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Observation and investigation of the ferrielectric subphase with highqT parameter

Yu. P. Panarin, O. Kalinovskaya, and J. K. Vij*

Department of Electronic and Electrical Engineering, Trinity College, University of Dublin, Dublin 2, Ireland

J. W. Goodby
School of Chemistry, University of Hull, Hull, United Kingdom

~Received 17 June 1996; revised manuscript received 28 October 1996!

Dielectric relaxation processes in an antiferroelectric liquid crystal~AFLC! have been investigated over a
wide range of frequencies from 1 Hz to 1 GHz. The AFLC under investigation possesses a variety of different
ferrielectric, ferroelectric, and antiferroelectric phases. Dielectric and polarization measurements under direct
bias voltage have been made with a view to clarifying the origin of the high-temperature ferrielectric phase,
which appears between the AF and smectic-C* phases. This phase is assigned to an unstable ferrielectric phase
with qT parameter greater than 1/2~according to the Ising model! or a doubly modulated incommensurate
phase ~according to the expanded Landau model!. The results are also supported by conoscopy.
@S1063-651X~97!04704-1#

PACS number~s!: 42.70.Df, 61.30.2v, 64.70.Md

I. INTRODUCTION

Although Beresnevet al. @1# proposed the existence of an
antiferroelectric structure in a ferroelectric liquid crystal
~FLC! mixture as early as 1982 to explain the unusual de-
pendence of the pyroelectric properties on temperature, a de-
tailed study of antiferroelectric liquid crystals~AFLCs! did
not commence until Chandaniet al. @2# in 1989 discovered
the ability for tristable electro-optical switching. Later, from
conoscopic investigations, various ferrielectric subphases
were also discovered in the temperature range between the
AFLC and the smectic-A ~Sm-A! phases@3#. The appearance
of these subphases can be understood to be a result of the
competition between the antiferroelectric and ferroelectric
interactions in adjacent smectic layers, which stabilize the
Sm-CA and the Sm-C* phases. This competition produces
various ferrielectric subphases with a different sequence of
antiferroelectric (A) and ferroelectric (F) ordering among
the smectic layers. Several different theoretical approaches
have been advanced for explaining a variety of subphases
and these postulates are based mostly on the expanded Lan-
dau model@4–6# or on the Ising model@7–9#. The double
layered Landau model failed to explain the existence of some
ferroelectric phases found experimentally, although it pre-
dicts the possibility of having some incommensurate phases
@5#. The Ising model predicts the existence of an infinite
number of ferrielectric phases. This model assumes an infi-
nite number of interacting layers@7#. These ferrielectric
phases, with varying temperature, can be characterized by
the parameterqT(5m/n), denoting the fraction of ferroelec-
tric ordering which appears in the antiferroelectric structure;
n indicates the number of smectic layers andm is the num-
ber of ferroelectric orders within a period of the periodic
structure. A complete set of ferrielectric subphases fills up
the entire temperature range between Sm-CA and Sm-C* and
these subphases are exhibited without any first-order transi-

tions. Such a sequence is named a ‘‘devil’s staircase’’@7#.
The stability of the phases withqT5m/n quickly decreases
with the increase of numbern. Although some of the ferri-
electric phases withqT<1/2 and sufficiently highn ~9 or
even 11! were experimentally found@9#, the existence of the
phases withqT higher that 1/2 had not been reported until
Hatanoet al. @10# observed some unusual ferrielectric phase
between antiferroelectric AF~qT51/2! and ferroelectric
Sm-C* phases. According to the Ising model theqT param-
eter of this phase must be between 1/2 and 1. An investiga-
tion of the structure of such a phase is the main focus of this
study.

Detailed dielectric, electro-optic and pyroelectric data
were given in previous investigations@9–13,20#. Neverthe-
less, the upper frequency up to which the measurements were
reported
was limited to 10 MHz and some of the results given
were not completely understood. One of the unusual results,
so far, has been the observation of the two relaxation
processes: ferrielectric and ferroelectric Goldstone modes
coexisting over a wide range of temperatures corresponding
to the Sm-C* and/or Sm-Cg phase@11–13#. The results of
dielectric and electro-optical investigations of a AFLC
sample over wide ranges of frequency and temperature now
give answers to the aforesaid questions.

