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Implicit finite difference methods are conventionally preferred over their explicit counterparts
for the numerical valuation of options. In large part the reason for this is a severe stability
constraint known as the Courant–Friedrichs–Lewy (CFL) condition which limits the latter
class’s efficiency. Implicit methods, however, are difficult to implement for all but the most
simple of pricing models, whereas explicit techniques are easily adapted to complex problems.
For the first time in a financial context, we present an acceleration technique, applicable to
explicit finite difference schemes describing diffusive processes with symmetric evolution
operators, called Super-Time-Stepping. We show that this method can be implemented as part
of a more general approach for non-symmetric operators. Formal stability is thereby deduced
for the exemplar cases of European and American put options priced under the Black–Scholes
equation. Furthermore, we introduce a novel approach to describing the efficiencies of finite
difference schemes as semi-empirical power laws relating the minimal real time required to
carry out the numerical integration to a solution with a specified accuracy. Tests are described
in which the method is shown to significantly ameliorate the severity of the CFL constraint
whilst retaining the simplicity of the underlying explicit method. Degrees of acceleration are
achieved yielding comparable, or superior, efficiencies to a set of benchmark implicit schemes.
We infer that the described method is a powerful tool, the explicit nature of which makes
it ideally suited to the treatment of symmetric and non-symmetric diffusion operators
describing complex financial instruments including multi-dimensional systems requiring
representation on decomposed and/or adaptive meshes.

Keywords: Numerical methods for option pricing; Black–Scholes model; Computational
finance; Equity options; American options; Exotic options

1. Introduction

The Black–Scholes partial differential equation (PDE)

(Black and Scholes 1973, Merton 1973) has become a

cornerstone of modern derivatives pricing. In general,

however, it is rare to find a closed-form solution to the

PDE except for the well-known classical cases, such as

European call and put options. When a closed-form

solution does not exist, for example in the case of

American put options, one popular way to proceed is to

solve the PDE numerically using finite difference methods

(see, for example, Wilmott et al. 1995 and Tavella and

Randall 2000). Alternative approaches to American
option pricing include binomial tree methods or quasi-
analytical approximations. The reader is referred to
Broadie and Detemple (1996) for a review and compar-
ison of numerical techniques as applied to American
put option pricing and Zhu (2006) for a recent semi-
closed-form exact solution to the American put option
price which consists of an infinite series expansion.

Numerical valuations of options using finite difference
methods based on implicit discretizations are usually
superior in terms of efficiency to approaches based on
conventional explicit discretizations. The principal reason
for this is the famous Courant–Friedrichs–Lewy (CFL)
stability constraint on explicit schemes which limits
the size of the time-step relative to the square of the*Corresponding author. Email: steve.osullivan@dcu.ie
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spatial step. In this paper the restriction that the CFL
constraint imposes is reduced significantly using an
acceleration technique for explicit algorithms, known as
Super-Time-Stepping (STS), which is completely novel to
computational finance. The technique is applied to the
problem of pricing European and American put option
prices and compared with a number of standard finite
difference methods used frequently in the literature.
We demonstrate formal stability by appealing to an
extended method developed by the authors which does
not have the same dependency on having a highly
symmetric evolution operator. Furthermore, we propose
that this may be the method of choice for more complex
pricing models for which high degrees of symmetry in the
evolution operator may not be guaranteed.

It is demonstrated that the efficiencies attained are
comparable, and often superior, to those of common
implicit differencing techniques. Crucially, this accelera-
tion is achieved without any significant increase in
implementation complexity relative to the underlying
standard explicit scheme.

The paper is divided into six sections. Section 2 reviews
a number of standard finite difference methods used
frequently in the literature. Section 3 introduces the
Super-Time-Stepping technique whose application to
options pricing is the main contribution of this paper.
Section 4 describes the novel methodology used to
compare the different algorithms. Section 5 contains the
results and finally in section 6 we offer concluding
remarks.

2. Review

This section contains a brief review of the Black–Scholes
PDE and the standard finite difference methods, popular
in the literature, that are used to solve this PDE for the
case of European and American put options.

2.1. Black–Scholes partial differential equation

Let S be the asset price underlying the option at time
t whose dynamics are described by a geometric Brownian
motion. Let K be the exercise price, T the time to expiry,
r the risk-free interest rate, and � the volatility of the
asset. Denoting the option price as V(S, t), the Black–
Scholes PDE for European call and put options is then
given by

@V

@t
þ
1

2
�2S 2 @

2V

@S 2
þ rS

@V

@S
¼ rV; 0 � t5T; ð1Þ

with the payoff function

VðS;T Þ ¼
maxðS� K; 0Þ; for a call;
maxðK� S; 0Þ; for a put;

�
ð2Þ

and the boundary conditions

Vð0; tÞ �
0; for a call;
Ke�rðT�tÞ; for a put;

�
ð3Þ

VðS1; tÞ �
S; for a call;
0; for a put:

�
ð4Þ

American options can be exercised before expiry and

it is never optimal to exercise an American call option

before expiry on a stock with no dividend (Merton 1973).

