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Abstract — A computational model of the auditory periphery enables faster investiga-
tion of new signal processing algorithms for hearing aids. This paper presents a study
of the degradation of auditory nerve (AN) responses at a phonetic level for a range of
sensorineural hearing losses. The AN model of Zilany & Bruce was used to compute
responses to a diverse set of phoneme rich sentences from the TIMIT database. The
characteristics of both the average discharge rate and spike timing of the responses are
discussed. The experiments demonstrate that the model responses are consistent with
respect to impairment and inaudible thresholds.

Keywords — auditory periphery model, hearing aids, sensorineural hearing loss, phonemic
degradation.

I INTRODUCTION

Hearing loss research has traditionally been based
on perceptual criteria, speech intelligibility and
threshold levels. The development of computa-
tional models of the auditory-periphery has al-
lowed experimentation via simulation to provide
quantitative, repeatable results at a more granular
level than would be practical with clinical research
on human subjects.

Several models have been proposed, integrating
physiological data and theories from a large num-
ber of studies of the cochlea. The model used in
this paper is the cat auditory nerve (AN) model
of Zilany and Bruce [1]. The code for the model
is shared by the authors and the model responses
have been shown to be consistent with a wide range
of physiological data from both normal and im-
paired ears for stimuli presentation levels spanning
the dynamic range of hearing[2].

The goal of this study was to analyse the degra-
dation of AN responses at a phoneme level for
a range of sensorineural hearing losses, by using
the neural representations of speech provided by
the model rather than perceptual feedback. This
analysis serves a number of objectives. Firstly, it

would validate the model’s ability to differentiate
between phonemes. Having done this, it would al-
low phoneme groups which have the greatest loss in
AN response and largest potentials for restoration
to be identified. Finally, it may provide the basis
for design of new hearing aid algorithms based on
optimal phonetic response restoration.

By presenting a phonetically rich selection of
sentences to the AN model, the differences be-
tween an unimpaired ear model and three progres-
sively impaired ear models were examined. Unlike
prior work where the model’s output for individual
phonemes [3] or single sentences [4] were examined,
this study used a significantly larger test dataset.

Section II introduces the chosen computational
model, test dataset used and hearing loss profiles
to be examined. Section III presents the method-
ology employed in gathering the results. Section
IV presents the results and section V analyses the
results which are subsequently considered with ref-
erence to clinical studies of speech intelligibility at
a phoneme level. Further work is then proposed
based on the results presented.



II BACKGROUND

a) Model

This study used the cat auditory nerve (AN) model
developed and validated against physiological data
by Zilany and Bruce [2]. The ultimate goal of the
model is to predict human speech recognition per-
formance for both normal hearing and hearing im-
paired listeners [5]. It has recently been used to
conduct studies into hearing aid gain prescriptions
[3] and optimal phonemic compression schemes[4].

The Zilany and Bruce AN model builds upon
several efforts to develop computational models in-
cluding Deng and Geisler [6], Zhang et al.[7] and
Bruce et al.[8]. A schematic diagram of the model
is available in Fig. 1 of Zilany and Bruce [2], which
illustrates how model responses matched physio-
logical data over a wider dynamic range than pre-
vious models by providing two modes of basilar
membrane excitation to the inner hair cell rather
than one.

The AN model takes speech waveforms, resam-
pled at 100kHz with instantaneous pressures in
units of Pascal. These are used to derive an AN
spike train for a fibre with a specific characteris-
tic frequency (CF). Running the model at a range
of CFs allows neurogram outputs to be generated.
These are similar to spectrograms, except display-
ing the neural response as a function of CF and
time.

Two neurogram representations are produced
from the AN model output: a spike timing neu-
rogram (fine timing over 10 microseconds); and
an average discharge rate (time resolution aver-
aged over several milliseconds). The neurograms
allow comparative evaluation of the performance
of unimpaired versus impaired auditory nerves.

b) Timit database

The TIMIT corpus of read speech[9] was selected
as the speech waveform source. The TIMIT test
data has a core portion containing 24 speakers, 2
male and 1 female from each of the 8 dialect re-
gions. Each speaker reads a different set of SX
sentences. The SX sentences are phonetically-
compact sentences designed to provide a good cov-
erage of pairs of phones, while the SI sentences
are phonetically-diverse. Thus the core test ma-
terial contains 192 sentences, 5 SX and 3 SI for
each speaker, each having a distinct text prompt.
The core test set maintains a consistent ratio of
phoneme occurances as the larger “full test set”
(2340 sentences). The speech provided by TIMIT
is sampled at 16 kHz.

