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Abstract: Wave Energy Converters (WECs) have been in development for a number of decades and some 
devices are now close to becoming a commercial reality. As such, pilot projects are being developed, particularly 

in the UK and Ireland, to deploy WECs on a pre-commercial array scale. There is little experience in the wave 

energy or utility industry of designing and installing electrical networks for WEC arrays with the closest 

comparison being offshore wind farms. There are some key features of WECs which will ultimately dictate that 

the electrical configuration differs from that of offshore wind farms. 

 

This paper investigates the potential representative electrical network configurations for small (10MW), medium 

(40MW) and large scale (150MW) ‘wave farms’ in order to establish a development path for such projects. The 

configurations are evaluated for efficiency (power loss), redundancy and short circuit levels. Key interfaces in 

the electrical infrastructure are identified and discussed. This paper also identifies the key differences between 
offshore wind farm electrical networks. 

 

Keywords: Wave Energy, Electrical Network, Array 

1. Introduction 

Many countries have ambitious targets by 2020-2030 for ocean energy [1], [2] and there are 

several ocean energy test facilities with grid connection such as EMEC and Wavehub. 

Collaborative projects have also explored the area of WEC electrical arrays such as the 

Equimar Project [3] and these have also been investigated in [4]-[10]. The ultimate ambition 

is to have large wave farms installed in a similar fashion to offshore wind. 

 

Offshore wind energy projects have been developed up to 300MW installed capacity and it is 

acknowledged that the industry can serve as a useful source of knowledge for the wave energy 

sector. Investigating the state of the art in offshore wind farms and also looking at all the 

information available within the wave energy sector will enable a feasible assessment of wave 

farms to be studied.  

 

2. Offshore Wind Electrical Systems 

A survey of the 25 largest offshore wind farms (as of December 2010) shows that the majority 

are installed less than 15km from shore and in less than 30m depth. As the installed capacity 

and distance from shore increased offshore, platform based, substations were required in order 

to step up the voltage to HVAC (>100kV) for transmission to shore. The requirement for an 

offshore substation is typically above 100MW capacity or 10km distance from shore. 

 

HVDC transmission will be used in larger offshore wind farms located far from shore such as 

the BARD Offshore Wind Farm (400MW, 100km from shore) which is expected to be 

commissioned by 2011. There are also development projects on deepwater wind farms and 

floating wind turbines [11]. 

 

All offshore wind farms have a MVAC infield network, typically 20-36kV, with the majority 

>30kV. The infield network configuration of offshore wind farms is typically a series of 

radial circuits containing 7-8 turbines connected back to a central location (either onshore or 
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offshore), as illustrated in Fig. 1. The radial circuit is protected using switchgear in the wind 

turbines and the substation. The cables in each radial are tapered in size towards the radial 

extents and this is viewed as the best way to minimise cable costs [12] 

 

 
Fig. 1 Typical electrical layout of offshore wind farm [Source: Barrow Wind Farm] 

 

Redundancy and Sectionalising have been proposed in [13] & [14] and have been shown to 

offer advantages in increasing availability. To date, however, these are rarely utilised due to 

the inherent additional up front costs. 

  

The average capital expenditure (Capex) for offshore wind in 2009 was €2.3m/MW [15]. 

From [15] we can also see that for Horns Rev and Nysted offshore wind farms the infield and 

transmission systems represent ~21% of the total Capex. The electrical system is a significant 

proportion of the overall investment in a wind farm and, assuming that capacity factors and 

costs per MW for WECs approach those achieved by offshore wind, then it is expected that 

the same will hold true for wave energy. 

 

3. Wave Energy Device and Site 

The Wave Energy Converter (WEC) used in this study is the Wavebob device [16], which is a 

point absorber type WEC. The site used for this study is Belmullet, located off the west coast 

of Ireland, where a test site is currently under development. Using the Wavebob frequency 

domain model with an electrical rating of 1MW, and a scatter diagram from the test site, the 

energy yield distribution histogram can be established for a Wavebob device on the site. Fig. 