However, it may be optimal to exercise an American

put option before expiry. The early exercise constraint

means that, in the continuation region, the value of an

American put option, VA(S, t), satisfies equation (1).

However, the exercise region (where it is optimal to

exercise early) induces the following payoff and boundary

conditions for the American put option on a stock with

no dividend:

VðS;T Þ ¼ maxðK� S; 0Þ; S � 0; ð5Þ

@V

@S
ðS; tÞ ¼ �1; ð6Þ

VðSðtÞ; tÞ ¼ K� SðtÞ; ð7Þ

lim
S!1

VðS; tÞ ¼ 0; ð8Þ

SðT Þ ¼ K; ð9Þ

VðS; tÞ ¼ K� S; 0 � S < SðtÞ; ð10Þ

where SðtÞ represents the free and moving early exercise

boundary that separates the continuation region from the

early exercise region (Wilmott et al. 1995, Duffie 1996).

2.2. Numerical methods

Discretizing derivatives in the stock price S in equation (1)

via three-point central differencing results in a semi-

discrete representation

@V

@t
þ
1

2
�2S 2

j

�2SVj

�S 2

� �
þ rSj

�SVj

2�S

� �
� r½Vj� ¼ 0; ð11Þ

on the domain [0,S1]� [0,T ], where

�2SVj ¼ Vjþ1 � 2Vj þ Vj�1,

�SVj ¼ Vjþ1 � Vj�1,

Sj ¼ j�S, for j ¼ f0, 1, . . . , J g: ð12Þ

All finite difference methods in the present work will be

derived from this equation and will therefore converge

as �S2 to the same exact solution of equation (11).

It must be noted that the Black–Scholes PDE is not

transformed in any way so the following analysis is

as general as possible. Let �t¼T/N and tn¼ n�t for

n¼ {0, 1, . . . ,N }. This notation means VN
j ¼ VðSj;T Þ is

the payoff of the option at maturity and V 0
j ¼ VðSj; 0Þ

is the option price at t¼ 0 (corresponding to current

time). More generally, working backwards recursively

through the computational mesh it means that, at time

tnþ 1, the values for Vnþ 1 are known and the values for

Vn must be found. Admixing equation (11) at time levels

1178 S. O’Sullivan and C. O’Sullivan
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tn and tnþ 1 results in the semi-discrete form of the well

known �-method,

@V

@t
þ
1

2
�2S 2

j �
�2SV

nþ1
j

�S 2
þ ð1� �Þ

�2SV
n
j

�S 2

" #

þ rSj �
�SV

nþ1
j

2�S
þ ð1� �Þ

�SV
n
j

2�S

" #

� r½�Vnþ1
j þ ð1� �ÞVn

j � ¼ 0: ð13Þ

This expression may be written compactly as

@ ~V

@t
� ~P½� ~Vnþ1 þ ð1� �Þ ~Vn� ¼ 0; ð14Þ

where ~P 2 R
J�1
�R

Jþ1 is a tri-diagonal matrix given by

~P ¼

a1 b1 c1 � � � 0

..

. . .
. . .

. . .
. ..

.

0 � � � aJ�1 bJ�1 cJ�1

2
64

3
75; ð15Þ

with

aj ¼
1

2
r
Sj

�S
�
1

2
�2

S 2
j

�S 2
; ð16Þ

bj ¼ rþ �2
S 2
j

�S 2
; ð17Þ

cj ¼ �
1

2
r
Sj

�S
�
1

2
�2

S 2
j

�S 2
; ð18Þ

and where ~Vn 2 R
Jþ1 is the column vector of option

prices at time tn given by

~Vn ¼

Vn
0

..

.

Vn
J

2
64

3
75: ð19Þ

Discretizing the temporal derivative @V/@t to first order as

ðVnþ1
j � Vn

j Þ=�t yields the fully discretized form of the

�-method

ðIþ�tð1� �Þ ~PÞ ~Vn ¼ ðI��t� ~PÞ ~Vnþ1: ð20Þ

Applying the boundary conditions at S0 and SJ means

we know the option values Vn
0 and Vn

J for all n. Hence we

can recast equations (14) and (20) as

@V

@t
� P½�Vnþ1 þ ð1� �ÞVn� � ½�bnþ1 þ ð1� �Þbn� ¼ 0;

ð21Þ

and

ðIþ�tð1� �ÞPÞVn þ�tð1� �Þbn

¼ ðI��t�PÞVnþ1 ��t�bnþ1; ð22Þ

respectively, where P2R
J�1
�R

J�1 is a square non-

symmetric matrix consisting of the J� 1 innermost

columns of P

P ¼

b1 c1 � � � 0

..

