 2008 The Authors. Journal compilation C© 2008 RAS



510 B. Reville et al.

of particle transport in turbulent environments sub-Bohm diffusion

can be achieved (see Zank et al. 2006, and references therein).

In this paper, we investigate, using high-resolution MHD sim-

ulations, the non-resonant Bell-type instability and its non-linear

evolution. We also determine the effective transport properties in

the amplified field and compare them with the standard Bohm dif-

fusion description.

The structure of the paper is as follows. In Section 2, we recall

the linear MHD analysis of the dispersion relation relevant to the

numerical simulations performed. In Section 3, we describe the

numerical method used to investigate the non-resonant instability

and discuss some properties of the field produced. In Section 4,

we describe the techniques used to integrate equations of motion

in the snapshot field obtained from the simulations. We discuss the

transport properties of both field lines and test particles. Finally, in

Section 5, we present our conclusions.

2 T H E N O N - R E S O NA N T I N S TA B I L I T Y

Following Bell (2004), we determine the dispersion relation for

waves in the precursor of a quasi-parallel non-relativistic shock,

where the energy density of the cosmic rays is comparable to the ram

pressure of the shock (∼10 per cent). The usual assumptions made

in the linear analysis of MHD waves propagating in a plasma are

that the plasma is quasi-neutral, i.e. is charge neutral on aggregate.

Therefore, assuming a plasma consisting entirely of protons and

electrons in the presence of a pure proton cosmic-ray component,

the thermal plasma has a charge excess of electrons. In the reference

frame in which the upstream protons are at rest, the cosmic rays

are seen to stream with a group velocity approximately equal to the

shock velocity, 〈v〉 ≈ vsh. A charge flux is induced in thermal plasma

to neutralize this current. In the case of a mean field B‖ parallel to

the shock normal, this return current has a mean (unperturbed) value

given by j‖ = ncrevsh where ncr is the number density of cosmic rays

and e is the electronic charge. The momentum equation is given in

the MHD approximation by

ρ
du
dt

= −∇ P + j th × B, (1)

where j th, the current density carried by the thermal plasma, is

determined by Ampère’s law:

∇ × B = μ0

∑
s

nsqsvs = μ0( j th + j cr), (2)

where s is an index used to sum over the charged species and μ0 is the

plasma permeability. The zeroth-order cosmic-ray current density is

parallel to the mean magnetic field, which is chosen to lie along the

z-axis. All first-order perturbations are taken to lie perpendicular

to the zeroth-order components such that the magnetic field and

cosmic-ray current density can be expressed as B = B‖ + B⊥,

j cr = j‖ + j⊥, respectively. Making use of the induction equation:

∂B
∂t

= ∇ × (u × B), (3)

we look for plane-wave solutions to the linearized system with k
also parallel to the mean field. All first-order quantities B⊥, j⊥,

u⊥ and E⊥ = −u⊥ × B‖, take the circularly polarized form Ax ±
iAy = A0 exp[i(kz − ωt)]. For the purposes of analysis, the plasma

is taken to be initially at rest.

Using a kinetic description, it was shown by Reville et al.

(2007) that for modes with wavenumbers kr g1 
 1, where rg1 ≡
p1/e|B‖| is the Larmor radius of the cosmic rays of minimum mo-

mentum p1, kinetic effects can be neglected, that is, both thermal

effects and perturbations to the mean cosmic-ray flux are negligi-

ble. Splitting the perpendicular magnetic field perturbation into its

cartesian components in the x–y plane the relation(
ω2 − v2

a k2 iB‖ j‖k/ρ

−iB‖ j‖k/ρ ω2 − v2
a k2

)(
Bx

By

)
= 0 (4)

is obtained where va = B‖/
√

μ0ρ is the Alfvén speed in the unper-

turbed field. This system permits several waves, whose dispersion

relation takes the form

ω2 = k2v2
a ± ζv2

sh

k

rg1

(5)

similarly to equation (15) from Bell (2004) where the dimensionless

driving parameter ζ is given by

ζ = μ0

j‖
B‖

v2
a

v2
sh

rg1. (6)

