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Abstract — We consider the basis for describing strong scattering in terms of diffusive
processes based on the diffusion equation. Intermediate strength scattering is then
considered in terms of a fractional diffusion equation which is studied using results from
fractional calculus. This approach is justified in terms of the generalization of a random
walk model with no statistical bias in the phase to a random walk that has a phase bias
and is thus, only ‘partially’ or ‘fractionally’ diffusive. A Green’s function solution to
the fractional diffusion equation is studied and a result derived that provides a model
for an incoherent image generated by light scattering from a tenuous random medium.
Applications include image enhancement of star fields and other cosmological bodies
imaged through interstellar dust clouds. An example of this application is given.

Keywords — Tenuous Random Media, Fractional Diffusion, Image Processing

I Introduction

A conventional approach to modelling light scat-
tering in random media is to consider the scat-
terer to be a stochastic function with a charac-
teristic Probability Density Function (PDF) under
the weak scattering approximation [1]. In the far
field, the scattering amplitude is then given by the
Fourier transform of the scattering function and
the intensity of the scattered field (i.e. the mea-
surable quantity, at optical frequencies and above)
is determined by the Fourier transform of the auto-
correlation of the scattering function. The inverse
scattering problem is then reduced to estimating
the correlation function by Fourier inversion and
then solving the phase reconstruction problem to
recover the scattering function from its autocorre-
lation function.

Multiple scattering processes are often modelled
using a statistical approach [2]. The aim is to de-
veloped a model of the PDF for the scattered field
itself rather than for the scattering function. This
involves concepts traditionally associated with the
kinetic theory of gases in which the random motion

of particles undergoing elastic collisions and follow-
ing ‘random walks’ is ‘replaced’ with the random
scattering of an electric field, for example, from
multiple scattering sites. The total contribution of
the multiple scattering process after N scattering
interactions is given by [3]

E =
N∑
j=1

aj exp(iθj)

where the amplitude aj , the phase θj and N are
independent random variables. While this ap-
proach provides physically informative models for
the PDF that can be used for the statistical char-
acterisation of an image and image segmentation
(using a moving ‘window’) to locate statistically
significant features, it does not directly help in the
development of algorithms for image restoration
and reconstruction [4]. On the other hand, ran-
dom walk models provide the physical basis for
diffusion processes in general. This is the essential
‘link’ to modelling multiple scattering processes in
terms of solutions to the diffusion equation for the
intensity of light.



In certain circumstances, multiple scattering
may only involve a small number of interactions.
This occurs when light interacts with tenuous me-
dia, for example, and is considered to be one of the
most difficult scenarios to model accurately. Diffu-
sion processes are not applicable in such cases. In
this paper, we study an approach to solving this
problem using the fractional diffusion equation.

II Optical Diffusion

When light is scattered by one localized centre, the
single or ‘weak’ scattering approximation can be
used, i.e. the Born approximation [1]. However,
when these centres are grouped together, multi-
ple light scattering occurs. The randomness of
multiple interactions tends to be averaged out by
the large number of scattering events that occur
leading to a deterministic distribution of intensity.
This is exemplified by a light beam propagating
through thick fog, for example. In this sense, mul-
tiple scattering is highly analogous to diffusion,
and the terms multiple scattering and diffusion
are interchangeable in many contexts. Optical ele-
ments designed to produce multiple scattering are
thus known as diffusers. The diffusion equation
can then be used to model such systems in the
same way as it is used to model temperature dis-
tributions or particle concentrations, for example,
and any system that is the result of a large ensem-
ble of particles or waves undergoing random elastic
collisions or scattering interactions respectively.

