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Abstract — The use of image based information exchange has grown rapidly over the
years in terms of both e-to-e image storage and transmission and in terms of maintaining
paper documents in electronic form. Further, with the dramatic improvements in the
quality of COTS (Commercial-Off-The-Shelf) printing and scanning devices, the abil-
ity to counterfeit electronic and printed documents has become a widespread problem.
Consequently, there has been an increasing demand to develop digital watermarking, in-
formation hiding and covert encryption methods which can be applied to both electronic
and printed images (and documents) for the purposes of authentication, prevent unau-
thorized copying and, in the case of printed documents, withstand abuse and degradation
before and during scanning. In this paper we consider the background to a new method
to hiding image based information by diffusing it with a stochastic field (uniformly dis-
tributed noise). This ’diffusion only’ approach is used specifically to design a system for
authenticating printed information that is robust to a low resolution ’print-scan cycle’.

Keywords — Information Hiding, Stochastic Diffusion, Print Authentication.

I Introduction

In this paper, an approach to image information
hiding is presented and some possible applications
considered. It is based on computing a ‘scram-
bled image’ by diffusing an ‘input image’ with a
stochastic field (a cipher). For e-to-e applications,
a cover image (covertext) can be applied subject
to a user defined diffusion-to-covertext ratio. The
information is subsequently recovered by removing
the covertext and then correlating the output with
the original (key dependent) cipher. This approach
provides the user with a method of hiding image-
based information in a host image before transmis-
sion of the data. In this sense, the method pro-
vides a steganographic approach to transmitting
encrypted information that is not apparent during
an intercept [1]. Decryption is based on knowledge
of the key(s) and access to the host image.

With regard to digital image analysis and e-to-e
communications, the method provides a way of em-
bedding information in an image that can be used

for authentication from an identifiable source, a
method that is relatively insensitive to lossy com-
pression, making it well suited to digital image
transmission. However, with regard to document
authentication, use of a covertext is not robust.
The reason for this is that the registration of pix-
els associated with a covertext can not be assured
when the composite image is printed and scanned.
We therefore consider a diffusion only approach to
document authentication. This is because the pro-
cess of diffusion (i.e. the convolution of informa-
tion with a cipher) is compatible with the physical
principles of an imaging systems and thus, with
image capture devices (digital cameras and scan-
ners, for example) that, by default, conform to the
‘physics’ of optical image formation [2].

The diffusion of plaintext (in this case, an im-
age) with a stochastic field (the cipher) has a syn-
ergy with the encryption of plaintext using a ci-
pher and an XOR operation (when both the plain-
text and cipher are represented as binary streams)
[3], [4]. However, decryption of a convolved im-



age (deconvolution) is not as simple as XORing
the ciphertext with the appropriate cipher. Here,
we consider an approach which is based on pre-
conditioning the original cipher in such a way that
decryption (de-diffusion) can be undertaken by
correlating the ciphertext with the cipher. The
output ciphertexts generated for printed docu-
ment authentication are textures of a type that
are determined by the spectral characteristics of
the plaintext which can be applied using low reso-
lution Commercial-Off-The-Shelf (COTS) printers
and scanners. In this sense, the approach is based
on a form of ‘texture coding’.

II Stochastic Diffusion and Confusion

In terms of plaintexts, diffusion is concerned with
the issue that, at least on a statistical basis, similar
plaintexts should result in completely different ci-
phertexts even when encrypted with the same key.
This requires that any element of the input block
influences every element of the output block in an
irregular fashion. In terms of a key, diffusion en-
sures that similar keys result in completely differ-
ent ciphertexts even when used for encrypting the
same block of plaintext. This requires that any el-
ement of the input should influence every element
of the output in an irregular way. This property
must also be valid for the decryption process be-
cause otherwise an intruder may be able to recover
parts of the input from an observed output by a
partly correct guess of the key used for encryp-
tion. The diffusion process is a function of the
sensitivity to initial conditions, conditions that all
cryptographic systems should have. Further, all
cryptographic systems should exhibit an inherent
topological transitivity causing the plaintext to be
mixed through the action of the encryption pro-
cess.

