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ABSTRACT 

Rapid elasticity and automatic scaling are core concepts of most current cloud 

computing systems. Elasticity describes how well and how fast cloud systems adapt to 

increases and decreases in workload.  

In parallel, software architectures are moving towards employing containerised 

microservices running on systems managed by container orchestration platforms. Cloud 

users who employ such container-based systems may want to compare the elasticity of 

different systems or system settings to ensure rapid elasticity and maintain service level 

objectives while avoiding over-provisioning.  

Previous research has established a variety of metrics to measure elasticity. Some 

existing benchmark tools are designed to measure elasticity in “Infrastructure as a 

Service” (IaaS) systems, but no research exists to date for measuring elasticity in systems 

based on containers and container orchestration.  

In this dissertation, an existing benchmark designed for IaaS systems, the BUNGEE 

benchmark developed at the University of Würzburg, was extended to be applicable to 

Amazon’s Elastic Container Service, a container-based cloud system. An experiment 

was conducted to test if the extension of the BUNGEE benchmark described in this 

dissertation delivers reproducible results and is therefore valid.  

For validation, the crucial phase of the benchmark - the system analysis phase - was run 

32 times. It was established with statistical tests if the results vary by more than the 

acceptable level.  

Results indicate that there is some amount of variability, but it does not exceed the 

acceptable level and is consistent with the amount of performance variability 

encountered by other researchers in Amazon’s cloud systems.  

Therefore, it is concluded that the BUNGEE benchmark is likely applicable to container-

based cloud systems. However, some parameters and configuration settings specific to 

container orchestration systems were identified that could impede reproducibility of 

results and should be considered in future experiments.  

Key words: Elasticity, BUNGEE, containers, benchmark, ECS, Elastic Container 

Service 
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1 INTRODUCTION 

This chapter explains the motivation and subject of the research undertaken for this 

dissertation. The subject of the dissertation, elasticity measurement, is placed in context 

with the current cloud computing landscape. A research question is developed to explore 

if a benchmark tool identified for this dissertation can measure the elasticity of 

container-based cloud computing environments. Hypotheses are stated, limitations and 

scope of this research are covered, and risks of this research highlighted.  

1.1 Background 

Nowadays, many companies provide a wide variety of cloud computing offerings which 

developers of web services or applications can choose from: 

• Virtual servers in the cloud provide practically unlimited computing capacity 

(Binnig, Kossmann, Kraska, & Loesing, 2009, p. 2).  

• Ready to use cloud development platforms let developers write their software 

without having to provision servers or virtual machines. 

• Managed container orchestration frameworks allow developers to place their 

code into Docker containers (i.e. virtualised operating systems)1 and run multiple 

copies of these in an encapsulated and coordinated way. Container orchestration 

frameworks are used to manage the creation and administration of containers in 

a cloud system.  

The services listed above are offered by a variety of providers such as Google Cloud 

Platform, Amazon Web Services (AWS), IBM Cloud, Microsoft Azure etc.  

The providers promise an unlimited and instant scalability of the above-mentioned 

offerings. Scalability refers to dynamically adding or removing resources according to 

the user demand (Islam, Lee, Fekete, & Liu, 2012). But how can the scalability they 

offer be evaluated and compared? Can the systems really shrink and grow instantly? 

                                                 

1 A more detailed explanation of container orchestration frameworks and Docker containers can be found 

in chapter 2.3 “Container-based systems” and 2.4 “Container orchestration platforms”.  
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These questions can be re-phrased into “How elastic is a system”. Elasticity2 is important 

to businesses who want to meet their service level objectives (SLO). Businesses might 

want to compare systems by different providers, or just different auto-scaling settings 

on a platform they have already chosen. They might want to ensure the system adapts to 

the user demand and always fulfils the SLOs while at the same time not over-

provisioning.  

Multiple research papers exist establishing metrics for elasticity (Coutinho, Sousa, Rego, 

Gomes, & Souza, 2015). Several application benchmarks contain some aspect of 

measuring elasticity (Al-Dhuraibi, Paraiso, Djarallah, & Merle, 2017, p. 8). Apart from 

these large application benchmarks, a micro-benchmark exists to measure elasticity in 

isolation: the BUNGEE benchmark (Herbst, Kounev, Weber, & Groenda, 2015). An 

extensive explanation of the aforementioned benchmarks can be found in chapter 2.   

The BUNGEE benchmark was chosen for this dissertation because it is a promising way 

to measure elasticity in isolation of other factors. It is flexible and easy to use. It has 

been applied to cloud systems based on virtual machines (Weber, 2014), but has not yet 

been applied to cloud systems based on the operation of containers.  

This dissertation is a proof of concept to determine if the BUNGEE benchmark can 

measure the elasticity of systems that operate based on containers. Container based 

systems are further described in 2.3 “Container-based systems”. To the authors best 

knowledge, this is the only work that attempts to create a mechanism for measuring 

elasticity in container-based systems or to adapt an existing mechanism to such systems.  

1.2 Research Project 

This dissertation strives to verify if the BUNGEE micro-benchmark is applicable to 

container-based cloud environments. A wide variety of systems using containers is 

commercially available. This research investigates BUNGEE applied to one specific, 

commercially available container orchestration system: AWS Elastic Container Service 

(ECS).  

                                                 
2 (see 2.7 “Elasticity“) 
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The first step in verifying the compatibility of the benchmark with ECS is to extend the 

BUNGEE benchmark to work with ECS. The extended benchmark must then be 

validated. It must be ensured that it produces reproducible and plausible results.  

This benchmark consists of multiple phases. The crucial phase for the benchmark is the 

so-called system analysis phase. If this phase yields reproducible results, it can be 

assumed that the other phases of the benchmark will also yield reproducible results. A 

detailed explanation of this assumption and the different phases of the BUNGEE 

benchmark can be found in 2.10.1 “Phases of the BUNGEE benchmark”.  

To generate a proof of concept of BUNGEE’s compatibility with ECS, an extension was 

created for the benchmark. To validate that the extension works correctly, the below 

research questions were formulated.  

The main research question is the following:  

1. Can the BUNGEE framework reproducibly measure the elasticity of a system 

built with AWS Elastic Container Service, producing results with no statistically 

significant difference (CL 95%) during several runs of the BUNGEE system 

analysis? 

A secondary research questions that could follow the first one is: 

2. In case the BUNGEE benchmark cannot reproducibly measure the elasticity in 

the system under test (SUT), what are the causes? Can it be adapted to produce 

reliable results?  

1.3 Research Objectives 

To answer research question 1 with yes, and thus verify reproducibility, it is necessary 

for the benchmark to produce consistent results in the system analysis phase of the 

benchmark (see 2.10.1 “Phases of the BUNGEE benchmark”). The system analysis 

produces a file which maps each resource level (number of virtual machines / containers) 

to the maximum load intensity (requests per second) which this resource level can 

handle.  

For the elasticity benchmark to generate reproducible results, this mapping should be 

consistent when the system analysis is conducted multiple times on the same system: A 
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consistent mapping means the same number of resources can always handle the same 

number of requests per second before failing the service level objectives.  

If the mapping is consistent, this enables the benchmark to produce reliable and 

meaningful results.  

If the mapping is different each time, this indicates there must be confounding factors 

influencing the result, which could hinder the benchmark from producing meaningful 

results. These confounding factors could be related to the implementation of the 

benchmark or they could be related to the system under test (SUT).  

The following hypotheses have been set:  

H-A0: With a probability of >= 95% there is no statistically significant difference 

between the resource-load curves produced by running BUNGEE’s system-analysis 

several times on the same system. 

H-A1: With a probability of >= 95% there is a statistically significant difference between 

the resource-load curves produced by running BUNGEE’s system-analysis several times 

on the same system  

To make the results of this investigation comparable to the results of research previously 

conducted (Weber, 2014), additionally the following hypotheses have been set: 

H-B0:  The error of the system analysis phase is smaller than 5% of with a confidence 

level of 95%. 

H-B1: The error of the system analysis phase is larger than 5% with a confidence level 

of 95%.  

1.4 Research Methodologies 

To investigate the research objectives stated in 1.3, the BUNGEE benchmark was 

extended to interface with the AWS Elastic Container Service (ECS). To collect 

meaningful results, a controlled experiment was conducted, running the system analysis 

phase of the benchmark 32 times. 

To answer H-A a “repeated measures analysis of variance” (ANOVA) was performed to 

determine if a significant difference can be detected between the resource-load curves 

of each run. To answer H-B, the confidence intervals for the mean maximum load 

determined at each resource level were computed. It was determined if those deviate 
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more than 5% from the sample mean, meaning they exceed the acceptable level of 

variation. 

1.5 Scope and Limitations 

This section briefly outlines the scope of this work and explores any limitations that 

constrain this research and its results.  

1.5.1 Scope 

This research is aimed at understanding if the BUNGEE benchmark can be applied to 

cloud systems that make use of containers and container orchestration platforms. The 

goal is not to measure the elasticity of a specific cloud platform or to compare two cloud 

platforms. The aim is to verify if the benchmark can produce reliable results on 

container-based systems.  

Based on this, the following points are in scope:  

• Extending the BUNGEE benchmark to work with AWS Elastic Container 

Service. 

• Conducting an experiment to verify if the developed extension works and 

produces reproducible results.  

• If hypotheses H-A0 and H-B0 are rejected, starting initial investigations into 

research question 2, exploring the reasons why the results are not consistently 

reproducible.  

1.5.2 Limitations 

After initial experiments running in the researcher’s home network, it became evident 

that the load driver machine cannot run there. The Virgin Media 300Mbps home 

broadband could not cope with the number of DNS requests made by the load driver 

machine. Therefore, experiments were conducted in the DIT library during opening 

hours of the computer room, which has a connection speed of 13MB/s. Each computer 

in the library has one primary and two alternative DNS servers. Details about the 

experiments conducted in the researcher’s home network and the problems encountered 

can be found in chapter 3.2.9. 
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Initial tests with the BUNGEE benchmark showed that one run of the system analysis 

takes between 4 and 6 hours, limiting the possible number of experiments run from the 

DIT library to one per day. This initially lead to a small sample size, as only 10 runs of 

the experiment could be conducted in the DIT library. Fortunately, the University of 

Würzburg later provided a virtual machine in their private cloud environment, so that 

additional 22 runs could be conducted. Conducting the experiment under two different 

experimental conditions might impact the overall results. However, a Man-Whitney-U 

test was conducted (see Appendix VI) and no statistically significant differences 

between the results conducted in DIT and in the private cloud of the University of 

Würzburg were found.  

Another point to note is that AWS ECS allows the cloud user to set up many different 

configurations and settings. Due to the logistic restrictions mentioned above, it was not 

possible to run the experiment with different settings. One configuration had to be 

chosen and used for the experiment. Results might be different with other configuration 

settings, which could not be explored in this dissertation.  

1.5.3 Risks 

This research assumes that if the system analysis phase produces reliable results, the 

BUNGEE benchmark is likely applicable and valid for measuring elasticity in container-

based cloud environments.  

This claim is based upon the assumption that the measurement conditions are the same 

during the system analysis phase and the benchmark phase. However, this is not 

necessarily guaranteed as the auto-scaling settings for both the Elastic Container Service 

and the virtual machines which host the service are enabled during the benchmark phase 

but disabled during the system analysis phase.  

This change in settings could introduce unanticipated variables into the process. AWS 

ECS is a “grey-box” system with limited insights into its functionality and parameters. 

It is possible that enabling auto-scaling settings modifies the load processing capacity of 

the system, which would render benchmark results invalid.  

A second risk to consider is that factors unrelated to the Elastic Container System might 

influence the experiment, such as network latency, resource contention on the virtual 

machines or temporary issues in the AWS system. This could cause the system analysis 
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to yield unstable results and would lead to rejection of the null hypotheses, when they 

should have been accepted, causing a type 1 error. To avoid this error, literature research 

on performance variability in the cloud has been conducted, network and load driver 

specifications have been documented and further research in private cloud environments 

where all parameters of the experiment can be fully controlled should be carried out.  

1.6 Document Outline 

The remainder of this dissertation is structured as follows:  

Chapter 2 “Literature Review” introduces the reader to important concepts and 

terminology. An introduction into the topic of cloud computing is given. Cloud 

computing is defined and its service models (IaaS, PaaS, CaaS, SaaS) introduced. The 

different actors in cloud computing are determined: Cloud Provider, Cloud User and 

End User. The concepts of operating system virtualisation and container technology are 

covered, an overview of container orchestration platforms given. An introduction to 

benchmarking is provided, the term elasticity defined and the literature into elasticity 

surveyed. The BUNGEE benchmark is described, and some technical details 

highlighted.  

Chapter 3 “Design and Methodology” describes the experiment conducted for this 

research, specifies all system and setup configurations and introduces the statistical 

methods used for evaluation.  

Chapter 4 “Implementation and Results” captures any observations made during the 

implementation of the experiment and lists the results, descriptive statistics and provides 

several graphs to visualise the results. The hypotheses are tested based on the results 

obtained in the experiment. The results of one full benchmark run are also presented in 

this chapter, to confirm that the whole benchmark is operational, not only the system 

analysis phase. 

Chapter 5 “Analysis, Evaluation and Discussion” discusses and attempts to interpret the 

results, exploring possible causes for the encountered fluctuation of results. This chapter 

also compares and contrasts the results with findings encountered by other researchers. 

Suggestions for future research are captured.  

Chapter 6 “Conclusion” summarises the findings and lists the contributions of this work.  



8 

2 LITERATURE REVIEW 

This chapter first covers several fundamental concepts which are required to understand 

the goal and purpose of this work. Fundamental topics are: 

• The definition of cloud computing, it’s advantages and service models. 

• The actors in cloud computing environments. 

• Virtualisation and operating system virtualisation. Operating system 

virtualisation is the concept underlying containerisation. 

• Containers, container orchestration platforms and Containers as a Service 

(CaaS). 

Further, a variety of benchmarking techniques that can be used in cloud systems are 

introduced. The topic elasticity is covered in detail, along with techniques to measure 

elasticity. Lastly, the BUNGEE elasticity benchmark, which is subject of this 

dissertation, will be covered, some technical details explained, and the data collected by 

the benchmark listed. 

2.1 Cloud computing 

Cloud Computing is an increasingly important subject for researchers and companies 

today, as computing resources can be rented “on-the-fly” from cloud providers, giving 

companies an unprecedented flexibility when providing applications to their users. 