. . .
. . .

. ..
.

0 � � � aJ�1 bJ�1

2
64

3
75; ð23Þ

and where Vn, bn2R
J�1 are column vectors given by

V n ¼

Vn
1

Vn
2

..

.

Vn
J�2

Vn
J�1

2
66666664

3
77777775
; ð24Þ

and

bn ¼

a1V
n
0

0

..

.

0

cJ�1V
n
J

2
6666664

3
7777775
: ð25Þ

When �¼ 1 this is an explicit scheme that is accurate

to O(�t,�S2). The explicit method is very simple to

implement, however the stability of the method depends

on the size of the time-step, the spatial step and the

coefficients in the PDE (see Wilmott et al. 1995 and

Tavella and Randall 2000 for further details on these

conditions). In particular, it is required that

�t �
�S2

�2S2
1

; ð26Þ

where S1¼SJ is the maximum price on the computa-

tional mesh. This is known as the Courant–Friedrichs–

Lewy (CFL) stability constraint and may be severely

restrictive. By way of illustration, if we want to improve

accuracy by halving the spatial step we must reduce the

time-step by a factor of 4 and computation time goes up

by a factor of 8.
When �¼ 0 the scheme is fully implicit and is accurate

to O(�t,�S 2). The fully implicit scheme has no limita-

tions on the size of the time-step for the method to

converge.
When � ¼ 1

2 the resultant scheme is known as the

Crank–Nicolson (CN) method and is accurate to

O(�t2,�S 2). Similarly to the fully implicit method, CN

has no limitations on the size of the time-step for stability.

CN schemes are therefore a frequently favoured method

in the literature.
In this paper we shall additionally employ Richardson

Extrapolation (RE) to render explicit and the fully

implicit schemes second-order accurate in time. RE is

carried out on a step-wise basis as follows.
We assume a smoothly convergent first-order accurate

method for the temporal integration of the semi-discrete

equation (21) with exact solution V�S(S, t). Given a

second-order accurate solution at time level nþ 1 such

that Vnþ1
j ¼ V�Sð j�S; ðnþ 1Þ�tÞ þ ðN� n� 1ÞOð�t3Þ

we may take a single step of size �t to approximate the

solution at time level n using Vn
j ð�tÞ ¼ V�Sð j�S; n�tÞ þ

C�t2 þOð�t3Þ for some constant C. Similarly, taking

two steps of size �t/2, we have Vn
j ð�t=2Þ ¼

V�Sð j�S; n�tÞ þ ðC=2Þ�t2 þOð�t3Þ. Subtracting the

expression for Vn
j ð�tÞ from twice the expression for

Acceleration of explicit finite difference methods for option pricing 1179
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Vn
j ð�t=2Þ yields a second-order advancement in the

solution from time level nþ 1 to level n according to

Vn
j ¼ 2Vn

j ð�t=2Þ � Vn
j ð�tÞ: ð27Þ

This is the prescription of the RE we employ as opposed
to the more usual post-processed form which requires two
independently derived solutions for use in the extrapola-
tion V 0

j ¼ 2V 0
j ð�t=2Þ � V 0

j ð�tÞ (e.g., Geske and Johnson
1984). The significant difference is that, in the former
case, a properly second-order integration method is
obtained in the sense that a second-order solution is
available at all intermediate times.

The use of RE comes at the expense of an increase
in the computational workload. However, it is simple to
implement and of greater applicability than CN, as we
shall see.

For implicit schemes, the system of simultaneous
equations (22) may be solved exactly via direct matrix
inversion. For the vanilla option pricing problems under
consideration in this work, the Brennan and Schwartz
(1977) algorithm may be reformulated to employ
LU-decomposition (Ikonen and Toivanen 2007a). While
this is an O(N ) method, it does not generalize well. For
example, in the relatively simple case of pricing American
put options under Heston’s stochastic volatility model,
the early exercise region must take a specific form for the
Brennan and Schwartz algorithm to work. Since we are
interested in comparison of methods of general applic-
ability and examine one-dimensional vanilla options for
the purposes of bench-testing computational efficiency
only, we do not consider the Brennan and Schwartz class
of methods any further.

Iterative approaches may also be taken to obtain
solutions to within some prescribed accuracy. The most
popular of these is Successive Over-Relaxation (SOR);
see Crank (1984) for more detail on SOR. In the case of
American options, the early exercise constraint requires
the use of a variation known as Projected SOR (PSOR)
(Wilmott et al. 1995, Ikonen and Toivanen 2007b). Other
iterative methods such as the Gauss–Seidel, originally
used by Brennan and Schwartz (1977) in the context of
finite difference methods applied to American options
pricing, and the Jacobi method are also discussed by
Wilmott et al. (1995). Using iterative methods can speed
up implicit finite difference schemes relative to direct
matrix inversion, particularly when fast inversion techni-
ques such as LU-decomposition are unavailable.

