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ABSTRACT
Our research seeks to develop a long-lasting and high-quality en-
gagement between the user and the social robot, which in turn
requires a more sophisticated alignment of the user and the system
than is currently commonly available. Close monitoring of inter-
locutors’ states, and we argue their confusion state in particular,
and adjusting dialogue policies based on this state of confusion is
needed for successful joint activity. In this paper, we present an ini-
tial study of a human-robot conversation scenarios using a Pepper
robot to investigate the confusion states of users. A Wizard-of-Oz
(WoZ) HRI experiment is illustrated in detail with stimuli strategies
to trigger confused states from interlocutors. For the collected data,
we estimated emotions, head pose, and eye gaze, and these features
were analysed against the silence duration time of the speech data
and the post-study self-reported confusion states that are reported
by participants. Our analysis found a significant relationship be-
tween confusion states and most of these features. We see these
results as being particularly significant for multimodal situated
dialogues for human-robot interaction and beyond.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in inter-
action design; Interaction design process and methods.
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1 INTRODUCTION
Human-Robot Interaction (HRI) is a complex interdisciplinary field
that straddles topics as varied as human-computer interaction, ro-
botics, artificial intelligence, design, and philosophy [4]. It has been
shown that systematic HRI study can improve effective communi-
cation in a variety of multitasking domains, e.g., digital learning
environments [36], domestic environments [19], laboratory envi-
ronments [32], and noisy and unpredictable environments [19].
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Although HRI can leverage interaction across many different
modalities, we argue that the conversational channel is of critical
importance for naturalistic communication. To ensure users con-
tinually engage in interaction with robots, building a smooth and
fluid conversation is, however, a challenging task, as it requires
the system to provide appropriate responses to an interlocutor’s
nonverbal and verbal behaviours, mental states, and emotions. In-
deed, emotions in people can modulate their behaviour in ongoing
experience [4, chapter 8]. Therefore, designing emotional commu-
nication in HRI is critical, although there are many challenges in
current emotion studies. For example, data collected for emotion
recognition often comes from actors [7, 8], plus there is a lack of re-
search related to engagement estimation not only in conversational
HRI but also in spontaneous conversation [5, 6].

While emotion monitoring and estimation of engagement are
important areas for research, we have identified confusion as one
aspect of dialogue-centric HRI interaction that is particularly in
need of systematic modelling. Compared to a level of “raw” emotion
or engagement, confusion is a dynamic mental state that can be
associated with both positive qualities such as interest, and negative
qualities such as boredom and subsequent disengagement [12].
Being able to detect the state of confusion of an interlocutor in
real time will likely improve engagement levels as we can adjust
dialogue policy in response to confusion states in joint activities
[10, 44]. While there have been limited works studying confusion
states in general, with most works to date focused on the area
of online learning, there has been very little research in the area
for conversational systems and, in particular, little to nothing in
the area of HRI. Given the above, in this paper, we present an
exploratory study of confusion states in situated task-oriented HRI.
More specifically, we address the following two research questions:
(1) Do participants have a self-awareness that they are confused
in a specific confusing situation in a controlled situated HRI? (2)
What are the different manifest behaviours of the participants that
we can detect when a user is in a confused state?

To address these issues, according to the definition of confusion
that we defined [25], a WoZ [41] study was designed in HRI, with a
subsequent feature analysis in the collected data. The contributions
of this paper include the particular study design for confusion
analysis, the insights derived from data analysis, and our analysis
of the existing literature with respect to confusion detection. Finally,
an anonymised feature set lifted form of this data 1 is made available
for public analysis.

1https://github.com/nalibjchn/HRI-FeatureData
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2 RELATEDWORK
In this section, we briefly highlight some aspects of multimodal
emotion detection, engagement estimation, and confusion detection
that our work either builds on or has a relationship with.

2.1 Emotion Recognition
If a person has a strong ability to observe others’ emotions and
manage their own emotions, they are likely to contribute more
successfully to an interaction with others [38]. Similarly, a social
robot is arguably expected to have human-like capabilities of ob-
serving and subsequently predicting human emotion. Building on
this idea, Spezialetti et al. [47] identifies three broad sets of tasks
required to equip robots with emotional capabilities: (a) designing
robot emotional states in existing cognitive architectures or emo-
tional models; (b) formulating rich emotional expressions for robots
through facial expression, gesture, voice, etc.; and (c) detecting and
predicting human emotions. The first two broad sets are in robots
oriented research that focusses on designing robots’ behaviours
to express robots’ emotions in HRI, so that interlocutors can in-
terpret the robots’ emotions and even adopt their emotions [50];
while the last broad set is in human-centred research that focuses
on designing an affect recognition system or model for a robot
that is designed to observe user behaviour, which is also related
to our study. Moreover, Cohn [9] indicated that human emotions
cannot be observable because emotion is a cognition, a feeling, or
a physiological and neuromuscular change. Therefore, he points
out that emotion must be explained through an interaction context,
a user survey, behaviours or physiological indicators [48].