Suppose we consider the three-dimensional dif-
fusion of light to be based on a three-dimensional
random walk. Each scattering event is taken to
be a point of the random walk in which a ray of
light changes its direction randomly (any direc-
tion between 0 and 4π radians). The light field
is taken to be composed of a complex of rays,
each of which propagates through the diffuser in
a way that is incoherent and uncorrelated in time.
If this is the case, then the propagation of light
can be considered to be analogous to a process
of (classical) diffusion. Instead of modelling the
process in terms of the three-dimensional inhomo-
geneous wave equation (for the a spatially vari-
able wavespeed c(r), r = x̂x + ŷy + ẑz with PDF
Pr[c(r)]) (

∇2 − 1
c2(r)

∂2

∂t2

)
u(r, t) = 0

with light intensity given by I =| u |2, we consider
the intensity to be given by the solution of the
homogeneous diffusion equation(

∇2 − 1
D

∂

∂t

)
I(r, t) = 0

with initial condition I(r, t) = I0(r) at t = 0. This
model assumes that the diffusivity D is constant

throughout the diffuser which is equivalent to a
random scattering model (based on a solution to
the wave equation) in which Pr[c(r)] is constant
throughout the diffuser, i.e. stationary statistics.

In multiple wave scattering theory, we consider
a wavefront travelling through space and scatter-
ing from multiple interaction sites, each of which
changes the direction of propagation in an entirely
random way with no directional bias over 4π ra-
dian. The mean free path is taken to be the aver-
age number of wavelengths required for the wave-
front to propagate from one interaction to another
as described by the free space Green’s function.
After scattering from many sites, the wavefront
can be considered to have diffused through the ‘dif-
fuser’. Here, the mean free path is a measure of
the density of scattering sites, which in turn, is a
measure of the diffusivity of the medium D. As
D → ∞, the medium becomes increasingly tenu-
ous.

III Optical Diffusion Equation

Consider the three-dimensional homogeneous time
dependent wave equation

∇2u− 1
c20

∂2

∂t2
u = 0

where c0 is taken to be a constant (light speed).
Let

u(x, y, z, t) = φ(x, y, z, t) exp(iωt)

where it is assumed that field φ varies significantly
slowly in time compared with exp(iωt) and note
that

u∗(x, y, z, t) = φ∗(x, y, z, t) exp(−iωt)

is also a solution to the wave equation. Differenti-
ating

∇2u = exp(iωt)∇2φ,

and

∂2

∂t2
u = exp(iωt)

(
∂2

∂t2
φ+ 2iω

∂φ

∂t
− ω2φ

)

' exp(iωt)
(

2iω
∂φ

∂t
− ω2φ

)
when ∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω
∣∣∣∣∂φ∂t

∣∣∣∣ .
Under this condition, the wave equation reduces
to

(∇2 + k2)φ =
2ik
c0

∂φ

∂t

where k = ω/c0. However, since u∗ is also a solu-
tion,

(∇2 + k2)φ∗ = −2ik
c0

∂φ∗

∂t



and thus,

φ∗∇2φ− φ∇2φ∗ =
2ik
c0

(
φ∗
∂φ

∂t
+ φ

∂φ∗

∂t

)
which can be written in the form

∇2I − 2∇ · (φ∇φ∗) =
2ik
c0

∂I

∂t

where I = φφ∗ =| φ |2. Let φ be given by

φ(r, t) = A(r, t) exp(ikn̂ · r)

where n̂ is a unit vector and A is the amplitude
function. Differentiating, and noting that I = A2,
we obtain

n̂ · ∇A =
2
c0

∂A

∂t

or(
∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x, y, z, t) =

2
c0

∂

∂t
A(x, y, z, t)

which is the unconditional continuity equation for
the amplitude A of a wavefield

u(r, t) = A(r, t) exp[i(kn̂ · r + ωt)]

where A varies slowly with time.
The equation

∇2I − 2∇ · (φ∇φ∗) =
2ik
c0

∂I

∂t

is valid for k = k0− iκ (i.e. ω = ω0− iκc0) and so,
by equating the real and imaginary parts, we have

D∇2I + 2Re[∇ · (φ∇φ∗)] =
∂I

∂t

and
Im[∇ · (φ∇φ∗)] = −k0

c0

∂I

∂t

respectively where D = c0/2κ, so that under the
condition

Re[∇ · (φ∇φ∗)] = 0

we obtain
D∇2I =

∂I

∂t
.

This is the diffusion equation for the intensity of
light I. The condition required to obtain this re-
sult can be justified by applying a boundary condi-
tion on the surface S of a volume V over which the
equation is taken to conform. Using the divergence
theorem

Re
∫
V

∇ · (φ∇φ∗)d3r = Re
∮
S

φ∇φ∗ · n̂d2r

=
∮
S

(φr∇φr + φi∇φi) · n̂d2r

and if

φr(r, t)∇φr(r, t) = −φi(r, t)∇φi(r, t), r ∈ S

then the surface integral is zero and

D∇2I(r, t) =
∂

∂t
I(r, t), r ∈ V.