When pricing American put options we have to
consider the possibility of early exercise. In explicit
schemes this is easily handled recursively as follows.
Assume the American constraint has been applied at time-
step tnþ1. The unknown value Vn

j is calculated from the

known values Vnþ1
j�1 ;V

nþ1
j and Vnþ1

jþ1 and then we replace

Vn
j with maxðVn

j ;K� SjÞ.

On the other hand, when solving implicitly for the
unknowns Vn

j , we must take into account that the
value at any point j may be equal to the corresponding
continuation values if early exercise is sub-optimal,
or the early exercise value if early exercise is optimal.

Therefore, it is clearly inappropriate to first find the
continuation value Vn

j and replace it with maxðVn
j ;K� SjÞ

for all j since all of these values are coupled and any
such replacement must be made simultaneously for all j.
Because of this, direct matrix inversion methods can be
at best first-order accurate in time and iterative algorithms,
such as PSOR, are necessary. During each PSOR iteration,
the projection is carried out by replacing Vn

j with
maxðVn

j ;K� SjÞ. Over several iterations this converges
to simultaneous early exercise enabling convergence
at rates above first order in time.

In the next section we introduce an accelerated explicit
finite difference scheme, known as Super-Time-Stepping,
that is completely novel to computational finance. This
scheme reduces significantly the restriction that the
CFL constraint imposes on the size of the time-step
relative to the spatial step in conventional explicit finite
difference schemes. We go on to describe how STS may be
implemented as a component of a composite method
with stability properties appropriate for more general
problems. We invoke RE for second-order accuracy in
time. In the subsequent section the accelerated explicit
scheme is applied to European and American put options
and is demonstrated to be of comparable or superior
efficiency to a number of implicit differencing schemes
with no significant increase in implementation complexity
relative to standard explicit schemes.

3. Acceleration methods

3.1. Super-Time-Stepping

Super-Time-Stepping (STS) is a technique that can be
used to accelerate explicit schemes for parabolic pro-
blems. In the following, we shall use the description of
Alexiades et al. (1996), itself a variant of a method
presented by Gentzsch (1979) and essentially a pared-
down Runge–Kutta–Chebyshev (RKC) method (van der
Houwen 1977, van der Houwen and Sommeijer 1980,
Verwer et al. 1990, Verwer 1996, Sommeijer et al. 1997).

Despite the fact that the STS method is approximately
30 years old, it is extraordinary that it has been reported
in use by few researchers. The very limited number of
numerical investigations we are aware of employing STS
are in engineering and physical disciplines and include:
nonlinear degenerate convection–diffusion (Evje et al.
2001); electromagnetic wave scattering (Shi et al. 2006);
isotropic and anisotropic diffusion on biological mem-
branes (Sbalzarini et al. 2006); and magnetic field
diffusion in astrophysics (Mignone et al. 2007,
O’Sullivan and Downes 2007). To our knowledge, it has
received no attention to date in the area of finance.

The essence of STS is that rather than requiring
stability at each step of the integration, NSTS sub-steps
of varying size �tj are rolled together into a single super-
step �tSTS according to

�tSTS ¼
XNSTS

j¼1

�tj; ð28Þ

1180 S. O’Sullivan and C. O’Sullivan
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and stability is only demanded at the end of the super-

step.y To proceed, we assume a linear scheme on V2R
M

of the form

Vn ¼ ðI��tSTSAÞV
nþ1 ¼

YNSTS

j¼1

ðI��tjAÞ

" #
V nþ1; ð29Þ

where the solutions at time levels nþ 1 and n are known

and unknown, respectively, I is the identity matrix and

A2R
M
�R

M is a symmetric positive definite matrix. It is

well known that, for stability, we must have

YNSTS

j¼1

ðI��tj�Þ

�����
�����5 1; ð30Þ

for all eigenvectors � of A.
The properties of Chebyshev polynomials of degree

NSTS (Markoff 1916) then allow us to explicitly enforce

stability while maximizing �tSTS to provide a set of

optimal values for the sub-steps given by

�tj ¼ �tSTD ð�1þ �Þ cos
2j� 1

NSTS

p
2

� �
þ 1þ �

� ��1
; ð31Þ

where �tSTD is the normal explicit time-step limit and � is
a damping factor. Note, in particular, that