The process of ‘confusion’ ensures that the (sta-
tistical) properties of plaintext blocks are not re-
flected in the corresponding ciphertext blocks. Ev-
ery ciphertext must have a random appearance to
any observer and be quantifiable through appropri-
ate statistical tests. Diffusion and confusion are
processes that are of fundamental importance in
the design and analysis of cryptological systems,
not only for the encryption of plaintexts but for
data transformation in general.

Consider the fundamental imaging equation
given by [6]

u(x, y) = p(x, y)⊗2 u0(x, y) + n(x, y)

where u0 is the ‘input’ (information associated
with the ‘object plane’) u is the output (informa-
tion associated with the ‘image plane’), p is the
Point Spread Function (PSF), n is the noise func-
tion (where Pr[n(x, y)] is, ideally, known a priori1)

1Pr denotes the Probability Density Function.

and ⊗2 denotes the two-dimensional convolution
integral. In optics, both the operator ⊗2 and the
functional form of p are derived from solving a
physical problem (using a Green’s function solu-
tion) compounded in a particular Partial Differen-
tial Equation (e.g. the wave equation or the dif-
fusion equation) [5]. For example, if u is taken to
be due to the diffusion of light through an opti-
cal diffuser and thereby a solution to the diffusion
equation (with initial condition u0), then at a time
T

p(x, y) = exp
(
x2 + y2

4DT

)
where D is the ‘Diffusivity’ of the diffuser. This
is an example of ‘Gaussian diffusion’ since the
characteristic Point Spread Function is a Gaussian
function. However, in general, a variety of PSFs
are possible with regard to the fundamental imag-
ing equation and the imaging systems to which it
applies as a basic model. The PSF of an imag-
ing system is fundamental to its characterisation
and may be derived theoretically and/or experi-
mentally. However, in Cryptology, we are ‘free’
to choose any PSF. Stochastic diffusion involves
interchanging the roles of p and n, i.e. replac-
ing p(x, y) - a deterministic PSF - with n(x, y) -
a stochastic function. Thus, stochastic or ‘noise’
diffusion is compounded in the result

u(x, y) = n(x, y)⊗2 u0(x, y) + p(x, y)

where p can now be any function including a
stochastic function, i.e.

u(x, y) = n1(x, y)⊗2 u0(x, y) + n2(x, y)

where both n1 and n2 are stochastic functions
which may be of the same type (i.e. have the same
PDFs) or of different types (with different PDFs).

The simplest form of stochastic diffusion is based
on the equation

u(x, y) = n(x, y)⊗2 u0(x, y).

There are two approaches to solving the inverse
problem: Given u and n, obtain u0. We can de-
convolve by using the convolution theorem giving

u0(x, y) = F−1
2

[
U(kx, ky)N∗(kx, ky)
| N(kx, ky) |2

]
where N is the Fourier transform of n, U is the
Fourier transform of u, F−1

2 denotes the (two-
dimensional) inverse Fourier transform and kx and
ky are the spatial frequencies in the Fourier plane.
However, this approach requires regularization in
order to eliminate any singularities when | N |2→
0 through application of a constrained deconvo-
lution filter such as the Wiener filter [7]. Alter-
natively, if n is the result of some random num-
ber generating algorithm, we can construct the



stochastic field

m(x, y) = F−1
2

[
N∗(kx, ky)
| N(kx, ky) |2

]
where | N(kx, ky) |2> 0, the diffused field now
being given by

u(x, y) = m(x, y)⊗2 u0(x, y).

The inverse problem is then solved by correlating
(denoted by �2) u with n, since2

n(x, y)�2 u(x, y)⇐⇒ N∗(kx, ky)U(kx, ky)

and
N∗(kx, ky)U(kx, ky)

= N∗(kx, ky)M(kx, ky)U0(kx, ky)

= N∗(kx, ky)
N∗(kx, ky)
| N(kx, ky) |2

U0(kx, ky) = U0(kx, ky)

so that

u0(x, y) = n(x, y)�2 u(x, y).

The condition that | N(kx, ky) |2> 0 is simply
achieved by implementing the following process:
∀kx, ky, if | N(kx, ky) |2= 0, then | N(kx, ky) |2=
1. This result can be used to ‘hide’ an image in
another image as discussed in the following section.