2 shows the energy yield distribution on the site over the course of a year. This demonstrates 

that almost 20% of energy yield is from >90% output of the device. This information is used 

in establishing the energy yield efficiency of the electrical network in later sections. 
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Fig. 2 Energy yield distribution histogram of the Wavebob device at Belmullet 
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The Wavebob device is designed for 100m+ water depth and is typical of floating WECs. 

Fitzgerald indicates in [17] that such compliantly moored wave energy converters are likely to 

be moored close to 100m in general for survivability reasons. The 100m depth contour off the 

west coast of Ireland lies between 10 and 25km from the shoreline therefore the transmission 

distance will be selected within this range.  

 

Ultimately the device spacing will be selected based on a variety of factors, namely resource 

capture and interference [18], [19] mooring footprint [17], marine operation requirements, and 

minimising cable costs and losses. Therefore 200, 300 and 400 metres device spacings have 

been selected for this paper. No hydrodynamic interference or directional effects are 

considered in this paper, however it must be noted that this will limit the maximum rows 

permissible in an array. 

 

As with offshore wind there will be three types of connection concepts, namely single MV 

transmission, multiple MV transmission and HV transmission from an offshore substation. As 

such three candidate wave farms are outlined in Table 1 which will be analysed in this paper. 

 

Wave Farm Capacity Distance to Shore Transmission Voltage # Transmission Lines 

1 10MW 12km MVAC 1 

2 40MW 15km MVAC 2+ 

3 150MW 20km HVAC 1 

Table 1 Wave Farms under analysis in this paper. 

 

4. Methodology 

The wave farm electrical network will be arranged in radial circuits as this has proven the 

most cost effective option for offshore wind. For larger arrays a ‘forked’ radial is utilised as 

this further reduces cable cross sectional area (CSA) in the radials. The effect of additional 

redundancy is discussed later. All cables will be three-core XLPE with copper conductors. 

The methodology is as follows; 

- Cables (infield and transmission) are sized for maximum continuous current at 10kV, 

20kV & 33kV and, for Wave Farm 3, 132kV. Practical limitations are observed. 

- Active Power losses (using lumped parameters) are assessed for the range of 0-100% 

wave farm output for each case. 

- Using the site/device information given in Section 3 the energy yield efficiency for the 

wave farm is obtained, i.e. the percentage electrical energy delivered in a year. 

- If an energy yield efficiency of 96% is not achieved initially then an iterative approach 

is taken to increase the cable CSA to achieve this target. 

For practical limitations a minimum cable CSA of 35mm
2
 for 10kV & 20kV and 50mm

2
 for 

33kV are assumed. A maximum cable CSA of 500mm
2
 is assumed as this is one of the largest 

dynamic cables installed to date in the Maari Oil Field. 10-15 WECs will be connected in 

each radial depending on the voltage and the total installed capacity. ABB present the 

practical limitations for transmission at various voltages in [20] which are replicated below in 

Table 2. These do not account for maximum distances which are of importance when 

considering very long lines (i.e. >50km) which we are not considering here. 

 

Voltage 10kV 20kV 30kV 66kV 132kV 

Maximum 

Power 

15MW 30MW 50MW 100MW 200MW 

Table 2 - Recommended maximum transmission capacities given in [20] 
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For initial wave farms the voltage rating may initially be limited by certain components, 

notably cable connectors and submarine power equipment. Given sufficient demand it is 

likely that these components would become available at higher voltages. 

 

Cable parameters for the study are obtained from [21], Nexans and ABB. No sheath or 

armour losses are considered, however dielectric losses are calculated in all cases. Infield 

voltage regulation and switching transients are also not considered, but are naturally 

important considerations for future work. 