�tSTS! N2
STS�tSTD; as �! 0: ð32Þ

While this scheme is stable for any choice of NSTS given

a large enough value of �, in practice a balance can be

struck between the two parameters to optimize the

performance of the scheme. The method is unstable in

the limit �¼ 0. We illustrate the efficacy of the accelera-

tion process for NSTS¼ 30 in figure 1. It can be seen that

the first substep may be up to 25 times the stable limit for

a standard explicit integration as �! 0, but subsequent

substeps become increasingly small. The effect of this is a

cumulative error cancellation that recovers stability over

the composite superstep. Crucially, there is a net payoff

in terms of the size of the superstep with respect to NSTS

steps of size �tSTD as described by equation (32).
Note that although formal results only exist for linear

schemes, there is ample evidence, as described above, that

nonlinear target systems are equally amenable to the STS

method.
It can be shown (Alexiades et al. 1996) that STS is

essentially first order in time. It is not possible to

introduce additional temporal structure to an STS step

since intermediate values obtained during a STS cycle

are physically meaningless and may not be used as

approximations to the solution in any sense. Therefore,

predictor–corrector-style methods are not applicable

should higher-order convergence be required. On the

other hand, we have found that RE works perfectly well.

By this method all the advantages of the first-order STS

method are easily transferred to second- (or higher-) order

schemes.

The principal advantage of the STS method is not
efficiency, however, but simplicity. Explicit discretizations
of even the most complex systems of parabolic equations
are very straightforward. In particular, implementation
of adaptive mesh refinement (AMR) technologies and/or
parallelization via domain decomposition techniques
present no great challenges from within an explicit
framework. On the contrary, when implicit methods are
involved, tackling problems of even a moderate level
of complexity can be an exceedingly intricate task.

In the next section the performance of the STS method
applied via equation (22) is compared with finite
difference schemes described in section 2.

3.2. Composite

Since stability is assured by the above analysis for
symmetric positive definite A in equation (29), we provide
a formal stability analysis for an alternative discretization
of equation (1) in appendix A. The scheme presented
therein is formally stable under application of STS to
a split symmetric positive definite operator. In practice,
we find that, as suggested by other authors previously
(e.g., Alexiades et al. 1996 and O’Sullivan and Downes
2007), this alternative scheme is not strictly necessary
when the evolution operator has a dominant symmetric
component. For the cases under consideration here,
in fact, we find it has negligible impact and therefore
it is not used.

We wish to emphasize that, while the composite scheme
is employed in this work for the purposes of stability
analysis, its greater generality may prove it to be the
appropriate choice for the numerical integration of
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Figure 1. Illustration of acceleration via STS. Accumulated
time

Pj
k¼1 �tk is shown in units of standard explicit time-step

�tSTD over single superstep �tSTS with NSTS¼ 30 for a range of
damping factors �. A reference line at NSTS�tSTD indicates the
time attained over NSTS unaccelerated (standard explicit) steps.
Note that acceleration approaches NSTS times this value as
�! 0, in agreement with equation (32). Note also that
deceleration occurs for the highest considered damping factor
of �¼ 0.5. In this work, �¼ 5� 10�4 and NSTS¼ 30 for all tests.

yIt has been claimed by Verwer (1996) that factorized RKC methods are impractical as they suffer from severe internal instability.
We find no evidence of this for NSTS9 30.
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systems of equations for which the evolution operator
does not display the high degree of symmetry observed
for pricing vanilla options under Black–Scholes.

4. Methodology

In terms of the real-world usefulness of a numerical
scheme X for pricing financial instruments, it is important
to recognize that the wall-time (the real time taken to
carry out the numerical integration) WX required for
a scheme to perform a calculation will depend on the
maximum permitted error E of the solution. Since
the greatest error between the numerical solution Vj and
the exact solution V(Sj) arises when Sj is the equal to the
exercise price K, where there is a discontinuity in the first
derivative of the payoff function, we use the definition
E 	 jV0

k � VðK; 0Þj for the error in the numerical solution
(where the index k is the index corresponding to the spot
price Sk¼K). For consistency with this measure, the
SOR schemes are required to converge to within a user-
prescribed tolerance on Vn

k rather than over a range of
values as is more usual. From this point on, we shall
generally omit the X subscript from quantities associated
with a scheme X for clarity of notation. Dependent
variables will be implicitly assumed to be associated with
a given scheme.

The schemes that are used as benchmarks for compar-
ison with the STS explicit scheme with Richardson
extrapolation (STS_RE) are as follows: the standard
explicit scheme with RE (STD_RE), the fully implicit
scheme that uses matrix inversion and Richardson
extrapolation (INV_RE), the fully implicit scheme that
uses SOR and RE (SOR_RE), the CN scheme that uses
matrix inversion (INV_CN) and the CN scheme that uses
SOR (SOR_CN). Scheme comparison is traditionally
performed by presenting timings for solutions obtained to
non-uniform accuracies, although Broadie and Detemple
(1996) go further by considering simultaneously timings
and accuracy of the pricing methods they considered.
Presenting timings for solutions obtained to non-uniform
accuracies is not a fair comparison of the efficiencies as
clearly a scheme which has run to a higher accuracy has
expended greater computational resources than necessary
to achieve a lower value. The efficiency of finite difference
schemes which are derived from a single semi-discrete
representation (in this case equation (11), the semi-
discrete representation of equation (1)) may be repre-
sented by three parameters for a given problem, with
an additional three parameters necessary to impose
the CFL condition on explicit schemes. We now
proceed to elucidate this idea by deriving semi-empirical
functional forms for the wall-time W as a function of
the error E.