According to Gartner, an independent IT research and advisory company, the cloud 

computing market is projected to almost double in value from 219.6 billion USD in 2016 

to 411.4 billion USD in 20203. 

This section will define cloud computing, highlight its core aspects, explain the service 

models of cloud computing (IaaS, PaaS and SaaS).  

2.1.1 Definition of Cloud Computing 

In 2010, Armbrust et al. (2010, p. 50) found that the definition of cloud computing varies 

between authors. The authors state that cloud computing refers to two things: Software 

delivered as service through the internet as well as the hardware and systems used to 

                                                 
3 Gartner. (2017, October). Gartner Forecasts Worldwide Public Cloud Services Revenue to Reach $260 

Billion in 2017. Retrieved March 13, 2018, from https://www.gartner.com/newsroom/id/3815165 
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provide these services. A year later the National Institute of Standards and Technology 

(NIST) released a special publication with a definition of Cloud Computing which is 

widely cited since.  

Their definition states:  

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, 

storage, applications, and services) that can be rapidly provisioned and released with 

minimal management effort or service provider interaction.” (Mell & Grance, 2011, p. 

2) 

From this definition it can be derived that an important aspect of cloud computing is the 

“on-demand” provisioning. Resources are rapidly available and do not have to be 

acquired, configured and provisioned in a lengthy process.  

2.1.2 Advantages of Cloud Computing 

Advantages of cloud computing include according to Zhang, Cheng, & Boutaba (2010, 

p. 1): 

• No initial investment for infrastructure. 

• A lower operational cost. 

• The possibility of designing highly scalable systems. 

• Easy access. 

The possibility of provisioning and deprovisioning computing resources within minutes 

enables the development of new software services rapidly and cost efficiently (Armbrust 

et al., 2010, p. 50).  

The need for rapidly provisioning resources arises from the fluctuating nature of traffic 

to most services. Before cloud computing was available, enterprises had to provision 

enough resources to meet the demand at peak times, leading to resources being 

underutilised at non-peak times (Baun, Kunze, Nimis, & Tai, 2011) as cited in 

(Bellenger et al., 2011, p. 2).  

The load and resources of a system which is equipped to handle peak loads but is 

therefore over-provisioned at certain times (yellow), are shown in Figure 2.1a). 
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In contrast, Figure 2.1b) displays load and resources of a system which is under-

provisioned and therefore unable to provide sufficient resources at peak times (yellow) 

while still being over-provisioned at non-peak times.  

 

Figure 2.1: Provisioning and under-provisioning. Source: (Armbrust et al., 2010, p. 54) 

 

Cloud computing introduces the ability to provision computing resources such as 

servers, virtual machines and application instances as needed and pay for only the 

amount of computing resources used.  

Armbrust et al. (2010, p. 53) contend that using cloud resources is not cost saving 

compared to purchasing and provisioning own hardware, but that the mitigation of the 

risk of under-provisioning provides enough benefit to justify the (at that time) higher 

cost.  

The concept of scaling rapidly in response to demand has also been called “Elasticity”. 

Mell & Grance (2011, p. 2) list elasticity as one of the essential characteristics of cloud 

computing. Elasticity describes how well and how fast cloud systems adapt to increases 

and decreases in workload. Elasticity is defined and explored further in chapter 2.7 

“Elasticity”. 

2.1.3 Service Models - IaaS, PaaS, SaaS, CaaS 

Mell & Grance (2011, p. 3) formalise different service models used in cloud computing:  

• Software as a Service (SaaS) 

• Platform as a Service (PaaS) 

• Infrastructure as a Service (IaaS) 
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Even though the line between these services is not always clear (Armbrust et al., 2010, 

p. 2), this categorisation gives a good overview of the type of services offered by 

providers of public clouds. These services are briefly described as: 

Software as a Service (SaaS) 

Software as a Service (SaaS) is defined as applications provided to a consumer without 

the consumer having control over the underlying infrastructure or application 

capabilities (Mell & Grance, 2011, p. 2). Examples include: Gmail, Facebook, 

SalesForce, WorkDay. 

Platform as a Service (PaaS) 

Platform as a Service (PaaS) facilitates the creation and deployment of applications and 

software services to the end user, without the consumer controlling the underlying cloud 

infrastructure e.g. servers, operating systems and storage (Mell & Grance, 2011, p. 2). 

Examples include: Amazon Elastic Beanstalk, Heroku, Google App Engine. 

Infrastructure as a Service (IaaS) 

Facilitates the provisioning of computing resources e.g. processing, storage, networks. 

In this model, the consumer can deploy any software including operating systems. The 

consumer has no control over the underlying technical infrastructure but does control 

operating systems, storage and some networking components (Mell & Grance, 2011, p. 

2). Examples include Amazon AWS EC2, Google Compute Engine, Microsoft Azure. 

Figure 2.2 gives a breakdown of the different components which SaaS, PaaS and IaaS 

services consist of.  

Containers as a Service (CaaS) 

The term “Containers as a Service” (CaaS) has been introduced by the industry to 

describe managed container orchestration services. The term CaaS occurs in the 

scientific literature, but a widely accepted definition does not seem to be in use yet. 

Containers are explored more fully in Section 2.3 “Container-based systems”. Section 

2.4 “Container orchestration platforms” will describe container orchestration platforms 

and attempt to define the term “Containers as a Service (CaaS)”.  
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Figure 2.2: Service models and associated components in cloud computing.Source: (Zhang et al., 

2010, p. 9) 

 

2.1.4 Cloud Provider, Cloud User and End User 

Jennings & Stadler (2015, p. 4) introduce a helpful terminology to understand the roles 

in the different service models: The End User, the Cloud User and the Cloud Provider. 

Figure 2.3 depicts which parts are usually managed by which category of users. Figure 

2.3a depicts an IaaS system, Figure 2.3b a PaaS system and Figure 2.3c a SaaS system.   

 

Figure 2.3: Cloud components and their user types by service model. Source: (Jennings & Stadler, 

2015, p. 6) 

 

Table 2.1 defines the terms “cloud user”, “end user” and “cloud provider”. This 

terminology will be used in this dissertation going forward. 
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Table 2.1 Stakeholders in cloud systems (Jennings & Stadler, 2015, p. 4) 

Term Definition 

End user The actual user of the application. Generates the workloads / uses 

the application. Does not contribute to resource management.   

Cloud user Creates applications for the end users using a public cloud. Is 

responsible for scaling according to end user demand.   

Cloud provider Manages systems to provide a public cloud to Cloud User (IaaS, 

PaaS or SaaS). 

 

Which service model a cloud user selects depends on the degree of control of the 

underlying processes the cloud user needs. In an IaaS System, the cloud provider needs 

to interact with and administer the operating system while in a PaaS system, these 

components are abstracted away. The trade off in this case is, that the PaaS system might 

be restricted to certain programming languages or configurations supported by the PaaS 

provider (Rosenberg & Mateos, 2011, p. 16).  

2.2 Forms of virtualisation 

Virtualisation can be defined as follows:  

 “Virtualization is the logical abstraction of physical assets, such as the hardware 

platform, the operating system (OS), storage devices, data stores, or network interfaces.” 

(Bauer & Adams, 2012, p. 16). 

Per above definition, different types of resources can be virtualised such as networks, 

memory, storage or processors. The following relates to server virtualisation.  

Bauer & Adams (2012, p. 18) distinguish between full virtualisation, hardware assisted 

virtualisation, paravirtualisation and operating system virtualisation.  

In the context of this research, full, hardware-assisted and paravirtualisation can be 

regarded as similar: A piece of software called hypervisor runs on a computer and 

manages the virtualisation (Figure 2.4, left). The hypervisor manages the host system’s 

resources and emulates one or more guest operating systems running on emulated 

hardware. The guest operating systems can then run applications. This type of 

virtualisation can be used simply by installing a hypervisor on any computer. It is also 

typically used on cloud IaaS platforms.   
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Figure 2.4: Full vs Operating System Virtualisation (adapted from Bauer & Adams, 2012, p. 21) 

 

2.2.1 Operating system virtualisation and containers 

In operating system virtualisation, a virtualisation layer runs on the host OS. The 

virtualisation layer manages isolated instances called containers. A container 

encapsulates an OS process which has limited central processing unit (CPU) and 

memory resources assigned to it (Khan, 2017, p. 44). It can have its own file system, 

libraries and other components (Bauer & Adams, 2012, p. 22).  

Figure 2.4 (right) depicts a system with OS virtualisation. An important point is that in 

OS virtualisation the host OS and the guest OS must be identical, while in traditional 

virtualisation, they can be different. The reason is that in operating system virtualisation, 

all guest systems use the host operating system as their base. 

2.3 Container-based systems 

Operating system virtualisation has drawn increased attention since the Docker open 

source project was launched in 2013 (Casalicchio & Perciballi, 2017). Docker facilitates 

the automated deployment of applications inside of containers (Bernstein, 2014, p. 82). 

Docker containers can be simple, virtual operating systems or can be set up to contain 

preinstalled and configured applications (Bernstein, 2014, p. 82), which can then be 

easily deployed and scaled in diverse systems.  
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Docker is not the only, but the most common container management software. 

Alternatives include rkt4 and LXC Linux Containers5.  

Advantages of using container-based systems are (Casalicchio, 2017):  

• Lower overhead: They use less of the host system’s resources compared to 

virtual machines. 

• They encapsulate applications, enabling each application to have its own set of 

libraries, avoiding incompatibilities (also called the “Dependency Hell 

Problem”). 

Disadvantages of using container-based systems:  

• A host OS can only host containers with the same operating system as itself.   

• Security concerns: It is not possible to completely isolate the containers from 

each other, except for running one container per host (Bernstein, 2014, p. 83). 

• The technology is relatively new and has not matured yet.  

The availability of containers led to a shift in the way application architectures are 

designed (Pahl, 2015, p. 28). Containers often host so called “microservices”. An 

application consists of multiple microservices, stateless services that communicate with 

messages between each other. This concept lets application architectures shift away 

from monolithic structures, towards a Service Oriented Architecture (SOA) with loosely 

coupled components (Pahl, 2015, p. 28). 

Figure 2.5 shows a reference architecture published by Microsoft where various 

microservices, encapsulated in containers, form an application.  

In this reference architecture, the Model View Controller (MVC) component lives inside 

a container, as well as several other microservices such as the basket microservice, the 

ordering microservice etc. All these services can run independently from each other, 

communicating via messages. This guarantees that different versions of libraries needed 

by the components will not create conflicts as it could happen if all components were 

running on one virtual machine. It also ensures that each microservice has its own 

allocated quota of resources that the other services cannot impact.  

                                                 
4 CoreOS. (2018). CoreOS. Retrieved March 22, 2018, from https://coreos.com/rkt/  

5 LXD. (2018). Linux Containers - LXD - Introduction. Retrieved March 22, 2018, from 

https://linuxcontainers.org/lxd/ 
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Figure 2.5 Reference architecture using microservices and containers. Source: Microsoft6 

2.4 Container orchestration platforms 

In the previous sections, containers have been introduced and their role in microservice-

based architectures explained. This section will cover how containers can be managed 

with container orchestration platforms.  

While it is possible to create an application architecture with only one container per 

service, in most scenarios the application will need to be scaled horizontally, which 

requires having multiple instances of the same container. This makes a container 

orchestration system necessary.  

A container orchestration platform is defined as “a system that provides an enterprise-

level framework for integrating and managing containers at scale” (Khan, 2017, p. 44). 

Container orchestration platforms are needed to ensure the specified number of 

containers is running and that the containers can communicate with each other and the 

outside.  

Typical features of a container orchestration platform include (Khan, 2017, p. 44): 

                                                 
6 Microsoft. (2017, May 10). Free eBook/Guide on ‘.NET Microservices – Architecture for Containerized 

.NET Applications’ – Cesar de la Torre [Microsoft] – BLOG. Retrieved March 22, 2018, from 

https://blogs.msdn.microsoft.com/cesardelatorre/2017/05/10/free-ebookguide-on-net-microservices-

architecture-for-containerized-net-applications/ 
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• Managing the cluster state and container scheduling. 

• Ensuring high availability and fault tolerance. 

• Managing security. 

• Enabling service discovery. 

• Facilitating continuous deployment. 

• Facilitating monitoring and governance. 

A variety of container orchestration platforms are available. Some are open source 

platforms that the cloud users can install themselves, others are commercially developed 

systems. Table 2.2 shows a selection of current container orchestration platforms.  

Table 2.2: Selection of container orchestration platforms 

Provider Platform name Description 

Cloud native 

computing 

foundation 

Kubernetes Popular open source container orchestration 

system. Originally developed by Google 

(Khan, 2017, p. 44). 

Mesosphere Mesosphere Container orchestration system based on the 

open source project Apache Mesos (Khan, 

2017, p. 44) 

Docker Inc. Docker Swarm The container orchestration mode of the 

popular container management system 

Docker7.  

Google Google Kubernetes 

Engine, formerly named 

Google Container 

Engine8 

Managed container orchestration system 

provided by Google. Developed based on an 

internal system called “Borg” which 

introduced container orchestration over 10 

years ago9. 

                                                 
7
 Docker Inc. (2018, March 21). Swarm mode overview. Retrieved March 22, 2018, from 

https://docs.docker.com/engine/swarm/ 

8 Denniss, W. (2017, November 13). Introducing Certified Kubernetes (and Google Kubernetes Engine!). 

Retrieved March 23, 2018, from https://cloudplatform.googleblog.com/2017/11/introducing-Certified-

Kubernetes-and-Google-Kubernetes-Engine.html 

9 McLuckie, C. (2016, July 22). From Google to the world: the Kubernetes origin story. Retrieved 

March 23, 2018, from https://cloudplatform.googleblog.com/2016/07/from-Google-to-the-world-the-

Kubernetes-origin-story.html 
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Provider Platform name Description 

Amazon Elastic Container 

Service 

Container Orchestration Service which 

supports Docker containers 10. 

Microsoft Azure Container Service Managed Kubernetes Service11. Microsoft 

offers the possibility of deploying alternative 

container orchestration systems such as Docker 

or DC/OS12 . 

2.4.1 Container as a Service 

Where do containers and container orchestration platforms fall in the traditionally 

referenced service models IaaS, PaaS and SaaS? If cloud users set up their own container 

orchestration service on top of virtual machines, one could argue they are using IaaS. 