 

For larger arrays the short circuit contribution of the grid and generators must be calculated as 

the short circuit requirements for the cables may result in a larger CSA cable than dictated by 

the current carrying requirements. Generator selection is critical here as certain generator 

types will contribute less fault current than others. In [22] fault currents for synchronous and 

asynchronous generators are given as 15 p.u. and 8 p.u. respectively, whereas double-fed 

induction generators and power converter interfaced generators contribute approx 1-2 p.u. 

 

5. Results 

The layouts of the proposed wave farms illustrated in Fig. 3 are based on a radial approach 

and within the limitations outlined in Section 4. These are electrical circuit layouts and the 

physical layout could differ without affecting the cable lengths. These will be analysed 

according to optimum voltage levels, efficiency and redundancy. The methodology shown in 

Section 4 will be used to size the cables to achieve 96% energy yield efficiency, i.e. the 

annual efficiency of exporting MWhrs.  

 

 
Fig. 3 Selected Wave Farms for Investigation 

 

As mentioned previously this is an iterative process; initially sizing based on maximum 

continuous current, and then refining based on efficiency. The resultant achievable energy 

yield efficiencies are illustrated in Fig. 4. >96% energy yield efficiency is achievable in 

almost all cases, however up to almost 99% is possible for larger wave farms with HVAC 

connection to shore. Table 3 outlines the cable CSAs required to achieve these figures. 

 

The device spacing has a negligible effect on energy yield efficiency; particularly for larger 

arrays. Increased spacing will, however, also increase infield cable lengths. The effect of this 

becomes more pronounced for larger arrays as shown in Fig. 5. Up to 38% increase in cable 

length is required for larger wave farms when the spacing is doubled.  
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Fig. 4 Achievable Energy Yield Efficiency for Case Study Wave Farms 

 

 Wavefarm 1 (10MW) Wavefarm 2 (40MW) Wavefarm 3 (150MW) 

 Infield Transmission Infield Transmission Infield Transmission 

10kV 35-300
 

400 N/A N/A N/A N/A 

20kV 35-95 185 35-95 400 35-500 500* 

33kV N/A N/A 50* 150 50-300 500* 

Table 3 Cable CSA (mm
2
) required to achieve efficiencies shown in Fig. 4. 

* Minimum or Maximum limits apply 
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Fig. 5 Percentage Increase in overall farm cable length for spacing increase from 200m. 

 

Redundancy can be added to the network in a variety of ways and has been proven to increase 

availability while naturally increase cost. Nevertheless, redundancy could have a dual purpose 

for wave farms as the WEC devices will have to be routinely removed and brought to port 

facilities for maintenance. Redundant circuits could provide an alternative route for the power 

during this maintenance period. Fig. 6 shows some possible redundant circuits for Wave Farm 

2, which would involve either increasing CSA of cables within the radial or addition of 

secondary cables running the length of the radial. 

 

Alternatives to redundancy that could be utilised for wave farm maintenance regimes are; 

• The availability of ‘standby’ or ‘dummy’ WECs to ‘slot’ into place. 

• A system for temporarily ‘bridging’ the gap left by the WEC in the electrical circuit.  

• Submarine switchgear allowing continued operation of the infield circuit. 

These could prove a more cost effective alternative than additional redundancy. 
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Fig. 6 Wave Farm 2 redundant circuit options 

 

6. Key Interfaces 

The studied wavefarms are presented in single line diagrams only. There are a number of key 

interfaces identified which are a functional part of the wave farm. The key interfaces are; 

1. Dynamic Cable to WEC interface 

2. Dynamic Cable to Static Cable interface 

3. MV Switchgear interface (onboard WEC or seabed installation) 

4. Offshore Substation (when applicable) 

Interfaces 1, 2 & 3 are of particular interest as they can provide critical functionality in the 

wave farm system. Some of this functionality overlaps as outlined in Table 4 below. As each 

of these three key interfaces overlap, each WEC developer must establish the exact 

functionality and components required for each of these interfaces.  