It follows that, for strongly driven modes such that ζv2
sh/v

2
a 
 1,

there exist aperiodic waves (Re ω = 0), over the range 1 < kr g1 <

ζv2
sh/v

2
a . From equation (5), it is straightforward to show that the

fastest growing mode occurs at

kmax = μ0

2

j‖
B‖

(7)

with growth rate

γmax = vakmax. (8)

The dispersion relation for arbitrary orientations of k, j cr and

B0 has been determined by Bell (2005) demonstrating that unsta-

ble modes exist for all orientations provided k · B0 �= 0. Melrose

(2005) has compared the resonant and non-resonant instabilities for

arbitrary angle of propagation and shown that the latter occur with

elliptically polarized modes. This emphasizes the need for high-

resolution simulations in three dimensions.

3 I N S TA B I L I T Y D R I V E N T U R BU L E N T F I E L D
G E N E R AT I O N

Our simulation box represents a region in the rest frame of the

upstream-magnetized fluid (shock precursor). We assume a thin box

such that both the pressure and density can be taken to be initially

constant, and the cosmic rays can be considered unmagnetized (i.e.

they travel through the box with straight trajectories).

Following Bell (2004), we take typical interstellar values for

the upstream quantities B‖ = 30 n T, nucleon density n0 = 1 ×
10−6 m−3, corresponding to an Alfvén speed va = 6.6 × 103 m s−1.

Furthermore, assuming 10 per cent energy transfer to cosmic rays

and shock speed vs/c = 1/30, with ln (p2/mc) = 14, where p2 is

the upper cut-off of the cosmic-ray energy spectrum, we obtain ζ =
4.8 × 10−4 and ζv2

s = 1100v2
a .

In the quasi-linear theory of diffusive shock acceleration, the min-

imum momentum of the cosmic-ray distribution is expected to in-

crease with distance upstream, since lower energy cosmic rays are

confined closer to the shock (Eichler 1979; Blasi 2002). Assuming

Bohm diffusion, the minimum cosmic-ray momentum at a given

distance z upstream of the shock is p1 ≈ 3vsheBz/c. In order for

the non-resonant mode to leave the regime of linear growth be-

fore being overtaken by the shock front, i.e. before being advected

over a distance of roughly cr g1/vsh, we take p1c = 1 PeV (although

this is not a lower limit). This gives corresponding physical scales

k−1
max = 2 × 1013 m, γ −1

max = 98 yr and rg1 = 1.1 × 1016 m.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 509–515
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3.1 Turbulent seed field

The non-resonant instability develops in a field containing a level

of seed turbulence. In the simulations that follow the magnetic field

is initialized according to the following prescription

B(x, y, z) = B0 + δB(x, y, z), (9)

where δB is a small isotropic turbulent field component (δB/B0 �
1). The turbulent component is constructed similarly to Giacalone

& Jokipii (1994), by choosing N plane-wave modes with random

phases, orientations and polarization states given by

δB(r ) = 2

N∑
n=1

Anei(kn·r+ψn)ξ̂n, (10)

where kn ≡ knê1
n. For each mode n, An, ψn, kn and ê1

n are the ampli-

tude, phase, wavenumber and propagation direction, respectively.

Additionally, the polarization vector ξ̂n is given by

ξ̂n ≡ cos(αn)ê2
n + i sin(αn)ê3

n, (11)

where αn is the polarization angle. The three vectors (ê1
n, ê2

n, ê3
n)

form an orthonormal basis for the plane waves such that, for a con-

tinuous representation, the field is guaranteed to be solenoidal by

the condition kn · ξn = 0. However, when the field is projected

on to a mesh of uniform spacing h, the solenoidal condition on a

central-differenced grid is given by O’Sullivan & Downes (2007):

ξ̂n · sin(knh) = 0. (12)

The amplitude of each mode for a given variance σ 2 is

A2
n = σ 2Gn

[
N∑

n=1

Gn

]−1

, (13)

with

Gn = �Vn

1 + (kn Lc)�
. (14)

Here, � is the spectral index of the turbulence and the normalization

factor for three-dimensional turbulence is �Vn = 4πk2
n�kn. Lc is

the correlation length of the magnetic field, which in this case we

take to be the largest wavelength in the system.