II. EXPERIMENT

We provide investigations of the AFLC sample under bias
voltage for cells of thicknesses varying from 8 to 100mm.
The AFLC sample used in the experiments was AS-573
~Hull, UK! possessing the following structure and phase
transition sequence@11# @defined by differential scanning
calorimetry~DSC!#:

AS-573:Sm-CA 78.3 Sm-Cg* 82 Sm-C* 90.7 Sm-A 105.7 Is.*Author for correspondence.
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Sample cells for low-frequency~,1 MHz! dielectric mea-
surements consisted of indium tin oxide~ITO! coated glass
plates with the low resistance of 30V. The cells for high-
frequency measurements~.1 MHz! were prepared using
brass electrodes. For planar alignment, the conducting inner
surfaces were spin coated with a polyvinyl alcohol~PVA!
alignment layer and rubbed parallel. The cells were filled in
the isotropic phase. Textures of experimental cells were ob-
served using a polarizing microscope. Dielectric measure-
ments in the frequency range from 1 Hz to 100 kHz were
made using a Schlumberger 1255A frequency response ana-
lyzer and a Chelsea dielectric interface. In the higher fre-
quency range we used Hewlett-Packard impedance analyz-
ers: HP-4192A ~10 kHz–10 MHz! and HP-4191A ~10
MHz–1 GHz!. During measurements, this system enabled us
to superimpose direct bias voltages up to 40 V on a rms
alternating voltage of 0.05 V.

For conoscopic measurements, homeotropically aligned
cells of 160mm thickness were used. Aluminum foil strips
were used as electrodes and these were spaced apart by ap-
proximately a gap of 1 mm. Homeotropic alignment was
produced by the aligning agent carboxylatochromium com-

plexes~chromolane! and used without rubbing. The sponta-
neous polarization was measured using the integral reversed
current method@14#.

III. RESULTS AND DISCUSSION

A. Determination of the phase transitions

The dielectric response of AFLC samples under dc bias
fields in cells with cell thicknesses of 8, 20, 50, and 100mm,
was studied. Figure 1 presents the dependence of the dielec-
tric loss spectra versus temperature in the absence of direct
bias voltage for 8mm and 50mm cells. A comparison of
these two plots reveals a remarkable dependence of a part of
the spectra on the sample thickness. For a cell with the larger
of the two thicknesses, we find that in the temperature range
between Sm-Cg and Sm-C* , the dielectric spectra look simi-
lar to the spectra of an antiferroelectric phase, Sm-CA . The
experimental dielectric spectra are found to be practically
independent of the cell thickness for cells thicker that 20mm.
We therefore conclude that in thin cells~with a thickness of
the order of 8mm or less! some of the ferrielectric subphases
are suppressed by the surface interactions. Because the exact
phase transitions sequence is very important to our study, we
employed conoscopy and the spontaneous polarization mea-
surements for obtaining information about the phase transi-
tions.

Figure 2 presents the conoscopic pictures for homeotropic
orientation for different temperatures and voltages. In the
Sm-C* phase~T591 °C! an increase of the voltage shifts the
center of the image in the direction perpendicular to the ap-
plied field and the center continues on shifting in this direc-
tion with an increase in voltage. The structure is getting in-
creasingly biaxial with the optical plane continuing to be
perpendicular to the direction of the applied field. Such be-
havior is typical of a ferroelectric Sm-C* phase@3#. In the

FIG. 1. Dielectric loss spectra vs temperature for AS-573,~a!
d58 mm, ~b! d550 mm.

FIG. 2. Conoscopic pictures under bias voltage different phases:
Sm-C* , 91 °C; FiLC, 86 °C; Sm-Cg , 81 °C.
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Sm-Cg phase~Fig. 2,T582 °C! the dependence of the cono-
scopic image on voltage is similar to that of the Sm-C*
phase with only one difference. This is that the optical plane
is parallel to the direction of the field, in contrast to being
perpendicular to it. For a temperature range between 83 °C
and 85 °C and less than 78 °C, the conoscopic pictures are
typically antiferroelectric@3#. Therefore, we conclude that
there exist a usual antiferroelectric phase Sm-CA ~qT50! at
low temperatures and an antiferroelectricAF phase
~qT51/2! at high temperatures. The unusual behavior was
found in the temperature range from 85 °C to 90 °C. The
application of a sufficiently low voltage makes the image
rather blurred, although a detailed examination of the pic-
tures reveals the existence of four centers: one pair as in