Although emotion is not easily detectable directly, emotion and
cognitive state can be indirectly observed. Facial expression is a
natural emotional expression for a human being, as such many sys-
tems and models have been developed over the last few decades to
label emotion from facial expressions. Facial Action Coding System
(FACS) with AUs (facial action units) [9, 29] is one of those early
models. There are also multiple examples of deep networks and
in particular convolutional neural networks (CNNs) being applied
directly for emotion recognition [40]. Recently, the “Dialogue Emo-
tion Correction Network (DECN)” [26] has been proposed as a new
correction model that includes an utterance-based emotion recog-
nition engine alongside a conversation-based correction model.

Beyond facial expression, additional nonverbal signals that can
suggest emotion are head pose and eye gaze. Liang et al. [27]’s
experiments have verified the effects of gaze direction on perception
of emotional expression. Their results suggest that with neutral
or smiling faces, a direct gaze increases the possibility of users
perceiving happy emotions, whereas avoidant gaze may increase
the possibility of perceiving anger and fear. Moreover, head-pose
estimation is inherently related to visual eye-gaze estimation. For
example, Murphy-Chutorian and Trivedi [34] clarified that people
with different head poses can reflect more emotional information
(i.e. dissent, confusion, consideration, and agreement).

2.2 Engagement Estimation in HRI
Beyond the raw treatment of emotion, engagement modelling in
HRI, and more generally in dialogue, has received wide research
attention due to the need to keep a user engaged in joint tasks. To

date, twomain aspects of user engagement have been studied in HRI
[24]: First, robots should be endowed with specific features or social
abilities that can increase user engagement in the conversation, such
as face-tracking, performing gestures, facial expression, and voice
tracking [33, 45]; Second, robots should be able to automatically
recognise user engagement or disengagement during interaction.
For this second class of work, Leite et al. [24] predict the intention
of engagement by recognising whether users remain around a
robot – which can be seen as a manifestation of spatial engagement
[30]). Other studies have focused on engagement prediction by
learning various features of the user e.g. facial expressions, gestures
or postures, eye movement, and voice pitch tracking, etc., [10]. A
notable comprehensive study of engagement recognition with a
fully autonomous robot was conducted by Ben Youssef et al. [5].

2.3 Confusion Detection
Moving from the general case of emotions and engagement to the
specific cognitive state of confusion, in recent years there have
been several studies aimed at defining and identifying confusion
states. The theory of confusing states in emotion science is quite
complex [13], with most studies on confusion detection in the area
of interactive learning. D’Mello and Graesser [13] postulated that
confusion is the centre of complex learning activities, such as solv-
ing difficult problems and modelling complex systems. There are
numerous definitions of confusion in the literature. D’Mello and
Graesser [11] summarised that confusion has been considered a
bonafide emotion, an epistemic emotion, an affective state, and a
mere cognitive state. When confusion is an epistemic emotion, it
means that confusion is associated with impasses in the learning
process when learners want to try to acquire new knowledge [28].
Cognitive disequilibrium (a mental state in which individuals en-
counter obstacles in their normal learning process flow [51]) can
also induce stimuli confusion.

Another view is that confusion can have multiple internal states.
Lodge et al. [28] defined two zones of confusion in the case of learn-
ing activities, when a learner was in cognitive disequilibrium due
to an impasse in an organised learning process. In this model, the
learner can at times be said to be in the zone of optimal confusion
(ZOC), which is a form of productive confusion. Here, the learner is
still engaged with the intention of overcoming the current impasse.
However, if their confusion is persistent, the learner might instead
be in a zone of sub-optimal confusion (ZOSOC); this is where con-
fusion is unproductive, which can lead to possible frustration or
boredom, with subsequent disengagement. Several papers have
also focused on defining confusion, but have tended to focus on
a formal model of confusion [11] and how it could relate to the
learning process. For example, Arguel and Lane [1] designed two
thresholds (𝑇_𝑎 and 𝑇_𝑏) to determine the level of confusion in a
learning process. If the level of confusion is greater than 𝑇_𝑏, indi-
cating that the confusion is persistent, learners may be frustrated
or bored. In contrast, they can engage in their current learning
process when the level of confusion is below 𝑇_𝑎. Thus, between
the two thresholds, the learner is in the confusion state.