This boundary condition can be written as

∇φr
∇φi

= −tanθ

where θ is the phase of the field φ which im-
plies that the amplitude A of φ is constant on the
boundary (i.e. A(r, t) = A0, r ∈ S, ∀t), since

∇A0 cos θ(r, t)
∇A0 sin θ(r, t)

= −A0 sin θ(r, t)∇θ(r, t)
A0 cos θ(r, t)∇θ(r, t)

= −tanθ(r, t), r ∈ S.

a) Diffused Image Equation

Suppose we record the intensity I of a light field
in the xy-plane for a fixed value of z. Then for
z = z0 say,

I(x, y, t) ≡ I(x, y, z0, t)

so that

∂

∂t
I(x, y, t) = D∇2I(x, y, t).

Let this two-dimensional diffusion equation be sub-
ject to the initial condition

I(x, y, 0) = I0(x, y).

Then, at any time T > 0, it can be assumed that
light diffusion is responsible for generating image I
and that as time increases, the image becomes pro-
gressively more diffused, the solution being given
by, for the infinite domain and ignoring scaling [6]

I(x, y, T ) = exp
[
−
(
x2 + y2

4DT

)]
⊗2 I0(x, y)

where ⊗2 denotes the two-dimensional convolution
integral.

b) Inverse Solution

If we record an image at a time t = T then by
Taylor expanding I at t = 0 we can write

I(x, y, 0) = I(x, y, T )

+
∞∑
n=1

(−1)n

n!
Tn
[
∂n

∂tn
I(x, y, t)

]
t=T

.

From the diffusion equation

∂2I

∂t2
= D∇2 ∂I

∂t
= D2∇4I



∂3I

∂t3
= D∇2 ∂

2I

∂t2
= D3∇6I

so that, by induction, we can write[
∂n

∂tn
I(x, y, t)

]
t=T

= Dn∇2nI(x, y, T ).

Substituting this result into the series for
I(x, y, 0) ≡ I0(x, y), we get

I0(x, y) = I(x, y, T )

+
∞∑
n=1

(−1)n

n!
(DT )n∇2nI(x, y, T )

The ‘high emphasis filter’ [4] is then obtained when
DT << 1, i.e.

I0(x, y) ∼ I(x, y, T )−DT∇2I(x, y, T ).

IV Fractional Diffusion

The diffusion equation models a macroscopic field
which is the result of an ensemble of incoherent
random walks characterised by a

√
t scaling law.

Hurst processes, describe random walks that have
a directional bias and are characterised by the scal-
ing law tH , H ∈ (0.5, 1] [7], [8]. As the value of
H approaches 1, the processes become increasingly
persistent. In terms of the multiple scattering of
light from a random medium, increasing persis-
tence relates to multiple scattering from fewer sites
so that the light path has a greater directional bias.
We consider the characterisation of this by gener-
alizing the diffusion operator

∇2 − σ ∂
∂t

to the fractional form [9], [10]

∇2 − σq ∂
q

∂tq

where q ∈ [1, 2] andDq = 1/σq is the fractional dif-
fusivity. Fractional diffusive processes can there-
fore be interpreted as intermediate between dif-
fusive processes proper (random phase walks with
H = 0.5; diffusive processes with q = 1) and ‘prop-
agative process’ (coherent phase walks for H = 1;
propagative processes with q = 2). It should be
noted that the fractional diffusion operator given
above is the result of a phenomenology. It is a gen-
eralisation of a well known differential operator to
fractional form which follows from a physical anal-
ysis of a fully incoherent random process and its
generalisation to fractional form in terms of the
Hurst exponent H. The solution to fractional par-
tial differential equations of this type requires ap-
plication of the fractional calculus [11] - [15] which
is considered in the following section.