the ferroelectric phase and another in the ferrielectric phase.
Such an observation cannot possibly be made for a uniform
structure. A further increase of the applied voltage makes the
conoscopic image clearly ferroelectriclike. The identification
of this phase will be discussed later, but here we just mention
that, in this temperature range, there exist two different
Goldstone type relaxation processes: ferroelectric and fer-
rielectric. Therefore we propose that in this temperature
range there exist two phases Sm-C* and some ferrielectric
phase FiLC with 1/2,qT,1. This conclusion is supported
by results of the dielectric and induced polarization investi-
gations to be presented in the latter part of this paper. The
full phase sequence of the sample is found to be as follows:

SmCA 78.3SmCg* 83.5 AF 85 FiLC 90 SmC* 93 SmA 105.7 Is.

The phase sequences obtained from conoscopic pictures are
significantly different from that originally produced by DSC.
AF and FiLC were not revealed by DSC. Our conclusion
with regard to the use of DSC therefore confirms that drawn
in Ref. @10# that DSC cannot accurately detect phase transi-
tions between some ferrielectric and antiferroelectric phases
due to a finite hysteresis in temperature and a small change
in enthalpy at the phase transitions.

B. Dielectric relaxations without bias field

The dielectric spectra are fitted to the Havriliak-Negami
equation forn relaxation processes

«* ~v!5«`1(
j51

n
D« j

@11~ ivt j !
a#b . ~1!

«* ~v! is the frequency dependent complex permittivity,«` is
the high-frequency permittivity,j is a variable denoting the
number of the relaxation processes up ton, tj is the relax-
ation time of j th relaxation process,a andb are the fitting
parameters, andD«j is the dielectric relaxation strength~or
the static susceptibility,xj ! for the j th process.

Figures 3 and 4 present the temperature dependence of the
dielectric parameters of AS-573. These are found by fitting
the dielectric spectra to the Havriliak-Negami equation using
a fitting programDK36 developed in Mainz.

1. Molecular relaxation processes.
At temperatures corresponding to the isotropic phase, we ob-
serve two noncollective~molecular! relaxation processes.
The higher-frequency process is assigned to the molecular
relaxation around the long molecular axis and the lower-
frequency process is that around the short axis. It follows

FIG. 3. Dependence of the di-
electric strength~D«! on tempera-
ture for AS-573,d550 mm.
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from the fact that in the Sm-A phase, the molecules being
parallel to the plane of the electrodes, there exist only the
higher-frequency relaxation process and the soft mode. The
results presented in Figs. 3 and 4 show that the relaxation
frequencies of both molecular processes are Arrhenius; how-
ever, the dielectric strengths possess complicated behavior.
To explain this phenomenon we introduce some geometric
factors which affect the dielectric strength of the molecular
relaxation processes. For the simplest cases of the planar or
homeotropic alignments, it is obvious that there exist only
one of the two molecular relaxation processes.

Let us assume that the long molecular axis makes an
angleq, with respect to the plane of the electrodes, as shown
at the Fig. 5. The dipole momentm has a component along
the long molecular axisml and the transverse componentmt
such thatm5mt1ml . The application of the electric field
will bias the dipolar rotation and induce polarization along
(Pl) and perpendicular (Pt) to the long molecular axis, re-
spectively. The static susceptibilityxS of theb relaxation for
rotation around the short axis~bS! that appears along the
direction of the electric field depends on angleq through the
following equation:

xs~q!5
PW l

EW
U
X

5
Plsinq

E
U
X

5
Pl

E
sin2q5xs0 sin

2q, ~2!

wherexs0 is the maximum dielectric susceptibility of theb
relaxation for a rotation around the short axis and this alone
can be found from the homeotropic configuration. One
power of sinq arises from the projection of the electric field
on the long molecular axis, and the second power arises from
the projection of the induced polarization on to the surface
normal or theX axis.

For the static susceptibilityxl of the b relaxation for ro-
tation around long axis~bl! we can similarly write

x l~q!5x l0 cos
2q, ~3!

wherexl0 is the maximum static susceptibility of theb re-
laxation for rotation around the long axis and can be found
for the planar orientation.