D’Mello and Graesser [11] proposed three bidirectional transi-
tions of confusion states: the confusion-engagement transition, in
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which an obstacle has been detected and the mental state has tran-
sitioned from engagement to confusion, while after the obstacle
has been addressed, the state can transition back to engagement;
the confusion-frustration transition, in which the obstacle cannot
be continually resolved, and the mental state has transitioned from
confusion to frustration. Meanwhile, if additional impasses are
produced, the state is changed back to confusing; Finally, there is
the frustration-boredom transition, in which the failure exists in a
certain time, the learner may be disengaged, leading to boredom.
However, if they have to persist in their learning task, their state
will change from boredom to frustration.

Moreover, it is necessary for us in this study to understand and
design how confusion can be elicited. We summarise four patterns
of confusion and non-confusion induction as strategies for the stim-
ulation of confusion [22, 46]: (a) Complex information and simple
information. Lehman et al. [22] explained that complex learning is
an experience full of emotions that occurs when learners are ex-
posed to complex material, difficult issues, or indecisive decisions,
such that their confusion may be triggered between positive and
negative emotions [2]; (b) Contradictory information and consis-
tent information, here people may enter into a state of uncertainty
and confusion when they are exposed to contradictory information
[23]; (c) Insufficient and sufficient information, here people do not
receive enough information to respond to an interlocutor, and as a
result, they may become confused [46]; (d) Feedback, Lehman et al.
[22] designed a feedback matrix of feedback states to investigate
feedback types and confusion. This matrix essentially distinguishes
between correct feedback which comprises correct-positive con-
ditions and incorrect-negative conditions, and false feedback in-
cluding correct-negative and incorrect-positive conditions. From
their experiment, it was seen that presentation of correct-negative
feedback, i.e., when the learners responded correctly but received
inaccurate or negative feedback, was an effective manipulation to
stimulate confusion.

Despite the above, we conclude that there has been little in terms
of the creation of operationalisable models of confusion detection
and modelling, and particularly in the HRI context.

3 STUDY DESIGN
Our long-term goal is to model user confusion states and apply mit-
igation strategies to the HRI dialogue process to alleviate confusion
before user boredom or disengagement manifest. As a step along
this path, we present an HRI study, which we have designed to
induce confusion states in users, build a dataset of these states, and
attempt to analyse these to determine whether indirect detection
of confusion states might be possible.

3.1 Study Overview
For this work, we are building on an earlier pilot study in which
“confusion” has been defined in situated task-oriented HRI and then
invoked and studied confusion states in a remote engagement con-
text [25]. In that earlier work, we were limited by the challenge of
having users interact remotely over uncontrolled hardware (e.g.,
microphone and camera challenges on user laptops) and the more
general challenge of managing interactions remotely. Nevertheless,

in that work, we did identify certain indicators of participant con-
fusion, and in the current study, we wish to broaden that study to
provide a complete interaction scenario with a dataset that can,
subject to privacy concerns, be made available for general study in
language-based HRI.

In this study, we made use of a humanoid robot called Pepper.
Of its many features, those that are relevant here are its onboard
two high-resolution cameras as well as a 3D camera that enable the
Pepper to identify movements and recognise the emotions on the
faces of its interlocutors, also ability to articulate arms and head
for gesticulation, and on-chest touch screen. The Pepper robot has
speech recognition and dialogue available in 21 languages. For this
study, the Pepper robot was configured for English. The Pepper
back-end is a fully open and programmable platform built on the
Naoqi framework 2 with comprehensive animated speech, motion,
and vision modules, which are used to support ourWoZ experiment.

Our study made use of a semi-spontaneous one-by-one physical
face-to-face conversation between the Pepper robot and a partici-
pant in English only. The Pepper robot was controlled by a wizard.
All participants were required to be able to walk into our physical
laboratory. Two rooms were setup (see Figure 1): the experiment
room was setup for the participants with the Pepper and some
additional recording equipment. Participants were asked to remain
standing in Zone 1 which is 80 cm in front of the robot, to ensure
that they were close enough to Pepper yet safe for practical inter-
action. A high-definition (HD) webcam (Webcam 1) was placed
behind the Pepper robot and aimed toward participants’ faces for
collecting their facial expression. A second HD webcam (Webcam
2) was placed on the right side of the Pepper to record the body
gestures of the participants. The picture on the left in Figure 1
shows the actual scene of the laboratory setting.

A researcher used the wizard room to monitor the real-time in-
teraction of the participant and the Pepper robot in the experiment,
as well as to control the Pepper robot using the WoZ4U platform
[42]. The WoZ4U platform is an open-source WoZ interface that
provides a graphical user interface (GUI) for the wizard to control
Pepper movements, speech utterances, animated speech, gestures,
etc.. We integrated conversation scripts and developed more specific
behaviours for the Pepper on the WoZ4U platform.

