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RESEARCH Open Access

Size dependent translocation and fetal
accumulation of gold nanoparticles from
maternal blood in the rat
Manuela Semmler-Behnke5,1, Jens Lipka1, Alexander Wenk1, Stephanie Hirn6,1, Martin Schäffler1, Furong Tian7,1,
Günter Schmid3, Günter Oberdörster2 and Wolfgang G Kreyling1,4*

Abstract

Background: There is evidence that nanoparticles (NP) cross epithelial and endothelial body barriers. We
hypothesized that gold (Au) NP, once in the blood circulation of pregnant rats, will cross the placental barrier
during pregnancy size-dependently and accumulate in the fetal organism by 1. transcellular transport across the
hemochorial placenta, 2. transcellular transport across amniotic membranes 3. transport through ~20 nm wide
transtrophoblastic channels in a size dependent manner. The three AuNP sizes used to test this hypothesis are
either well below, or of similar size or well above the diameters of the transtrophoblastic channels.

Methods: We intravenously injected monodisperse, negatively charged, radio-labelled 1.4 nm, 18 nm and 80 nm
198AuNP at a mass dose of 5, 3 and 27 μg/rat, respectively, into pregnant rats on day 18 of gestation and in non-pregnant
control rats and studied the biodistribution in a quantitative manner based on the radio-analysis of the stably labelled
198AuNP after 24 hours.

Results: We observed significant biokinetic differences between pregnant and non-pregnant rats. AuNP fractions in the
uterus of pregnant rats were at least one order of magnitude higher for each particle size roughly proportional to the
enlarged size and weight of the pregnant uterus. All three sizes of 198AuNP were found in the placentas and amniotic
fluids with 1.4 nm AuNP fractions being two orders of magnitude higher than those of the larger AuNP on a mass base.
In the fetuses, only fractions of 0.0006 (30 ng) and 0.00004 (0.1 ng) of 1.4 nm and 18 nm AuNP, respectively, were
detected, but no 80 nm AuNP (<0.000004 (<0.1 ng)). These data show that no AuNP entered the fetuses from
amniotic fluids within 24 hours but indicate that AuNP translocation occurs across the placental tissues either
through transtrophoblastic channels and/or via transcellular processes.

Conclusion: Our data suggest that the translocation of AuNP from maternal blood into the fetus is NP-size
dependent which is due to mechanisms involving (1) transport through transtrophoblastic channels – also
present in the human placenta – and/or (2) endocytotic and diffusive processes across the placental barrier.

Keywords: Gold nanoparticles, Accumulation in rat fetus, Placenta, Transtrophoblastic channel, Amniotic membrane
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Background
The multiple benefits associated with the increasing manu-
facturing of nanotechnology based products are met with
equally increasing concerns about potential adverse health
effects from exposure of consumers to engineered nano-
particles (NP) [1]. These concerns are based on findings
from biokinetic studies in humans and experimental ani-
mals revealing that NP may enter the body via the respira-
tory tract or the gastro-intestinal-tract and thereby be
distributed throughout the body [1-6]. However, although
translocation of NP from the portal of entry across cellular
barriers (e.g., alveolo-capillary barrier) has been described,
the amount of NP reaching the blood circulation from the
primary portal of entry appears to be rather low [5-11].
However, the small fractions of insoluble NP translocating
into systemic circulation localize and accumulate in sec-
ondary organs such as liver, spleen, heart and others as well
as in bone marrow during chronic exposure [12,13]. One
of the critical protective barriers is the placenta, providing
protection of the unborn from potential toxicants. It is
known, though, that the placental barrier function cannot
be complete because the fetus requires continuous transfer
of glucose and nutrients, including proteins, phospholipids,
antibodies, and hormones from the maternal blood circula-
tion [14]. Therefore, even air pollutants, side stream smoke
and engineered particulates, after reaching the blood com-
partment, may gain access to the fetus and potentially
cause adverse effects in utero or postnatally [15-18]. Previ-
ous mouse exposure studies with Diesel exhaust during
pregnancy supported a role of particulate air pollution
upon adverse health effects in the central nervous syst-
em of the offspring [19-21]. Recently translocation of
50–250 nm polystyrene particles across human term pla-
centas [22] was shown while no measurable translocation
of 15 and 30 nm poly-ethylene-glycol coated AuNP was
observed in a similar ex vivo model [23]. Indeed, a recent
paper by Yamashita [24] reported size-dependent trans-
location from mouse placenta into fetuses following very
high doses (800 μg/mouse) of SiO2 NP (70 nm) and TiO2

NP (35 nm) administered by intravenous (IV) injection.
Based on this study a commentary by Keelan [25] raised a
number of questions such as “Whether size-dependent ef-
fects observed … reflect size inherent exclusion property
of the placenta itself or a characteristic of the specific
nanomaterial investigated in the Yamashita study”; and
“the mechanisms responsible which transported NP from
within the trophoblast layers into the fetal circulation are
still unclear”. A just recently published paper reported on
the translocation of IV injected 20 nm and 50 nm AuNP
(stabilized in citrate and suspended in saline at a dose of
50 μg/mouse) into the placenta of pregnant mice at gesta-
tion days 16 or 17 [26]. AuNP of both sizes were observed
in maternal liver and the placenta but not in the fetal liver.
Additional results of immunoreactivity tests suggested that