These equations predict the existence of both molecular
relaxation modes in the isotropic phase, sinceq is arbitrarily
distributed and only the molecular relaxation around the
short axis in the Sm-A phase can be seen, because all the
molecules are aligned parallel to the electrodes~q50!. This
is in agreement with the experimental results presented in
Figs. 3 and 4.

For a cell in the bookshelf structure, the angleq can be
found from the following geometric expression~see Fig. 6!:

sinq5sinu sinw, ~4!

wherew is the azimuthal angle between theC director and
theY axis andu are the smectic tilt angles. For small angles,
i.e., u,1, Eqs.~3! and ~4! can be simplified as follows:

q~w!5u sinw , ~5!

x l~q!5x l0cos
2q5x l0~12sin2q!5x l0~12q2!. ~6!

On integrating this equation over the helical pitch we can
find the average susceptibilityx̃ l

FIG. 4. Dependence of the re-
laxation frequency (f ) on tem-
perature for AS-573d550 mm;
the temperature range is divided
up into the various phases.

FIG. 5. Molecular orientation in the cell;q is the glass plate;mW
is the molecular dipole moment.
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x̃ l5
1

p0
E
0

p0
x l0@12q2~z!#dz

5x l02
1

p0
E
0

p0
x l0q

2~z!dz, ~7!

for anundisturbedhelical structure we can write

w5
2pz

p0
, z5

wp0
2p

and

x̃ l5x l02
1

2p E
0

2p

x l0q
2~w!dw

5x l02
1

2p E
0

2p

x l0u
2sin2w dw5x l0S 12

u2

2 D . ~8!

Therefore the dielectric strength for the high-frequency mo-
lecular relaxation in the helical phase is lower than in the
unwound Sm-C* structure byu2/2. This is in agreement with
the experimental data~Fig. 3!. For the helical structure, the
dielectric susceptibility due to rotation around the short axis
is found to be as follows:

x̃s5
1

p0
E
0

p0
xs0 sin

2@q~z!#dz5xs0

u2

2
. ~9!

It means that for helical structures as in Sm-C* , Sm-Cg , and
Sm-CA we can observe the molecular relaxation around the
short axis.

We thus find that the dielectric strengths for both molecu-
lar dynamical processes are sensitive to the average angle
between the molecular director and the surface of the elec-
trodes, and this formalism can be used as the basis for deter-
mining the molecular structure present in the cell.

2. Collective relaxation processes in the ferrielectric
phases.

In the Sm-C* phase and at temperatures of several de-
grees below the Sm-A–Sm-C* phase transition, there exist

two relaxation processes: molecular relaxation around the
long molecular axis and the ferroelectric Goldstone mode.
One could also expect the molecular relaxation around the
short molecular axis to exist because some molecules are no
longer perpendicular to the electric field because of the ex-
istence of a helical Sm-C* structure. These molecular pro-
cesses are, however, undetectable due to a superposition of
an intense Goldstone mode on to the molecular modes. On
decreasing the temperature, the second relaxation process has
already been reported@12,13# to gradually show up in the
dielectric spectra in the temperature range from 90 °C to
85 °C. In addition to the ferroelectric Goldstone process dis-
cussed above, another relaxation process appears 3 °C below
the Sm-C* –Sm-A phase transition. This process seems to be
the ferrielectric Goldstone mode because its frequency is al-
most of the same value as that of the ferrielectric Goldstone
mode in the Sm-Cg* phase~Fig. 4!. In the usual ferrielectric
Sm-C g* phase, there exists only one ferrielectric Goldstone
mode. The relaxation frequency of this process is in agree-
ment with the phenomenological theory developed by
Čepič et al. @18#, which describes the dynamical behavior
and the dielectric spectra of different Sm-CA(qT) subphases.
According to this model the relaxation frequency of the
Goldstone mode below the phase transition temperature
Sm-C*→Sm-Cg* decreases by approximately one order of
magnitude and the dielectric strength increases by several
orders. This behavior was observed experimentally in MH-
POBC @15#. In our case the relaxation frequencies of the
Goldstone modes in ferrielectric and ferroelectric phases also
differ by approximately one order of magnitude.