Consistent instructions and consent forms were provided and
signed before participants attended the experiment. Live partici-
pation was designed around two interaction sessions lasting more
than 15 minutes. The first session was a casual talk because most of
the participants had no experience in interaction with the Pepper
robot prior to participating in this experiment. To help participants
adapt to the mode of human-robot dialogue, we prepared 11 in-
teractive topics that the participant could engage in (e.g., “What is
your name?”, “Raising your arms”, etc.) as a reference so that they
could feel more comfortable and confident in entering the second
session. The second session was a 5 minutes task-oriented con-
versation between the participant and the Pepper (detailed later).
The behaviours and speech of the participant were recorded in this
session. After the participant finished the three tasks, they rated
their confusion in a post-study survey, which was then followed
by a 3-minute interview discussing this interaction (see Figure 2).

2http://doc.aldebaran.com/2-5/naoqi/index.html
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Figure 1: WoZ HRI experiment laboratory
(left: the real experiment room; right: a mock experiment room and a mock wizard room)

30 individuals participated in this study. Among them, one par-
ticipant helped to first dry run this study, so this participant’s data
is not analysed for research purposes. All participants were over
18 years of age, i.e. 5 people in the 18 - 24 age group; 23 people
were in the 25 - 44 age group; and 2 people were in the 45 - 59 age
group. Furthermore, they were from at least six countries and were
in university programmes or industries such that they were able
to have a social conversation in English. Data from 29 participants
(12 female, 16 male, and one was not stated) were made available
for data analysis.

3.2 Task-oriented Dialogue Design
To stimulate confusion states, two conditions were defined with
different confusion stimuli: the stimuli were designed to trigger
confusion in participants in Condition A; while the stimuli were
designed for participants to perform a straightforward task without
confusion in Condition B. Each participant was required to com-
plete three tasks, and each task with one condition. Task 1 was a
logic problem, task 2 was a word problem, and task 3 was a maths
question. In order to balance the number of confusion conditions
and to avoid participants having strong or persistent confusion
from the sequence of tasks, the sequence of conditions for each
participant could be Condition A for task 1, Condition B for task 2,
and Condition A again for task 3 (i.e., Condition ABA); following
this participant, the sequence of conditions with the three tasks for
the next participant would be task 1 with Condition B, task 2 with
Condition A, and task 3 with Condition B (i.e., Condition BAB).

We designed the four different confusion inductions mentioned
in the literature review for each task (see Table 1). In practise, this
was a small-scale study and was our first attempt to implement
the confusion study on a physical robot, so we designed a short
conversation for each participant, which was around 5 minutes.
For example, the word problem for contradictory information in
Condition A was: “there are 66 people in the playground including
28 girls, boys and teachers. How many teachers were there in total?”,

whereas the word problem for consistent information in Condition
B was: “there are 5 groups of 4 students, how many students are
there in the class?” (For all dialogue examples with the three tasks.
Moreover, during the semi-spontaneous one-to-one conversation,
we also chose one more strategy in some scenarios for confusion
stimuli, for example, in Task 3 (maths questions) with complex
information, some participants were not confused to show their
answer correctly, which is out of our expectation, so we used the
“false feedback” confusion induction to elicit confusion.

Table 1: A matrix of tasks and four pattern of confusion
strategies are divided by conditions

Condition A Condition B Tasks *
Complex information Simple information Task-1,2,3
Contradictory information Consistent information Task-1,2,3
Insufficient information Sufficient information Task-1,2,3
False feedback Correct feedback Task-1,2,3

* Task-1,2,3: logic problem, word problem, math question

To build a more natural interaction with participants, we consid-
ered it vital that the robot possesses valid non-verbal behaviours
[39]. Therefore, we designed a mapping of physical behaviours
on the robot’s head, eye colours, and body gestures to align with
positive and negative responses (see Figure 3).

3.3 Data Collection
The facial video data of 29 participants was labelled with a sequence
of conditions such as “ABA” or “BAB”. We cropped the greeting
and the end of each video. All frame data was extracted from this
cropped video with conditions’ labelling noted. The image data
that we extracted had 5,715 frames (3,441 frames for Condition
A, 2,274 frames for Condition B). Although the image data was
from facial videos, it was necessary to recognise and align faces
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Figure 2: HRI experiment process

Figure 3: Themapping of the reaction status and visible traits
for the Pepper robot

in a preprocessing data step. We approached each frame from the
centre crop in a region of 224 × 224 pixels and we detected the
face and removed the frame margins using the Multi-task Cascaded
Convolutional Network (MTCNN)-based face detection algorithm
[43]. Figure 4 shows a comparison of the original facial frame (left)
and the centre cropped result of the same facial frame. Therefore, the
result for face detection and face centre cropping was 2,945 labelled
facial frames for Condition A and 1,941 facial frames for Condition
B. As facial video data also included high-quality audio, we applied
the FFmpeg framework to extract audio tracks for analysis. The
audio data had 85 audio files (45 waveform audio (wav) files for
Condition A and 40 wav files for Condition B).