IV administration of AuNP may upregulate clathrin- and
caveolin-mediated endocytosis at the maternal–fetal barrier
in the mouse placenta.
Given the concerns about potential adverse health effects

of NP and their demonstrated - albeit limited - propensity
to cross cell barriers, we wanted to determine as to whether
realistic, low doses of NP, once in the blood circulation, will
cross placental barriers during pregnancy and accumulate
in fetuses. The possible mechanisms and pathways to cross
the placental barrier include simple diffusion or pino-
cytosis via clathrin, megalin or caveolin mediated trans-
port [27,28]; and also via transtrophoblastic channels
(canaliculi) of about 20–25 nm diameter that connect
maternal blood across the hemochorial placenta of humans
and rats directly to the fetal blood [29-31]. We hypothesize
that these transtrophoblastic channels represent a pathway
for NP in a size dependent manner from the placenta to
fetal circulation in addition to endocytotic and diffusive
transport mechanisms. In order not to overwhelm the
body and its responses by irrelevantly high doses we used
only small amounts of AuNP radioactively labelled with
tracer amounts of 198Au (198AuNP). We intravenously
injected monodisperse, negatively charged, insoluble AuNP
of three well-separated sizes: either well below (1.4 nm),
or of similar size (18 nm) or well above (80 nm) the
20–25 nm size of the transtrophoblastic channels; all three
AuNP were coated by ionic ligand molecules of sulfonated
triphenylphosphine (S-TPP). Moreover, the selected AuNP
sizes are good representatives for the entire NP range. In
addition, μg-range AuNP doses – although administered
as a bolus - were chosen because there is sufficient evi-
dence that toxic responses in the mother’s body and in the
fetuses are very unlikely at these rather low doses [32]. This
prove-of-principle study was based on the determination
of quantitative AuNP distribution in the entire organism of
pregnant rats including placental and fetal tissues, see
schematics in Figure 1.

Animal model and hypothesis
We used the pregnant rat model on day 18 ± 1 of gestation
to assess in vivo the concept of 198AuNP translocation
across the placenta. The barrier between fetal and maternal
part of the late stage placenta is only a few micrometer
thick allowing for the exchange of nutritions and fluids
[31,34]. The hemotrichorial anatomy of the rat placenta al-
lows the maternal blood to be in direct contact with the
chorion. The outer trophoblastic layer of the rat placenta is
fenestrated so 198AuNP could enter into the labyrinth be-
tween the fenestrated outer layer and the middle tropho-
blastic layers of the placenta by diffusion (Figure 1). We
hypothesize that in addition to diffusion also/or endo-
cytotic processes may play a role in the transport of
198AuNP across the placental barrier [26]. These include
pinocytotic or receptor mediated processes which are
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functional for nutrition and supply [31,34]. Yet, no experi-
mental data on these transcellular pathways exist [35]. This
pathway involves sequential transcellular passages through
the trophoblastic cell layers of the labyrinth-type hemotri-
chorial rat placenta which is likely to increase the time of
translocation and cellular retention of AuNP. Furthermore,
hemotrichorial rat placentas have transtrophoblastic cana-
liculi of about 20–25 nm diameter through the tropho-
blastic layers II and III (Figure 1) connecting maternal and
fetal blood across the placental barrier [29-31].
We suggest that 1.4 nm 198AuNP pass easily through

these canaliculi while only a smaller fraction of 18 nm
198AuNP translocate via these canaliculi, in contrast to
large 80 nm 198AuNP which will not be able to reach the
fetal circulation by this pathway. Furthermore, based on
the results obtained from the three different sized 198AuNP,
we are able to estimate the contribution of transcellular
translocation processes like endocytosis and exocytosis
across the uterine and amniotic membranes as well as
across the hemotrichorial trophoblastic layers.

Role of the yolk sac
While the yolk or vitelline sac provides most of the nu-
trition for the rat fetuses during the early gestational
stage it does no longer play a significant supply function
on day 18 ± 1 of gestation, even though it is still present
but at a much smaller size. On day 18 the rat placenta

functions are fully optimized to support the develop-
ment of the growing fetuses in their individual amnions.
No data exist for fetal translocation of NP via the vitelline
sac; however, even if existent, it is most likely minimal
when considering the small surface area of its membrane
or the amniotic fluid.

198AuNP dose considerations
By using radioactive 198Au-labelling of the AuNP it was
possible to detect anticipated tracer amounts in the pla-
cental and fetal samples of a few ng of 198AuNP follow-
ing IV injection of low doses which should not result in
a bolus overload effect. AuNP were neutron-activated
prior to use only to the extent required to detect the
198AuNP in the placental and fetal samples – see Methods.
As a result the delivered radio-dose of about 100 kBq of
the short-lived 198Au radio-isotope (half-life 2.7d) is far
below from causing any acute radio-toxic effect during
24 hours retention time – even on a nanoscopic level in
the direct vicinity of these 198AuNP: the individual 1.4 nm
and 18 nm 198AuNP contain maximally one 198Au atom
and the 80 nm 198AuNP contain on average 20 198Au
atoms. Because the radio-isotope 198Au is chemically the
same as in the AuNP core there is no leaching of the
radio-label out of the insoluble matrix of AuNP. Yet, the
selection of such rigid experimental parameters has some
limitations regarding the visualisation within the tissues:

Maternal Blood 

<20 nm <20 nm AuNPuNP

Trophoblasticophoblastic
layersers

Amniotic

Membranes
of amnion 
+ chorion Fetal blood

Transtrophoblastic 
channels

I

II

III

A

M

A

M

Placenta

Basal membrane + 
fetal endothelium

Uterus

Umbilical cord
with blood vessels

Decidua

Decidua
placentalis

Umbilical 
vein

5 µm

fenestrated layer

Fetus

Figure 1 Schematics of potential NP transport including the uterine wall, the amniotic membrane enclosing the individual fetus and
the placental barrier; potential NP transport pathways: (1) across the trophoblastic layers and through their transtrophoblastic
channels within the placenta and (2) across the uterine wall and amniotic membrane. Hemotrichorial rat placentas are reported to have
transtrophoblastic canaliculi of about 20–25 nm diameter through the trophoblastic layers II and III connecting maternal and fetal blood across
the placental barrier [29,31]. There is convincing evidence that these channels are continuous [30,33] and are also present in the human placenta.
At gestation day 18 ± 1 the yolk sac has considerably shrunk and is not shown in these schematics.
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For the tiny 1.4 nm AuNP clusters consisting of 55 Au
atoms in stable configuration there is currently no imaging
technology for biological tissues to identify them. (Imaging
requires carefully cleaned and specially prepared substrate
surfaces.) Even silver enhancement does not work for
AuNP < 2 nm [36].
Likewise, the anticipated low amount of tracer results in

such a low number of the largest 80 nm AuNP to be ex-
pected in the placenta that they are practically not detect-
able by electron microscopy. For example, in order to
detect 30 AuNP of 80 nm size an estimated number of 2 ×
104 pieces of 3 × 3 mm2 × 80 nm fetal tissue slices would
be required for detection by electron microscopy screening
which is unfeasible with current technology.

Results and discussion
Physico-chemical properties of monodisperse, negatively
charged, insoluble and radio-labeled 198AuNP are given in
the Methods section and have been described previously
[5,6,10,11]. In addition, we provide in vivo data in the
Supporting Information suggesting rapid replacement of
the ionic sulfonated triphenylphosphene (S-TPP) surface
modification from the AuNP after IV injection.

Extra-uterine 198AuNP biodistribution
As shown previously in non-pregnant female rats we
found prominent 198AuNP uptake and retention in the
liver 24 h after IV injection of 198Au labelled AuNP
[6,10]. The retained fraction of IV administered 18 nm
or 80 nm 198AuNP in mononuclear phagocyte system
(MPS) (here represented by liver, spleen and lungs) was
greater than 0.97 in pregnant and non-pregnant rats
(Figure 2); note fractions are 198Au radioactivity and,
hence, mass based. These fractions were dominated by
AuNP retention in the liver. Retention in all other or-
gans and tissues did not differ significantly between
pregnant and non-pregnant rats for both, 18 nm and
80 nm 198AuNP. In contrast, we found a fraction of
0.52 ± 0.04 of the administered 1.4 nm 198AuNP in the
MPS of non-pregnant rats and a significantly higher
fraction of 0.71 ± 0.02 in the MPS of pregnant rats, re-
spectively. Both fractions were dominated by AuNP reten-
tion in the liver (0.50 ± 0.03 and 0.68 ± 0.02, respectively).
Interestingly, lower lung retention and higher liver reten-
tion were significantly different (p < 0.0001) for pregnant
rats when compared to non-pregnant rats, but there was
no difference in spleen retention. A more detailed discus-
sion is given in Additional file 1. Additionally, 1.4 nm
198AuNP retention in kidneys, heart and skin and
remaining carcass of pregnant rats were significantly
(p < 0.0001) lower. Carcass consisted of skeleton and
soft tissues (muscles and fat); yet, a sample of muscle and
humerus did not significantly vary between pregnant and
non-pregnant rats.
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Figure 2 Comparison of pregnant versus non-pregnant rats:
comparison of 24-hour retained 198AuNP fractions relative to
the initially administered dose in either pregnant rats in their
3rd trimester or non-pregnant controls: upper panel 1.4 nm
AuNP; middle panel 18 nm AuNP; lower panel 80 nm AuNP.
Note that fractions are 198Au radioactivity- and, hence, Au-mass
based. Compartments are the (A) mononuclear phagocytic system
(MPS consisting of liver, spleen, lungs), (B) the remaining carcass
(remainder) including skeleton, soft tissues, skin and all other organs
and (C) the uterus with or without the progeny. MPS and remainder
samples were corrected for 198AuNP in the remaining blood. Note the
uterus of the pregnant rats comprises of the uterine walls, the placentas
and all amnions with fetuses. Data are given as fractions of the
intravenously injected 198AuNP doses. (n = 4; * p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < =0.0001). Statistical analysis by one-way
analysis of variance (ANOVA) followed by post hoc Sidak’s multiple
comparisons test.
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Retention of the administered 1.4 nm, 18 nm and
80 nm 198AuNP was significantly lower in the remainder
of pregnant rats compared to non-pregnant rats. As de-
tailed in Additional file 1 urinary excretion of 18 nm and
80 nm 198AuNP was negligible in non-pregnant rats; but
about half of the of 0.05 – 0.1 excreted fraction of
1.4 nm 198AuNP were found in urine in both pregnant
and non-pregnant rats indicating renal filtration of a few
percent of the injected 1.4 nm 198AuNP. Fecal excretion
in both pregnant and non-pregnant rats resulted from
hepato-biliary AuNP clearance [6] and shows strong in-
verse size dependency, Additional file 1: Figure S4. For
all three 198AuNP, the hepato-biliary AuNP clearance
was significantly reduced in pregnant rats compared to
non-pregnant controls, which is discussed in more detail
in the Additional file 1. These differences indicate that
the altered physiology of the pregnant rat significantly
affects AuNP biokinetic, a finding that requires follow-
up studies to identify underlying mechanisms.