But what about managed container orchestration services such as Google Kubernetes 

Engine, Azure Container Service or Amazon Elastic Container Service?  Some of them 

run on top of virtual machines and can be considered an additional functionality on top 

of IaaS, but virtual machines do not necessarily need to be involved.  

The industry has started to use the term “Container as a Service” (CaaS)13. Some 

scientific publications also use this term with varying or no definitions. The term CaaS 

has been used to describe PaaS systems that use container solutions “under the hood” 

(Kratzke & Peinl, 2016), for example Amazon Elastic Beanstalk uses Amazon Elastic 

Container Service “under the hood”14. 

                                                 
10 Amazon Web Services, Inc. Amazon ECS Features - run containers in production. Retrieved April 2, 

2018, from https://aws.amazon.com/ecs/features/ 

11 Monroy, G. (2017, October 24). Introducing AKS (managed Kubernetes) and Azure Container Registry 

improvements. Retrieved March 23, 2018, from https://azure.microsoft.com/en-us/blog/introducing-

azure-container-service-aks-managed-kubernetes-and-azure-container-registry-geo-replication/ 

12 DC/OS. The Definitive Platform for Modern Apps. Retrieved March 23, 2018, from https://dcos.io/ 

13 Burns, B. (2017, February 21). Containers as a Service, the foundation for next generation PaaS. 

Retrieved March 23, 2018, from http://blog.kubernetes.io/2017/02/caas-the-foundation-for-next-gen-

paas.html 

14 Amazon Web Services, Inc. Amazon ECS Frequently Asked Questions - run containers in production. 

Retrieved March 23, 2018, from https://aws.amazon.com/ecs/faqs/ 
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CaaS has also been described as the middle layer between IaaS and PaaS (Piraghaj, 

Dastjerdi, Calheiros, & Buyya, 2015, p. 368). This is the case AWS’s offering, where 

virtual machines must be assigned as hosts for the containers.  

Although container orchestration systems usually seem to be running on top of virtual 

machines, this does not necessarily have to be the case. As discussed in chapter 2.2, one 

advantage of operating system virtualisation is reduced overhead compared to virtual 

machines. Scenarios could be envisioned in which the container orchestration platform 

runs on “bare metal” (physical servers) directly.  

In the absence of any strong definitions for CaaS in the literature, the following 

definition is suggested by the author of this dissertation. It will be used in the remainder 

of this dissertation. 

Container as a Service (CaaS) is an offering with which a cloud user can benefit from 

automatised deployment, operation and scaling of clusters of containers without having 

to install and maintain a container orchestration software. 

2.5 Performance variability in public clouds 

One factor that could affect the outcome of this research negatively is the performance 

variability in public clouds. Performance variability means that with the same number 

and configuration of resources, a system in the cloud will generate different performance 

metrics without obvious cause. This chapter provides a fundamental understanding of 

performance variability in public clouds and an overview of the literature that exists to 

date.  

Research has shown that performance of cloud resources by most cloud providers 

fluctuates in daily or yearly patterns (Iosup, Yigitbasi, & Epema, 2011, p. 1)  

This performance variability is caused by various factors such as virtualisation overhead 

and resource time sharing (Iosup et al., 2011, p. 1). The degradation of performance due 

to resource time sharing has also be called “resource contention” in the literature 

(Anwar, Cheng, & Butt, 2016) 

Resource contention and performance variability in private and public clouds have been 

researched in the recent years. Iosup et al. (2011) investigated several cloud services, 

among those the following AWS services:  
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• Elastic Compute Cloud (EC2) 

• S3 Storage Service (S3) 

• Simple Queue Service (SQS - message queuing and synchronisation) 

• Simple DB (SDB - database) 

• Flexible Payments Service (FPS) 

The authors found that the performance of all these services fluctuates according to one 

or more time patterns and shows special behaviours at certain times (Iosup et al., 2011, 

p. 1).  

Other researchers have developed resource freeing attacks. They found that one tenant 

using a VM on a shared physical machine can intentionally hijack resources from 

another tenant who has his/her VM on the same physical hardware in a cloud 

environment (Varadarajan, Kooburat, Farley, Ristenpart, & Swift, 2012). The 

researchers could improve benchmark performance by 13% when using AWS EC2 

instances (Varadarajan et al., 2012, p. 1) and performing the resource freeing attacks. 

Leitner & Cito  (2016) conducted detailed research into the performance variability of 

Amazon Web Service and Google Cloud Platform. They break down performance 

variation by instance type and workload type (CPU bound or IO bound). Their research 

indicates that inter-instance performance variability in CPU bound tasks is mostly due 

to the differences in underlying hardware, which on AWS affects the EC2 instance types 

m1.small and t1.micro. M1.small instances are the ones chosen for comparability 

reasons for this research.  

Once the researchers controlled their analysis for differences in underlying hardware, 

the inter-instance variability of EC2 instances was low for CPU bound workloads. The 

variability was high for IO-bound workloads (Leitner & Cito, 2016, p. 10). This means 

that if choosing an instance type of t1.micro or m1.small, there is a higher chance of 

experiencing performance variability for CPU intensive workloads than when choosing 

other instance types.  

The high performance variability of t1.micro instances is partially explained by a 

“bursting” feature (Leitner & Cito, 2016, p. 12), which allows a virtual machine to use 

more resources of its underlying host, if the resources are available.  

Dealing with the performance variability in experiments and benchmarks conducted in 

cloud computing environments is a difficult task. In experiments with Amazon EC2, 
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researchers found that the Unix Benchmark Utility (Ubench)15 run in a “Multiple 

Consecutive Trials Design” on the same system shows up to 38% performance 

difference between the system and itself (Abedi & Brecht, 2017, p. 1). In their 

experimental design, two identical cloud setups A and B were compared, running the 

same benchmark 20 consecutive times with setup A and 20 consecutive times with setup 

B (Abedi & Brecht, 2017, p. 2). Since they were identical setups, there shouldn’t have 

been any difference.  

Their results show that when comparing two systems and conducting the same 

experiments multiple times, statistical evaluations at a 95% confidence interval can lead 

to incorrect conclusions due to the inherent variability in cloud computing environments.  

Abedi & Brecht (2017) suggest designing experiments using “Randomised Multiple 

Interleaved Trials”, where benchmark runs are randomly interleaved.  Figure 2.6 shows 

the experiment designs analysed by the researchers. If three systems are benchmarked, 

a single trial design would run each benchmark once (A), a multiple consecutive trials 

design would run it several times consecutively (B). Interleaved trials would execute the 

different benchmark runs in an interleaved fashion, either in an ordered (C) or a random 

way (D).  

 

Figure 2.6: Benchmark experiment designs – Source (Abedi & Brecht, 2017, p. 2) 

 

For this research, interleaved randomised trial design unfortunately could not be used 

for logistic reasons and for the fact that no two systems were benchmarked. A multiple 

                                                 
15 ubench(8) - Unix Benchmark Utility. Retrieved June 4, 2018, from https://www.gsp.com/cgi-

bin/man.cgi?section=8&topic=ubench 
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interleaved trial design is recommended for future measurements in public cloud 

systems using the BUNGEE benchmark.  

2.6 Benchmarking  

As this dissertation is concerned with extending an existing benchmark to a CaaS 

system, a brief introduction to the subject of benchmarking in cloud systems is given in 

this section.  

With the shift to cloud systems, benchmarks had to be re-developed and the requirements 

re-thought. This area of work is still relatively new, with Folkerts et al. (2012, p. 1) being 

the first to write about the subject in 2012. They list several challenges that the cloud 

inherently poses on the development of a benchmark. Some of them are:  

• Whether price or performance should be included in the benchmark. 

• How the elasticity in a cloud system can be measured. 

• How the scaling boundaries of a system can be tested when cloud systems have 

practically unlimited scalability. 

• How the performance variability in cloud systems affects the repeatability of 

benchmarks.  

(Folkerts et al., 2012, pp. 9–15) 

Since then, several benchmarks have been proposed in the literature. They attempt to 

measure one or multiple aspects of a system, such as storage, computing performance, 

scaling or cost (Vazquez, Krishnan, & John, 2014, p. 3).  

V. Kistowski et al. (2015) list the following criteria for a good benchmark:  

• Relevance 

• Reproducibility 

• Fairness 

• Verifiability 

• Usability 

In this research, the BUNGEE benchmark is extended, therefore emphasis is placed on 

maintaining the reproducibility of the benchmark despite the extension. The other points 

were already considered when originally developing the BUNGEE benchmark and are 

unlikely to be significantly affected by the extension to ECS.  
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Li et al. (2013, p. 14) have used the below terminology to distinguish between different 

types of benchmarks: 

• Micro-benchmark: A simple program that attempts to measure a particular aspect 

of a cloud service.  

• Synthetic benchmark: A program used to represent operations and workload of 

a typical application, but which was specifically created for the benchmark. 

• Application benchmark: A real world application deployed to the cloud.  

Two organisations have made it their goal to provide several comprehensive benchmarks 

for various types of applications: The Standard Performance Evaluation Corporation 

(SPEC)16 and the Transaction Processing Performance Council (TPC)17. These 

organisations offer application benchmarks for server side java, database management 

systems, webservers and many more (Kounev, 2007, p. 3). These benchmarks are full 

applications that can be deployed to and executed on IT systems.  

Table 2.3: Selection of cloud benchmarks 

                                                 
16 SPEC - Standard Performance Evaluation Corporation. Retrieved April 5, 2018, from 

https://www.spec.org/ 

17 TPC-Homepage V5. Retrieved April 5, 2018, from http://www.tpc.org/ 

Authors Benchmark  

(Varghese, 

Akgun, Miguel, 

Thai, & Barker, 

2014) 

Benchmarks virtual machines without having to run a workload, by 

implementing a weighted ranking mechanism.  Goal: Find the most 

suitable virtual machine for a given application. No elasticity metrics 

included. 

(Cooper, 

Silberstein, Tam, 

Ramakrishnan, & 

Sears, 2010) 

YCSB: Benchmark that tests cloud data serving systems such as 

BigTable, PNUTS, Cassandra, HBase, Azure, CouchDB, SimpleDB. 

Measures elasticity.  

 

(Moldovan, 

Copil, Truong, & 

Dustdar, 2013) 

MELA: Benchmark that allows Cloud Users to evaluate the financial 

aspects of elasticity.  
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The TPC benchmarks can be freely downloaded18 while the SPEC benchmarks are 

partially available for free for non-commercial organisations and partially available for 

a fee.  

The SPEC Cloud benchmark addresses the topic elasticity. The SPEC Cloud benchmark 

makes use of two other benchmarks, the HIBench and YCSB (see also Table 2.3), and 

wraps them in an interface (SPEC, 2016, p. 9,12). It computes 8 metrics, one of which 

is elasticity. The elasticity is expressed in percent (SPEC, 2016, p. 21).  

From the benchmark documentation, it does not become entirely clear how the elasticity 

metric is computed. The metric computed seems to be closer related to scalability than 

to elasticity. The non-commercial fee for the SPEC cloud benchmark is 500$ and could 

therefore not be practically evaluated in this dissertation.  

Table 2.3 lists several other cloud benchmarks. Since this work is concerned with 

measuring elasticity, the factor elasticity was of interest when looking at available cloud 

                                                 
18 TPC - Current Specifications. Retrieved April 5, 2018, from 

http://www.tpc.org/tpc_documents_current_versions/current_specifications.asp 

(A. Li, Yang, 

Kandula, & 

Zhang, 2010) 

CloudCmp: Measures several performance metrics of a cloud service 

by means of running three reference applications. Establishes metrics 

related to computing capacity, data storage, intra- and wide area 

network.  Metrics for computing capacity are: benchmark finishing 

time, cost per benchmark, and scaling latency (A. Li et al., 2010, p. 7). 

This is a comprehensive benchmark suite, but it doesn’t establish an 

exact measure for elasticity, although it measures scaling latency.  

 

(Huang, Huang, 

Dai, Xie, & 

Huang, 2010) 

HiBench: Benchmark to evaluate components of the Hadoop 

framework (data storage) (Vazquez et al., 2014, p. 4) 

 

(Ferdman et al., 

2012) 

CloudSuite: Benchmark suite consisting of various other benchmarks 

which examine data serving, media streaming, web hosting, web 

search and some other applications. It does not contain any metrics 

specific to elasticity (Vazquez et al., 2014).  

 



25 

benchmarks. Some benchmarks measure elasticity, but those either measure the 

elasticity of database systems or they measure elasticity based on cost.  

2.7 Elasticity 

Section 2.1.2 “Advantages of Cloud Computing” has already touched on the importance 

of cloud systems adapting to spikes in traffic. How well and how fast systems adapt to 

those increases in load is captured by the term “elasticity”. Despite being named as one 

of the main characteristics of cloud computing (Mell & Grance, 2011), elasticity is still 

a relatively new research topic with a lack of detailed analysis in the literature (Coutinho, 

de Carvalho Sousa, Rego, Gomes, & de Souza, 2015, p. 1).  

Various definitions for elasticity in cloud systems have been proposed. Coutinho, de 

Carvalho Sousa, et al. (2015) conducted a literature survey and found 9 different 

definitions. Most of the definitions included the concept of scalability19. Some of them 

include a concept of timing or speed of adapting to changes in workload (Coutinho, de 

Carvalho Sousa, et al., 2015).  

Table 2.4: Definitions of elasticity 

Source Definition 

Mell & Grance, (2011, p. 

2) NIST definition 

Rapid elasticity: “Capabilities can be elastically provisioned 

and released, in some cases automatically, to scale rapidly 

outward and inward commensurate with demand. To the 

consumer, the capabilities available for provisioning often 

appear to be unlimited and can be appropriated in any quantity 

at any time”. 

N. Herbst, Kounev, & 

Reussner  (2013, p. 24)   

“Elasticity is the degree to which a system is able to adapt to 

workload changes by provisioning and deprovisioning 

resources in an autonomic manner, such that at each point in 

time the available resources match the current demand as 

closely as possible.” 

Cooper, Silberstein, Tam, 

Ramakrishnan, & Sears  

(2010, p. 144)  

“Elasticity means that we can add more capacity to a running 

system by deploying new instances of each component, and 

shifting load to them” 

                                                 
19 Scalability is the ability to adapt to increased workload by adding a proportional amount of resources 

(Islam, Lee, Fekete, & Liu, 2012).   
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Muñoz-Escoí & 

Bernabéu-Aubán (2017, 

p. 3) 

“Broadly defining, elasticity is the capability of delivering 

preconfigured and just-in-need virtual machines adaptively in a 

cloud platform upon the fluctuation of the computing resources 

required. Practically it is determined by the time needed from 

an underprovisioning or overprovisioning state to a balanced 

resource provisioning state.” 