Each participant completed a post-study survey with 10 ques-
tions on the Likert scale (1-5) after interacting with the robot. We
designed three questions for three tasks, plus each participant eval-
uated their level of confusion for each confusion task. Therefore,
the 29 post-study surveys were divided independently by the con-
ditions, as we have prearranged sequences of conditions for each
participant (“ABA” or “BAB” ). We then combined the two indepen-
dent files (one for Condition A, another for Condition B) into one
file with the new “Condition” feature to mark the specific condition
for subjective analysis. As there were two scores under the same

Figure 4: A comparison of facial frame (left) and aligned
facial frame (right)

conditions for each questionnaire, we calculated the average of the
two scores as a new parameter.

4 DATA ANALYSIS
To study the different characteristics of human behaviour under dif-
ferent conditions, we applied several feature extraction algorithms
to our data to extract lifted features from the data. We then used
these as a basis for evaluation against both post-study self-rating
results and our experimental conditions.

4.1 Visual Data Measurement
We applied a facial emotion detection algorithm to our preprocessed
frame data; this algorithm used the MobileNet architecture and was
trained on the AffectNet dataset [18, 31, 43]. This resulted in es-
timates of each of the seven emotion categories (neutral, happy,
sad, surprise, fear, anger, and disgust) for each frame. For the fa-
cial emotion analysis, a Chi-Square test for independence (with
Yates’ Continuity Correction) indicated significant association be-
tween conditions and seven emotion categories, 𝜒2 (1, 𝑛 = 4886) =
25.01, 𝑝 < 0.05, 𝑝ℎ𝑖 = 0.07.

Furthermore, table 2 shows the number of each of the seven
categories of emotions grouped by conditions and normalised by
total detection. We noticed that the number of fear emotions is
much higher than the other six emotions. On investigation, we see
this as a limit or bias in the algorithm and subsequently removed
the count of fear labels from further analysis. Furthermore, we
summed the quantity of negative emotions (anger, disgust, and
sadness) grouped by the two conditions, and note that the number
of negative emotions in Condition A is notably greater than in Con-
dition B. Consequently, the number of predicted positive emotions
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Table 2: The result of emotion estimation grouped by Condition A and Condition B

Condition Anger Disgust Fear Sadness Happiness Surprise Neutral Overall
A 40 62 1511 59 91 67 92 1922
B 19 46 1503 57 151 48 102 1926

(happiness) results for Condition A is less than that for Condition B.
Similarly, surprise, that is an emotion either a negative or positive
emotion in different contexts [49], was higher in Condition A than
in Condition B. Finally, the predicted results of the neutral results
for Condition A are less than those for Condition B (see Figure 5
for a summary of these aggregated results).

Figure 5: The four emotion categories grouped by conditions

As a form of error analysis, we applied the Facial Expression
Recognition (FER) open-source framework to the preprocessed
videos. The FER framework is built with the MTCNN for facial
recognition [52] and an emotion classifier [3] that has been trained
on the FER-2013 emotion dataset [15]. To illustrate, we plotted
the four primary changes in emotions following a sequence of
conditions for the three tasks (i.e. BAB). Figure 6 shows that the
emotion “happy” of the participant was dominated most of the
time in the two instances of Condition B, with scores of “happy”
approaching 1. Whereas the proportion of “happy” decreased, while
each of “sad”, “surprise”, and “netural” became dominant in periods
of Condition A.

Turning to eye gaze, we applied a state-of-the-art eye gaze es-
timator, trained on the ETH-XGaze dataset [53], to predict pitch
and yaw angles for each preprocessed facial frame. We summed
the absolute two angles as a new feature for statistical analysis,
since a human has different angles of direction corresponding
to positive or negative values of pitch and yaw, leading to the
sum of values being 0. An independent-samples t-test was con-
ducted to compare the normalised angles of pitch and yaw for
eye gaze under the two experimental conditions. A significant dif-
ference was found in the normalised pitch and yaw for eye gaze
(𝑀 = 0.38, 𝑆𝐷 = 0.14 for Condition A, 𝑀 = 0.40, 𝑆𝐷 = 0.14 and
Condition B), 𝑡 (2587) = −1.99, 𝑝 < 0.05, 𝑑 = −0.08.