Intra-uterine 198AuNP biodistribution in pregnant rats
Twenty-four hours after a single IV injection we found a
significantly higher 198AuNP fraction in the about 10-
fold larger uterus of pregnant rats including the total
progeny compared to the rather small uterus of the non-
pregnant rats (Figure 2). However, when normalizing the
198AuNP content per weight of uterus or blood, the con-
centrations for a given 198AuNP size were similar between
pregnant and non-pregnant rats. Yet, there were consist-
ent differences for different 198AuNP sizes, Additional
file 1: Figure S2; i.e. 198AuNP concentrations in the uterus
are mainly determined by the 198AuNP concentration in
the uterine blood.
The translocated 198AuNP fractions in the total uterus

were 5% of the IV injected 1.4 nm 198AuNP and about 0.1%
of both 18 nm and 80 nm 198AuNP, respectively, Figure 2.
This resulted in detectable AuNP-mass-based fetal fractions
of 0.0006 and 0.00005 of 1.4 nm and 18 nm 198AuNP, re-
spectively, but no 80 nm fraction in fetuses indicating the
importance of the AuNP size, Figure 3.
Figure 3 shows retained 198AuNP fractions (of the

injected 198AuNP) in the four compartments of the preg-
nant uterus ((a) uterine wall, (b) placentas + umbilical
cords + amniotic membranes, (c) total amniotic fluid and
(d) all fetuses) 24 h after IV injection of 1.4 nm, 18 nm and
80 nm 198AuNP. Results of the statistical analysis are shown
in Table 1. Nearly two orders of magnitude higher fractions
of 1.4 nm 198AuNP were found in the uterine wall or the
placentas (compartment b) than for 18 nm or 80 nm
198AuNP. In amniotic fluid we found detectable 198AuNP
fractions of all three sizes. The 1.4 nm 198AuNP fraction of
0.005 was 100–200-fold higher than those detected for the
larger 198AuNP. There was no significant difference in the
amniotic fluid fractions of retained 18 nm and 80 nm

198AuNP. Interestingly, 1.4 nm 198AuNP concentrations
per weight of blood, uterine walls and placenta were sig-
nificantly (one order of magnitude) higher than those of
the larger 198AuNP; Additional file 1: Figure S3.

198AuNP translocation through the placenta towards the
fetus
Figure 3 shows small but detectable amounts of 1.4 nm
and 18 nm 198AuNP in the fetuses of pregnant rats but
none in fetuses treated with 80 nm 198AuNP. Only frac-
tions of 0.0006 (30 ng) and 0.00004 (0.1 ng) of 1.4 nm
and 18 nm AuNP, respectivel, were detected in the fe-
tuses. Hence, the absence of 80 nm 198AuNP demon-
strates that even tracer amounts of 198AuNP were not
translocated by any mechanism consistent with our hy-
pothesis that 80 nm 198AuNP are too large to pass trans-
trophoblastic channels. Our finding that the 80 nm

Figure 3 Twenty-four-hour fractional retention of 198AuNP
relative to the initially administered dose in blood, uterus and
progeny of pregnant rats on day 18 ± 1 of gestation: fractions
of 198AuNP in blood and the various intra-uterine compartments:
total blood, uterine wall, placentas + umbilical cords + amniotic
membranes, total amniotic fluid and all fetuses. (nd = below
detection limit of gamma-spectrometer; i.e. < 0.3 ng of 80 nm AuNP
corresponding to <5 x 105 80 nm AuNP). Mean values ± SEM are
given, n = 4 rats. Results of the statistical ANOVA analysis are given
in Table 1.

Table 1 Statistical ANOVA analysis for Figure 3

ANOVA analysis AuNP size AuNP size AuNP size

Compartm./fluid 1.4 vs. 18 1.4 vs. 80 18 vs. 80

Blood **** **** ns

Uterine wall **** **** ns

Placenta + umbilical
cords + amniotic
membranes

*** ** ns

Amniotic fluid **** **** ns

Fetuses ** ** ns

Results of statistical analysis by one-way analysis of variance (ANOVA) followed
by post hoc Tukey’s multiple comparisons test are given. (ns = not significant;
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < =0.0001). Note that fractions are 198Au
radioactivity- and, hence, Au-mass based.
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198AuNP could not be observed in the fetus contrasts
with those of Yamashita and co-workers [24] who found
that 800 μg i.v. injected 70 nm SiO2 NP or 35 nm TiO2

NP not only crossed into fetal tissue but also induced
significant fetal toxicity. This difference is unlikely due
to NP size (70 nm vs. 80 nm) but could be due to either
material differences (Au vs. SiO2 or TiO2) or – which
we think might be a significant confounder – the non-
physiologically high bolus type (800 μg/mouse IV of
SiO2 or TiO2 NP) delivery which may open normally
not functional translocation pathways as it is well known
from lung particle overload studies [37]. Regarding the
10-fold difference in weight of rats and mice their NP
doses exceeded ours by about a factor of 1000. In contrast,
the above mentioned, very recent study by Rattanpinyopi-
tuk and coworkers on the translocation of IV injected
20 nm and 50 nm AuNP into the placenta of mice re-
ported only the presence of AuNP in the placenta but not
in the fetuses [26]. AuNP sizes are rather similar to our
18 nm and 80 nm AuNP and the administered dose was
only 10-fold higher than ours. The absence of AuNP in
the fetuses may be related to the lower sensitivity of the
chemical Au analysis used (ICP-MS) but may also be af-
fected by possible coagulation of the citrate-stabilized
AuNP in saline leading to larger agglomerates which could
not cross the placental barrier although immunoreactivity
tests suggested that clathrin- and caveolin-mediated endo-
cytosis was upregulated at the maternal–fetal barrier.
Since we did not find 80 nm 198AuNP in fetuses we can