Jennings & Stadler, 

(2015, p. 5) 

“The ability to immediately make available additional 

resources to accomodate [sic] demand surges and release them 

whenever demand abates.” 

 

Table 2.4 lists the most relevant definitions of elasticity. The definition which will be 

considered for this work is the one proposed by N. Herbst, Kounev, & Reussner (2013)  

“Elasticity is the degree to which a system is able to adapt to workload changes 

by provisioning and deprovisioning resources in an autonomic manner, such that 

at each point in time the available resources match the current demand as closely 

as possible.” (Herbst et al., 2013, p. 24) 

From this definition, we can conclude that a system with optimal elasticity spends as 

little time as possible in an over-provisioned or under-provisioned state. Spending time 

in an under-provisioned state would impair the system’s operation and possibly violate 

the service level objectives (SLOs). Spending time in an over-provisioned state would 

either leave existing resources unused or the system provider would have to pay for 

renting unused resources.  

Table 2.5: Metrics directly related to elasticity. Source: (Coutinho, Sousa, et al., 2015) 

Group Metrics 

Allocation 

Capacity 

Resource allocation, available supply, capacity, capacity 

increase, computation capacity, maximum service capacity, 

service available, total capacity of infrastructure  

Cost Cost/performance rate, cost bandwidth, effectiveness of time 

and cost ($ hours/instances), migration cost, total cost of 

deployment, total price of infrastructure 

QoS % Violations, performance gain, SLA 
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Resource 

utilization 

% Utilization, computing resource utilization (CRUM), 

demand, idleness, increase of idleness, number of over 

provisioned virtual machines, number of under provisioned 

virtual machines, number of virtual machines, over 

provisioning rate, over utilization, performance resource ratio 

(PRR), server number average, under utilization 

Scalability Effective scalable range (ESR), effective system scalability 

(ESS), scalability, scale-up 

Time Mean time to contract the capacity of service, mean time to 

expand the capacity of service, resource allocation, resource 

deallocation, start-up, suspension, time/resources on time, total 

acquisition, total release.  

Several works have proposed metrics to capture elasticity. Coutinho et. al., (2015, p. 11) 

conclude that it is not easy to define metrics for elasticity. They compile a list of metrics 

described in the literature. Covering all the metrics that exist would exceed the scope of 

this dissertation, however following the general concept of metrics to measure elasticity 

will be highlighted and some examples will be given.  

Coutinho et al., (2015, p. 11) establish a distinction between general metrics used in the 

works about elasticity and metrics that attempt to describe elasticity specifically.  

Some general metrics cited are:  

• Response time (e.g. latency) 

• Throughput (e.g. Megabytes/second) 

• Reliability (number of violations) 

• Availability (downtime, uptime) 

• Scalability metrics (overhead, SLA, total capacity, energy use, cost) 

• QOS violations  

Coutinho et al., (2015, p. 11) 

Some of the metrics specifically related to elasticity are captured in Table 2.5. Due to 

space constraints, not all metrics discovered by Coutinho et. al. are listed. For a full list, 

the reader is referred to the original publication.  

The selection of metrics used by various authors (Table 2.5) shows that elastically 

scaling up and down is done with a variety of objectives in mind:  
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• Knowing the exact capacity and capacity range of a given system. 

• Ensuring minimal cost for a given performance level. 

• Ensuring a certain level of availability of a service (Violations, Service Level 

Objectives). 

• Avoiding underutilised resources. 

• Measuring the time and extent of a scaling action.  

The goal underlying the elasticity definition used in this work belongs into the last 

category: measuring time and extent of a scaling action. The benchmark measures the 

time and extent a system spent in an over- or under-provisioned state. 

2.8 Measuring elasticity and elasticity benchmarks 

Aside from the theoretical aspect of defining metrics for elasticity, there have been 

multiple efforts to measure elasticity in practice. Some of the application benchmarks 

mentioned in section “2.6 Benchmarking” measure elasticity. For this dissertation, 

application benchmarks were not practical, as they don’t measure elasticity in isolation.  

When reviewing the literature for methods to measure elasticity in isolation, several 

were found. Describing them all in detail would go beyond the scope of this dissertation. 

Below, the reasons why the respective measurement method was not chosen for this 

dissertation are given: 

• Folkerts et al. (2012) propose a method but did not implement it yet. The 

proposed method has not ever been implemented yet. 

•  Suleiman (2012) proposes a method that is still in prototype stage. 

• Shawky & Ali (2012) propose a method that is designed for cloud simulators 

rather than real clouds. 

• Islam et al.’s (2012) method of measuring elasticity doesn’t account for 

differences in the efficiency of underlying resources and looks at elasticity from 

a financial point of view.  

• Beltrán’s (2016) benchmark is not publicly available (Beltrán, 2016). 

A number of authors investigated the measurement of elasticity in database systems 

(Cooper et al., 2010), (Dory, Mejías, Roy, & Tran, 2011), (Almeida, Sousa, Lifschitz, 

& Machado, 2013), but their approaches are not applicable to container-based cloud 

systems. 
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One comprehensive microbenchmark was found that assesses the elasticity of a system, 

taking into account efficiency differences of the underlying resources and observing 

elasticity independently of cost, is the BUNGEE benchmark (Herbst et al., 2015). This 

microbenchmark was selected for attempting to measure elasticity in cloud systems 

using container orchestration frameworks. The benchmark was chosen because it is free, 

publicly available, easy to use and is not in the prototype stage.  

2.9 Measuring elasticity in container-based environments 

Of all the benchmarks and measurement methods reviewed in the previous chapters, 

none is explicitly suited for container-based environments. The SPEC Cloud benchmark 

(SPEC, 2016) is designed for IaaS systems. The BUNGEE benchmark (Herbst et al., 

2015) was also developed for and tested on IaaS systems.  

This is not surprising since containers have only recently become popular. The first work 

on container elasticity was published in 2017 (Al-Dhuraibi et al., 2017, p. 1). 

Al-Dhuraibi et al.’s (2017) review gives a good introduction into benchmarking in 

general and names various works that have dealt with implementing elasticity 

mechanisms in container-based systems. But no benchmark is mentioned that measures 

elasticity in such systems.  

After a thorough literature research, no benchmark was found that explicitly measures 

elasticity in container-based environments.  

2.10 The BUNGEE benchmark 

The BUNGEE benchmark harness was developed at the Karlsruhe Institute of 

Technology in Cooperation with the University of Würzburg. The framework is 

described in Weber (2014) and Herbst et al. (2015). The BUNGEE benchmark is a 

microbenchmark designed to measure several elasticity metrics. 

During the benchmark, a system under test (SUT) is exposed to load in form of HTTP 

requests. The requests are generated by an application called Apache JMeter20.  

The requests trigger a workload on the SUT. The workload can be chosen freely. A 

sample workload is provided: the computation of a Fibonacci number. The scaling 

                                                 
20 Apache JMeterTM (Version 2.11). Retrieved from https://jmeter.apache.org/index.html 
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behaviour of the SUT is observed and several metrics to describe the system’s scaling 

behaviour are computed.  

2.10.1 Phases of the BUNGEE benchmark 

The BUNGEE benchmark consists of the four phases listed below. The phases are 

visualised in Figure 2.7. 

 

 

Figure 2.7:  Phases of the BUNGEE framework 

 

Phases of the BUNGEE benchmark:  

1. Platform analysis phase (also called system analysis) (Weber, 2014, p. 51) 

In this phase, elasticity and scaling behaviour of the system under test (SUT) are 

evaluated. The JMeter application on the load driver machine sends HTTP 

requests to one resource (i.e. VM). By evaluating the response times, the 

benchmark calculates whether under this load level, the SUT complies with 

previously defined service level objectives (SLOs). If the SLOs are met, the load 

is increased, else the load is decreased. The increase and decrease in load follows 

a binary search algorithm until the maximum load is found that one resource 

(i.e. VM) can handle without violating the SLO. The maximum load that one 

resource can handle is stored in requests per second. Then the number of 

resources is incremented by one and the search for the maximum load repeated. 

This process continues, incrementing the number of resources each time, up 

until the maximum number of resources defined in a configuration file. The 

objective of this phase is determining the maximum load each number of 

resources can handle.  

2. Benchmark calibration phase (Weber, 2014, p. 51) 
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In this phase the data gathered in the platform analysis phase is evaluated. A 

mapping is constructed that associates each number of resources to the maximum 

load this number of resources could handle without violating the SLOs.  

The benchmark can be supplied with a load profile of choice. This load profile 

is adjusted based on the mapping generated. The reason for this adjustment is to 

enable the benchmark to make two systems scale up to the same number of 

resources at the same time while running the load profile, independent of how 

much load one resource can handle.  

3. Measurement and metric calculation phase (Weber, 2014, p. 51) 

In the measurement phase, the actual benchmark is performed. The SUT is 

exposed to a series of requests defined by the adjusted load profile. The system 

then captures the response times and some other data, which enable it to calculate 

the elasticity metrics.  

4. Elasticity Evaluation (Weber, 2014, p. 51) 

In this phase, the elasticity metrics are computed and written to a file.  

2.10.2 Metrics captured by the BUNGEE benchmark 

The BUNGEE benchmark computes the following metrics as described in (Herbst et al., 

2015, p. 48): 

1. Under-provisioning accuracy (accuracyU) 

The sum of areas in the graph, when resources were under-provisioned (Σ𝑈) 

divided by the duration of the measurement. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑈[𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑛𝑖𝑡𝑠] =  
Σ𝑈

𝑇
  

  (Herbst et al., 2015, p. 48) 

2. Over-provisioning accuracy (accuracyO) 

The sum of areas in the graph, when resources where over-provisioned (Σ𝑂) 

divided by the duration of the measurement (T) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂[𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑛𝑖𝑡𝑠] =  
Σ𝑂

𝑇
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(Herbst et al., 2015, p. 48) 

3. Under-provisioning timeshare (timeshareU) 

The time spent in an under-provisioned state (Σ𝐴) divided by the total duration 

of measurement (T).  

𝑡𝑖𝑚𝑒𝑠ℎ𝑎𝑟𝑒𝑈 =  
Σ𝐴

𝑇
 

 

(Herbst et al., 2015, p. 48) 

4. Over-provisioning timeshare (timeshareO) 

The time spent in an over-provisioned state (Σ𝐵) divided by the total duration of 

measurement (T).  

𝑡𝑖𝑚𝑒𝑠ℎ𝑎𝑟𝑒𝑂 =  
Σ𝐵

𝑇
 

(Herbst et al., 2015, p. 48) 

5. Jitter 

The BUNGEE framework also computes a metric called Jitter which captures 

the stability vs unnecessary fluctuations of resource adaptation. Jitter will not be 

discussed as part of this research, details can be found in Herbst et al., (2015, pp. 

48–50). 

The computed metrics are best visualised using a diagram. Figure 2.8 shows a graph of 

a benchmark run. Time is measured on the x-Axis. The number of resources provisioned 

or required by the elastic system is charted on the y-Axis.  
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Figure 2.8: Accuracy and Timeshare metrics. Source: Herbst et al., 2015, p.48 

 

The areas in red are the times when the system is under-provisioned. The areas in blue 

are the times when the system is over-provisioned. From these areas and the time metric, 

the metrics listed above can be computed.  

2.10.3 Technical details of the BUNGEE benchmark 

To run the BUNGEE benchmark, a load driver and a SUT are required. The load driver 

is a computer which runs the applications generating the load that is sent to the SUT. 

The SUT is a cloud system of which the elasticity should be measured.  

Load Driver 

Eclipse IDE, Limbo Load Intensity Modeling Framework, BUNGEE framework, the 

AWS SDK and JMeter version 2.11 must be installed on the load driver (Rauh & Herbst, 

2015, p. 4) 

The BUNGEE source code is opened in Eclipse and can be executed from there. Some 

settings can be adapted in configuration files in the folder “Property Files” (Rauh & 

Herbst, 2015, p. 7). Variables like the hostname and port, the path to the JMeter 

application, the timeout and the number of benchmarked resources can be configured in 

those files.  
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The BUNGEE source code contains some example files with the code to execute the 

BUNGEE benchmark on CloudStack private clouds or on AWS EC2. The source code 

can directly be executed from the Eclipse IDE. JMeter will be automatically executed 

from the code. The University of Würzburg provides detailed instructions on how to use 

the benchmark in a pdf document (Rauh & Herbst, 2015) downloadable on their 

website21. 

System Under Test (SUT) 

The SUT is a cloud system chosen by the benchmark user. It is running an application 

that receives and processes the traffic from the load driver. The benchmark by default 

contains an application that calculates a Fibonacci number which consistently tasks the 

CPU to approximately the same intensity and returns the result to the load driver. The 

load driver can then calculate the response time accurately, establish if the application 

met the SLOs and calculate elasticity metrics (Weber, 2014). The calculation of the 

Fibonacci number is a CPU intensive workload. The benchmark was designed for IaaS 

systems, so the SUT is usually an IaaS system.  

2.10.4 Data collected by the BUNGEE benchmark 

The BUNGEE benchmark collects a variety of data, both in the system analysis phase 

of the benchmark as well as in the measurement phase of the benchmark. The following 

section will present which relevant output files are collected.  Files that are considered 

irrelevant for the evaluation of the results are omitted.  

System Analysis 

During the system analysis phase, the benchmark produces one folder per number of 

instances analysed. Each folder contains various sub-folders denoting the load intensity 

that was applied. In these sub-folders, the timestamps when requests were scheduled 

(timestamps.csv) and the responses (responses.csv) are stored.  

Figure 2.9  depicts the folder structure that results as an output from the system analysis 

phase.

                                                 
21 Chair of Software Engineering, University of Würzburg. Retrieved December 25, 2017, from 

http://descartes.tools/bungee 
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Figure 2.9: Output files and folders generated by BUNGEE system analysis phase 

 

A full list of the contents of each of these files can be found in Appendix I. The file 

“responses.csv” contains the information the benchmark employs to calculate the 

elasticity metrics.  

Measurement phase 

During the measurement phase, the benchmark collects those data listed in Table 2.6. 