V Fractional Diffusion Equation

Consider the two-dimensional fractional diffusion
equation for the intensity I(x, y, t) of light in the
image plane located at z given by

∇2I(r, t)− σq ∂
q

∂tq
I(r, t) = I0(r, t)

where r = x̂x+ŷy, r ≡| r | and I0(r) is now a (two-
dimensional) source function. Using the Fourier
based operator for a fractional derivative, we can
transform this equation into the form

(∇2 + Ω2
q)Ĩ(r, ω) = Ĩ0(r, ω)

where

Ĩ(r, ω) =

∞∫
−∞

I(r, t) exp(−iωt)dt,

Ĩ0(r, ω) =

∞∫
−∞

I0(r, t) exp(−iωt)dt

and

Ω2
q = −(iωσ)q, Ωq = ±i(iωσ)q/2.

The Green’s function solution for this equation (in
the infinite domain) is

Ĩ(r, ω) = g(r, ω)⊗2 Ĩ0(r, ω)

where g is the ‘outgoing’ Green function given by
(for | Ωqr |>> 1 and ignoring scaling) [6]

g(r, ω) ' exp(iΩqr)√
Ωqr

.

For Ωq = i(iωσ)q/2, Fourier inversion, yields
the time dependent Green’s function (obtained by
writing the exponential function in its series form).

G(r, t) =
1√
r

1
σq/4t1−q/4

−
√
rσq/4δq/4(t)

+
∞∑
n=1

(−1)n+1

(n+ 1)!
r(2n+1)/2σ3nq/4δ3nq/4(t),

the solution for I(r, t) being given by

I(r, t) = G(r, t)⊗2 ⊗tI0(r, t)

where ⊗t denotes the (non-causal) convolution in-
tegral over time t. Simplification of this infinite
sum representation for G can be addressed be con-
sidering suitable asymptotics, the most significant
of which (for arbitrary values of r) is the case when
the (fractional) diffusivity D is large. In particu-
lar, we note that as σ → 0,

G(r, t) =
1√

rσq/4t1−q/4
.



Thus, we can consider a solution to the two-
dimensional fractional diffusion equation (for a
tenuous medium when D → ∞) of the form (at
any time t = T and ignoring scaling)

I(x, y) =
1

(x2 + y2)
1
4
⊗2 I0(x, y).

VI Deconvolution

In the presence of additive noise n(x, y), the de-
convolution problem is as follows: Given that

I(x, y) = p(x, y)⊗2 I0(x, y) + n(x, y)

where Pr[n(x, y)] is known (ideally), find an esti-
mate for I0. This is a common problem in optics
(digital image processing) known as the deconvo-
lution problem whose solution is fundamental to
image restoration and reconstruction [4], [5]. In
terms of the material presented in this paper, there
are two Point Spread Functions (PSF) p(x, y) that
have been considered: For full diffusion (strong
scattering)

p(x, y) = exp
[
−
(
x2 + y2

4DT

)]
and for fractional diffusion (intermediate scatter-
ing in a tenuous medium with large diffusivity)

p(x, y) =
1

(x2 + y2)
1
4
.

We note that (ignoring scaling)

exp
[
−
(
x2 + y2

4DT

)]
↔ exp[−4DT (k2

x + k2
y)]

and [8]
1

(x2 + y2)
1
4
↔ 1

(k2
x + k2

y)
3
4

where ↔ denotes transformation from real space
to Fourier space. In the latter case, the filter is
a ‘fractal filter’ and thus, if I0 is characterised by
white noise, then the output I is a Mandelbrot
surface with a fractal dimension of 2.5 [8]. In the
absence of noise, the inverse solution for I0 can be
written in the form

I0(x, y) = ∇ 3
2 I(x, y),

a result that is based on the application of the
fractional Laplacian or Riesz operator [8]

∇q ↔ (k2
x + k2

y)
q
2 .