All schemes under consideration here are second order
accurate in price by construction from equation (11).
Assuming order p in time the total error is given by

E ¼ Et þ ES; ð33Þ

where we say

Et ¼ Oð�t pÞ � ��t p; ES ¼ Oð�S 2Þ � ��S 2 ð34Þ

are the errors arising from the temporal and price

discretization, respectively. Assuming W scales inversely

with �t we have

W / E
�1=p
t ; ð35Þ

and hence

W ¼ 	�t�1; ð36Þ

for some 	. In fact, we know p¼ 2 in all cases bar

INV_CN applied to the American put option where p¼ 1.

Furthermore, if the scaling of the wall-time with �S is

given by the power law

W / �S�2 ; ð37Þ

we have

W / E� S : ð38Þ

As we shall see later, for the schemes considered in this

paper, implicit schemes have  0 1.1 and explicit schemes

have  9 0.4. Note that since all schemes are approximat-

ing the solution to the same semi-discrete equation (11),

� depends only on the problem and not the scheme.
We can write

W ¼ 
E�1=pt E� S ; ð39Þ

where the parameters (
, ) are fit by experiment for a

given test case as follows. To determine  for each

scheme, we run a series of tests for a fixed value of �t at

different price resolutions �S. Once  is known, a series

of tests is run for a fixed value of �S at different time

resolutions �t. The exact solution to equation (11), V�S,

is estimated via an independent second-order explicit

code (Ødegaarde 2007) run to very high accuracy. This

code was minimally modified by the authors to attain

second-order accuracy in time via RE. The value obtained

is then used to estimate Et¼ |Vk(K, 0)�V�S(K, 0)| from

the experimental data which may then be fit to

W ¼ 	�1=pE�1=pt : ð40Þ

From equation (39),

	 ¼ 
��1=pE� S ; ð41Þ

and hence 
 follows directly given ES¼ |V(K, 0)�

V�S(K, 0)|. The exact solution to equation (1), V(K, 0),

is derived to high accuracy using an analytical model for

European options or, for American options, an indepen-

dent binomial tree code (Ødegaarde 2007) run to

extremely high accuracy.
Minimizing the wall-time W for a fixed total error

E determines the dependencies of Et and ES on E

according to the relations

Et ¼
1

1þ  p
E; ES ¼

 p

1þ  p
E: ð42Þ
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Equation (39) may then be recast in the form

W ¼ 

ð1þ  pÞ þ1=p

ð pÞ 
E� �1=p: ð43Þ

From this efficiency equation, an approximation to the
wall-time required for a scheme X to evaluate the solution
for a given problem to a maximum specified accuracy
E is characterized by three parameters (
, , p). In a
subsequent section we shall derive these parameters for a
set of schemes applied to given option pricing problems.
Firstly, however, it is necessary to consider an additional
constraint on the viable choices for the pair (Et,ES) in
optimizing the efficiency of explicit schemes.

4.1. Stability constraints on explicit schemes

For STD_RE, the CFL condition (equation (26)) requires
�t � �S 2=ð�2S 2

1Þ where S1 is the maximum price on the
computational mesh. For a given number of uniformly
spaced price mesh points J, the maximum stable time-step
is 1/(�2J 2 ). Therefore, in an integration over a time T,
a minimum number of time-steps T�2J 2 is required. More
generally, for an explicit scheme X this constraint will
determine the scheme efficiency for E�Ecrit. The critical
point is the lower bound of the regime described by
equations (42) where the CFL condition is marginally
satisfied, i.e.

�t ¼ ��S2: ð44Þ

Using equations (34) we may then write

Ecrit ¼
1

�

�

�

� 	p� �1=ð p�1Þ
1þ  p

ð pÞ p=ðp�1Þ
: ð45Þ

Note that if p¼ 1 then as long as �/4�� �, equations (42)
trivially satisfy the CFL condition for all E.

We have theoretical values for � given by

�theorySTD RE ¼ 1=�2S2
1; ð46Þ

and

�theorySTS RE ¼
NSTS

2
ffiffiffi
�
p

ð1þ
ffiffiffi
�
p
Þ
2NSTS � ð1�

ffiffiffi
�
p
Þ
2NSTS

ð1þ
ffiffiffi
�
p
Þ
2NSTS þ ð1�

ffiffiffi
�
p
Þ
2NSTS

� �
�STD RE:

ð47Þ

We shall see later that, in practice, �STD RE � �
theory
STD RE but

�STS RE > �theorySTS RE. Thus the theoretical value is conserva-
tive in the case of STS_RE.