conclude: transport of all three AuNP sizes across the pla-
centa by macropinocytosis can be ruled out because all
three sizes of 198AuNP would likely be taken up in the
several-hundred-nm large pinocytotic vesicles independ-
ent of the AuNP sizes we used [38]. But we also have to
take into account the transport across the placental barrier
by receptor-mediated endocytotic processes as the recent
study of Rattanapinyopituk and co-workers suggests [26].
Each of our 198AuNP will lose the S-TPP coating immedi-
ately after IV injection [39] and likely form particle-
protein-conjugates with serum proteins shown by results
of in vitro studies [40-42] and as suggested by our prelim-
inary in vivo data - see Additional file 1. Formation of
particle-protein-conjugates depends on particle size, ma-
terial and surface properties as well as protein concentra-
tions and their composition in serum [40]. Although the
results of the cited reports are based on in vitro studies,
the formation of a protein corona very likely differs be-
tween the three Au NP sizes used as we recently showed
by our in vitro protein binding studies using the same
AuNP [43]. As a consequence, mechanisms of cell uptake
and translocation of the three AuNP across the various
hemochorial cell layers can be quite different because re-
ceptor mediated endocytosis of particles depends both on
particle size and the adsorbed proteins. Indeed, our data are

consistent with the notion that 80 nm 198AuNP-protein-
conjugates are too big for endocytotic transport across the
various cell types of the trophoblastic layers into the fetal
blood (Figure 1); therefore, no 80 nm AuNP were found in
the fetuses. On the other hand we cannot exclude that a
fraction of the 18 nm 198AuNP found in the fetus was
transported via endocytosis across the cells of the tropho-
blastic layers [26], depending on the size and composition
of the conjugated protein-layer around the AuNP. For the
smallest 1.4 nm 198AuNP together with their protein-
conjugate endocytotic transport across the trophoblastic
layers is most likely, while the passage of the 1.4 nm AuNP
through trophoplastic channels is likely to act as an add-
itional and competitive transport across the trophoblastic
layers of the placenta.
Because transcellular 198AuNP transport from the mater-

nal to the fetal side involves the transport across multiple
cell layers of the trophoblast, it likely takes considerably
longer compared to a faster passage through a single cell
layer and it is also likely to be slower than their passage
through transtrophoblastic canaliculi. We base this sugges-
tion on estimates given in the Additional file 1 where we
used our earlier in vivo translocation data of the same sized
198AuNP across the alveolo-capillary-barrier – a membrane
consisting of a single cell epithelium, the basal membrane
and a single cell endothelium. – Using this comparison, we
estimate that the contribution of transcellular 24-h trans-
location across the trophoblastic layers is a minor fraction
of the observed 1.4 nm and 18 nm AuNP in fetuses; see
Additional file 1.

198AuNP translocation through the amniotic membrane
towards the fetus
Production of amniotic fluid in late stage pregnancy is
mainly arranged by an inflow of fetal urine and liquid secre-
tion from fetal lungs as well as trans-membranous diffusion
across the amniotic membranes, while the main outflow is
regulated by fetal swallowing and intra-membranous ab-
sorption [34,44-46]. Transdermal uptake by rat fetuses ap-
pears to be unlikely in the third trimester of gestation as
the skin is already keratinized [31]. The amniotic mem-
branes consist of an epithelial cell layer on a basal mem-
brane and provide a large surface. Hence, 198AuNP can
reach the amniotic fluids only across these membranes,
see Figure 1.
Figure 3 shows the significant, two orders of magnitude

higher 1.4 nm 198AuNP fraction in the amniotic fluid com-
pared to the amniotic fluid fractions of 18 nm and 80 nm
198AuNP. This may be explained by differences in the dif-
fusion of 1.4 nm 198AuNP versus the larger 198AuNP. The
18 nm and 80 nm 198AuNP amniotic fractions are not sig-
nificantly different from each other indicating that their
translocation to the amniotic fluid is not due to diffusional
transport. Instead, this implies transcellular transport
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which is believed to be independent of size for 18 nm and
80 nm 198AuNP [38]. While the 198AuNP concentration
per unit mass of blood and amniotic fluid was rather simi-
lar for 1.4 nm 198AuNP, it was one order of magnitude less
for both 18 nm and 80 nm 198AuNP in the amniotic fluid
than that in blood – see Additional file 1: Figure S3. This
difference suggests that diffusion is the predominant trans-
port of the 1.4 nm 198AuNP across the amniotic mem-
brane. As stated above, the similarity of 18 nm and 80 nm
198AuNP concentrations in the amniotic fluid are consist-
ent with size-independent transcellular transport across
the amniotic membrane.
The finding of detectable fractions of all three 198AuNP

in the amniotic fluid may point to another potential path-
way of 198AuNP uptake into the fetuses involving swallow-
ing of the amniotic fluid. During normal pregnancy, there
is no fecal excretion by the fetus, so the 198AuNP are ex-
pected to be stored in the fetal gastro-intestinal-tract.
Since the fractions of 18 nm and 80 nm 198AuNP in the
amniotic fluid were similar and fetal swallowing is AuNP
size independent one should expect that - if swallowing is
the underlying cause for the finding of AuNP in the fetus –
the fractions of 18 nm and 80 nm 198AuNP in the fetus
should be similar and reflecting their concentrations in the
amniotic fluid. However, we did not find 80 nm AuNP in
the fetuses in contrast to 18 nm AuNP, so we conclude that
swallowing of 18 nm or 80 nm 198AuNP by the fetuses can
be excluded unless the amount being swallowed is below
our limit of detection. Consequently, the observed 18 nm
198AuNP content in the fetuses results from transfer
through the placenta, most likely via transtrophoblastic
canaliculi although receptor-mediated endocytotic pro-
cesses described above cannot fully be excluded.

The translocation mechanisms may not necessarily be
the same for the 1.4 nm 198AuNP found in the fetuses be-
cause the amount of 1.4 nm 198AuNP in the amniotic fluid
is two orders of magnitude higher than those of 18 nm
and 80 nm 198AuNP; so fetal swallowing may still play a
role for these small 1.4 nm AuNP. However, given that the
ratio between amounts in the fetal and the placental
198AuNP (see Figure 3) are approximately the same for the
18 nm and 1.4 nm 198AuNP and given – as explained
above - that none of the fetal 18 nm 198AuNP is due to
swallowing, this implies that only a minimal, if any, amount
of the fetal 1.4 nm 198AuNP is a result of swallowing.