III Digital Image Watermarking

Consider the case when we have two independent
images i1(x, y) ≥ 0∀x, y and i2(x, y) ≥ 0∀x, y and
we consider the case of embedding i1 with i2. We
construct a stochastic field m(x, y) ≥ 0∀x, y a pri-
ori and consider the equation

u(x, y) = rm(x, y)⊗2 i1(x, y) + i2(x, y) (1)

where

‖m(x, y)⊗2 i1(x, y)‖∞ = 1 and ‖i2(x, y)‖∞ = 1.

By normalising the terms in this way, the coeffi-
cient 0 ≤ r ≤ 1 can be used to adjust the relative
magnitudes of the terms such that the diffused im-
age i1 is a perturbation of the ‘host image’ (cover-
text) i2. This provides us with a way of digital
watermarking [8] one image with another, r being
referred to as the watermarking ratio3. For appli-
cations in image watermarking, stochastic diffu-
sion has two principal advantages: (i) a stochastic
field provides more uniform diffusion than a deter-
ministic function does; (ii) stochastic fields can be
generated using random number generators that

2Where ⇐⇒ denotes the transformation from image to
Fourier space.

3Equivalent, in this application, to the standard term
‘Signal-to-Noise’ or SNR ratio as used in signal and image
analysis.

Fig. 1: Example of watermarking one image with another
using stochastic diffusion. The ‘host image’ i2 (top-left )
is watermarked with the ‘watermark image’ i1 (top-centre)
using the diffuser (top-right) which is uniformly distributed
random noise n whose pixel-by-pixel values depend upon
the seed used (the private key). The result of comput-
ing m ⊗2 i1 (bottom-left) is added to the host image for
r = 0.1 in equation (1) to generate the watermarked image
u (bottom-centre). Recovery of the watermark image i1
(bottom-right) is accomplished by subtracting the host im-
age from the watermarked image and correlating the result
with n.

depend on a single initial value or seed (i.e. a pri-
vate key). An example of this approach is shown
in Figure 1. Here, an image i2 (the ‘host im-
age’) is watermarked with another image i1 using
stochastic diffusion. Because r = 0.1, the output
u is only slightly perturbed by the stochastic field
m(x, y)⊗2 i1(x, y) and hence u ' i2 (at least from
a visual perspective).

a) Stochastic Field Generation

The stochastic field n used to compute m, can
be generated using a range of (uniformly dis-
tributed) pseudo random number generators based
on conventional (substitution) encryption algo-
rithms coupled with existing key exchange proto-
cols. The output array n is normalized so that
‖n‖∞ = 1 and used to generate n(x, y) on a row-
by-row or column-by-column basis. Recovery of
the watermark image requires knowledge of two
keys: (i) the key used to generate n; (ii) the host
image i2.

b) Statistical Analysis

The expected statistical distribution associated
with stochastic diffusion is Gaussian. This can
be shown if we consider i1 to be a strictly deter-
ministic function described by a sum of N delta
functions. Thus if

i1(x, y) =
N∑

i=1

N∑
j=1

δ(x− xi)δ(y − yj)

then
u(x, y) = m(x, y)⊗2 i(x, y)



=
N∑

i=1

N∑
j=1

m(x− xi, y − yj).

Each function m(x − xi, y − yj) is just m(x, y)
shifted by xi, yj and will thus be identically dis-
tributed. Hence, from the Central Limit Theorem

Pr[u(x, y)] = Pr

 N∑
i=1

N∑
j=1

m(x− xi, y − yj)

 =

N∏
i=1

⊗ Pr[m(x, y)] ≡ Pr[m(x, y)]⊗2Pr[m(x, y)]⊗2 ...

and we can expect Pr[u(x, y)] to be normally dis-
tributed for large N .