For E5Ecrit, the relationship between Et and ES is
no longer freely tunable for optimal efficiency but set by
the marginal CFL condition �t¼ ��S 2 giving (Et/�)

1/p
¼

�ES/�. For p¼ 2, E¼EtþES may be written as a
quadratic equation in ES with one admissible root,

��p

�p
E
p
S þ ES � E ¼ 0: ð48Þ

Equation (39) may then be written as a function of ES,

W ¼

�

�1=p�
E�1� S : ð49Þ

5. Efficiency tests

In the following we shall consider European and
American put options with T¼ 1, �¼ 0.2, r¼ 0.05 and
K¼ 100. A uniform mesh is assumed in S over the range
[0, 5K ]. The authors have confirmed similar results for
other choices of T, �, and r and for a uniform mesh in
log(S). All tests are carried out using MATLAB R2007a
on a 2.2 GHz Intel Core 2 Duo processor under Fedora 8
linux.

In all tests, SOR_CN and SOR_RE are tuned with
an over-relaxation parameter w¼ 1.1 and tolerance set to
10�12. No maximum iteration count is assigned so that
this tolerance is always achieved. For STS_RE, in all tests
�¼ 5� 10�4 and NSTS¼ 30. These values formally imply
a limiting stable time-step 380.2961 times longer than that
for STD_RE. Convergence to the solution of equation (1)
is measured against an analytic solution for European
put options and, for American put options, against a high
accuracy solution (E� 10�6) obtained from a binomial
tree method. To measure convergence rates to the exact
solution of equation (11) for a given �S, very high
accuracy solutions from an independent second-order
explicit scheme (Ødegaarde 2007) are used (�t¼T/107).

5.1. Convergence studies: determining f, g, p

Convergence studies of all schemes for European and
American put option pricing are presented in figures 2
and 3, respectively.

The scaling of ES is obtained for each scheme for fixed
�t and �S¼ {5K/(100� 2n) j n¼ 0, 1, 2, 3, 4, 5, 6}. Given
a sufficiently small �t, the temporal error Et will be
negligible compared with the price error ES and
E¼ |V(K, 0)�Vj(K, 0)|�ES. We find �t¼T/1000 for
the implicit solvers fulfills this condition. Stability over
the full range of spatial resolutions demands lower values
for the explicit schemes: �t¼T/3600 for STS_RE and
�t¼T/1 660 000 for STD_RE. In the upper panel of
figure 2, second-order convergence with �S is confirmed
for all schemes pricing the European option. Note that,
at the very lowest values of �S, the temporal error begins
to dominate. While second-order convergence is also
clear from the upper panel of figure 3, the early exercise
constraint results in temporal errors that dominate the
spatial errors at larger values of �S than in the European
case. In particular, the temporal error for INV_CN is
dominant at even moderate values of �S because the
early exercise constraint reduces this scheme to first-order
accuracy in time when an iterative solver is not used
(Wilmott et al. 1995).

The temporal order of convergence is determined for
a fixed price spacing �S¼ 5K/100 and a range of tem-
poral resolutions �t¼ {T/(20� 2n) j n¼ 0, 1, . . . , 12, 13}.
In the case of STD_RE, the stable temporal resolutions
are restricted and we consider �t¼ {T/(20� 2n) j
n¼ 5, 6, . . . , 14, 15}. The temporal error ET is then
determined from V�S¼5K/100.

The lower panel of figure 2 illustrates the case of the
European option pricing test case. All schemes show
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second-order convergence with time down to levels where

round-off error becomes significant. The results are

qualitatively similar for the American case as shown in

the lower panel of figure 3 except that, again, the early

exercise constraint degrades the smoothness of conver-

gence in all cases except INV_CN, which, as previously

commented on, is reduced to first-order accuracy in time.

We find good experimental agreement for p¼ 2 in all

cases except INV_CN applied to the American option

problem where p¼ 1, as expected.
The power laws given by equations (34) are fit to the

well-behaved data-points; as previously observed, other

sources of error become significant at the lowest values of

�t and �S. The best-fit values obtained for � and � are
used in the following sections to evaluate the dependent
parameters as required. The values corresponding to the
explicit schemes are detailed in table 1 as they are required
to apply the CFL constraint. This is discussed later in
section 5.4.