In order to generate the turbulent field component four random

numbers are required for each mode: two to specify the orientation

of the wavevector ê1
n and one each for the phase and polarization

angles ψn and αn, respectively.

Since the turbulent field will be represented on a periodic mesh,

each mode must have an integral number of wavelengths in each

coordinate direction. Explicitly, assuming a cubic grid of dimension

L with N mesh points in each coordinate direction, k = 2π/L (nx , ny ,

nz) where nx = 0, . . . , N/2 etc. (The factor of 2 is necessitated by

the hermiticity of δB requiring both negative and positive k modes

be allowed.) This geometrical constraint also means that at small

k, the density of unique modes is low and available k vectors will

have a strong preferential bias along the grid axes. Since isotropic

and homogeneous turbulence is only achieved in the limit of N →
∞ (Batchelor 1982), we do not include modes from the low-k range

where this bias is greatest. Additionally, we attenuate the dynamic

range at high k by requiring the shortest scale fluctuations are well

resolved over 10 cells (rather than two as minimally required above).

3.2 Numerical scheme

We describe the numerical scheme used to perform the simulations

of the non-resonant Bell-type instability. The simulations are per-

formed with considerably higher resolution than those performed

previously by Bell (2004). The cosmic-ray current is taken to be

uniform along the z-axis and constant in time. Kinetic effects are

again neglected such that j⊥ =0. For clarity from this point onwards,

terms involving magnetic field B are assumed to have absorbed a

factor of 1/
√

μ0, and terms involving charge current density j are

assumed to have absorbed a factor of
√

μ0. The MHD equations

including cosmic-ray current may be written in the form

∂U
∂t

+ ∇ · V = S, (15)

where

U = (ρ, ρu, B, E)T (16)

and

V =

⎛
⎜⎜⎝

ρu

ρuu + Ip∗ − BB

uB − Bu

(E + p∗)u − (u · B)B

⎞
⎟⎟⎠ , (17)

with p∗ = p + B2/2, the total pressure. The source terms are given

by

S =

⎛
⎜⎜⎝

0

− j‖ ẑ × B

0

−u · ( j‖ ẑ × B)

⎞
⎟⎟⎠ . (18)

We have constructed a finite volume Godunov code in three di-

mensions, MENDOZA, which follows the method described in Falle,

Komissarov & Joarder (1998). The equations are split into three one-

dimensional problems to find the fluxes on the surface of each cell.

The fluxes are determined at each cell interface from the solution

to the linearized Riemann problem, and the field is updated with

second-order accuracy in both time and space. The source terms

are then added as explicit volume-averaged quantities. We have

investigated a variety of divergence cleaning methods, but found

the generalized Lagrangian multiplier (GLM) method of Dedner

et al. (2002) to be most effective. Divergence errors are naturally

produced in multidimensional simulations, due to the fact that the

one-dimensional problem is solved for each direction and the fluxes

simply added together. While the GLM method does not identically

conserve ∇ · B = 0, it has the unique property of rapidly damp-

ing any divergence introduced, while advecting them away from

the problem areas at the fastest admissible speed. For the study of

magnetic instabilities, particularly in the presence of strong pres-

sure gradients, we find this method to have many advantages over

correction schemes. For a comparison of many different divergence

cleaning methods see, for example, Tóth (2000).

Using simulation units, the model is then initialized with

P = ρ = 1, j‖ = 4π/5, B‖ = 1, u = 0.

Equations (6) to (8) then yield

va = 1, vsh = 1520, kmax = 2π/5,

γmax = 2π/5, rg1 = 1375/π.