IV Print Authentication

The approach discussed in Section III can be used
generally for e-to-e type communications where
there is no loss of information. Steganography and
watermarking techniques for hardcopy data (print)
authentication have to be robust to the significant
distortions generated by the printing and scan-
ning processes as well as general soiling incurred
through day-to-day use. If a watermarked image
is printed and scanned back into electronic form,
then the print/scan process will yield an array of
pixels that will be different from the original elec-
tronic image even though it might ‘look’ similar.
These differences can include the size of the image,
its orientation, brightness, contrast and so on.

a) Diffusion Based Method

With respect to equation (1), of all the processes
involved in the recovery of the watermark, the sub-
traction of the host image from the watermarked
image is critical. If this process is not accurate on
a pixel-by-pixel basis and deregistered for any of
many reasons, then recovery of the watermark by
correlation will not be effective. However, if we
make use of the diffusion process alone, then the
watermark can be recovered via a print/scan be-
cause of the compatibility of the optical processes
involved (i.e. convolution of an object function
with the PSF). Depending on the printing process
applied, a number of distortions will occur which
diffuse the information being printed. Thus, in
general, we can consider the printing process to
introduce an effect that can be represented by the
convolution equation

uprint = pprint ⊗2 u.

where u is the original electronic form of a dif-
fused image (i.e. u = m ⊗2 i where i is the input
image) and pprint is the PSF of the printer. An
incoherent image of the data, obtained using a flat
bed scanner, for example (or any other incoherent

optical imaging system), will also have a character-
istic PSF pscan. Thus, we can consider a scanned
image to be given by

uscan = pscan ⊗2 uprint

where uscan is taken to be the digital image ob-
tained from the scan. Now, because convolution is
commutative, we can write

uscan = pscan/print ⊗2 m⊗2 i

= m⊗2 pscan/print ⊗2 i

where
pscan/print = pscan ⊗2 pprint

which is the print/scan point spread function as-
sociated with the processing cycle of printing the
image and then scanning it. Thus, the process
u(x, y) = m(x, y) ⊗2 i(x, y) used to generate the
data u and the process i(x, y) = n(x, y)�2 u(x, y)
used to recover the image i produces a recon-
struction for i whose fidelity is determined by the
scan/print PSF. The principal requirement to do
this in practice, is to re-size the scanned image
back to the size of the original digital image i. This
is due to the scaling relationship (for a function f
with Fourier transform F )

f(αx, βy)⇐⇒ 1
αβ

F

(
kx

α
,
ky

β

)
.

The size of an image captured by a scanner or other
device will depend on the resolution used. The
size of the image obtained will inevitably be differ-
ent from the original because of the resolution and
window size used to print the diffused image u and
the resolution used to scan the image. Since scal-
ing in the spatial domain causes inverse scaling in
the Fourier domain, the scaling effect must be ‘in-
verted’ before the watermark can be recovered by
correlation since correlation is not a scale invariant
process. Re-sizing the image (using an appropriate
interpolation scheme such as the bi-cubic method,
for example) requires a set of two numbers N1 and
N2 (i.e. the N1×N2 array used to generate n and
m) that, along with the key required to regenerate
n, provides the ‘private keys’ needed to recover the
data from the diffused image.

An example of this approach is given in Fig-
ure 2 which shows the result of reconstructing
four different images (a photograph, finger-print,
signature and text) used in the design of an im-
personalized bank card. The use of ‘diffusion
only’ watermarking for print security can be un-
dertaken in colour by applying exactly the same
diffusion/reconstruction methods to the red, green
and blue components independently (as illustrated
in Figure 2). Because this method is based on con-
volution alone, the reconstruction is not negated



Fig. 2: Example of the application of ‘diffusion only’ wa-
termarking. In this example, four images of a face, finger-
print, signature and text have been diffused using the same
stochastic field m and printed on the front (top-left) and
back (bottom-left) of an impersonalized identity card us-
ing a 600 dpi printer. The reconstructions (top-right and
bottom-right, respectively) are obtained using a conven-
tional flat-bed scanner operating at 300 dpi.

by any distortion of the PSF associated with the
print/scan process, just limited or otherwise by its
characteristics. Thus, if an image is obtained of
the printed data field which is out of focus due
to the characteristics of pscan/print, then the re-
construction of will be out of focus to the same
degree. Decryption of images with this character-
istic is only possible using an encryption scheme
that is based on a ‘diffusion only’ approach. The
tolerance of this method to printing and scanning
is excellent (details of which lie beyond the scope
and extent of this paper) provided the output is
cropped accurately (to within a few pixels) and
oriented correctly.