To investigate the overall trend, we also investigated individual
traces as a form of error analysis. Figure 7 shows the fluctuations of
the pitch and yaw angle for the two time periods labelled Condition

Figure 6: The emotional changes for one participant during
the three tasks with conditions (BAB)

B and the one time period of Condition A for one participant. For
the fluctuations following a sequence of conditions (BAB), we can
see that the average area of two angles in Condition A is greater
than the average area of two angles in Conditions B instances.

For head-pose estimation, the model that we applied is designed
using CNNs, dropout, and adaptive gradient methods [37], and
trained on three popular datasets (i.e., the Prima head-pose dataset,
the Annotated Facial Landmarks in the Wild (AFLW) and the An-
notated face in the Wild (AFW) dataset) [16, 21, 54]. The predicted
results are the three angles of pitch, yaw and roll. Again we calcu-
lated an aggregate value of the normalised three absolute angles
as a new variable. The result of an independent-samples t-test,
however, showed that there was, no significant difference in the
angles of roll, pitch and yaw for head pose (𝑀 = 0.26, 𝑆𝐷 = 0.13
for Condition A, 𝑀 = 0.26, 𝑆𝐷 = 0.13 for Condition B), 𝑡 (5713) =
−0.49, 𝑝 = 0.62, 𝑑 = −0.01. Nevertheless, given the independence
of these variables in specific social behaviours, we also analysed
the three independent results (i.e. pitch, yaw, and roll angles) with
two conditions. The result for the normalised pitch angels with two
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Figure 7: Changes of one person’s pitch and yaw angles of
eye-gazing in timeline with conditions (BAB)

conditions is that there is a significant difference in the angles of
pitch (𝑀 = 0.37, 𝑆𝐷 = 0.17 for Condition A, 𝑀 = 0.41, 𝑆𝐷 = 0.17
for Condition B), 𝑡 (5713) = −7.16, 𝑝 < 0.05, 𝑑 = −0.19; Simi-
larly, the result for the normalised yaw angles with two condi-
tions is that a significant difference in the angles of yaw (𝑀 =

0.54, 𝑆𝐷 = 0.11 for Condition A, 𝑀 = 0.63, 𝑆𝐷 = 0.12 for Condi-
tion B), 𝑡 (5713) = −31.14, 𝑝 < 0.05, 𝑑 = −0.82; However, the result
for the normalised roll angles with two conditions is that there
was no significant difference in the angles of roll for head pose
(𝑀 = 0.56, 𝑆𝐷 = 0.14 for Condition A, 𝑀 = 0.55, 𝑆𝐷 = 0.12 for
Condition B), 𝑡 (5713) = 0.36, 𝑝 = 0.72, 𝑑 = 9.49𝑒 − 03.

4.2 Audio Data Measurement
The phenomenon of silence during conversations has been anal-
ysed in numerous pragmatic studies [35]. There are two types of
silence with respect to the specific state of the interlocutor: in-
tentional silence, where the interlocutor refuses to respond to a
speaker; and unintentional silence where the interlocutor psycho-
logically cannot respond to a speaker [20, 35]; both, however, can
be relevant in the case of confusion and disengagement. There-
fore, we calculate the duration of silence for each audio sample for
each of our conditions. An independent-samples t-test was con-
ducted to compare the normalised silence duration time between
the two conditions. Here, a significant difference was found be-
tween the normalised silence duration time and the two conditions
(𝑀 = 0.45, 𝑆𝐷 = 0.23 for Condition A, 𝑀 = 0.27, 𝑆𝐷 = 0.19 for
Condition B), 𝑡 (83) = 3.94, 𝑝 < 0.05, 𝑑 = 0.86.

For illustration purposes, we plotted the normalised silence du-
ration time of the two conditions (see Figure 8), showing that the
silence duration values of Condition A form a more discrete dis-
tribution than those of Condition B. Meanwhile, for an individual
observation, Figure 9 shows the normalised duration of silence
for one participant in the three tasks performed with the BAB se-
quence conditions; here the duration time of silence for Condition
A is obviously longer than for both Conditions B.

4.3 Subjective Measurement
We analysed the post-study survey scores with the two indepen-
dent groups split by two controlled conditions for the stimuli. Two

Figure 8: Plotted silence duration time grouped by conditions

Figure 9: A change of silence duration with conditions (BAB)

statistical questions were investigated: (1) the relationship between
the three task-centric confusion sub-question scores and the two
conditions; (2) whether there was a significant relationship between
the average self-reported confusion scores for the three tasks and
the two conditions.