Table 2.6: Data captured in BUNGEE measurement phase 

File Content 

timestamps.csv See Appendix I, timestamps.  

responses.txt See Appendix I, responses. 

metrics.csv Contains the output metrics from the benchmark:  

Accuracy_O, accuracy_U, timeshare_O, timeshare_U, jitter 

violations.txt Number of SLO violations, number of total requests, ratio of 

violations 

Allocations subfolder 
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demand.csv Contains two columns: timestamp and amount. The amount column 

contains the resource demand. 

monitored.csv Contains two columns: timestamp and amount. The amount column 

contains the current resource supply.  

Many different evaluations would be possible from those data provided. This thesis 

evaluates the “mapping.mapping” file, as this file already aggregates raw data in a usable 

format, extracting from all the raw responses the relevant metrics in order to evaluate 

the maximum load a resource can process without violating the service level objectives.  
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3 DESIGN AND METHODOLOGY 

This chapter introduces the AWS Elastic Container Service (ECS), furthermore the 

experimental setup is described in detail: The experiment is summarised, followed by a 

description of the source code written to extend the BUNGEE framework to ECS. Two 

small adjustments made to the original BUNGEE code are also described.  

To ensure all conditions of the experiment are clearly outlined, the network and load 

driver machine specifications are captured and the parameters of the ECS configurations 

listed. Potential alternatives for configuring the experiment are explored. The Docker 

file and EC2 instance configurations are described.  

3.1 AWS Elastic Container Service (ECS) 

ECS is a container orchestration platform that works on top of Amazons IaaS platform 

EC2. ECS has two launch types: EC2 and Fargate. Both launch types allow the cloud 

user to provision tasks22 within Docker containers. With the EC2 launch type, the cloud 

user must provision EC2 infrastructure: virtual machines and load balancers. The virtual 

machines accommodate the containers23.  

With the Fargate launch type, the underlying VM infrastructure is abstracted away from 

the cloud user. Fargate was launched in November 2017 but is currently (April 13th, 

2018) only available in one AWS region: US East24. Due to the Fargate launch type 

being new and its availability restricted, the EC2 launch type was chosen for this 

research. The following descriptions apply to the EC2 launch type.  

To run a task in ECS, several components must be created and configured. Those 

configurations can be made either through the AWS web interface, the AWS command 

line client or through the AWS SDK.  

                                                 
22 A task is a container running with settings specified in a “task definition” The task definition is specified 

in the AWS interface, via JSON or the AWS SDK. Simplified, a task approximately equals a container.  

23 Amazon Web Services, Inc. Amazon ECS Features - run containers in production. Retrieved April 2, 

2018, from https://aws.amazon.com/ecs/features/ 

24 Amazon Web Services, Inc. (2017, November 29). Introducing AWS Fargate. Retrieved April 13, 2018, 

from https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-aws-fargate-a-technology-to-

run-containers-without-managing-infrastructure/ 
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For this research, most configurations were made through the AWS Java SDK, with 

some select configurations made through the AWS web interface.  

ECS Components 

In ECS, one or more tasks make up a service. One or more virtual machines form a 

cluster, which runs one or several services. Each virtual machine must run an ECS 

container agent for container orchestration and have a specific configuration file to join 

the correct cluster25.  

 

Figure 3.1: ECS instances, tasks, container agent. Source: Amazon Web Services Inc. 

 

Figure 3.1 shows three EC2 instances (VMs) which are each running an ECS agent. 

Tasks are running inside those instances.  

The workflow to set up and run tasks with AWS ECS is as follows:  

EC2 settings:  

                                                 
25 Amazon Web Services, Inc. What is Amazon Elastic Container Service? - Amazon Elastic Container 

Service. Retrieved April 17, 2018, from 

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html 
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1. One or more virtual machines must be created to accommodate the tasks. The 

machines must join the desired cluster.   

2. An application load balancer and target group must be created to direct the traffic 

to the container instances.  

3. If the system should auto-scale, an auto-scaling group must be created and 

configured.  

ECS settings:  

4. The application to be executed (e.g. load processor) must be added to a Docker 

container. This can be done on a local computer that has Docker installed.  

5. The Docker container containing the application must be added to the Elastic 

Container Registry (ECR). 

6. A task definition must be created, pointing to the Docker image in the ECR. In 

the task definition, CPU shares can be reserved for the container via the 

parameter “cpu”. The allocated number of CPU shares is the minimum CPU 

units the container can use. For a more detailed discussion of this parameter, see 

4.2.3 “CPU utilisation of individual containers”. 

7. A cluster must be created, or the default cluster must be used. 

8. A service must be created, auto-scaling settings can be assigned for the service. 

The desired number of tasks must be specified. If auto-scaling is configured, the 

minimum and maximum number of tasks can be specified. Scaling policies can 

be flexibly assigned, specifying CPU or memory usage thresholds and actions 

that should be taken accordingly.  

3.2 Experimental setup  

This section will describe how the experiment was set up, detailing the settings that were 

configured in ECS, EC2 and on the load driver machine.  

3.2.1 Experiment Summary 

To test the hypotheses stated in section 1.3, the BUNGEE framework was extended to 

AWS Elastic Container Service. Where the original BUNGEE AWS implementation 

would consider a resource to be an instance of a virtual machine (EC2 instance), the 
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BUNGEE AWS ECS implementation considers one task (i.e. one Docker container) to 

be one resource.  

This allows the BUNGEE benchmark to be directly applicable to AWS ECS without 

any extensive modifications, as was stated by the benchmark author (Weber, 2014, p. 

53). 

Once the implementation was complete, the system analysis phase of the BUNGEE 

Benchmark was conducted 32 times. 10 runs were conducted with a physical machine 

as load driver, connected in library of the Dublin Institute of Technology. As only one 

run per day was possible during the opening hours of the library, gathering the data 

proved difficult. The University of Würzburg kindly provided a virtual machine in their 

private computer network, so that the remaining 22 runs could be conducted using this 

virtual machine as a load driver. Using a virtual machine in a public cloud as load driver 

was out of the question, as the performance variation in public clouds could negatively 

impact the experiment.  

During each run of the system analysis, the maximum load intensity that each number 

of tasks (i.e. containers) could handle was established. This was tested first for one 

resource and then incrementally up to 6 resources. The mappings of number of resources 

to load handling capability were collected.  

Two statistical analyses, “repeated measures analysis of variance” (ANOVA) and t-test 

were conducted to determine if the outcome of each run of the system analysis 

significantly differs from the others.  

3.2.2 Extension of the BUNGEE framework to facilitate AWS ECS 

To extend the BUNGEE benchmark to ECS, the AWS SDK v. 1.11.286 was used, this 

code can be accessed on GitHub26. 

Following the structure of the original BUNGEE framework, a package “examples” was 

created which contains three executable programs (see also Figure 3.2): 

• AwsEcsDetailedSystemAnalysis – runs the system analysis phase using ECS. 

• RunBenchmarkOnAwsEcs – runs the benchmark phase using ECS. 

                                                 
26 https://github.com/Norali81/bungee_ecs 
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• SetUpEnviornment – Facilitates setting up the components needed to run AWS 

ECS. This program creates the necessary security groups, an application load 

balancer, an ECS cluster, an ECS service and EC2 instances (virtual machines) 

which already have the ECS container agent installed and the configuration files 

in place for them to automatically join the correct cluster.  

 

 

Figure 3.2: BUNGEE ECS code examples 

 

The functionality to facilitate the above described programs can be found in the package 

“tools.descartes.bungee.cloud.aws.ecs” on GitHub. 

The class “AwsEcsManagement” implements the interfaces “CloudInfo” and 

“CloudManagement”, which enable the BUNGEE benchmark to interact with ECS.  

It contains the methods “setScalingBounds()” and “getNumberOfResources()”. These 

two methods are all the code that needed to be written to extend the BUNGEE 

framework to a new cloud provider. The method “setScalingBound()” is needed for the 

system analysis phase to adjust the number of resources available. The method 

“getNumberOfResources()” is needed to monitor the number of resources available.  

The code written is commented, which fully explains how it is implemented.  
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3.2.3 Modifications to the existing BUNGEE code 

Two very small amendments had to be made to the BUNGEE code.  

1. The constant SLEEP_FOR_STABILIZATIION_MILLI was changed in the class 

“ResourceWatch.java”. The time to wait for stabilisation was changed from 3 minutes 

to 10 minutes. While it remained at 3 minutes, the system analysis would not run to 

completion, as the next resource level would handle less load than the previous one. The 

cause of this has not yet been determined. One possible hypothesis is that the task is not 

running yet for some time after starting, despite being indicated in the ECS interface as 

running. 

2. The function “enquote()” used to place file paths in quotes was removed from all 

occurrences in “JMeterController.java”, so that file paths weren’t placed in quotes. This 

was necessary to make BUNGEE work with the Ubuntu file system, as the load driver 

machine was running Ubuntu.  

Table 3.1: Network specifications DIT library 

Property Value 

Connection Speed 13MBps 

Network Cable to load 

driver 

Category 5e (suitable for Gigabit Ethernet) 

Ethernet Switch Extreme 7100-Series (100Gbit/s) 

Network cable from port 

to switch 

100Gbit/s 

 

3.2.4 Network specifications 

The first part of the experiment was conducted from the DIT library. The specifications 

of the network are listed in Table 3.1. The second part of the experiment was conducted 

from a virtual machine in University of Würzburg’s network, connected at a speed of 

1Gbps. 

3.2.5 Load driver machine specifications  

The first 10 runs of the system analysis were conducted with a physical machine as load 

driver. The remaining 22 runs were conducted with a virtual machine. 

https://github.com/NikolasHerbst/BUNGEE/blob/7adf3abc63d2435e19ecbdd02f300687ac052a37/tools.descartes.bungee/src/tools/descartes/bungee/cloud/ResourceWatch.java
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On both machines, “Eclipse for RCP and RAP Developers” was installed27. The 

specifications of the load driver machines are detailed in Table 3.2 and Table 3.3.  

For network time synchronisation, “chrony”28 was installed. Chrony is an 

implementation of the Network Time Protocol (NTP)29.  

Table 3.2: Specifications of the physical load driver machine 

Specification Value 

Model Lenovo Legion Y520 

Ethernet adapter Connection speed up to 1000Mbps 

Operating System Ubuntu 16.04.1 64bit 

Memory 8GB 

Processor Intel® Core™ i5-7300HQ CPU 2.5GHZ 

Table 3.3: Specifications of the virtual load driver machine 

Specification Value 

Operating System Ubuntu 16.04.4 LTS (Xenial Xerus) 64 bit 

Memory 4GB 

Processor Intel® Xenon® CPU ES-2640 v3 @ 2.60GHz 

Hypervisor Xen 

Host 8 CPU cores, each core 2600Mhz CPU Speed, 32GB RAM 

 

                                                 
27 Eclipse for RCP and RAP Developers. Retrieved March 26, 2018, from 

http://www.eclipse.org/downloads/packages/eclipse-rcp-and-rap-developers/oxygen2 

28 Churnow, R., & Lichvar, M. (2017). Chrony (Version 2). Retrieved from https://chrony.tuxfamily.org/ 

29 The Network Time Protocol (NTP) is a protocol which can be used to synchronise the clocks of 

distributed systems. The accuracy has been described as in the order of tens of milliseconds over the 

internet (Coulouris, Dollimore, Kindberg, & Blair, 2011, p. 622).  
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3.2.6 AWS cloud environment setup 

To set up the ECS environment, the script “SetUpEnviornment.java” was used. The 

script was written for this dissertation. The following AWS components were created:  

EC2 security groups, EC2 application load balancer, ECS target group, ECS cluster, 

ECS service, container image and EC2 instances. The exact parameters that were 

configured in the AWS environment for this experiment can be found in Appendix II. 

3.2.7 Alternative experimental setup 

During the system analysis phase, the number of virtual machines was kept stable at 5 

to ensure containers always have a virtual machine they can be spawned on.  

There would have been two alternative ways to provision virtual machines for the 

containers: 

1. Provision only 3 virtual machines, as 6 containers should fit on 3 VMs given the 

selected settings. 

2. Provision one virtual machine and set EC2 to autoscaling. 

For both setup configurations, the task placement strategy should be set up at service 

creation. The options binpack, random and spread are available and each of these 

settings will cause a different allocation of containers to virtual machines30.   

For this research, none of the above task placement strategies was explicitly specified 

when the task definition was created. This means the default option was chosen, however 

it was retrospectively found that the system analysis might yield more stable results with 

the setting “binpack” (see 4.2.2. Container placement on virtual machines). 

3.2.8 Further configuration 

Figure 3.3 shows the user interface of the ECS service created for this experiment. The 

screenshot captures a starting task. The “desired count” is set to 1, a task has recently 

been started and has the status “pending”.  

                                                 
30 See: Amazon ECS Task Placement Strategies - Amazon Elastic Container Service. Retrieved April 13, 

2018, from https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-

strategies.html 
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Figure 3.3: Elastic Container Service: screenshot of AWS user interface 

 

Figure 3.4 shows the Docker file used to create the container running the application 

which processes the requests sent by the load driver. The Docker file retrieves the 

Docker image with Ubuntu 16.04, installs the latest updates and the java runtime 

environment. The BUNGEE simpleHTTP application, which receives and processes 

JMeter’s HTTP requests, is copied to the Docker image and executed.  

 

Figure 3.4: Dockerfile to used create docker image 

 

Figure 3.5 shows the bash script that was executed each time when starting an EC2 

instance. This script installs and starts the chrony for NTP synchronisation40 and 

configures the instance to join the correct ECS cluster.  
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Figure 3.5: Bash script to configure instance for ECS and set up chrony NTP implementation 

 

3.2.9 DNS issues encountered during initial tests 

The experiment could not be run successfully on a 300Mbps Virgin Media home 

broadband. During the system analysis phase, with increasing load generated by the load 

driver, the number of errors in the response files increased. The error code captured was 

“Non HTTP response code: java.net.UnknownHostException”.  

Detailed investigation was carried out. Logging of all DNS requests was activated. It 

was found that the DNS server did not respond to all DNS requests. Therefore, the 

hostname of the AWS load balancer could not be resolved.  

To mitigate this, two alternatives were explored:  

• It was tried to contact the AWS load balancer by IP instead of by hostname, 

making DNS resolution unnecessary. This stopped the error 

“UnknownHostExcpetion” from occurring. Unfortunately, it was found that the 

IP address of the load balancer changed during the experiment, aborting the 

experiment. Identifying the AWS load balancer by IP address instead of 

hostname therefore wasn’t feasible.  