 

 Functionality of Key Interfaces 

 Connection/Disco

nnection of WEC  

Isolation Protection Cable 

Installation 

Deck/Hull 

Penetration 

Maintain 

Radial Circuit 

1 Y Y** N Y Y N 

2 Y Y** N Y Y N 

3 Y* Y Y N N Y 

Table 4 Possible functionality of key interfaces 

(* with integrated connectors for submarine switchgear; ** with strict control procedures) 

 

Interface 3 (WEC MV switchgear) is significant to the electrical network as it is a necessary 

protection function but can also be used for redundancy. Most importantly is its function as 

part of a safety and isolation system. Submarine switchgear systems have been developed 

mostly for use in the oil and gas industry. 

 

From [23]; for systems above LV in wind farms (on and offshore), the UK HV safety rules 

apply [24]. [24] states that in order to work on or near HV power systems the equipment 

should be isolated and earthed with isolation points and earth points locked where practicable. 

It would be impractical to expect that submarine switchgear, where required for isolation and 

earthing, could be locked in this position. The safe control of work would be extremely 

difficult to undertake given submarine switchgear units.  

 

For interface 4, as is the case in offshore wind, an offshore substation would typically be 

required for wave farms larger than 100MW. As the wave farm in question will be located in 

100m water depth, although the onboard equipment will be identical, the type of foundations 

typically used in offshore wind farm substations, i.e. monopile, tripod and gravity base, will 

be impractical. Jacket structures have been used for ‘deepwater’ sites such as in [11]; however 

this is only 45m depth. The choices for an offshore substation in 100m water depth would be; 

• Strategically locating the wave farm in proximity to a <50m water depth location and 

locating the offshore substation at an midpoint between the wave farm and the shore 
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• Building a jacket or compliant tower type structure such as those in use for oil platforms 

• Building the substation on a floating platform such as the semi-submersible, tension leg or 

spar type structures in use for oil platforms 

• Locating the offshore substation on the seabed 

This key interface requires further study to establish the most cost effective option available. 

 

7. Conclusions 

This paper explored the technical issues surrounding a development path for electrical 

networks for future offshore wave farms. The paper concludes that key issues for offshore 

wind farm electrical networks are cost and efficiency. Following the same configurations as 

wind farms electrical networks are developed for small, medium and large wave farms which 

should provide a high level of efficiency. The characteristics of the Wave Energy converter 

and the site must be taken into account for establishing the ‘true’ energy yield efficiency. 

 

It will be possible to establish small wave farms (<15MW) using 10kV infrastructure, 

however this will lead to large cable sizes within the array and particularly to shore. More 

suitable voltages are 20kV and 33kV within the array and for transmission up to 100MW with 

offshore substation and 132kV transmission required for transmission for large scale wave 

farms (>100MW) 

 

Increasing the device spacing within the wave farm has a negligible effect on energy yield 

efficiency, particularly for larger arrays and does not require increasing cable CSA. There 

will, however, be a cost impact from having longer infield cables. Doubling the device 

spacing could add an additional 38% to the overall cable length of the infield and 

transmission system. 

 

Redundancy can be introduced to the electrical networks, however at a financial cost. 

Redundancy may prove more important due to larger numbers of devices per radial in wave 

farms. Redundancy in the electrical network could form an integral part of the maintenance 

strategy also, however other solutions could be developed to overcome this. 

 

There are a number of key interfaces which a WEC developer must consider at the early 

stages of device design. If these key interfaces are managed correctly the WEC can lend itself 

to a flexible, cost effective, and much standardised electrical network, which will make it 

attractive for deployment on an array scale. 

 

The key differences between offshore wind and wave farms have been identified; 

• WECs have lower MW ratings than wind turbines allowing more devices per radial 

• Devices will require removal for maintenance having impact on circuit integrity 

• Depth at the site is significantly deeper than any offshore wind farm and distance from 

shore could be further. 

• Devices are not fixed structures making cable installation potentially complicated 
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