TIMIT classifies 57 distinct phoneme types and
groups them into 6 phoneme groups (Table. 1) and
1 group of “others” (e.g. pauses). The TIMIT
corpus of sentences contains phoneme timings for

each sentence. These were used in the experiments
presented here to analyse neurograms at a phonetic
level.

c) Audiograms

Three audiograms representing hearing loss pro-
files were selected to represent a mild, moder-
ate and profound hearing loss (Fig. 1). The au-
diograms used match the samples presented by
Dillon[10] to illustrate prescription fitting over a
wide rage of hearing impairments.
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III METHOD

a) Collection of Data

For comparative analysis of responses, it was nec-
essary to create and store AN responses for each
of the 192 test sentences. The original TIMIT sen-
tence was resampled to the stimulated minimum
sample rate for the AN Model (100kHz). For good
SPL coverage, the resampled sentence was scaled
to 3 presentation levels: a softly spoken level (45
dB SPL), middle ‘normal’ level (65dB SPL) and a
raised voice/shouted level (85 dB SPL). For each
presentation level, each sentence was presented to
four versions of the AN Model: an unimpaired
model, and three increasingly impaired model con-
figurations: mild, moderate and profound. The
simulation was carried out with sentences pre-
sented free from any form of background noise.

b) Analysis of neural responses

The response of the AN to acoustic stimuli was
quantified by the creation of “neurograms”. As
previously stated, these display the neural re-
sponse as a function of CF and time. 30 CFs
were used, spaced logarithmically between 250 and
8000 Hz. The neural response at each CF was cre-
ated from the responses of 50 simulated AN fibres.
In accordance with Liberman [11] and as used for
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Fig. 2: Error Plot for Mild, Moderate and Profound vs Unimpaired Hearing Loss at 45/65/85 dB SPL.

similar AN Model simulations [4][3], 60% of the
fibers were chosen to be high spontaneous rate
(>18 spikes/s), 20% medium (0.5 to 18 spikes/s),
and 20% low (<0.5 spikes/s). Two neurogram
representations were created for analysis, one by
maintaining a small time bin size (10µs) which re-
tained granular spike timing information and an-
other with a larger bin size (312.5µs) which gave
a moving average discharge rate.

c) Aggregating Phoneme Error Data

The phoneme timing information from TIMIT was
used to extract the neurogram information on a
per phoneme basis. For each phoneme occurrence,
a mean absolute error was calculated between the
unimpaired average discharge rate neurogram out-
put and the three impaired models’ neurograms.
The mean absolute error for a phoneme was di-
vided by the mean of the unimpaired neurogram
for that phoneme, to normalise the error with re-
spect to the phoneme sample’s input pressure. In
effect, the error is then expressed as a fraction of
the normal response for the phoneme. This allows
for comparisons at different presentation levels and
across phoneme types.

This process was repeated using the spike timing
neurograms to give two error metrics per phoneme
at each hearing loss and presentation level. The er-
rors per phoneme occurrence were collected to find
a mean error per phoneme type. These were then

sorted into their respective phoneme groupings to
find a group mean error.

IV RESULTS

The results are presented in Fig. 2. The three
rows (i-iii) represent error measurements for the
3 impaired models (Fig. 1) against the unim-
paired model. The first column contains average
discharge rate errors and the second contains spike
timing errors. Within each bar chart, results are
displayed by phoneme group (Table 1) with differ-
ent coloured bars representing the 3 presentation
levels.

Examples of the input signal, input signal spec-
trogram, and output average discharge rate neu-
rogram and spike timing neurogram for each
phoneme group type are presented in Fig. 3. The
samples were created against an unimpaired AN
model with a presentation level of 85 dB SPL.

Examples of the degradation in output neuro-
grams for each impaired model at a standard pre-
sentation level of 85dB SPL are shown for vowels
(Fig. 4) and fricatives (Fig. 5).