• It was attempted to use the Google DNS at address 8.8.8.8 but this server 

generated the same error code. It could not be clarified why Virgin Media and 

Google DNS produce this error. One possible hypothesis might be that these 

services filter requests if the same user makes an unusually high number of 

requests.  
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Due to the above-mentioned DNS resolution issues, the experiment was initially carried 

out from the DIT library. In the DIT network each computer has one primary and two 

secondary DNS servers assigned. The “UnknownHostException” did not occur running 

the experiments from the DIT network. Later, the University of Würzburg kindly 

provided a virtual machine in their private cloud to be used as a load driver and therefore 

made further experiments possible.  

3.3 Statistical methods for evaluation 

For the evaluation of this experiment, two different statistical analyses were applied. A 

one sample two tailed t-test was used to generate confidence intervals for the means of 

load processed at each resource level. Further, a “repeated measures analysis of 

variance” (ANOVA) was conducted, with each benchmark run considered as one 

repeated measure and each intensity-load pair as one sample point.  

3.3.1 One sample, two tailed t-test 

The two-tailed t-test is suitable to test whether a sample with the mean �̅� is significantly 

different from a population in which the mean 𝜇 equals to a specific value (Sheskin, 

2007, p. 157).  

In previous research, to verify the stability of the original BUNGEE benchmark, the 

authors repeated the system analysis 10 times in their private cloud and conducted a two 

tailed t-Test. The test showed that the results don’t fluctuate by more than 5% in either 

direction (Weber, 2014, p. 77). 

The t-test can also be used to establish the confidence interval in which the true 

population mean lies with a given probability (Sheskin, 2007, p. 174). This makes it 

possible to state, after running a t-test, if the population mean μ, with a probability of ≥ 

1-p, deviates more than 5% from the sample mean �̅� or not. 

Considering these characteristics, the t-test is suitable for the purposes of this 

dissertation. The use in previous literature makes it compelling to use the t-test for 

comparability reasons. In chapter 4.2 “Results”, the one-sample, two tailed t-test is used 

for each sample of load intensity measurements per resource level. The confidence 

intervals are calculated. The accepted variation of the true mean from the sample mean 
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is 5% as in (Weber, 2014). It is tested if the true mean μ, with 95% probability, does not 

deviate more than the accepted variation from the sample mean �̅�.  

It is to be expected that the confidence interval for the true mean μ will be much wider 

in the results obtained in this dissertation compared to the research of the original 

researchers creating BUNGEE. The original research was carried out in a private cloud. 

In public clouds, contention between virtual machines running on the same physical 

hardware can occur (Govindan, Liu, Kansal, & Sivasubramaniam, 2011, p. 2) and 

performance variability has been reported (see 2.5 “Performance variability in public 

clouds”). 

The t-test is based on the following assumptions (Sheskin, 2000, p. 67): 

• The sample has been randomly selected 

• The distribution of the underlying population is normal 

For this experiment, the sample selection was not entirely random, as the start time of 

the experiment could not be randomised. For practical reasons the experiment had to be 

started whenever the researcher was available. However, given the multitude of factors 

that can be affecting the performance of a cloud system behind the scenes, the sample 

selection was deemed random enough for this statistical analysis.  

3.3.2 Repeated Measures ANOVA 

The “repeated measures analysis of variance” (ANOVA) is also called “Single-Factor 

Within-Subjects Analysis of Variance” (Sheskin, 2007, p. 413). It can be applied if the 

same group (in this case the same system) is measured on one factor (in this case load) 

more than once (Salkind, 2017, p. 334). The aim is to detect a statistically significant 

difference between the multiple measurements.  

The advantage of using this analysis over the one-sample t-test is, that the t-test, applied 

to this study, must look at the load-resource mappings for each resource level 

individually, while the repeated measures ANOVA can treat each system analysis run 

as one repeated measurement and can compare all samples at once.  

The null hypothesis of the ANOVA typically states that the means of all repeated 

measurements are equal.  

 “Null hypothesis: 𝐻0: 𝜇1 =  𝜇2 = 𝜇3 
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Alternative hypothesis: 𝐻1: 𝑁𝑜𝑡 𝐻0” (Sheskin, 2000, p. 627) 

If the null hypothesis is rejected, this means that at least one of the means deviates from 

the other ones.  

The ANOVA is based on the following assumptions (Sheskin, 2000, p. 626):  

• The sample has been randomly selected. 

• The values are normally distributed in the underlying population. 

• Sphericity 

Sphericity is a mathematically complex computation that assesses if variances and 

covariances of the underlying populations are equal (Sheskin, 2000, p. 626). A full 

explanation of the concept of sphericity can be found in (Sheskin, 2000, pp. 337–341). 
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4 IMPLEMENTATION AND RESULTS 

This chapter outlines the results of the experiment and its statistical analysis. The 

experiment consisted of running the system analysis phase of the benchmark 32 times. 

First, some observations and graphs from the AWS reporting interface are presented, 

which capture the typical behaviour of AWS ECS during an iteration of the system 

analysis.  

In the next step, descriptive statistics are calculated and the hypotheses stated in 1.3 

“Research Objectives” are tested with the statistical methods described in 3.3 ”Statistical 

methods for evaluation”. Further, the results are evaluated by comparing them to results 

obtained by other researchers (Iosup et al., 2011), (Leitner & Cito, 2016).  

Lastly, the results of one run of the BUNGEE measurement phase are captured very 

briefly, to confirm that the whole benchmark indeed runs successfully with the ECS 

extension created for BUNGEE. This is necessary because the experimental data 

captured in this dissertation only relates to the system analysis phase of the benchmark. 

It must be ensured however, that the code written to extend BUNGEE to ECS works for 

the entire benchmark, not only in the system analysis phase. 

4.1 Implementation 

During the implementation phase of this dissertation, the system analysis was conducted 

32 times: 

• 10 times with a physical load driver based in the DIT library starting between 10 

and 11 am each day.  

• 22 times with a virtual machine as a load driver, running from the private cloud 

of the University of Würzburg at varying times.  

The system analysis phase was tested from 1 to 6 resources. The load each resource level 

could handle was established. One system analysis run took approx. 4-6 hours, therefore 

only one analysis per working day could be conducted from the DIT library. For this 

reason, later a virtual machine was used as a load driver, which was kindly provided by 

the University of Würzburg.  

The system analysis was configured to only use up to 6 resources, under the assumption 

that if the system analysis runs stably up to 6 resources, it would likely behave in a 
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similar fashion for more resources. Testing more than 6 resources would increase the 

duration and cost of the experiment and likely not produce any more useful data. 

4.1.1 Observations during the system analysis phase 

During the system analysis phase, the system was exposed to bursts of load following a 

binary search pattern, until the load was found which a given number of resources (i.e. 

containers) could handle without violating the SLO (see 2.10.1 “Phases of the BUNGEE 

benchmark”).  

This binary search pattern is reflected in the CPU utilisation curve taken from the AWS 

monitoring system (Figure 4.1). It can be observed that the CPU utilisation has six 

phases of high CPU utilisation, coinciding with the six resource levels tested. Each phase 

of high CPU utilisation is followed by a period of low CPU utilisation, occurring when 

the resource level was re-adjusted and an idle-period initiated to give the system time to 

stabilise. Each phase of high CPU utilisation has a peak of > 90% CPU utilisation at the 

beginning, where the binary search algorithm tries an intensity that overloads the system. 

After this peak, the search algorithm slowly adjusts by increasing and decreasing the 

load, until it finds a level where SLOs can be maintained. The ideal CPU utilisation level 

seems to be somewhere between 60-70%, as observed by looking at the last level of 

CPU utilisation of a burst of load (see Figure 4.1). 

 

Figure 4.1 CPU utilisation of the ECS service during system analysis 

The AWS monitoring graphs for active connections, new connection count, HTTP 200 

(OK) response codes, processed bytes and consumed load balancer units (Figure 4.2) all 
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follow the expected pattern of six bursts of traffic with increasing load (less load for one 

instance, more for two instances, etc). 

 

Figure 4.2: AWS application load balancer metrics 

Figure 4.3 shows the count of unhealthy and healthy hosts (tasks/containers), the average 

latency in seconds, the increasing number of requests and any Hypertext Transfer 

Protocol (HTTP) errors received.  

These graphics again show the expected increase in number of containers and the 

increase in load to test a greater number of containers. 

 

Figure 4.3: AWS target group metrics 1 

Several HTTP 4XX (Client error) and 5XX (Server error) errors were observed (Figure 

4.4, Figure 4.5). Those errors coincide with load spikes during the system analysis phase. 
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It could not be established which error code was returned to the client, as the response 

files report only a socket timeout. It is likely that it took the test application too long to 

respond and therefore JMeter closed the connection. The timeout period for JMeter is 

set to 10 seconds by the BUNGEE benchmark, although some latencies greater than 10 

seconds have been observed in the response files.  

Amazons documents indicate that an error 460 is received when a client closes a 

connection before the load balancer responds31. A 504 “gateway timeout” error is 

received if the load balancer did not establish a connection to the container (target) 

before the connection timeout of 10 seconds expired31.  

Given the above, the errors seem to be related to the system not coping well with 

increased load. This behaviour is expected, as the benchmark is intentionally 

overloading the system.  

Clarifying the cause of these errors with certainty would have been possible via the 

access logs of the application load balancer32. Unfortunately, these logs were not 

activated during the experiments, but for future studies, it is intended that the logs will 

be enabled to clarify the cause of the errors.  

 

Figure 4.4: 4XX an 5XX errors during system analysis phase 

                                                 
31 Amazon Web Services, Inc. Troubleshoot Your Application Load Balancers. Retrieved March 28, 

2018, from https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-

troubleshooting.html#target-http-errors 

32 Amazon Web Services, Inc. Access Logs for Your Application Load Balancer - Retrieved April 28, 

2018, from https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-

logs.html 
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Figure 4.5: 5XX an 4XX error during the benchmark phase 

 

 

 

Figure 4.6: Latency by load intensity (SLO met, left. SLO failed, right) 

 

 

Figure 4.6 shows the latency captured in the response file when the system was under 

acceptable load vs under too much load. The bar charts visualise the number of requests 
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per latency bucket. The left chart shows 6 containers exposed to 121 requests per second. 

The latency was generally ≤ 500ms. The right chart shows 6 containers exposed to a 

load of 242 requests per second. The latency was ≤ 500ms in most cases, but ≥ 2 seconds 

in many cases.  

4.2 Results 

The system analysis was conducted 32 times in the AWS environment with ECS, one 

resource being one container. The results of the experiment are captured in Appendix 

III. The first column denotes the ID of the system analysis run, including the date and in 

some instances the time. The second column denotes whether the load driver was a 

physical or virtual machine. The following columns denote the maximum load achieved 

for the different resource levels.  

In Appendix VI, a statistical comparison between the two sets of results is undertaken. 

10 results were captured with a physical load driver, running from the DIT library. 

Further 22 results were captured with a VM as load driver, running from the private 

cloud of the University of Würzburg. A Man-Whitney-U test was conducted, and no 

significant difference was found between two groups. Therefore, the results will be 

evaluated as being one sample of 32 measurements.  

4.2.1 Descriptive Statistics 

The maximum load fluctuates at each resource level. The range varies between 15 

requests per second (RPS) and 29 RPS, the standard deviation was between 3.64 and 

7.75 RPS. In comparison, Weber, (2014, p. 77) achieved standard deviations ranging 

between 0 and 1.57 RPS, running the system analysis in a private cloud. Table 4.1 shows 

the range, minimum, maximum, mean, standard deviation and the relative standard 

deviation33 of the maximum load achieved per resource level. The relative standard 

deviation in this case shows that the maximum load achieved with one resource had the 

biggest variation, followed by 2 resources. The smallest variation was achieved with 6 

resources. 

                                                 
33 The relative standard deviation is also called “coefficient of variation” (Sheskin, 2000, pp. 9–10). 
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Figure 4.7 shows the mean load intensity handled per resource level. The graph shows 

that the mean load intensity per resource grows in a linear fashion with the 6th resource 

performing slightly less. This might be the case because during the research, 6 containers 

were allocated on 5 virtual machines. It is possible that the 6th container was the first one 

to share a virtual machine with another container, having to share its resources. This 

seems to be supported by the graph in Figure 4.8, which shows that the 6th container on 

average handles significantly less additional load than the other containers.  

 

 

Figure 4.7: Mean load intensity (RPS) handled during each system analysis ± standard error (31 

df, p<0.05) 
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Figure 4.8: Mean load (requests/s*resources) handled per resource ± standard error (31 df, 

p<0.05) 

 

Table 4.1: Descriptive statistics 

  

N Range Minimum Maximum Mean 
Std. 

Deviation 

Relative Std. 
Deviation 
(Variation 

Coefficient) 

1 resource 32 15 27 42 35.38 3.64 10.30 

2 resources 32 23 53 76 66.69 4.68 7.02 

3 resources 32 28 84 112 100.66 6.68 6.64 

4 resources 32 29 114 143 135.50 6.51 4.80 

5 resources 32 29 154 183 168.81 7.75 4.59 

6 resources 32 24 171 195 186.41 6.09 3.27 

 

4.2.2 Container placement on virtual machines 

The allocation of containers to virtual machines is determined by the placement strategy. 

The only way to determine the placement strategy is at creation time of the service. It 

cannot be modified after the creation of the service. 
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There is a choice of three placement strategies34:  

• Binpack – When a new task is spawned, it will be placed on the VM with least 

CPU or memory. 

• Random – When a new task is spawned, it will be placed randomly on any 

available VM with sufficient resources.  

• Spread – When a new task is spawned, it will be placed with the intention that 

tasks are spread evenly across available VMs.  

The placement strategy is not displayed in the AWS web interface or accessible through 

the SDK, so once the service has been created, it is not possible to find out which 

placement strategy was applied. For the experiment conducted in this research, no 

placement strategy was specifically defined on creation of the service through the AWS 

SDK.  

Contacting AWS support could not clarify which placement strategy is applied if no 

placement strategy was specified through the SDK. Different support agents gave 

different information, indicating that either random allocation or spread allocation is 

used under such circumstances. 