As mentioned above, the main interest in this section of
the paper lies in the coexistence of two relaxation processes
in the temperature range that corresponds~according to DSC
data! to the Sm-C* phase. According to the temperature in-
duced devil’s staircase model@9# the qT parameter always
increases with temperature. For the sample under investiga-
tion, in the lower-temperature range~,85 °C!, there exist the
antiferroelectric Sm-CA phase~qT50!, the ferrielectric phase
~qT51/3!, and the antiferroelectricAF phase~qT51/2!. At
higher temperatures, one could expect some ferrielectric
phase~1/2,qT,1! and/or ferroelectric Sm-C* ~qT51!. At
the same time the low-frequency relaxation process in the
temperature range from 85 °C to 90 °C~Figs. 3 and 4! is of
the same relaxation frequency as the ferrielectric Goldstone
relaxation process in the Sm-Cg* phase. Thus we could rea-
sonably expect the existence of some ferrielectric phase with
1/2,qT,1. From another point of view, there must be only
one Goldstone mode seen in the ferrielectric phase. There-
fore, the coexistence of two Goldstone relaxation processes
at the same temperature could be explained by the existence
of a mixture of domains of two different subphases~ferri-
electric and ferroelectric!, which is also supported by conos-
copy. The relaxation processes in the antiferroelectric phases
are also presented in Figs. 3 and 4; however, the mechanism
of these will be discussed elsewhere.

C. Effect of bias voltage on the properties
of the ferrielectric phases

The effect of bias voltage on the dielectric spectra in the
Sm-C* , Sm-Cg* , and Sm-CA phases is similar to the results
reported in the literature@15–19#. The application of the bias
voltage to the FiLC phase considerably changes the dielec-
tric spectra~Fig. 7!. An increase in the bias voltage sup-

FIG. 6. Smectic layer structure for a bookshelf cell. (X,Y,Z) is
the coordinate system,N is the molecular director,L is the smectic
layer normal,C is thec director,u is the tilt angle,q is the angle
between molecular director and the electrode plane, andw is the
azimuthal angle; the planeYZ is that of the glass plate.
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presses the low-frequency relaxation mode and causes an
amplitude of the high-frequency process initially to increase
and then to decrease with an increase in the bias voltage~Fig.
8!. The value of the relaxation frequency of the low-
frequency mode is the same as for the Goldstone mode in the
ferrielectric Sm-Cg* phase, while the relaxation frequency of
the high-frequency mode is the same as for the ferroelectric
Goldstone mode~Fig. 4!. Hence, these relaxation processes
are denoted as ferrielectric and ferroelectric Goldstone
modes. This phenomenon could be explained by taking into
account the results of the conoscopic investigations pre-
sented in Fig. 2. If we suggest the coexistence of two phases
FiLC and Sm-C* in this temperature range, then at small
electric fields we have two dielectric relaxation processes,
and the mixture of two different conoscopic images, which
leads to a complicated conoscopic picture~Fig. 2! already
discussed. An application of the electric field would cause
the transition from FiLC to Sm-C* . This will cause a sup-

pression of the ferrielectric mode in the dielectric spectra
~Fig. 8! and an increase in the ferroelectric mode. At these
voltages conoscopic pictures become ‘‘ferroelectriclike.’’ A
further increase of the electric field will unwind the helix and
suppress the ferroelectric Goldstone mode.

An application of the bias voltage in this FiLC phase
causes the most interesting dependencies of the spontaneous
polarization and that of the apparent tilt angle on the applied
voltage, as shown in Fig. 9. For voltages in the range 5–30
V, there exists a field induced quasistable state with a suffi-
ciently stable and high value~60–80 %! of the induced po-
larization and the tilt angle. Such high values of spontaneous
polarization could be assigned to two possible struc-
tures: ~i! the field induced devil’s staircase~with qE54/5
or more! or ~ii ! the distorted ferroelectric helical structure.
The experimental results discussed before support the second
possibility. For example, the dielectric spectra in this state
under bias voltage are typically ‘‘ferroelectriclike’’ and the
relaxation frequency of the Goldstone mode is of a magni-
tude similar to the ferroelectric Sm-C* phase. In this
electric-field range, the conoscopic pictures show the exis-
tence of a ferroelectric helix~Fig. 2,T587 °C,V5120 V!.