As is common practice in the literature, the turbulent field spec-

trum is represented by a superposition of plane-wave modes, one

selected in a random direction from each of a number of uniform

intervals of log k over a finite range. As commented in Section 3.1,

however, since a discrete mesh is being used to represent a periodic

field, viable k vectors are finite in number and may be clustered

or multiply degenerate in k. Therefore, for a given grid resolution,

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 386, 509–515
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requiring that each interval contains at least one viable k vector de-

termines the total number of modes used to construct the turbulent

field representation and the cut-offs in the power spectrum. In this

work, a 5123 grid is used with modes in the range 40 � kL �
550. With these parameters, the number of modes we obtain is

N = 151. While this dynamic range (∼14) is relatively small, it does

represent isotropic, homogeneous turbulence well over the chosen

narrow band since at least one mode exists within each interval (by

construction). As long as kmax is central to this range, it should make

little difference to the experiment that the spectrum is narrow since

for k > 2kmax the linear growth rate is zero, and for k < 2kmax the

growth rate goes as k1/2 (Bell 2004). We choose L = 64 such that

kmaxL = 80 and the corresponding fastest growing fluctuation scale

is well resolved over ∼40 cells.

In simulation units, the initial seed field is set with σ 2 = 0.01 B2
‖.

Finally, we restrict our studies to the spectral index correspond-

ing to three-dimensional Kolmogorov turbulence, � = 11/3 (e.g.

Giacalone & Jokipii 1999).

3.3 Results and discussion I

Initializing the fields using the parameters described in Sections 3.1

and 3.2, the development of the root mean squared parallel and per-

pendicular components of the magnetic field is plotted in Fig. 1.

Since the plasma starts from rest, the energy input at the beginning

primarily goes into kinetic energy of the background fluid and no

field growth is observed. After this brief initial stage, at approxi-

mately t = 1, the magnetic field starts to grow at close to the linear

growth rate γ max. The energy in the perpendicular magnetic field

eventually overtakes that of the parallel field but continues to grow

at the same rate. As the amplitude of the unstable modes approaches

that of the mean field, cavity structures similar to those observed in

the simulations of Bell (2004) start to appear. The development of

these cavities is driven by the Lorentz force exerted on the circu-

lar/elliptical modes by the return current. The expansion of each

cavity is hindered by the growth of neighbouring cavities and dense

regions are formed between them. The frozen-in magnetic field be-

comes very large inside these cavity walls, as shown in Fig. 2.

It is at this point that neglecting the non-linear feedback of the field

on the cosmic rays becomes apparent. As discussed in Bell (2005),

information is only passed along the direction of the cosmic-ray

0.01

 0.1

 1

 10

 0  1  2  3  4  5  6t

B rm s

B rm s
⊥

Figure 1. The root mean square value of the perpendicular (solid) and par-

allel (dashed) components of the magnetic field. The field is initially damped

as the initial energy input goes into kinetic energy, setting the inertial plasma

into motion. Once the fluid is in motion, the perturbations grow according

to the linear analysis as exp (γ maxt).

Figure 2. Slice through the x–y plane at the centre of the simulation box

at t = 6 showing the isolines of the magnetic field magnitude. Contours

have uniform spacing of 0.5 with Bmin = 0.5 and Bmax = 13. The regions of

strongest field are found in the regions of higher density.

current via tension in the magnetic field lines. However, as the field

increases, the cosmic rays themselves would most likely be beamed

into the resulting cavities. From the simulations, it is observed that

there are no clear coherent structures forming along the direction of

the cosmic-ray current.

A second difficulty is that vacuum states begin to form within the

cavities, and the MHD equations lose their validity. A possible solu-

tion to this is to use a highly dissipative scheme, but this reduces the

accuracy of the solution. Using such a method, the results obtained

for the long-term evolution of the field are similar to those in Bell

(2004), and we do not comment on them.

Since we are primarily concerned with determining diffusion

statistics in an amplified field, we choose to take a snapshot of the

field in the early stages of the non-linear development at t = 6. The

power spectrum of the field at t = 5 and 6 is plotted in Fig. 3.

In the shock frame, the amplified field is advected towards the

shock. It is expected that lower energy particles are confined closer

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 10  100  1000

kL

P
(k

)

t = 5
t = 6

Figure 3. Logarithmic plot of the power spectrum in the amplified field at

times t = 5 and 6. The spectrum at large k is a power law with P(k) = k−s ,

with s ≈ 7.5 at t = 5 and s ≈ 5 at t = 6. The turnover in the spectrum moves

to smaller k as the parallel component of the field increases.
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to the shock by the turbulence produced further upstream by the

cosmic rays which can diffuse further from the shock. We determine

the transport properties for relativistic protons in a static amplified

field taken at t = 6.