An Mann-Whitney U-test was conducted for first question. The
results of the first question with the three sub-questions: (1) the
confusion levels for task 1 (a logic problem) with Condition A
(𝑀𝑑𝑛 = 0, 𝐼𝑄𝑅 = 2.00) were not significantly higher than those with
Condition B (𝑀𝑑𝑛 = 1, 𝐼𝑄𝑅 = 3.00), 𝑈 = 404.50, 𝑍 = −0.27, 𝑝 =

0.80, 𝑟 = 0.04. (2) The confusion levels for task 2 (a word prob-
lem) with Condition A (𝑀𝑑𝑛 = 1.00, 𝐼𝑄𝑅 = 2.00) was not signifi-
cantly higher than those with Condition B (𝑀𝑑𝑛 = 0, 𝐼𝑄𝑅 = 2.00),
𝑈 = 417.50, 𝑍 = −0.05, 𝑝 = 0.97, 𝑟 = 0.07 − 𝑒1. And (3) the confu-
sion levels for task 3 (a maths question) with Condition A (𝑀𝑑𝑛 =

0, 𝐼𝑄𝑅 = 3.00) was not significantly higher than those with Condi-
tion B (𝑀𝑑𝑛 = 1, 𝐼𝑄𝑅 = 2.00),𝑈 = 442, 𝑍 = 0.36, 𝑝 = 0.73, 𝑟 = 0.05.

An independent-sample t-test was performed for the second
question, which showed that there was no significant difference in
normalised average confusion levels for the three tasks performed
and the two conditions (𝑀 = 0.37, 𝑆𝐷 = 0.29 for Condition A,𝑀 =

0.38, 𝑆𝐷 = 0.35 for Condition B), 𝑡 (56) = −0.10, 𝑝 = 0.92, 𝑑 = −0.03.

5 DISCUSSION
Given the results just presented, we can make several observations.
(1) Participants were not necessarily aware of being confused when
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presented with confusion stimuli. (2) Participant’s emotions were
more negative and more surprised in confusion conditions than
non-confusion. (3) For the changes of emotions in the participant
on the timeline of the HRI experiment, the positive or neutral
emotion might be a main emotion category in the task-oriented HRI
and the negative emotion might increase in confusion conditions.
(4) Participants’ ranges of eye gaze angles were less in confusion
than in non-confusion situations. (5) For the changes of eye-gaze
angles in the timeline with different conditions, their gaze range
fluctuated more following the interaction with Condition A than
after interacting with Condition B. (6) It was found that there is a
strong correlation of participants’ pitch angles of head pose and
yaw angles of head pose respectively, in addition to their roll angles
of head pose, with confusion or non-confusion, although there
was no strong correlation of their ranges of absolute summed three
angles of head posewith confusion or non-confusion. (7) The silence
duration time was longer in confusion than in non-confusion.

Compared to the existing human-like avatar interaction work, in
our HRI study, although the Pepper lacks anthropomorphic facial
expression, the robot has advanced body language and appropri-
ate automatic animated speech. Meanwhile, the quality of data
collection is guaranteed as we controlled most of the variables in
the experiment environment. In addition, in a 3-minute interview,
most of the participants were surprised that the robot has high-tech
social interaction skills and friendly behaviour.

5.1 Limitations
The study was built on an earlier pilot study that was conducted
with a remote avatar-based setting; however, this study had a num-
ber of limitations worth mentioning. (1) 25 out of the 29 partici-
pants had a technical background in computer science; therefore,
we expect biases in population interactions relative to the general
population. This is a controlled lab study, although we recruited
people in public, it seems those kinds of people would like to reg-
ister the experiment [14, 17]. (2) There was no control over the
conversation boundaries to reflect different states of confusion (i.e.
productive confusion or unproductive confusion) in these short
conversations with confusion stimuli. (3) As it is an early study
within a complete study programme, we have focused on designing
the situated task-oriented HRI to track interlocutor confusion, and
as a result it lacks a third party (e.g. annotators or experts) to further
test our design for high-fidelity confusion innovation in a plausi-
ble setting. (4) In our controlled HRI experiment, the participants
were assigned each task with only one type and one condition, and
different types of tasks that can raise the participants’ confusion
are not included in this study. (5) We note that post-study surveys
have a risk and noisy that we cannot ensure that participants can
remember their confusion, it is possible to impact results of sub-
jective measurement. However, in this study, the influence of the
participant’s memory is limited, since each task approximately lasts
only 1.5 minutes. Therefore, we are confident that most participants
should in principle remember their confusion for each task.