Relevance of the AuNP doses administered to the mother
and acuumulated by the fetuses
As mentioned above using the technology of radioactive
198Au-labelling of the AuNP it was possible to detect an-
ticipated tracer amounts in the placental and fetal sam-
ples of a few ng of 198AuNP following IV injection of
low mass dose of 5, 3 and 27 μg/rat of 1.4 nm, 18 nm
and 80 nm AuNP, respectively, Table 2. These doses re-
sulted in fetal AuNP mass accumulations of 30 ng and
0.1 ng fractions of 1.4 nm and 18 nm AuNP but none of
the 80 nm AuNP. In order to estimate whether the IV
administered AuNP doses are relevant to those delivered
to the lungs which translocated from the lungs into circula-
tion we compare the data obtained after intratracheal instil-
lation of the same set of AuNP, published previously [43].
There we instilled rather similar AuNP doses intratrache-
ally which are given in Table 3. In addition, the fraction and
mass of the translocated AuNP across the air-blood-barrier
(ABB) are given. When comparing the AuNP concentra-
tions in blood the doses administered to the pregnant rats

Table 2 Parameters and dose metrics of administered 198AuNP; additionally 198AuNP doses in the fetuses 24 hours
after intravenous injection

AuNPs, core diameter (nm) 1.4 18 80

Hydrodynamic diameter (nm) after neutron irradiation 2.9# 21$ 94$

(Ph2PC6H4SO3Na); ligand molecules/NP# 12 1.5 – 2 x 103 + 3 - 4 x 104+

Specific 198Au radioactivity (GBq/g) 19 31 8.3

Isotope ratio of 198Au to stable 197Au 4 10−8 6 10−8 1.2 10−6

Ratio of 198Au per AuNP 2 10−6 1 10−2 19

pH Value of suspension 5.6 6.4 5.4

Zeta potential (mV) −20.0 ± 2.4 −22.8 ± 3.1 −27.1 ± 1.3

Administered mass of AuNP (μg) per rat 5.2 ± 0.6 3.2 ± 0.9 26.5 ± 5.0

Administered number of AuNP per rat 1.9 ± 0.2 x 1014 5.5 ± 1.5 x 1010 5.2 ± 1.0 x 109

AuNP mass (ng) retained in fetuses 30 0.12 < 0.1*

Number of AuNP retained in fetuses 1.2 x 1011 2.4 x 106 < 2 x 104*
+Estimated as a result of a double layer of phosphine molecules observed in TEM [47].
#As determined earlier [48].
$DLS measurement using Malvern HPPS5001, Herrenberg, Germany.
*Below detection limit.
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they are 25, 1000 and 1500 times higher for 1.4 nm, 18 nm
and 80 nm AuNP, respectively, than those of the AuNP
which had crossed the ABB. However, also in the previous
paper we had aimed to minimize the delivered doses to the
lungs of the rats.
Furthermore, we have performed an inhalation study

of freshly generated 20 nm AuNP using the same branch
of adult, female rats. This AuNP aerosol was optimized
for the highest possible number concentration of about
107 AuNP/cm3 being stable for the 5-seconds time be-
tween aerosol generation by spark ignition technology
and inhalation [49]. This exposure led to an aerosol
mass concentration of 1.2 mg/m3 due to the high Au
density. Using the minute ventilation volume of adult
rats of 0.25 L/min [50] and a presumed deposition frac-
tion 0.4 of the inhaled aerosol, then two hours of inhal-
ation are required to deposit about 15 μg in the rat’s
lungs. This is ten-fold of the intratracheally instilled dose
but the AuNP dose which had crossed the ABB would
still be two orders of magnitude lower than what had
been IV injected to the pregnant rats. For the other two
AuNP we don’t have any aerosol data available but simi-
lar relations are expected. However, when screening the
current literature on nanomedicinal treatments using
AuNP the intravenously injected doses used in experi-
mental animals (mostly mice) are much higher in the
range of 1–10 mg/kg body weight [51-55]. In addition,
there are a number of preclinical human applications for
cancer diagnistics and treatment in which doses of 1–5 mg/
kg BW of superparamagnetic iron oxide NP or have been
used. These preclinical studies have been reviewed [56,57].
Regarding these NP doses in nanomedicinal applications,
our AuNP IV doses of 20–100 μg/kg BW are very low.

Extrapolation of AuNP translocation from rat to human
placenta
McArdle and coworkers [58] suggest that the transport
mechanisms across the placental barrier are similar in spe-
cies with hemochorial placentas such as rats and humans.
Both species have transtrophoblastic channels of about
20–25 nm diameter [29-31] and additional transcellular
endocytotic transport mechanisms should be similar. The
labyrinth type placenta of rats with a thicker barrier of

three trophoblastic layers, i.e. more cellular layers than in
the human placenta with only one trophoblastic layer, ap-
pears to be a conservative model for AuNP transport to-
wards the human fetus. Therefore, we suggest that a
similar perhaps even higher AuNP translocation into the
human fetus may occur after IV injection.
Indeed, ex vivo studies using the human term placenta

showed a small but significant translocation of bigger
polystyrene particles (from 50 nm up to 240 nm) [22]. Still
the highest translocation was found for the smallest NP
supporting the importance of NP size but may indicate
also some additional processes which may enable NP to
cross the human placental barrier in small amounts. Note
that the human term placenta after birth is not equivalent
to 18-day rat placenta and may already have a compro-
mised barrier function.
Recently, Saunders [35] concluded that currently there is

