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Monitoring the Effects of Temporal Clipping on VoIP Speech Quality

Andrew Hines1, Jan Skoglund2, Anil Kokaram2, Naomi Harte1
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2Google, Inc., Mountain View, CA, USA

andrew.hines@tcd.ie

Abstract
This paper presents work on a real-time temporal clipping mon-
itoring tool for VoIP. Temporal clipping can occur as a result
of voice activity detection (VAD) or echo cancellation where
comfort noise in used in place of clipped speech segments. The
algorithm presented will form part of a no-reference objective
model for quantifying perceived speech quality in VoIP. The
overall approach uses a modular design that will help pinpoint
the reason for degradations in addition to quantifying their im-
pact on speech quality. The new algorithm was tested for VAD
compared over a range of thresholds and varied speech frame
sizes. The results are compared to objective Mean Opinion
Scores (MOS-LQO) from POLQA. The results show that the
proposed algorithm can efficiently predict temporal clipping in
speech and correlates well with the full reference quality pre-
dictions from POLQA. The model shows good potential for use
in a real-time monitoring tool.
Index Terms: temporal clipping, VAD, VoIP, POLQA

1. Introduction
Speech communication using voice over internet protocol
(VoIP) services such as Google Hangouts and Skype is be-
coming more pervasive and, along with mobile telephony, is
gradually replacing traditional fixed line narrowband telephony.
Monitoring the Quality of Experience (QoE) for users of these
systems in realtime has become more complex as the points of
failure have expanded.

Two commonly used speech enhancement algorithms are
Voice Activity Detection (VAD) and line echo cancellation.
VAD is implemented within most common speech codecs [1, 2]
to suppress silence segments and to reduce unnecessary band-
width consumption. The performance depends on the imple-
mentation but when a VAD algorithm misclassifies a portion
of active speech as non-active, temporal clipping occurs and
can impact the overall speech quality perceived by the listener.
Echo cancellation is handled in a similar manner where seg-
ments containing reflected echo speech are suppressed. Both
systems usually replace the inactive or echo segments with com-
fort noise [3].

Traditionally, QoE for voice communication systems is as-
sessed in terms of speech quality. Subjective listener tests use
an absolute category rating to establish a mean opinion score
(MOS) on a five point scale by evaluating speech samples in
laboratory conditions. Aside from being time consuming and
expensive, these tests are not suitable for realtime monitoring
of systems.

The development of objective models that seek to emulate
listener tests and predict MOS scores is an active topic of re-
search and has resulted in a number of industry standards. Mod-
els can be categorised by application, i.e. planning, optimisa-

tion, monitoring and maintenance [4]. Full reference objective
models, such as PESQ [5] and POLQA [6], predict speech qual-
ity by comparing a reference speech signal to a received signal
and quantifying the difference between them. Such models can
be applied to system optimisation but are constrained by the
requirement to have access to the original signal, which is not
always practical for realtime monitoring systems. In these sce-
narios, no reference (NR) models, such as P.563 [7], LCQA [8]
or ANIQUE+ [9] are more appropriate. They are sometimes
referred to as single ended, or non-intrusive models, as they at-
tempt to quantify the quality based only on evaluating the re-
ceived speech signal without access to a clean reference. This
restriction makes NR model design more difficult, and NR mod-
els tend to have inferior performance accuracy, when compared
to full reference models [10]. Full reference metrics are sen-
sitive to quality degradation caused by temporal clipping. A
non-intrusive method of temporal clipping detection has been
proposed by Ding et al. [11] but assumes prior knowledge of
the clipping statistics. This new method attempts to monitor in
a no-reference way that does not require access to the original
unclipped signal or any knowledge of typical clipping statistics.
Thus this is the first work we are aware of on full non-reference
detection of clipping for speech quality measurement.