Figure 4.9 shows the mean additional load that was handled at each resource level after 

adding an additional resource. The additional load was calculated using the below 

equation with n being the number of resources: 

 

𝑚𝑒𝑎𝑛𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐿𝑜𝑎𝑑𝑛,𝑛+1 = 𝑚𝑒𝑎𝑛𝐿𝑜𝑎𝑑𝑛+1 −  𝑚𝑒𝑎𝑛𝐿𝑜𝑎𝑑𝑛 

 

Figure 4.9 also shows that the mean additional load fluctuates, with the 6th resource 

handling on average significantly less additional load than the previous containers. The 

other resource levels did not have significant differences, as shown by their overlapping 

error bars. 

Future research should explore different placement strategies, to investigate the exact 

placement behaviour. Repeating the experiment with the placement strategy “binpack” 

may provide a different outcome and would be part of any future work.  

 

                                                 
34 Amazon Web Services, Inc. Amazon ECS Task Placement Strategies. Retrieved April 13, 2018, from 

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-placement-strategies.html 
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Figure 4.9: Mean additional load handled per new resource ± standard error (31 df, p<0.05) 

 

 

4.2.3 CPU utilisation of individual containers 

The reduced mean load handled by 6 resources compared to the previous resource levels 

(Figure 4.9) also raises the question how much CPU units a container can use. 

Conflicting information was obtained regarding this matter. Clarity was sought from 

AWS Support, who indicated a task cannot use more CPU units than allocated to it 

through the “Task Size” setting “CPU units”, which for the experiment was set to 450.  

AWS documentation states that a container can use all CPU units of its hosting virtual 

machine, unless another container reserves them. This means if a VM is running a single 

container, it can use all its CPU units35. This statement seems to be supported by the 

behaviour captured in Figure 4.9, where the 6th resource performs significantly less than 

the previous resources.  

                                                 
35 Amazon Web Services, Inc. Task Definition Parameters. Retrieved April 13, 2018, from 

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definition_parameters.html 
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4.2.4 Hypothesis H-A 

The following hypotheses will be tested:  

H-A0: With a probability of ≥ 95% there is no statistically significant difference between 

the resource-load curves produced by running BUNGEE’s system-analysis several times 

on same system. 

H-A1: With a probability of ≥ 95% there is a statistically significant difference between 

the resource-load curves produced by running BUNGEE’s system-analysis several times 

on same system.  

To investigate the above hypotheses, the results were written in a wide format and analysed with a 

“repeated measures analysis of variance” (ANOVA). The analysis was performed with the software 

SPSS version 2436. To visualise the wide format, an excerpt of the results in wide format can be seen 

in  

Table 4.2.  

The results of the analysis are as follows:  

• Sphericity was met, so no correction was applied to the results. The results 

obtained follow a normal distribution, tested with the Shapiro-Wilk test of 

normality.  

• The ANOVA could not detect a significant difference between the results of the 

different system analysis runs (F(31, 124)=1.209, p=0.231,  𝜂2 = 0.232) 37.  

• If the test considers the covariate “number of resources” along with the 

maximum load, the result still cannot show significant differences between the 

different system analyses (F(31, 124)=1.541, p=0.051,  𝜂2 = 0.278). 

Given the above, H-A0 cannot be rejected. This means it cannot be stated that with a 

probability of ≥ 95% there is a statistically significant difference between the resource-

load curves of the repeated measurement runs. However, the p-value surpasses the 

                                                 
36 IBM SPSS Software. IBM Analytics. Retrieved from https://www.ibm.com/analytics/data-

science/predictive-analytics/spss-statistical-software 

37 Explanation: F(<degrees of freedom>, <degrees of freedom residual sum of squares>)=<Fvalue> , 

p=<Significance level>, 𝜂2(𝑒𝑡𝑎 𝑠𝑞𝑢𝑎𝑟𝑒)=<effect size> 
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acceptable value of 0.05 only by a very marginal 0.001, making the result marginally 

significant.  Rounding the result for the p-value would make the difference significant. 

It is worth noting that the observed effect sizes were small (0.232 and 0.278) although 

the power was high (0.912 and 0.974)38. These results indicate that if there is a 

difference between the different measurement runs, it is a small difference. To support 

these results further, Hypothesis B is evaluated.  

 

Table 4.2: Results in wide format for repeated measures ANOVA 

Resources runA runB runC runD runE runF runG runH runI runJ 

1 40 29 36 35 38 35 36 35 35 36 

2 70 73 76 68 71 65 69 64 65 69 

3 95 109 110 101 100 90 102 94 102 96 

4 127 140 142 138 140 131 139 129 140 140 

5 163 177 167 169 173 154 162 163 175 174 

6 187 192 192 184 190 183 185 171 185 185 

 

4.2.5 Hypothesis H-B 

The following hypotheses will be tested:  

H-B0:  The error of the system analysis is smaller than 5 % on a confidence interval of 

95%. 

H-B1: The error of the system analysis is larger than 5% on a confidence interval of 

95%.  

The statistical test used by Weber (Weber, 2014, p. 76) will be applied to ensure 

comparability of results.  

Let �̅� be the mean of several load intensity measurements for a given resource level. Let 

µ be the true population mean. To reject H-B0, it must be shown µ deviates more than 

5% from �̅� (p ≤  0.05). 

                                                 
38 The probability of committing a type 2 error is 1-power 
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To maintain H-B0, it must be shown that µ does not deviate more than 5% from �̅� (p ≤

 0.05): 

𝑃(𝑐1 > 𝜇 > 𝑐2) ≤ 0.05 

c1 will be defined as the lower boundary that µ must not fall below. c2 will be defined as 

the upper boundary µ must not exceed to be able to state that µ does not deviate more 

than 5% from �̅�. 

To calculate c1 and c2:  

𝑐1 =  �̅� ∗ 0.95 

𝑐2 =  �̅� ∗ 1.05 

 

clow is defined as the lower bound of the 95% confidence interval for the population 

mean µ, as obtained by a one-sample, two tailed t-test. chigh is defined as the higher 

bound of the 95% confidence interval for the true mean, obtained by the same t-test.  

The formula to be used is:  

𝐶𝐼95 =  �̅� ± (𝑡𝛼

2
) ∗

�̃�

√𝑛
    (Sheskin, 2000, p. 81) 

With �̃�  being the unbiased estimate of the population standard deviation (Sheskin, 2000, 

p. 7) 

𝐶𝐼𝑙𝑜𝑤 95 =  �̅� − (𝑡𝛼
2

) ∗
�̃�

√𝑛
 

𝐶𝐼ℎ𝑖𝑔ℎ 95 =  �̅� + (𝑡𝛼
2

) ∗
�̃�

√𝑛
 

To maintain H-B0, the following must be true: 

𝑐1 <  𝐶𝐼𝑙𝑜𝑤 95  and 𝑐2 >  𝐶𝐼ℎ𝑖𝑔ℎ 95 

Table 4.3 shows the results of the above calculations. The results show that the 

conditions to maintain H-B0 are true for all resources. Results follow a normal 

distribution, tested with the Shapiro-Wilk test except for 4 and 6 resources. However, as 

the t-test is robust to violation of normality at a large enough sample size of > 30 – 40 

(Ghasemi & Zahediasl, 2012), the results for resource levels 4 and 6 might still be 

considered relevant. 
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H-B0 “The error of the system analysis is smaller than 5 % of on a confidence level of 

95%” must therefore be maintained, indicating that the performance fluctuation of the 

system analysis is within the levels deemed acceptable.  

Table 4.3: Mean load, confidence intervals and boundaries for accepted error 

  

 
    

95% Confidence 
Interval of μ 

  

Mean 
load �̅� 

t df c1 CIlow CIhigh c2 

1 resource 35.38 54.92 31 33.60 34.06 36.69 37.14 

2 resources 66.69 80.61 31 63.35 65.00 68.37 70.02 

3 resources 100.66 85.24 31 95.62 98.25 103.06 105.69 

4 resources 135.50 117.82 31 128.73 133.15 137.85 142.28 

5 resources 168.81 123.19 31 160.37 166.02 171.61 177.25 

6 resources 186.41 173.15 31 177.09 184.21 188.60 195.73 

 

4.2.6 Results in comparison to existing research 

This section compares the results obtained from the experiments in this dissertation with 

results published in the literature (Iosup et al., 2011), (Leitner & Cito, 2016), (Weber, 

2014). A review of similar research suggests that this is the first work attempting to 

apply an elasticity benchmark to a container-based system. However, other works have 

conducted measurements in public cloud systems and investigated performance 

variation (Iosup et al., 2011) (Leitner & Cito, 2016). The original work presenting the 

BUNGEE framework conducted the same experiment as this dissertation, but in a 

private cloud IaaS system (Weber, 2014) instead of a public cloud container-based 

system where the experiment conducted for this dissertation was carried out.  

Weber (Weber, 2014, p. 77) measured the performance variation of the system analysis 

phase in a private cloud. They found relative standard deviations between 0 and 1.6%. 

A private cloud is not affected by the inherent variability of performance in public clouds 

(see 2.5 “Performance variability in public clouds”). Weber’s work shows that the 

original BUNGEE benchmark system analysis runs stably in a private cloud 

environment.  

Leitner & Cito (2016, p. 10) indicate the relative standard deviation they found for CPU-

heavy workloads as being between 0.16% and 20.28%. For m1.small instances, as used 
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in this dissertation, they observed relative standard deviations of 12.18%. The results of 

the experiments conducted for this dissertation have a relative standard deviation 

between 3.27% and 10.33%. The relative standard deviation allows comparing the 

variation of two distributions with different means and different units (Sheskin, 2000, p. 

10), therefore it is suitable for comparing the results achieved in the two studies.  

In conclusion the performance variation in CPU-heavy workloads conducted with AWS 

m1.small instances encountered in this dissertation’s experiment was smaller than the 

performance variation encountered in Leitner & Cito’s (2016) research. This indicates 

that the performance variation encountered in the present experiments might have been 

mostly due to the inherent performance variability in public clouds and not due to the 

changes introduced to adapt BUNGEE to ECS.  

An additional experiment conducted during this dissertation supports the assumption 

that the inherent performance variability of m1.small EC2 instances might be the main 

reason for the encountered performance variation. The results found are beyond the 

scope of this dissertation but can be found in Appendix IV and V.  

4.2.7 Results of a BUNGEE benchmark run 

To verify if the extension created to adapt BUNGEE to the Elastic Container Service 

works not only for the system analysis phase, but also for the measurement phase, the 

entire benchmark was conducted once with an SLO of 500ms.  

The results show that the system used up to 6 tasks (Figure 4.10, lower graph) and spent 

a relatively large amount of time in an under- and over-provisioned state (Figure 4.10, 

upper graph). The results further show that the system scaled up to three virtual 

machines, which means the system estimated being able to handle all workload with 

three virtual machines.  

The metrics calculated by the benchmark are listed in Table 4.4. It is important to note 

that these results are not representative of the AWS ECS system, as the benchmark 

would have to be conducted multiple times, and the mean values employed. 

Additionally, the thresholds for increasing and decreasing the number of containers and 

VMs were selected without much investigation into the ideal values. The purpose of 

running the benchmark was solely to verify that the code extension works. 
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Figure 4.10: Benchmark results ECS 

 

Table 4.4: Benchmark run results 

Over-provisioning 
accuracy 

Under-provisioning 
accuracy 

Over-provisioning 

timeshare 

Under-provisioning 
timeshare 

Jitter 

0.306 0.467 0.190 0.278 0.017 
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5 ANALYSIS, EVALUATION AND DISCUSSION 

This chapter discusses the results described in 4.2 “Results” and puts them into context 

with current knowledge. Further, possible explanations for the results will be explored 

and discussed for future research. Potential adaptations of the BUNGEE framework 

towards containers will be explored along with the difficulties such an adaptation could 

pose.  

5.1 Discussion of results 

The results of the two hypotheses are somewhat conflicting. For hypothesis H-A, when 

considering the number of containers as covariate, ANOVA determined a marginally 

significant difference between the different benchmark runs at a 95% confidence 

interval. When not using the number of containers as a covariate the test did not 

determine a significant difference. For hypothesis H-B, the t-test found that with a 

probability of ≥ 95%, the true mean load handled by each resource level does not deviate 

more than 5% from the sample mean, indicating that the adapted BUNGEE benchmark 

yields acceptably stable results. The above indicates that there is some variance between 

the different runs of the system analysis, which however does not exceed the level 

determined as acceptable.  

Given that some performance variability was observed, even if not exceeding the 

acceptable level, it would be appropriate to conduct further research towards the cause 

of this variability. The variability could be caused by various factors. Three of them were 

explored in this dissertation but deserve further research. Possible causes explored were:  

1. The performance variability inherent to cloud systems 

2. Varying allocation of CPU units to individual containers 

3. Varying allocation of containers to virtual machines.  

To determine the exact impact of each of the above factors on the results, further research 

is needed. 

Given the obtained results in this dissertation, it is likely that BUNGEE is suited to be 

used for systems using containers, although the above listed factors pose potential 

problems for using it in this context.  



67 

The inherent variability of results in cloud environments as discussed in section 2.5 

“Performance variability in public clouds” might require researchers to run several 

system analyses and several benchmarks to obtain reliable results. Ideally, interleaved 

random trials, as discussed in section 2.5, should be employed.  

The effect of inherent cloud performance variation might be compounded by the 

uncertainties the container orchestration systems causes. Uncertainties were found in the 

allocation of containers to virtual or physical machines and the allocation of CPU shares 

from the host system to the containers. 

For the experiment presented in this dissertation, a moderate amount of insight into the 

underlying allocation of containers to virtual machines was available. The placement 

strategy of containers to virtual machines can be configured, although it remained 

unclear which placement strategy is used if no placement strategy was specified when 

the service was created (see 4.2.2 “Container placement on virtual machines”). The 

number of CPU shares per container and task can be configured, but the exact number 

of CPU shares a container can use under the conditions of this experiment remained 

unclear. Conflicting information was obtained from different sources.  

Other CaaS systems (e.g. AWS ECS with Fargate launch type) and PaaS systems which 

use container orchestration platforms “under the hood” (e.g. AWS Elastic Beanstalk) do 

not provide granular information or the possibility to configure the container-to-VM 

allocation or CPU shares of a VM. This could cause performance variability with 

difficult to identify causes.  

Therefore, it seems to be reasonable to assume a certain degree of performance 

variability will always be present and to structure experiments based on this assumption.  