4 C O S M I C R AY A N D F I E L D L I N E
T R A N S P O RT I N T U R BU L E N T F I E L D

We now discuss the first results of cosmic-ray transport in a turbulent

field resulting from the non-resonant instability of Bell (2004) as

described in Section 2. In particular, we investigate how the transport

properties differ from the Bohm diffusion limit. Much work has been

done on this topic numerically by Giacalone & Jokipii (1994, 1999)

and Casse et al. (2002) but in all cases an a priori field was assumed.

However, the field we use has been determined self-consistently.

To determine the statistical transport properties of the amplified

field, we have developed the code ‘LYRA’ (O’Sullivan et al. 2008).

LYRA assumes a Fourier mode description of a static magnetic field

as described in Section 3.1. However, MENDOZA represents the mag-

netic field at a finite number of mesh points (in our case, at 5123

uniformly spaced points). We convert the field into a continuous

Fourier mode representation by taking a Fourier transform and im-

porting the 5000 highest power real modes into LYRA. In the particu-

lar case considered here, passing the field through what amounts to

a low-power filter results in a loss of 16 per cent of the power in the

field. Any lost power is returned to the field by rescaling the included

modes accordingly. Fig. 4 provides a comparative illustration of the

pre-processed field generated by MENDOZA and the filtered field read

in by LYRA for the particle transport simulations. As can be seen, the

overall large-scale structure of the field is maintained quite well, but

there is a certain amount of smoothing of the sharper features. How-

ever, the continuous description of the field provided by the Fourier

transform is more practical than a piecewise constant mesh for the

purposes of integrating particle trajectories. The resulting field is

also divergence free. We cannot be certain that the spreading of the

field inside the cavity walls does not affect the final results, but in

the current work the Fourier description makes the computations

much simpler. We will address this issue in future work.

Another important limitation introduced by importing the field

from a periodic grid representation is that while, in theory, we have

access to an arbitrarily large dynamic range, the field will remain

periodic on the relatively small scale of the parent field. It is impor-

tant to consider this point when interpreting results displaying any

similarity on scales corresponding to the periodicity of the field.

With the field described in this manner, the equations of mo-

tion are integrated using the Burlisch–Stoer method (Press et al.

Figure 4. A comparison of the fields after being passed through the low-

power filter. The same large-scale structure maintained quite well between

the filtered field (left-hand panel) and MENDOZA’s field (right-hand panel).

1992). In the case of field lines, the equation to be integrated is

dr/ds = B/B. For protons, the governing equations are

dγv

dt
= ev× B (19)

and

dr
dt

= v. (20)

When integrating the equations of motion for protons, the toler-

ances in the integrator are set to conserve energy to �1 per cent

over 1000/2πω−1
g where ω−1

g ≡ 2πrg. We determine the statistical

transport properties for nine different energy values ranging from

γ = 103 to 4 × 105. For each value, an ensemble of 2000 particles

is initialized with random starting positions and pitch angles. Us-

ing the t = 6 field snapshot described in the previous section, with

magnetic field simulation units expressed in terms of a 3 μG ISM

field value, we carry out particle transport simulations using LYRA.

4.1 Results and discussion II

To investigate the properties of the field lines themselves, 2000 field

lines are integrated, and the mean square perpendicular displace-

ment along each field line is calculated. The magnetic diffusivity

D ≡ 〈�x2〉/2s, where s is the distance along a field line, is plotted

in Fig. 5. Since the fastest growing modes are circularly polarized,

the field lines are helical, although the guiding centre wanders about

the x–y plane as it moves along the z-axis. The parallel diffusivity

is essentially ballistic (D‖ ∝ s).