This work presents the early stage development of tempo-
ral clipping detection algorithm as one module of an overall NR
speech quality model for VoIP application. The final model will
contain multiple modules designed to detect and estimate the
amount of degradation caused by specific VoIP degradations.
Ultimately the output of individual modules will be combined to
produce an aggregate objective speech quality prediction score.
The novelty of this approach over other NR models [7, 8, 9] is
that each module provides a unidimensional quality index feed-
ing into the overall metric but can also provide diagnostic in-
formation about the cause of the degradation for narrowband or
wideband speech. This will allow realtime remedial action to
improve the overall quality of experience for the users of VoIP
systems, through changing parameters during a call. For exam-
ple, bandwidth may be adjusted to switch the quality of experi-
ence from a low-quality wideband speech scenario to a superior
high-quality narrowband speech scenario.

The temporal clipping detection algorithm proposed in this
paper, as part of the overall system, is designed to work with
narrowband and wideband signals. While the tests presented
here focus on narrowband signals, the algorithm could equally
be applied to wideband scenarios. Section 2 describe temporal
clipping and the causes. Section 3 describes the model and an
experimental evaluation is outlined in section 4. Section 5 dis-
cusses the results and compares them with the predictions from
POLQA. The paper concludes with a description of the next
stages in the overall model development.
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Figure 1: Example of original signal with VAD window with
front end clipping (FEC) and back end clipping (BEC) illus-
trated on clipped signal below.

2. Background
Voice activity detection and line echo cancellation are standard
modules employed in VoIP implementations. They provide a
twofold benefit by improving the bandwidth utilisation by re-
moving unnecessary noise transmission, and by removing un-
wanted echo and background noise from conversations. While
line echo cancellation performs a different task to VAD, the
failure mode is common between the two modules, with active
speech frames being incorrectly marked as inactive and clipped.
An example of this is shown in Fig. 1. The performance of
VAD systems can vary significantly depending on the SNR of
speech, type of environmental noise, and on the implementa-
tion [12, 13]. The location of the clipping within a talkspurt can
vary and is usually broken down into three categories: front end
clipping (FEC), middle speech clipping (MSC) and back end
clipping (BEC) depending on the part of speech clipped. Front
and back end clipping are illustrated in Fig. 1. FEC is the most
noticeable from a speech quality perspective [11, 14]. An ar-
gument in provided by Gruber et al. [15] that mid-speech burst
clipping can impact perceived quality more in longer passages
of speech. This would be relevant in VoIP conversations but
was not tested in the current work.

Ding et al. [11] proposed a non-intrusive metric to predict
temporal clipping. The algorithm does not require access to
the reference signal but it does assume prior knowledge of the
clipping statistics for the degraded speech and proposes the used
of method described in [16] to obtain a VAD estimate. This may
not be a practical approach in a non-hetrogeneous VoIP scenario
with a range of modules that can potentially introduce varying
amounts of temporal clipping.

Detecting temporal clipping using a full reference speech
quality metric is easily achieved as the unclipped reference is
available. Metrics such as POLQA also predict the impact that
clipping will have on the perceived speech quality. In a non-
intrusive, no-reference environment, prediction of the impact of
temporal clipping on speech quality is more challenging. The
model must distinguish between natural silences or pauses and
clipped frames. It needs to take into account that suppression of
long segments of inactive speech will not impact the perceived
quality, but a small amount of clipping at the front end of a

talkspurt can noticeably mask speech and impact the perceived
quality for the listener. There is not necessarily a direct corre-
lation between the efficiency of a VAD algorithm and the effect
on speech quality – classifying a silence frame as active would
reduce the VAD performance in terms of bandwidth efficiency
but would not impact speech quality while the reverse is not
true.
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Figure 2: Temporal clipping detector algorithm example. The
top pane shows a segment of speech with the VAD window
marked. The next pane shows the STFT spectrogram with 15
critical band frequency bands and 8 ms frames. The third pane
shows the a plot of the mean power per frame Pf . The bot-
tom pane shows the three binary masks used to produce the clip
mask, mc, which is shown in blue. The actual clip mask at the
bottom, which is the inverse of the VAD in the top pane. It can
be seen that mc does not follow the actual VAD mask directly
but is likely to oscillate when clipping occurs.