5.2 Future Study
In terms of further study, the future experiment design, based on our
experience and data analysis, will focus on the word problem task

as these are more straightforward to design with four inductions
for confusion stimuli. We plan to use this task with four confusion
inductions for each participant to reduce variables from mixed con-
fusion inductions in one task. Although we do intend to lengthen
the period and complexity of individual tasks, users will have time
to directly after each task rate their confusion score and a brief rest
to prepare them for the next task.

As for the data collection and analysis, the sample size of this pi-
lot study was only 29 samples, in the next study, we will increase the
sample size (target: 60) to generate more stable and reliable results.
However, since we will be building the experiment in broadly the
same way, we do hope to be able to compare results across studies
as a form of validation. Furthermore, recognition of body posture
and speech emotion are two primary avenues for further feature
analysis in multiple confusion states. To further verify the dialogue
strategies for confusion stimuli can elicit confusion successfully,
and also to ensure the more reliable results of data analysis, an an-
notation schema of confusion and non-confusion will be designed
for annotators to annotate different confusion conditions on our
future data. More importantly, though, we recognise that being able
to generalise from specific user studies such as this is very challeng-
ing, and as such is a major component of future work may be to
establish generalised abstracted models that can be applied across
different social and technological settings. Within our group, we
are also working on developing dynamic planning policies which
can be adjusted in the case of confusion detection.

6 CONCLUSION
In conclusion, this paper illustrated with a controlled study that
even when users are not aware of being in a confused state, they
present different interaction behaviours which may in principle
be detected by automated systems such as social robots. We be-
lieve that these results do validate that behavioural differences
between visual and speech behaviour are present in confusing and
non-confusing situations. Meanwhile, this study not only motivates
our further research in this domain, but also has the potential to
increase the social task-oriented capabilities of dialogue-equipped
robots in the medium to long term. This is our first study on mod-
elling confusion states in a situated HRI task-oriented dialogue
setting. Nevertheless, we see it as a firm foundation for further
situated dialogue investigation for HRI, and in particular, where we
focus on enhancing engagement through preemptive anticipation
of disengagements. In future work, we aim to expand the feature
analysis, generalise the abstracted models to be applicable across
platforms, and develop generalised dialogue strategies/policies to
provide additional and clarification information to users to assist
them in joint task performance.
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Table 3: Examples of conversation scripts for confusion stimuli

Tasks* Confusion
Pattern*

Condition A Condition B

1 (1) (4) R*: Suppose Anna’s mother admires Anna, Anna admires
her mother, everyone admires her mother, so everyone
admires Anna, right?
P*: <user-response>
R: Does it make sense Anna’s friend admires Anna but
her mother, doesn’t it?
P: <user-response>
R: Thank you for your answer.

R: Suppose everyone over the age of 30 is a liar,
William is a liar, so the question is, is William over
30?
P: <user-response>
R: Do you agree that not everyone under 30 is not a
liar?
P: <user-response>
R: Great, you are correct.

2 (3) (4) R: There are 66 people in the playground including 28
girls, boys and teachers. How many teachers were there
in total?
P: <user-response>
R: Please try again.
P: <user-response>
R: Thank you for your answer.

R: There are 5 groups of 4 students, how many stu-
dents are there in the class?
P: <user-response>
R: You are correct.
R: Each group has 2 pairs of scissors, how many pairs
of scissors are there in total?
P: <user-response>
R: Well done, you are so smart.

3 (1) (4) R: If x = 4 and x + b + log(1) = 10, the question is, is
𝑏 = 6 or 𝑏 = 12?
P: <user-response>
R: Please try again.
P: <user-response>
R: Sorry, maybe this question is too difficult.

R: If 𝑥 = 4 and 𝑥 + 𝑏 = 10, the question is, is b equal
12?
P: <user-response>
R: Great, you are correct.

* R: Robot; P: Participant * (1) Complex information and simple information; (2) Contradictory information and consistent information; (3)
Insufficient and sufficient information; (4) feedback. * Task 1: logic problem, Task 2: word problem, Task 3: math question

Table 4: User Survey for HRI Study (5-point Likert Scales)

No. Questions
1 Did you enjoy talking to Pepper overall?
2 Was the conversation with Pepper fluent?
3 Was the conversation with Pepper easy?
4 Was the conversation with Pepper frustrating?
5 Was the conversation with Pepper boring?
6 Did you feel confused most of the time talking with Pepper?
7 Did you feel confused when you answered the logical questions to Pepper (including Pepper’s responses may make you confused)?
8 Did you feel confused when you answered the word problems to Pepper (including Pepper’s responses may make you confused)?
9 Did you feel confused when you answered the Mathematics questions to Pepper (including Pepper’s responses may make you

confused)?
10 Did you want to give up this conversation with Pepper?
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