5.2 Suggestions for further research 

This dissertation was a first proof of concept to test if the BUNGEE benchmark can be 

applied to a cloud system based on containers and container orchestration. For logistic 

reasons, the experiment was only conducted with one set of parameters such as virtual 

machine type, settings in the ECS task definition and the configuration of the service. 

For this reason, further research would be of interest such as:  

• Researching if the BUNGEE system analysis conducted on Amazon EC2 

without ECS fluctuates to the same degree as the research conducted in this 
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experiment with ECS. An initial test was conducted. Results can be found in 

Appendix IV and V.  

• Repeating the experiment conducted in this research with the container 

placement setting “binpack”. 

• Repeating the experiment conducted in this research with a different virtual 

machine type and observing if the results fluctuate by the same amount.  

• Conducting the same experiment on a different CaaS platforms. 

• Conducting the same experiment in a private cloud with a setup involving 

Docker and Kubernetes or Docker Swarm.  

To better evaluate the elasticity of systems using containers, some extensions to the 

BUNGEE framework might be considered.  

Through the existing interfaces, BUNGEE makes it very easy to create extensions for 

further IaaS systems and even CaaS systems through the method applied in this 

dissertation. The method of extension used in this dissertation unfortunately causes some 

data to be lost: This loss occurs where BUNGEE monitors the number of containers 

instead of virtual machines. The number of VMs accommodating the containers then 

remains unknown or must be extracted separately from the cloud system. Creating 

interfaces to easily capture custom metrics such as number of containers or container to 

VM allocation might be a worthwhile extension to the BUNGEE framework. These 

could be realised by creating interfaces to monitor custom, user defined metrics at user 

specified intervals. With such a custom metric, the number of containers and virtual 

machines could be monitored at the same time.  
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6 CONCLUSION 

Application architectures are shifting towards using containerised microservices to host 

loosely coupled services in the cloud, thereby CaaS systems or self-managed container 

orchestration systems are growing in popularity.  

As containers have only become popular within the last four years, research in this area 

is still scarce. This experiment, to the researcher’s best knowledge, was the first attempt 

at measuring the elasticity of containerised services.  

The goal of this research was to determine if existing tools to measure elasticity of IaaS 

systems can also measure the elasticity of containerised systems. To achieve this, an 

existing and proven microbenchmark for measuring elasticity in IaaS systems was 

adapted to Amazon’s Elastic Container System. Funding in the form of AWS credits 

was secured through an application to the “AWS Cloud Credits for Research 

Program”39. 

To validate that the adapted benchmark yields reproducible results, the system analysis 

phase was run 32 times. The statistical tests ANOVA and T-Test were performed, testing 

if the results are reproducible.  

The ANOVA test did not find significant differences between the 32 iterations of the 

benchmark. However, the results when considering the number of resources as covariate 

were marginally significant. The t-test determined that the confidence interval for the 

true mean of all resource levels did not deviate more than 5% from the sample mean, 

meaning the system analysis yields stable results. Despite the level of performance 

variation encountered in these results being within the levels defined as acceptable, an 

analysis into the causes of this performance variation was deemed necessary.  

An initial investigation was carried out to determine possible causes of performance 

fluctuations. Three potential causes were identified: 

• The system-inherent performance variability that other researchers have 

encountered in cloud environments.  

                                                 
39 Amazon Web Services, Inc. AWS Cloud Credits for Research FAQ. Retrieved June 10, 2018, from 

https://aws.amazon.com/research-credits/faq/ 
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• The placement of containers on virtual machines, possibly leading to a container 

having more or less system resources available during different iterations and 

stages of the analysis. 

• The unclear number of CPU units available to a container during various stages 

of the experiment.  

These potential causes of performance variation need to be verified in additional 

experiments.   

A comparison with existing research on performance variability in cloud systems was 

undertaken. Other researchers found even bigger levels of performance variation, so a 

likely cause of the encountered fluctuation is the performance variation inherent to cloud 

systems. 

The contributions of this work are: 

• An understanding was developed that an existing microbenchmark, the 

BUNGEE benchmark, is likely suited for measuring elasticity in Container as a 

Service environments. However, there are some uncertainties that require further 

investigation. 

• Possible causes of these uncertainties were identified, and suggestions were 

made which experiments could clarify them.  

• Suggestions for features to include in the next version of the BUNGEE 

benchmark were made, to better accommodate measuring the elasticity of 

systems based on containers.  

Recommendations for future research have been listed in 5.2 and consist mainly of 

repeating the experiment presented in this work with different parameters, conducting it 

in private and public containerised cloud systems and investigating the performance 

variability in the cloud further. 
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APPENDIX I – DATA CAPTURED BY THE BUNGEE 

BENCHMARK  

Data captured during BUNGEE system analysis phase 

File Content 

timestamps.csv Contains one column with the times at which a request should be 

sent out. E.g. at intensity 20 there would be 20 requests/second, 

meaning requests are scheduled to be sent out n seconds after the 

start of the experiment, with  

n= {0.0; 0.100; 0.150; 0.200……0.850; 0.900; 0.950} 

responses.csv This file contains one row for every single request that was made to 

the server. This file contains tens of thousands of rows. 

id ID of the request that was made 

startWork Start timestamp of calculation of 

Fibonacci sequence 

endWork End timestamp of calculation of 

the Fibbonacci sequence 

duration Calculation: (endWork – 

startWork) 

result result of Fibonacci calculation 

timerstart timestamp when the 

measurement started 

start timestamp request sent 

end timestamp response received or 

error code 

responseTime Calculation: (end-start) 

latency response time in seconds if 

response received. Else 0 
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failed 0 if request failed, 1 if it 

succeeded 

responseCode HTTP response code 

servierIP IP of responding instance 

mapping.mapping This file contains the mapping of intensity to resources. 

Example:  

maxIntensity;resourceAmount 

160.0;1 

180.0;2 
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APPENDIX II – AWS CONFIGURATION  

EC2 configuration overview 

EC2 settings 

Region EU(Ireland) 

Instance Availability Zone EU-West-1b 

Instance Types m1.small 

Instance AMI ami-64c4871d 

EC2 Application Load 

Balancer settings 

• Idle timeout 60s 

• Listener: 8080 

EC2 Target Group settings • Port 8080 

• Target Type: Instance 

• Deregistration delay 300s 

• Stickiness: disabled 

Load Balancer security group Inbound Ports: 8080, 80, 22 

Instances security group Inbound ports: 32768 – 65535, 8080, 22 

EC2 instances time 

synchronization 

Chrony40,41 installed in EC2 instances.  

Instance count 5 instances during system analysis 

 

                                                 
40 See 3.2.5 “Load driver machine specifications”. 

41 Churnow, R., & Lichvar, M. (2017). Chrony (Version 2). Retrieved from https://chrony.tuxfamily.org/ 
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ECS configuration overview 

ECS settings 

Task definition 

 

• Task memory (MiB) 450 

• Task CPU (unit) 450 

• Container Definition:  

o Self-created Ubuntu 16.04 Docker image 

which contains the “SimpleHTTP” example 

contained in the BUNGEE source code.  

ECS Service settings • Min healthy percent: 50 

• Max percent: 200 

• Health Check Grace Period 0 

• Task placement strategy: default = random 

 

Container definition • CPU units: 400 

• Hard/ Soft memory limits: none 

• Port Mapping Host:Container 0:8080 
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APPENDIX III – RESULTS OF THE SYSTEM ANALYSIS - 

ECS  

Date Load driver 1_res 2_res 3_res 4_res 5_res 6_res 

run_A_20180314 Physical Machine 40 70 95 127 163 187 

run_B_20180315 Physical Machine 29 73 109 140 177 192 

run_C_20180320 Physical Machine 36 76 110 142 167 192 

run_D_20180321 Physical Machine 35 68 101 138 169 184 

run_E_20180322 Physical Machine 38 71 100 140 173 190 

run_F_20180329 Physical Machine 35 65 90 131 154 183 

run_G_20180403 Physical Machine 36 69 102 139 162 185 

run_H_20180404 Physical Machine 35 64 94 129 163 171 

run_I_20180405 Physical Machine 35 65 102 140 175 185 

run_j_20180406 Physical Machine 36 69 96 140 174 185 

20180519_00.05 VM 35 53 93 124 155 171 

20180519_15.13 VM 31 63 103 141 181 188 

20180519_21.18 VM 35 67 100 134 169 179 

20180520_02.30 VM 35 69 98 138 173 195 

20180520_22.44 VM 38 67 104 139 169 185 

20180521_08.45 VM 40 63 90 138 172 190 

20180521_15.19 VM 36 70 105 137 162 191 

20180522_09.00 VM 34 62 99 128 166 191 

20180522_18.19 VM 27 66 104 138 162 193 

20180523_00.06 VM 30 63 99 114 162 190 

20180523_09.36 VM 28 62 84 130 166 190 

20180523_15.58 VM 36 60 109 141 169 185 

20180524_00.02 VM 39 73 112 142 182 194 

20180524_09.06 VM 42 61 104 134 165 174 

20180524_18.43 VM 41 72 107 142 162 187 

20180525_17.45 VM 40 72 112 143 183 189 

20180526_01.30 VM 35 66 96 128 156 182 

20180526_09.07 VM 36 68 104 137 181 191 

20180526_15.16 VM 37 70 103 138 170 193 

20180526_22.07 VM 31 65 98 138 176 185 

20180527_03.33 VM 34 63 93 137 176 184 

20180527_10.44 VM 37 69 105 129 168 184 
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APPENDIX IV – RESULTS OF THE SYSTEM ANALYSIS - 

EC2 

Date_time 1_res 2_res 3_res 4_res 5_res 6_res 

20180519_00.05 35 53 93 124 155 171 

20180519_15.13 31 63 103 141 181 188 

20180519_21.18 35 67 100 134 169 179 

20180520_02.30 35 69 98 138 173 195 

20180520_22.44 38 67 104 139 169 185 

20180521_08.45 40 63 90 138 172 190 

20180521_15.19 36 70 105 137 162 191 

20180522_09.00 34 62 99 128 166 191 

20180522_18.19 27 66 104 138 162 193 

20180523_00.06 30 63 99 114 162 190 

20180523_09.36 28 62 84 130 166 190 

20180523_15.58 36 60 109 141 169 185 

20180524_00.02 39 73 112 142 182 194 

20180524_09.06 42 61 104 134 165 174 

20180524_18.43 41 72 107 142 162 187 

20180525_17.45 40 72 112 143 183 189 

20180526_01.30 35 66 96 128 156 182 

20180526_09.07 36 68 104 137 181 191 

20180526_15.16 37 70 103 138 170 193 

20180526_22.07 31 65 98 138 176 185 

20180527_03.33 34 63 93 137 176 184 

20180527_10.44 37 69 105 129 168 184 
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APPENDIX V – ANALYSIS RESULTS EC2 ONLY  

The experiment conducted in this dissertation was repeated without the ECS extension 

developed for this dissertation to investigate the performance variability inherent to the 

AWS cloud system. The AWS environment was set up according to BUNGEE quick 

start guide (Rauh & Herbst, 2015). M1.small instances were used.  

Descriptive Statistics 

  N Mean Std. 
Deviation 

Std. 
Error 
Mean 

Relative 
Std 

deviation 

1 resource 20 69.85 13.880 3.104 19.87147 

2 resources 20 128.45 25.442 5.689 19.8072 

3 resources 20 177.10 24.630 5.507 13.90722 

4 resources 20 246.00 26.206 5.860 10.65271 

5 resources 20 301.70 33.098 7.401 10.97053 

6 resources 20 375.50 19.856 4.440 5.287899 

Results of t-test 

The distribution of the values is not normal in this case and not sufficient samples were 

captured to ensure the t-test is robust against violation of normality as described in  

Ghasemi & Zahediasl (2012). Therefore below results are to be viewed with caution.  

  

      
95% Confidence 

Interval of μ 
  

 

Mean load �̅� 

 

t df c1 CIlow CIhigh c2 

1 resource 69.85 22.51 19 66.36 63.35 76.35 80.16 

2 resources 128.45 22.58 19 122.03 116.54 140.36 147.38 

3 resources 177.10 32.16 19 168.25 165.57 188.63 198.06 

4 resources 246.00 41.98 19 233.70 233.74 258.26 271.18 

5 resources 301.70 40.76 19 286.62 286.21 317.19 333.05 

6 resources 375.50 84.57 19 356.73 366.21 384.79 404.03 

 

Results of the ANOVA 

The distribution of the results was sufficiently normal for the purposes of conducting an 

ANOVA as tested by the Shapiro-Wilk test. The ANOVA detected a significant 

difference between the results of the different system analysis runs when the experiment 

is conducted with virtual machines instead of containers as resources (F(19, 76) =2.314, 

p=0.005,  𝜂2 = 0.367). Power: 0.983. 
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If the test considers the covariate “number of resources” along with the maximum load, 

the result cannot show significant differences between the different system analyses 

(F(19, 76) =1.430, p=0.139,  𝜂2 = 0.263). Power: 0.847. 
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APPENDIX VI – COMPARISON VIRTUAL & PHYSICAL 

LOAD DRIVER  

The difference between the results obtained by running the experiment from a physical 

load driver (DIT library) versus vs on a virtual load driver (Private cloud Univ. of 

Würzburg) are explored in this appendix.  The results of the different groups were tested 

for normality and were not normal. Therefore, the non-parametric Mann Whitney U test 

was employed instead of an independent sample t-test.  

Maximum load per resource level did not differ significantly between a virtual machine 

or a physical machine as a load driver. The test statistic, p value, z-score and mean ranks 

can be found in the Table “Results Mann-Whitney-U test.  

Further, box-plots can be found at the end of this appendix to visualise the similarity of 

the obtained results. The circle in the box-plot signifies a mild outlier while the asterisk 

signifies a strong outlier.  

Results Mann-Whitney-U test 

Statistic 1 res. 2 res. 3 res. 4 res. 5 res. 6 res. 

U 109.00 65.00 127.00 89.50 118.00 129.00 

z -0.41 -1.84 0.69 -0.84 0.33 0.78 

p 0.984 0.070 0.509 0.411 0.764 0.458 

Mean rank VM 16.60 21.00 14.80 18.55 15.70 14.60 

Mean rank 

physical machine 

16.45 14.45 17.27 15.57 16.86 17.36 

 

 



86 

 

 

 

 


	Elasticity Measurement in CaaS Environments - Extending the Existing BUNGEE Elasticity Benchmark to AWS's Elastic Container Service
	Recommended Citation

	tmp.1538037360.pdf.veXH7