3. Temporal Clipping Detection
The algorithm uses a short-term Fourier Transform (STFT)
spectrogram of the test signal to measure changes in the mean
frame power. An example is shown in Fig. 2. A STFT is created
using critical bands between 150 and 3,400 Hz for narrowband
speech, yielding 16 frequency bands. A 128 sample, 50% over-
lap Hanning window is used for signals with an 8 kHz sampling
rate, giving a frame period Tf = 8 ms. For a signal N frames in
length, the mean power Pf [h] for frame, h, is calculated across



the 16 frequency bands as:

Pf [h] =
1

16

16∑
k=1

P [h, k] (1)

A power mask is calculated as

mp[h] =

{
0 if Pf [h] > P̄

1 if Pf [h] ≤ P̄
(2)

where P̄ is the average power over N frames. A frame gra-
dient mask, mf [h], between the mean power of the high and
low frequency bands is also computed using

y[h] =

∑3
k=1 P [h, k]∑15
k=13 P [h, k]

(3)

mf [h] =

{
1 if y[h] > ȳ

0 if y[h] ≤ ȳ
(4)

where ȳ is the mean value of y over N frames. The power
mask, mp, is then used to calculate a “rough” voice activity
activity mask, i.e one that detects talkspurts and masks larger
silences but ignores short pauses within speech. This is needed
to remove longer silence sections from the overall sample as
the model calculates clipping as a rate with respect to the active
speech length. This talkspurt mask, mt is computed using a
moving average filter to ensure short inactive sections frames at
the onset of VAD are included. The 120 ms moving average is
computed over J frames (J = 15 for 8 ms frames) as

q[h] =
1

J

J∑
i=0

mp[h− i] (5)

mt[h] =

{
0 if q[h] > P̄

1 if q[h] ≤ P̄
(6)

To calculate the temporal clipping mask, mc, a logical
AND of mf , mp and mt is computed

mc = mf ⊗mp ⊗mt (7)

Finally, the estimate of temporal clipping , Tc, is computed
as the number of zero crossings per second. This is computed
from mc when offset by co = −0.5, divided by the number of
active samples in mt times the frame period Tf as

z[h] =

{
1 if (mc[h] − co)(mc[h− 1] − co) ≤ 0

0 if (mc[h] − co)(mc[h− 1] − co) > 0
(8)

Tc =

∑N
h=1 z[h]

Tf

∑N
h=1 mt[h]

. (9)

4. Simulation and Model Evaluation
Two sets of speech samples were used to test the algorithm.
The first used speech samples from the TIMIT database [?] and
the second the IEEE database [18]. In both cases each speech
sample contained a single talkspurt of 3–3.6 s in length and
greater than 90% active speech. The TIMIT samples were cho-
sen to match the variety of samples used by Ding et al. [11].
using samples from all of the eight dialect regions. Their pre-
processing methodology was followed and the speech samples
were downsampled to 8000 Hz, and level adjusted to -26 dBov

using ITU-T Rec. P.56 level adjustment. The second test used
30 samples from the IEEE speech corpus [18]. Ten sentences
from three speakers were used, each of approximately 3 seconds
in duration.

As per Ding et al., an energy-based VAD algorithm was
used to create temporally clipped speech. The algorithm seg-
ments the speech into frames and uses a threshold energy to
determine if the frame is speech active or inactive. Four frame
sizes were tested, 5, 10, 20, and 30 ms. For each frame size 9
thresholds were tested incrementing in 3 dB steps from 6 to 30
dB. The VAD algorithm replaced inactive frames with narrow-
band 30 dB pink noise.

This yielded 30 sentences with 36 temporally clipped sam-
ples per sentence. In addition, the reference sentences without
any clipping were tested. As a baseline, the detector was also
tested with choppy speech to validate that it was not suscepti-
ble to other type of similar VoIP degradations. Four frame sizes
were tested, 5, 10, 20, and 30 ms. For each frame size 9 chop
rates were tested incrementing in 1 Hz steps from 1 to 9 frames
lost per second. The chopped frames were periodically spaced
and replaced with zeros, i.e. without packet loss concealment.