According to the conventional model for the field induced
devil’s staircase all the molecules under applied voltage are
parallel to the electrodes plane and the dielectric strength of
molecular relaxation is maximal. For the distorted helical
ferroelectric structure some molecules are not parallel to that
plane. Therefore, a comparison of the results of the induced
polarization with those of the dielectric strength for the high-
frequency molecular relaxation mode under direct bias volt-
age would clarify the molecular structure. We chose the re-
laxation process around the long molecular axis because it
possesses a high relaxation frequency and could be easily
separated from other relaxation modes.

Figures 9 and 10 show the dependence of the normalized
macroscopic polarizationP(V)/Ps and dielectric strength of
the high-frequency molecular relaxation process as a func-
tion of the direct bias voltage for different temperatures~i.e.,
different phases!.

FIG. 7. Dielectric loss spectra vs bias voltage for the 50mm cell
in the FiLC phase,T586 °C.

FIG. 8. Dielectric strength vs
bias voltage for the low-frequency
~ferrielectric! relaxation process
and higher-frequency~ferroelec-
tric! relaxation process at
T586 °C. The cell thickness is 50
mm.
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At a temperature of 78 °C, which corresponds to the
Sm-CA phase, the macroscopic polarization is extremely low
and almost independent of voltage until a threshold value in
the region of 27–30 V is reached. At this voltage, the anti-
ferroelectric structure changes to the ferrielectric~qE52/3!
with an induced polarization of13Ps , in agreement with the
field induced devil’s staircase model. At the higher voltage
~not shown in Fig. 9!, the ferrielectric structure starts getting
unwound and the macroscopic polarization reaches a satura-
tion value ofPs . It is very important to note that the dielec-
tric strength of the molecular relaxation~Fig. 10! does not
follow the induced polarization plot but reaches a maximal
saturation value at 35 V, for the voltage necessary to produce
a field induced unwound Sm-Cg* phase. It is easily explain-
able as in both structures: in unwound ferrielectric~qE52/3!
and unwound ferroelectric~qE51! all of the molecules lie in

a plane of the electrodes and the dielectric strength is the
same and of maximal value.

The polarization plot corresponding to the Sm-Cg* phase
~81 °C! also shows typical ferrielectric dependence on volt-
age. For voltages in the range~0 V,V,5 V! polarization
obeys almost linear dependence on voltage, corresponding to
a distortion of the helix with voltage; then a saturation value
of Ps/3 for an unwound ferrielectric structure~qE52/3! is
reached. Finally at high voltages~60 V!, not shown in Fig. 9,
the macroscopic polarization reaches a saturation value of
Ps . For this phase we find that the dielectric strength of the
molecular relaxation reaches a maximal saturation value at
15–20 V ~Fig. 10! when the induced polarization becomes
Ps/3 andqE52/3. This is again understandable, as the mol-
ecules in the unwound ferrielectric state withqE52/3 are
parallel to the plane of the electrodes.

FIG. 9. Temperature depen-
dence of the normalized spontane-
ous polarization as function of
bias voltage for different
phases: Sm-C* , 91 °C; FiLC,
86 °C; AF 84 °C; Sm-Cg* -81 °C;
Sm-CA, 78 °C. The cell thickness
is 50mm.

FIG. 10. Temperature depen-
dence of the dielectric strength of
the high-frequency molecular re-
laxation as function of bias volt-
age for different phases: Sm-C* ,
91 °C; FiLC, 86 °C; AF, 84 °C;
Sm-Cg* , 81 °C; Sm-CA, 78 °C.
The cell thickness is 50mm.
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It should be mentioned here that currently some doubts
about the validity of the Ising model and its modified, axial
next-nearest-neighbor Ising~ANNNI ! model for describing
the molecular structure in the antiferroelectric and ferrielec-
tric phases~see, for example, Ref.@6#! have been expressed.
Nevertheless, the experimental results for Sm-CA ~T578 °C!
and Sm-Cg* ~T581 °C!, which are presented in the two pre-
vious paragraphs, are well explained by the Ising model. It
means that under a certain bias voltage the molecular struc-
tures that are attained withqE52/3 and an induced polariza-
tion Ps value of 1/3 have all their molecules lying parallel to
the plane of the electrodes.