We numerically determine the statistical average diameter of the

helices by iterating over the same 2000 field lines, and approximat-

ing the diameter of each revolution. In what follows, all length units

are normalized to simulation box lengths. The root mean square di-

ameter of the helices is d = 0.148 which is an important length-scale

in the study of the fields properties. The peak in the perpendicular

magnetic diffusivity is located at s = 0.273. Using this value and

setting the perpendicular displacement equal to the root mean square

diameter gives D⊥ = 0.08 which is in reasonable agreement with

the experimentally determined peak at approximately D⊥ = 0.057,

as shown in Fig. 5.

The mode with the fastest growth rate has a wavelength similar

to the gyroradius of protons with a particle γ factor of γ ≈ 2 × 104.

We focus on the transport properties close to this value. Particles

with γ much less or greater than this have mean free paths close to

a cell width or box length, respectively.
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Figure 5. The Perpendicular magnetic diffusivity plotted against distance

along a field line. Both in units of box lengths.
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We interpret these results in terms of the diffusion coefficients for

the actual particle trajectories determined from LYRA. The parallel

and perpendicular diffusion coefficients are determined by averag-

ing over a large ensemble of particles

κ‖ ≡ lim
�t→∞

〈�z2〉
2�t

, (21)

κ⊥ ≡ lim
�t→∞

〈�x2
⊥〉

2�t
, (22)

Note that the κ‖ and κ⊥ refer to parallel and perpendicular directions

with respect to the initial field, whereas in the t = 6 snapshot of the

field the perpendicular component already dominates, as is evident

from Fig. 1.

The initial evolution of the particle trajectories is governed by the

field line statistics. Figs 6 and 7 plot the early parallel and perpen-

dicular diffusion, respectively, showing an initially superdiffusive

regime, with a peak in the perpendicular value for the lower energy

particles occurring at approximately 5 ω−1
g . Inserting this values into

equation (22) and equating to the experimental peak value ∼0.0015,

gives an estimate for the root mean square perpendicular displace-

ment at the peak,
√

〈�x2
⊥〉 = 0.08. This value is also in agreement

with the statistical mean radius of the helices. For higher energy

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 10  20  30  40  50  60  70  80  90  100

t

Δ
z

2

2
Δ

t

Figure 6. 〈�z2〉
2�t at t = 6 showing times for superdiffusive regime in units of

box-lengths squared per Larmor time. Lines correspond to γ factors (from

bottom to top at � t = 100) γ = 4 × 103, 104, 2 × 103, 2 × 104, 103. Time

units are Larmor times for a γ = 104 particle. Note these lines continue to

asymptotic values and we show only the early evolution to demonstrate the

superdiffusive behaviour.
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Figure 7. κ⊥ at t = 6 showing times for superdiffusive regime in units of

box-lengths squared per Larmor time. Lines correspond to γ factors (from

bottom to top) γ = 103, 2 × 103, 4 × 103, 104, 2 × 104, 4 × 104. Time

units are Larmor times for a γ = 104 particle .
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Figure 8. κ‖/κBohm (solid) and κ⊥/κBohm (dashed) with κBohm evaluated

in a 3μG field, at t = 6.

particles, the Larmor radius of a particle becomes comparable to or

larger than the average diameter, and the peak time differs from this

value. These particles are not trapped to individual field lines and

must travel a greater distance before becoming diffusive.

The asymptotic values of the diffusion coefficients, after the non-

diffusive regimes, are plotted in Fig. 8. It is clear that κ‖ < κ⊥ <

κBohm, in the energy range corresponding to kmax rg ≈ 1. In a uni-

form field, quasi-linear theory predicts κ⊥ < κBohm < κ‖. However,

in the highly non-uniform field produced by the non-resonant insta-

bility, the experimentally determined transport properties are much

more complicated. Nevertheless, the parallel diffusion coefficient,

along with the shock speed, defines the residence and acceleration

time-scales. While the simulations presented in this paper do not

include resonant wave excitation, which would act to reduce the

diffusion coefficients even further, it is worthwhile speculating on

the effects that our results would have on the shape of the cosmic-

ray spectrum and the rate of the shock acceleration process. The

acceleration rate defined by Lagage & Cesarsky (1983) is propor-

tional to the magnetic field strength. Amplification of the magnetic

field, as in the snapshot we selected, above interstellar medium val-

ues would therefore increase the maximum energy limit given by

Lagage & Cesarsky (1983). Inclusion of resonant wave excitation

and application to the case of a circumstellar wind would increase

that limit even further (Bell & Lucek 2001) as, of course, would a

higher saturation level of the non-resonant waves.