There are a range of approaches to solving the
one-dimensional and two-dimensional deconvolu-
tion problem in practice (i.e. with additive noise)
leading to the classification of different ‘inverse fil-
ters’ (e.g. [4], [5]). If a priori information on

the statistics of the noise function n and the ob-
ject function I0 is available, then Bayesian estima-
tion methods are preferable in the design of filters
whose performance then depends on statistical pa-
rameters such as the standard deviation. In some
cases, an estimate of Pr[n(x, y)] can be obtained by
taking an image (or a number of images to obtain
a statistically significant result) with zero input,
i.e. with I0 = 0. This provides a method of vali-
dating an idealised PDF through data fitting and,
thus, determination of the statistical parameters
from which a theoretical PDF is composed. In
cases when experimental determinism is not prac-
tically possible, statistical models must be utilized
[3]. However, with regard to incoherent imaging
systems, the noise function tends to be Gaussian
distributed - a result of the noise being a linear
combination of many different independent noise
sources which combine to produce Gaussian noise
(a consequence of the Central Limit Theorem).

Using Bayes rule, the aim is to find an estimate
for I0 such that

∂

∂I0
ln Pr[n(x, y)] +

∂

∂I0
ln Pr[I0(x, y)] = 0.

Consider the following models for the PDFs: (i) A
Gaussian distribution for the noise (ignoring scal-
ing and where σ2

n is the standard deviation of n)

Pr[n(x, y)] =

exp
(
− 1
σ2
n

∫ ∫
[(I(x, y)− p(x, y)⊗2 I0(x, y)]2dxdy

)
.

(ii) A Gaussian distribution for the object function
(ignoring scaling and where σ2

I0
is the standard

deviation of I0)

Pr[I0(x, y)] = exp
(
− 1
σ2
I0

∫ ∫
I2
0 (x, y)dxdy

)
.

Differentiating, these statistical models yield the
equation

I(x, y)�2 p(x, y)

=
σ2
n

σ2
I0

I0(x, y) + [p(x, y)⊗2 I0(x, y)]�2 p(x, y)

where �2 denotes the two-dimensional correlation
integral. In Fourier space, this equation becomes

Ĩ(kx, ky)P ∗(kx, ky)

=
σ2
n

σ2
I0

Ĩ0(kx, ky)+ | P (kx, ky) |2 I0(kx, ky).

The Bayesian a Posteriori filter F (kx, ky) (for
Gaussian statistics) is then given by

F (kx, ky) =
P ∗(kx, ky)

| P (kx, ky) |2 +σ2
n/σ

2
I0

(1)

where σI0/σn
defines the signal-to-noise ratio of

I(x, y) and Ĩ0(kx, ky) = F (kx, ky)Ĩ(kx, ky).



VII Example Application

Fractional diffusion models apply to scattering
processes that occur in a tenuous and extremely
rarefied medium. In applied optics, one of the most
common examples of this phenomena occurs in as-
tronomy and the processes associated with light
scattering from interstellar dust which consists of
an extremely dilute (by terrestrial standards) mix-
ture of ions, atoms, molecules, and larger dust
grains, consisting of about 99% gas and 1% dust
by mass. Densities range from a few thousand to a
few hundred million particles per cubic meter with
an average value in the Milky Way Galaxy, for ex-
ample, of a million particles per cubic meter. In
comparison with the scattering of light from earth-
based random media, for example, the interstellar
medium is highly diffuse and therefore ideal for ap-
plying light scattering models based on fractional
diffusion when D →∞.

Figure 1 shows the application of the filter given
by equation (1) with

P (kx, ky) =
1

(k2
x + k2

y)0.75

for an optical image obtained from Stardust in
Perseus [16]. The image is part of the constella-
tion of Perseus as observed through an interstellar
dust cloud that covers nearly four degrees of the
sky observed approximately 103 light-years away.

Fig. 1: Fractional diffusion based deconvolution (right) for
σn/σI0 = 1 of a dust clouded star field (left) in the constel-
lation of Pegasus.

VIII Conclusions

The use of fully diffusive processes for modelling
strong scattering provides a result that is appli-
cable in solving the inverse (multiple) scattering
problem. This requires the formulation of a de-
convolution algorithm for a Gaussian PSF. We
have extended this approach to model interme-
diate scattering by generalizing the homogeneous
diffusion equation to fractional form for a frac-
tional diffusivity D. An asymptotic solution has
been considered based on the condition D → ∞
which yields a characteristic filter of the form
(k2
x + k2

y)−0.75 in Fourier space. This filter is the

transfer function associated with an optical sys-
tem involving the intermediate strength scattering
of light in a tenuous medium.
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