V DISCUSSION

a) Presentation Level and Audiogram Choices

The chosen presentation levels (45,65,85 dB SPL)
were all expected to pose some difficultly to the
mildly impaired model with the higher presenta-
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Phoneme Group Phonemes

Stops b d g p t k dx q

Affricates jh ch

Fricatives s sh z zh f th v dh

Nasals m n ng em en eng nx

SV/Glides l r w y hh hv el

Vowels iy ih eh ey ae aa aw ay ah

ao oy ow uh uw ux er ax ix axr ax-h

Table 1: TIMIT phoneme groups

tion level near the upper limit of comfortable loud-
ness for both the unimpaired and impaired audio-
grams.

It was expected that the low presentation level
would saturate error readings for some phoneme
groups where the important frequencies required
were super-threshold. The example neurograms
for a vowel (fig. 4) and a fricative (fig. 5) show
how the information degrades in the fricative faster
than in the vowel in both the average discharge
rate and spike timing neurograms.

The error calculations looked at an unimpaired
AN Model against three increasingly impaired
models. The three audiograms were chosen to give
a spread of results. The mild, gently sloping au-
diogram represents a common sensorineural hear-
ing loss profile of an elderly person. The moder-
ate, steep sloping audiogram gives a contrast be-
tween mild loss at lower frequencies and significant
loss at higher frequencies. The profound, gently
sloping hearing loss gives a profile that should be

super-threshold for the first 2 presentation levels
and should only be getting limited, low frequency
stimulation for the 85 dB SPL presentation level.
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b) Error Analysis

The errors for the moderate and profound losses
at 45 dB SPL in Fig. 2 show that both the av-



erage discharge rate and spike timing graphs are
very similar and appear to have saturated. The
profound error graphs at 65 dB SPL exhibits the
same characteristics. This is consistent with the
fact that the low presentation level was only supra-
threshold for the mild model and partially so for
the moderately impaired model.

Examining the mild loss errors at 45 dB SPL it
can be seen that in both the average discharge rate
and spike timing errors, the predominantly high
frequency consonant sounds (stop, affricate, frica-
tive) are comparable in error levels to the moderate
and profound losses. This is expected as the au-
diogram for the mild loss has a threshold of 40+
dB HL for frequencies greater than 2kHz. How-
ever, for the nasal, semi-vowel/glide and vowels,
the lower frequencies are within the hearing thresh-
old levels and give errors less than the saturated
levels. It can be seen that the error magnitudes for
mild loss at 45 dB SPL follow the same pattern as
in the saturated plots for moderate and profound
losses but at a lower level.

At 65 dB SPL, the profound loss is still below
threshold for the entire audiogram range. The
moderate loss is below threshold from 1kHz. This
can be seen in the saturated affricates and frica-
tives matching the error levels for the profound
loss.

For the mild hearing loss, the spike timings for
the nasals, SV/glide and vowels follow a similar
pattern at 65 and 85 dB SPL with vowels perform-
ing best in each case.

While the lower presentation levels and pro-
found loss are useful in validating the model and
indicating error saturation points, the 85 dB SPL
presentation level gives the most interesting data
on the differences between phoneme groups.

At 85 dB SPL, the moderate loss profile is loos-
ing some higher frequencies. The mild loss is active
at all frequency ranges and shows that the vowels
are performing better than the fricatives. The mild
hearing loss vowel error reduces as the presenta-
tion level increases suggesting the AN response is
benefiting from the higher presentation level. The
SV/Glides exhibit similar error patterns.

c) Average Discharge Rate vs. Spike Timing Er-
rors

The average discharge rate and spike timing neu-
rograms represent quite different information.

Examining the mild hearing loss at 85 dB SPL
it can be seen that vowel average discharge rate
errors are low but the spike timing errors are still
comparable to those of fricatives giving greater in-
dication of loss of synchrony in the AN response.

Vowel error for the profound hearing loss at
85 dB SPL is significantly down in the average
discharge error reading as information being pre-

sented for F1 and F2 in the 250-500 Hz range is
partially supra-threshold. However, the spike tim-
ing errors remain saturated as this error will cap-
ture fine timing errors.