For the Sm-C* phase~T591 °C!, the curve also shows a
typical dependence of polarization on voltage for a helical
Sm-C* cell. For low voltages, the effective polarization and
the dielectric strength are found to gradually increase with an
increase in voltage and this corresponds to a distortion of the
helix. At higher voltages the normalized polarization and the
dielectric strength together reach a saturation value for the
unwound Sm-C* structure. Note that the results presented in
Fig. 10 are in agreement with Eq.~8! for the dielectric
strength of a molecular relaxation process around the long
axis. Thus for the temperature range mentioned above, a de-
pendence of the effective polarization and dielectric strength
on voltage shows typical behavior for both Sm-CA and
Sm-Cg phases. We emphasize again that in the unwound
ferrielectric Sm-Cg* phase with an induced polarization of
Ps/3, the dielectric strength of the molecular relaxation pro-
cess reaches the maximal value in both Sm-CA and Sm-Cg*
phases.

Nevertheless, for the temperature range 85–90 °C~where
we assume the existence of a FiLC phase! the macroscopic
polarization~as well as the conoscopic pictures and the di-
electric spectra! possess some interesting features. The de-
pendence of the effective polarization on the bias voltage
consists of two almost linear dependencies with different
slopes~Fig. 9, T586 °C!. For a low bias voltage~0–5 V!,
the macroscopic polarization grows quickly with voltage
and reaches a value equal to 60% ofPs . This process is
accompanied by a decrease in the ferrielectric relaxation
strength~Fig. 8! and a perturbation in the conoscopic image
~Fig. 2!. These observed effects can be explained by a model
which involves a gradual change from a ferrielectric FiLC
phase to the ferroelectric one with an increase of the bias
voltage. When the entire FiLC phase is transformed to
Sm-C* ~'30 V!, the conoscopic image again gets sharper
and ‘‘ferroelectriclike’’ ~Fig. 2, T586 °C, V5120 V!. The
dielectric spectrum at that stage exhibits only the ferroelec-
tric Goldstone mode~Fig. 8! and thus the effective polariza-
tion grows gradually with voltage as the helix is strongly
being deformed with an increase in the electric field. It was
already mentioned that this state, with the effective polariza-
tion of 60–90 %Ps, could have been assigned to a step in
the field induced devil’s staircase. In that case, the dielectric
strength of the molecular relaxation around the long axis,
according to Eq.~8!, must have a maximal value, as in the
case of Sm-Cg* and Sm-CA ~Figs. 9, 10! but this is contrary
to the observations. For the temperature range 85 °C–90 °C
the dielectric strength of the molecular mode reaches a maxi-
mal value at the same threshold voltage at which the effec-
tive polarization reaches a saturation value ofPs , the helix is

unwound, and the Goldstone mode is almost suppressed.
Therefore, we conclude that this field induced quasistable
level corresponds to that of the distorted ferroelectric helix
and not to the field induced devil’s staircase.

IV. COMPARISON OF DIFFERENT THEORETICAL
MODELS WITH POSSIBLE MOLECULAR STRUCTURES

It has been shown that the AFLC sample under investiga-
tion in a temperature range~85 °C–90 °C! reveals unusual
but interesting properties; these cannot be totally explained
by the current theories which describe both a temperature
induced and field induced ‘‘devil’s staircase’’ observed in
antiferroelectric and ferrielectric phases. The main points of
disagreement are as follows:~i! Dielectric loss spectra con-
sist of both ferroelectric and ferrielectric Goldstone relax-
ation modes.

~ii ! Conoscopic images get blurred under relatively low
bias fields and then these become clearly ferroelectriclike
with an increase of the bias field.

~iii ! A plot of the dependence of the effective polarization
on the bias voltage consists of two almost linear parts with
different slope.

~iv! There is no so-called field induced devil’s staircase
with a sufficiently stable level of induced polarization-tilt
angle ~1/9, 1/5, and/or 1/3! which has been observed at
lower-temperature ferrielectric and antiferroelectric phases,
such as Sm-CA , Sm-Cg* , and AF.

~v! The dependence of the dielectric strength of the mo-
lecular relaxation mode around the long axis reaches the
maximal value at the same voltage as does the effective po-
larization.

We give the two most probable explanations for these
observed effects in a ferrielectric mesophase using the Ising
~ANNNI ! model and the expanded~bilayered! Landau
model. The conclusion which is being arrived at from two
different models is essentially the same.