very limited data on the translocation of NP towards the
human fetus. Fuchs and co-workers [14] also speculate that
endocytotic and transcytotic processes with diffusion,
carrier-mediated and vesicular transport are the main
mechanisms which transports nutrients like glucose, amino
acids, lipids, water, ions, vitamins, minerals and oxygen
through the placental barrier. But they also report, that the
pathways are poorly or not at all characterized. In addition,
the recent study on 20 nm and 50 nm AuNP failed to
demonstrate translocation across the placental barrier into
the fetuses based on the ICP-MS method used [26].
Similarly, we cannot extrapolate these fractional accumu-

lations in the fetus to other NP contained in consumer
products or medication like titania, silica, ceria, silver or
carbonaceous NP. Furthermore, any extrapolation to the
differential behavior of conventional drugs in pregnant ver-
sus non-pregnant rats appears not to be valid since mole-
cules of conventional drugs behave completely different in
the organism compared to NP. Yet, the size dependency
for translocation may well applicable to other NP materials.
So, while these results suggest that the fetus is well pro-
tected against larger NP the unborne may well be exposed
to very small NP during the mother’s pregnancy through
medical treatment or via food consumption.

Conclusions
In conclusion, our study design and results allowed to
differentiate between two potential 198AuNP pathways
from maternal blood to the fetus in a pregnant rat model
at gestation day 18 – (1) via placenta by transtropho-
blastic channels competing with transcellular endo-
cytotic passage across multiple cell layers and (2) via
transport across the amniotic membrane – both path-
ways are 198AuNP size dependent:

� The absence of 80 nm 198AuNP in the fetuses is
consistent with our hypothesis that these AuNP are

Table 3 Comparison of intratracheally instilled AuNP
dose and the resulting translocated fraction into blood
circulation with intravenously injected AuNP doses

AuNP core diameter (nm) 1.4 18 80

IT AuNP dose (μg) 2.6 1.6 17.6

Transloc Fraction 0.08 0.002 0.001

Translocated AuNP mass (μg) 0.208 0.003 0.018

IV AuNP dose pregnant rats (μg) 5.2 3.2 26.5

Dose factor 25 1000 1506
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too large to pass the ~20-25 nm sized
transtrophoblastic channels.

� We infer from our results that both 1.4 nm and
18 nm 198AuNP are transported through the
placenta – via transtrophoblastic channels and/or
transcellular receptor-mediated endocytotic
mechanisms. (Note that this study did not allow a
clear distinction between these two transport
pathways)

� All three 198AuNP sizes cross the amniotic
membrane: the 1.4 nm 198AuNP by diffusion and/or
transcellular transport but the 18 nm and 80 nm
198AuNP mainly by the latter transport and are
detectable in the amniotic fluid but they are not
incorporated into the fetuses within 24 hours.

Therefore, our overall conclusion is that translocation
through transtrophoblastic channels is the dominating
pathway for 198AuNP smaller than the channel diameter
of about 20–25 nm. Furthermore, we suggest that these
results can be extrapolated to humans because of the
similarity between human and rat late-term placenta.

Methods
Sulfonated triphenylphosphine (S-TPP) coated AuNP of
1.4 nm, 18 nm and 80 nm core diameter were synthe-
sized following known procedures [59,60]. While 1.4 nm
AuNP were ideally monodisperse, the standard deviation
of both 18 nm and 80 nm AuNP was about 10% in the
distilled water suspension, see Table 2. All AuNP were
radio-labeled with 198Au by neutron activation at a neu-
tron flux of 1014 cm−2 sec−1 in the research reactor of
Helmholtz Center Berlin, Germany (198Au half-life 2.69 d;
411 keV gamma emission used for gammaspectroscopic
analysis). Gold amounts and irradiation times were ad-
justed to provide sufficient 198Au radioactivity for the sub-
sequent in vivo studies. Specific 198Au radioactivity and the
isotope ratio of 198Au to stable 197Au are given in Table 2.
Note that this ratio is very low such that statistically only
one 198Au isotope can be found in a 1.4 nm and 18 nm
AuNP and most of the 1.4 nm AuNP do not contain any
198Au atom at all while there are fewer 18 nm AuNP con-
taining no 198Au isotope; but in the 80 nm AuNP an aver-
age number of 20 198Au atoms are contained in the AuNP
matrix, Table 2.
After neutron irradiation immediately prior to rat ap-

plication the 1.4 nm 198AuNP solution was filtered
through a 10 cm column of Celite to remove agglomer-
ates; losses determined by 198Au radioactivity accounted
for about 10% [10]. The 18 nm and 80 nm 198AuNP sus-
pensions were visually controlled for precipitates and
their correct pink translucent color of the colloidal sus-
pension immediately prior to the application in rats; no
change in color or precipitation and no changes were

found compared to the suspension prior to irradiation. In
case of 18 nm and 80 nm 198AuNP their UV absorption
peak at 523 nm was unchanged prior to and three weeks
after irradiation (data not shown). The hydrodynamic di-
ameters (HD) of the 18 nm and 80 nm AuNP were mea-
sured in duplicate by photon correlation spectroscopy
(PCS; Malvern HPPS5001, Herrenberg, Germany). The
HD were slightly increased to 21 nm and 85 nm (polydis-
persity index 0.18) according to the S-TPP coating – see
Table 2 - and a very small fraction of agglomerates (when
AuNP volume and not the intensity was plotted the frac-
tion of agglomerates disappeared; data not shown). Zeta
potential of the radiolabeled 198AuNP was measured in a
distilled water suspention as used for rat application; 15
cycles, 10 runs, for each sample in triplicate (ZetaPals,
Brookhaven Instruments). For other AuNP parameters see
Table 2. The 1.4 nm AuNP solution and the 18 nm AuNP
suspensions remained stable during at least two weeks
without any detectable precipitation or change of color.
Due to gravitational sedimentation 80 nm AuNP settled
during two weeks but could be re-dispersed by vortexing
into the same pink suspension as before.