As can be seen in the example illustrations
(Fig. 3) glides have a lower frequency than vow-
els. Vowels consist of a number of formants- 1st
150-850 Hz, 2nd 500-2500 Hz, 3rd 1500-3500. It
is generally accepted that the first 2 formants of
vowels are the most critical for intelligibility. Fig.
4 illustrates the vowel formant information loss in
both neurograms.

d) Intelligibility

In clinical research carried out by Cole et al. [12]
and expanded upon by Burkle[13], the contribu-
tion of vowel versus consonant information was
investigated using a noise replacement paradigm
on sentences from TIMIT. Cole used only normal-
hearing subjects. Burkle tested two listener
groups, one consisting of young normal-hearing
participants (YNH95) and the other group of el-
derly hearing-impaired participants (EHI95).

The signal level was calibrated to a 95dB SPL
level so that the sentences would be reasonably au-
dible for this hearing-impaired group. In the study
unaltered TIMIT sentences, sentences in which all
of the vowels were replaced by noise (Cin); and
sentences in which all of the consonants were re-
placed by noise (Vin) were tested and word and
sentence intelligibility were measured.

The hearing loss average thresholds for the
(EHI95) group were .25, .5, 1, 2, and 4 kHz were
29, 32, 37, 48, and 57 dB HL, respectively. This is
at comparable level to the mild audiogram used in
this study (Fig. 1).

The results of both Cole and Burkle’s research
found that words were more intelligible with only
vowels available compared with only consonants
available by a factor of 1.5. This was shown to be
consistent in trials of both unimpaired and hearing
impaired test groups.

Recategorising the error rates from this study
for the mild audiogram into the groupings used by
Burkle (Table. 2) allowed the errors for vowels vs
consonants to be examined (Fig. 6). It can be
seen that the errors in the vowels were lower than
the consonants in both average discharge and spike
timing.

The error rates for vowels vs consonants for mild
HL at 85dB seem to have a corollary with the
intelligibility of words seen by Cole et al. and
Burkle. It is possible to speculate that language
has evolved with intelligibility weighted towards
the phoneme groups that degrade more slowly with
hearing loss or indeed, that more linguistic impor-
tance would be weighted in the carrier frequencies
with greater robustness. The consonant/vowel er-



ror ratios in Fig. 6 (1.7 for average discharge rate
errors and 1.6 for spike timing) are similar to Cole
and Burkle’s findings but would require more in-
vestigation as to whether there is a measurable
linkage.

Phoneme Group Phonemes

Consonants b d g p t k dx q jh ch s

sh z zh f th v dh m n ng em

en eng nx l r w y hh hv el

Vowels iy ih eh ey ae aa aw ay ah

ao oy ow uh uw ux er ax ix axr ax-h

Table 2: Burkle vowel/consonant groups
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Fig. 6: Mild HL errors at 85 dB SPL using Burkle
vowel/consonant groups

Full Vin Cin

YNH95 99 65.1 51.6

EHI95 93.8 40.2 20.0

Combined 96.4 52.65 35.8

Table 3: Burkle Results - Percentage of words
identified correctly in each condition

VI CONCLUSIONS AND FUTURE

WORK

This study differed from previous studies using the
auditory periphery model in that it used a large set
of sentences covering 8 dialects and 24 different
readers including male and female. This validated
the models ability to deal consistently with vari-
able accents, voice pitches and presentation levels.

The results showed that for a wide range of
phoneme inputs, the model predicted errors that
corresponded well to the phoneme group frequency
characteristics. Having validated the models abil-
ity to discriminate error rates on a phonemic basis,
further tests would yield more information about
phonemic differences.

It would be useful to run further audiograms
at a mild level and high presentation level to ex-
amine the differences in phoneme error where the
full frequency range is within the impaired audio-
gram thresholds. It would also help to compare
flat audiograms with 5dB and 85dB HL across all
frequencies to allow a better understanding of the
minimum and maximum error saturation points
for each phoneme type.

The choice of error measure also warrants fur-
ther investigation as a correlation measure may
yield more informative results than the mean ab-
solute error measurement chosen for this study.

Further work, expanding to include classification
by visemes would allow analysis of the potential
phoneme improvements available by the provision
of visual cues.
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