From the Ising model, this phase exists between AF
~qT51/2! and Sm-C* ~qT51! and according to the tempera-
ture induced devil’s staircase theqT parameter lying in the
range from 1/2 to 1. This conclusion has been made by Ha-
tano et al. @10# about the sample with a similar molecular
structure~the nonchiral tail does not contain any oxygen, as
in this case!. The experimental investigation shows that this
phase seems to be a thermodynamically unstable one. Ac-
cording to the numerous experimental investigations the
Ising model is successful in describing the temperature in-
duced devil’s staircase for ferrielectric or antiferroelectric
phases withqT<1/2. In such structures the ferroelectric or-
dering (F) appears as defects in the antiferroelectric struc-
tureAAAA. Ferroelectric orderings (F) repel each other due
to Coulomb interactions. Such forces stabilize the equidistant
arrangement ofF ordering in theAAAA matrix. In the
phases withqT.1/2 we have an opposite situation, namely,
A ordering appears as defects in theFFFF orderings. ‘‘For
such a structure, what is important for its stable existence is
the repulsive forces betweenA orderings,..., it is not clear
whetherA orderings repel one another.’’@9# Consider, for
example, the FiLC mesophase withqT53/5. Such a phase
possesses the following arrangement:•••FFAFA/FFAFA/
FFAFA•••. The two neighboring ferroelectric orderings re-
pel each other and the arrangement /FFAFA/ possesses the
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same electrostatic energy as /FAFFA/. The total arrange-
ment could be: •••FAFFA/FFAFA/FAFFA/FFAFA/
FFAFA/FAFFA••• which possesses no stable period of
structure. Therefore, this mesophase withqT.1/2 could be
considerably disturbed by the fluctuation forces and these
could easily be affected by the external electric field as ob-
served in our investigations. The same situation is valid for
all the phases withqT.1/2. Taking into account these con-
siderations, we implicitly restrict the range of stable ferri-
electric and antiferroelectric mesophases by theqT parameter
from 0 to 1/2.

The same conclusion follows explicitly from the ex-
panded Landau model@4#. Žekš and Čepič @5# introduced
Lifshitz invariants for the chiral systems and obtained 12
possible sequences of phase transitions between different fer-
rielectric and antiferroelectric phases. They predicted the ex-
istence of incommensurate doubly modulated phases lying in
between the commonly known mesophases and, particularly,
between Sm-Cg* and Sm-C* . They did not investigate the
effect of the direct electric field on these phases, but the
coexistence of the two Goldstone relaxation processes~ferri-
electric and ferroelectric! follows directly from the nature of
these doubly modulated phases@5#.

On assuming these explanations from two different points
of view, the ferrielectric phase under investigation could be
assigned as a thermodynamically unstable FiLC phase with
qT.1/2 or an incommensurate doubly modulated phase.

Finally, we remark about the validity of the two major
theoretical approaches~the Ising and the expanded Landau!
to describe the properties of AFLCs. The Ising model ex-
plains quite well the existence of and transformations be-
tween all experimentally found subphases with a temperature

and electric field for phases withqT<1/2. For higher values
of qT , the discussion that has preceded should be taken into
account. This inability of the Ising model to explain the ob-
servations in full arises from the chirality factors having been
ignored in its formulation. The expanded Landau model with
Lifshitz invariants properly explains the dielectric properties
@18#, phase transitions with temperature and the existence of
the doubly modulated incommensurate subphases. The exis-
tence of some ferrielectric and antiferroelectric mesophases
including experimentally foundFiH , Fi L , and AF can pos-
sibly be explained by taking into account higher degrees in
the expression for the Landau free energy expansion.

V. CONCLUSIONS

A FiLC phase withqT.1/2 has been observed. It is found
that this phase is either thermodynamically unstable or is an
incommensurate doubly modulated phase. The phase trans-
formation in this phase under the bias voltage cannot be
explained by the field induced devil’s staircase. In this case a
typical phase sequence FiLC~helical!→FiLC~unwound!→
FLC~unwound! expected from the field induced devil’s stair-
case can be FiLC~helical!→FiLC~distorted helical!
→FLC~distorted helical!→FLC~unwound!, since this se-
quence of transitions explains the results that have been ob-
tained using a number of techniques given above.
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