The temporal clipping detector was used to estimate the
temporal clipping in a no-reference manner. The clipped speech
samples were also compared to the reference speech for each
degraded sample using POLQA. The objective speech quality
results were compared to the clipping detection algorithm re-
sults to assess its performance.

Ding et al. used PESQ as their benchmark quality metric.
In this work, results were compared against POLQA as it has
superseded PESQ as the ITU-T recommended speech quality
metric.

5. Results and Discussion
The results are presented in Fig. 3 for the TIMIT and Fig. 4
IEEE tests. Examining the clip detection results for TIMIT
first, the left pane of Fig. 3 plots the clip detected on the y-
axis against the VAD threshold in dB on the x-axis. The results
in red show the four frame sizes with 95% confidence intervals.
It can be seen that the VAD energy threshold was the dominant
factor and the size of the VAD frame was not a significant fac-
tor in the amount of clipping detected. Looking at the results
from POLQA, it can be seen that the frame size did not signifi-
cantly alter the MOS-LQO (Listener Quality Objective) quality
predictions. The results for clip being detected fall to a level
indistinguishable from the clean reference for the higher VAD
thresholds but the POLQA results confirm that at such thresh-
olds the clipping has a very small impact on perceived quality.
In the right hand pane of Fig. 3, the results from the proposed
model are compared to those from POLQA. A strong correla-
tion is evident along the diagonal of the scatter, however there
is a spread between the results for different frame lengths. This
result was interesting as it was not evident in the IEEE results.

The tests with the IEEE database yielded similar results to
those obtained with TIMIT. Although the absolute results dif-
fered (e.g. the reference scoring a clip level of 27 versus 25
for the TIMIT test), the results obtained from POLQA also dif-
fered, pointed towards a small difference in the impact of the
VAD clipping on quality between databases. Overall, the scat-
ter plots show a promising mapping between the clip scores and
the full reference quality predictions from POLQA.

In both cases, the test with chop data was predicted to have
a clip score within the same bounds as the reference samples,
showing that the clip detector is not susceptible to other tran-
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Figure 3: Results. Left: Results for TIMIT dataset. Middle: POLQA. Right: Comparison of results with POLQA.
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Figure 4: Results. Left: Results for IEEE dataset. Middle: POLQA. Right: Comparison of results with POLQA.

sient degradations impacting the signal across frequency bands.

The algorithm measures the amount of clipping activity
rather than a ratio of the duration of speech clipped. A long
clip of silence is not necessarily a bad thing from a quality per-
spective while clipped frames adjacent to active frames have an
impact on quality. The tests were carried out using speech sam-
ples where the amount of active speech in the speech samples
was kept to a similar ratio although the length of the samples
differ slightly. Other than the lengths the main difference was
the variety of speakers with the IEEE test containing 3 differ-
ent speakers and the TIMIT test containing 14 (7 male and 7
female). Two other tests, the results presented in Fig. 5, were
carried out using data from the ITU P.Sup 23 dataset [19]. Us-
ing 30 single talkspurt samples with one speaker per test, simi-
lar results were obtained. This confirmed that the results are not
speaker, or utterance dependant.
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talkspurts from English male speakers 1 and 2.

6. Conclusions
This paper has presented a new algorithm for temporal clipping
detection. The algorithm will form part of a modular speech
quality estimation system. The detected clipping results demon-
strate that the algorithm can efficiently predict temporal clip-
ping in speech and correlates well with the full reference qual-
ity predictions from POLQA. The algorithm is no-reference and
required no knowledge of clipping statistics. The tests here are
performed on short (ca. 3 seconds) sentences. Further testing
will be required to demonstrate whether the quality measure
will transfer well to conversational situations. As observed in
work by Gruber [15], quality degradations caused by repeated
mid-word clipping may have a greater cumulative quality im-
pact that can be captured in tests on short sentences. As ob-
served by Moller et al. [4] the lack of publicly available data
to develop and test speech quality metrics makes progress slow.
Temporal clipping is common in VoIP and this detector could
be easily deployed as a monitoring tool in a realtime system,
or combined with other components as part of a more general
no-reference speech quality model. Work by the authors in on-
going to develop additional components.
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