Animals
Twenty-four healthy, adult female Wistar-Kyoto rats
(WKY/Kyo@Rj rats, Janvier, Le Genest Saint Isle, France),
3–4 months of age and about 250 g body weight (BW)
prior to pregnancy,) were used in these studies; twelve
of which were pregnant and were enclosed into the
experimental protocol on day 18 ± 1 of gestation (3rd

trimester); All rats were housed in pairs in humidity- and
temperature-controlled ventilated cages on a 12 h day/
night cycle prior to the experiments. A rodent diet and
water were provided ad libitum. Groups of four pregnant
rats or four non-pregnant controls were randomly assigned
to the IV administration of the three different-sized
198AuNP. The in-vivo biodistribution studies were con-
ducted under German federal guidelines for the use and
care of laboratory animals and were approved by the
Regierung von Oberbayern (Government of District of
Upper Bavaria, Approval No. 211-2531-94/04) and by the
Institutional Animal Care and Use Committee of the
Helmholtz Zentrum München - German Research Center
for Environmental Health.

198AuNP administration and analysis of 198AuNP
biodistribution
Colloidal suspensions of 1.4, 18 or 80 nm 198AuNP were
slowly injected into the tail vein of pregnant rats or non-
pregnant controls [4,10]. For 1.4 nm and 18 nm
198AuNP doses of about 5 μg per rat were chosen and
25 μg per rat of the 80 nm 198AuNP, respectively. Rats
were anesthetized by inhalation of 3-5% isoflurane until
muscular tonus relaxed. A suspension volume of 130 μL
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containing 198AuNP was placed at the lower end of a 1-
mL-insulin-syringe without any air at the tip of the syr-
inge. A flexible intravenous catheter (diameter 24G) was
placed into the tail vein. Initially, 100 μL phosphate buff-
ered saline (PBS) was injected testing for controlling ad-
equate positioning of the catheter in the tail vein before
the syringe with the 198AuNP suspension was connected
and the suspension was slowly injected during about 30
seconds. The dead space in the syringe and connector had
been determined to be 80 μL such that a dose of 50 μL
198AuNP suspension was injected into the tail vein. In
Table 2 the 198AuNP doses in terms of gold mass, surface
and numbers are given for all three sizes.
Twenty-four hours after 198AuNP administration the

rats were killed by exsanguinations cannulating the ab-
dominal aorta and aspirating blood with a syringe
under deep anesthesia by continuous isoflurane inhal-
ation (3-5%) until death. About 70% of the blood vol-
ume was sampled via the abdominal aorta as estimated
from the blood volume and BW. As described earlier
[61,62] all organs including the uterus with all amnions
and fetuses and tissues of interest, the entire remaining
carcass and the total excreta during 24 hours were
weighed in wet state and stored for radio-analysis. While
non-pregnant controls were housed singly in metabolic
cages and urinary and fecal excreta were collected separ-
ately, the pregnant rats were kept in normal cages to avoid
any stress and fecal droppings were manually separated
from the bedding with the urine for separate radio-
analysis. To avoid any cross contamination, no organs were
cut open and all body fluids were sampled immediately via
cannulation of vessels or excretory ducts before cutting.
Hence, the following samples were radio-analyzed:

� Uterus: (a) for non-pregnant rats the uterus was one
sample; (b) for pregnant rats there were four
compartments: (i) the uterine wall, (ii) the placentas
together with all umbilical cords and amniotic sacs,
(iii) the total of all amniotic fluids which were
collected by cannulating each amnion and (iv) the
total of all fetuses; these four compartments of each
rat were radio-analyzed.

� Other organs: lungs, liver, spleen, kidneys, brain,
heart, total exsanguinated blood, gastro-intestinal
tract (GIT) including: esophagus, stomach, small
and large intestine;

� Tissues: total skin, sample of muscle, sample of bone:
femur; the injection site of the tail was separated;

� Remainder: total remaining carcass beyond the listed
organs and tissues;

� Excretion: total urine and feces, collected separately.

Without any additional preparatory step all samples
were radio-analyzed for 198Au content.

A complete balance of 198Au radioactivity
A complete balance of 198Au radioactivity retained in
the body and cleared by excretion out of the body was
quantified by gamma-spectroscopy in either a 10-mL-
well-type NaI(Tl) scintillation detector for small samples
(<3 g) or a 1-L-well-type NaI(Tl) scintillation detector for
large samples like the remaining carcass [61,63] thor-
oughly lead-shielded for reduction of background radi-
ation. From measured count rates, corrected for
background and radioactive decay and calibrated with a
well-defined 198Au source, amounts of radioactivity at
reference date were calculated. Samples yielding net
counts (i.e. background-corrected counts) in the photo-
peak region-of-interest of the 198Au gamma spectrum
were defined to be below the detection limit when they
were less than three standard deviations of the back-
ground counts of this region-of-interest. Therefore, calcu-
lated amounts of radioactivity are directly proportional to
the mass of 198AuNP. The sum of all 198Au amounts of
radioactivity was compared to the administered dose as
determined by radio analysis of an aliquot of the adminis-
tered 198AuNP solution. Hence, total radioactivity equals
the administered radioactivity per rat to which 198Au
radioactivity of each sample was normalized as a fraction.

Statistical analysis
For statistical data analysis Graph pad prism 4.0 was
used. All calculated significances are based on a one-way
analysis of variance (ANOVA) followed either by a post
hoc Tukey test or post hoc Sidak test as indicated in the
Figure legends. In case of an individual two-group com-
parison, the unpaired t test was used.

Additional file

Additional file 1: Characterization of the physico-chemical parameters.
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