Turning to the shape of the spectrum, at a strong shock front

with a compression ratio of four the standard result that f ∝ p−4

applies provided that particles are isotropized and that their motion

becomes diffusive within a residence time either side of the shock

(Duffy et al. 1996). In our simulations, the isotropization is very

rapid, on the time-scale of one to two Larmor times. However, the

parallel motion only becomes fully diffusive after almost 10 Larmor

times and is superdiffusive (<�x2 > ∝ tβ , where β > 1) up to that

point. It has been shown (Kirk, Duffy & Gallant 1996) that if particle

crossings happen on a time-scale below that required for diffusive

transport then the resulting spectrum will be a power law given by

f ∝ p−(5−β) provided the distribution remains close to isotropy. In

our superdiffusive case, β > 1, this would imply a spectrum that is

harder than the diffusive shock acceleration result. Therefore, our

results are consistent with the rapid acceleration of a relatively hard

spectrum, but clearly more work needs to be done on resonant wave

excitation and overall dynamical range before drawing definitive

conclusions.
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5 C O N C L U S I O N S

We have reported on the results from high-resolution MHD simula-

tions of the non-resonant current driven instability. The long-term

evolution of the field is still uncertain, as the non-linear develop-

ment leads to very low-density cavities in the absence of significant

numerical dissipation. To overcome this, future simulations should

include a non-linear feedback on the cosmic rays perhaps using a

hybrid code, similar to the work of Lucek & Bell (2000), or by per-

forming large-scale particle in cell (PIC) simulations. To this end,

Riquelme & Spitkovsky (2008) have performed two-dimensional

PIC simulations of the relativistic generalization of the Bell-type

instability (Reville, Kirk & Duffy 2006) and preliminary results

show that the field saturates with both the perpendicular and parallel

magnetic field well in excess of the initial mean value. On the other

hand, Niemiec & Pohl (2007) have reported on three-dimensional

PIC simulations, with initial parameters chosen such that the non-

resonant mode is expected to be observed. However, a Weibel-type

instability dominates the growth of the field and the perturbations

do not grow much beyond the initial mean field value. The results

of PIC simulations of this instability remain inconclusive. The sim-

ulations of Riquelme & Spitkovsky (2008) are promising in that

they do show the development of extended filaments, as predicted

in Bell (2005), and this should be important for future investigations

of particle transport.

In recent years, magnetic field amplification has become a pop-

ular mechanism for accelerating cosmic rays beyond the Lagage–

Cesarsky limit. We present here, the first attempt at investigating

self-consistently the particle diffusion statistics in a self-excited

magnetic field. The observed diffusion is anisotropic (κ‖ �= κ⊥)

with the low-energy particles’ diffusion being largely determined

by the field statistics. Thus at low energies, κ‖ > κ⊥. However, on

length-scales similar to the wavelength of the helical modes, motion

parallel to the shock normal is more diffusive. At high energies, the

diffusion seems to be energy independent perpendicular to the initial

field direction, but scales as γ 2 parallel. This follows naturally since

there are few waves with scalelength comparable to the gyroradii of

these particles in our simulation box. However, the simulations do

achieve sub-Bohm diffusion with only modest amplification of the

effective ambient field.

It is clear that in the presence of non-linear waves the diffusion

properties of particles differ greatly from the standard picture. Based

on the results presented here it is difficult to say if the superdiffu-

sive or subdiffusive regimes will have a significant effect on the

shape of the spectrum. An estimation of the acceleration time-scale

of cosmic rays is beyond the scope of this paper, nevertheless we

have demonstrated that self-excited turbulence does reduce the dif-

fusion coefficient of the cosmic rays and is therefore likely to lead

to acceleration beyond the Lagage–Cesarsky limit.
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