Figure 3 shows another example of the tech-
nique applied to a composite image scanned from
a passport, an application which is cheap and sim-
ple to implement with regard to authenticating a
passport holders personal information. The degra-
dation associated with the reconstruction is due
to the low resolution of the printing and scanning
rather than the information hiding method. Unless
the correct stochastic field is used (as determined
by the keys), it is not possible to reconstruct the
image making counterfeiting or forgery improba-
ble.

b) Covert Information Hiding

Digital watermarking is usually considered to be a
method in which the watermark is embedded into a
host image in an unobtrusive or near-unobtrusive
way. In the context of the approach considered
here, this can be achieved if we diffuse the host
image with another image to generate a stochastic
field.

Consider two images i1 and i2. Suppose we con-

Fig. 3: Example of the stochastic diffusion method applied
to passport authentication: Original image scanned from
a passport at 400dpi (above), printed image after applying
stochastic diffusion (centre) and reconstruction after scan-
ning the printed stochastic field at 300dpi (below).



struct the following function

n = F−1
2

(
I1
| I1 |2

I2

)
where I1 = F2[i1] and I2 = F2[i2]. If we now cor-
relate n with i1, then from the correlation theorem

i1 �2 n⇐⇒ I∗1
I1
| I1 |2

I2 ⇐⇒ i2.

In other words, we can recover i2 from i1 with
knowledge of n. Because this process is based on
convolution and correlation alone, it is compatible
and robust to printing and scanning, i.e. incoher-
ent optical imaging as discussed in Section IV(a).
An example of this is given in Figure 4. In this
scheme, the host image can be considered to be a
‘public key’ and the stochastic field n the ‘private
key’ required to reconstruct the ‘hidden image’.
Clearly, in the context of this public/private key
paradigm, the ‘private key’ needs to be encrypted
in order to ensure the security of any system that
is based on this approach.

V Application to Covert Encryption

One of the principal components associated with
the development of methods and algorithms to
‘break’ ciphertext is the analysis of the output gen-
erated by an attempted decrypt and its evaluation
in terms of an expected type. The output type is
normally assumed to be plaintext, i.e. to be in the
form of characters, words and phrases associated
with a natural language. For e-to-e applications,
if a plaintext document is converted into an image
file, then the method described in Section IV(b) on
‘Covert Information Hiding’ can be used to diffuse
the plaintext image i2 using any other image i1 to
produce the field n. If both i1 and n are then en-
crypted, any attack on these data will not be able
to make use of an ‘analysis cycle’ which is based
on the assumption that the decrypted output is
plaintext. This approach provides the user with a
relatively simple method of ‘confusing’ the crypt-
analyst and invalidates attack strategies that have
been designed and developed on the assumption
that the encrypted data have been derived from
plaintext alone.

VI Conclusions

The approach discussed in this paper is robust to
a wide variety of attacks including geometric at-
tacks, drawing, crumpling and print/scan attacks,
details of which lie beyond the scope of the pa-
per. The method is relatively insensitive to lossy
compression, filtering, amplitude adjustments, ad-
ditive noise and thresholding (for a binary input).
The principal weakness of the system is its sensi-
tivity to rotation and cropping. This can be min-
imized by orienting the document correctly and

Fig. 4: Example of a covert watermarking scheme. i1
(top-left) is ‘processed’ with i2 (top-middle) to produce
the stochastic field n (top-right). i2 is printed at 600 dpi,
scanned at 300 dpi and then re-sampled back to its original
size (bottom-left). Correlating this image with n generates
the reconstruction (bottom-centre). The reconstruction de-
pends on just the host image and n. If the n and/or the
host image are different or corrupted, then a reconstruction
is not achieved, as in the example given (bottom-right).

accurately before scanning and using automatic
cropping software which is available with selected
scanners (e.g. Cannon scanners).

The ‘visibility’ of the ciphertext generated
through the process of stochastic diffusion (e.g.
Figures 2 and 3) and the compatibility of this ap-
proach with the physical principles of an imaging
system (convolution of an object function with the
PSF), increase the robustness associated with the
retrieval of the ‘hidden information’ after scanning
at low resolution.
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