5.2. Wall-time scaling with price resolution:
determining w

In this section, the scaling of the wall-time required to
achieve a given accuracy as a function of the spot price
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Figure 2. Scheme convergence tests for European put option
pricing. Upper panel: Spatial error at the strike price, ES, plotted
as a function of �S. For this test, errors are measured against a
value obtained from an exact solution to the Black–Scholes
equation. The influence of temporal errors in the numerical
integration is minimized by using a sufficiently small value for
�t in all cases. Points are almost exactly coincident in all cases.
Clearly, all tested schemes converge to the exact solution at
second order according to Es¼ ��S2 for some �. Values for
� are obtained from this data as necessary. A reference line
scaling with �S2 is shown to guide the eye. Lower panel:
Temporal error at the strike price, Et, plotted as a function of �t
for �S¼ 5K/100. Temporal errors are calculated using a high-
accuracy approximation to the exact solution of equation (11)
obtained from an independent code modified to be second order
in time (Ødegaarde 2007). It is clear that all schemes converge to
this value with second-order accuracy according to Et¼ ��t2,
for some �, down to levels where machine accuracy becomes
important. Values for � are obtained from this data as required.
A reference line scaling with �t2 is also shown to guide the eye.
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Figure 3. Scheme convergence tests for American put option
pricing. Upper panel: Spatial error at the strike price, ES, plotted
as a function of �S. For this test, errors are measured against
a high-accuracy approximation to the exact solution using a
binomial tree method. The influence of temporal errors in the
numerical integration is minimized by using a sufficiently small
value for �t in all cases. Down to small �S all schemes, except
INV_CN, which is first order in time, demonstrate convergence
to the estimated exact solution at second order according to
Es¼ ��S2 for some �. Values for � are obtained from this data
as necessary. A reference line scaling with �S2 is shown to guide
the eye. Lower panel: Temporal error at the strike price, Et,
plotted as a function of �t for �S¼ 5K/100. Temporal errors
are calculated using a high-accuracy approximation to the exact
solution of equation (11) obtained from an independent code
modified to be second order in time (Ødegaarde 2007). Except
for INV_CN, which shows first-order temporal accuracy,
all schemes converge to this value with approximate second-
order accuracy according to Et¼ ��t2, for some �. Values for
� are obtained from this data as required. Reference lines scaling
with �t and �t2 are also shown to guide the eye.
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resolution is assessed. The range of values used for
the price mesh spacing is �S¼ {5K/(250� 2n) j n¼ 0, 1, 2,
3, 4}. For all schemes, �t¼T/1280, except for STD_RE
where �t¼T/640 000 is required for stability. Error and
wall-time data for European and American option pricing
are presented in figures 4 and 5, respectively. The upper
panel in each case shows the dependence of the temporal
error Et on �S and the lower panels illustrate the wall-
time W scaling. Notably, the SOR schemes tend to
diverge from a simple power law fit at high values of �S,
and at low values for Et in the European case. The
temporal error Et is particularly erratic for STS_RE
applied to the American option. This does not reflect any
inherent difficulty with the scheme, but merely indicates
that the power law approximation is not well suited to
STS_RE with the early exercise constraint applied in this
way. We defer discussion of the scheme’s performance
under the more modern penalty method approach to

pricing American options, for example Nielsen et al.
(2002). Power law indices are fit to the well-behaved data-
points according to W/�S and tabulated in table 2.
Reference lines are plotted for some values in the
corresponding figure panels.

Clearly, from the upper panel of figure 4, the temporal
accuracy of all schemes is independent of the mesh
spacing in price.

5.3. Wall-time scaling with temporal resolution:
determining a

We now proceed to establish the values of 
 using
equations (40) and (41). The temporal error Et and
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Figure 4. Temporal error and wall-time scaling with price
resolution for European put option pricing. Upper panel:
Temporal error at the strike price, Et, plotted as a function of
�S for a fixed value of �t¼T/1280 (except for �t¼T/640 000
in the case of STD_RE). Errors are calculated using a high-
accuracy approximation to the exact solution of equation (11)
obtained from an independent code modified to be second
order in time (Ødegaarde 2007). To a fair approximation, the
temporal error has no dependence on the spatial resolution.
Lower panel: The wall-time W in seconds as a function of price
resolution �S for the tests described above. This data is used to
fit the scaling law W/�S�2 . At moderate to high resolution
the law is clearly well obeyed. Reference lines scaling with �S�1

and �S�2 are also shown.
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Figure 5. Temporal error and wall-time scaling with price
resolution for American put option pricing. Upper panel:
Temporal error at the strike price, Et, plotted as a function of
�S for a fixed value of �t¼T/1280 (except for �t¼T/640 000
in the case of STD_RE). Errors are calculated using a high-
accuracy approximation to the exact solution of equation (11)
obtained from an independent code modified to be second
order in time (Ødegaarde 2007). Except for STS_RE at low to
moderate values of �S, which shows substantial volatility in Et

due to the implementation of the early exercise constraint,
the temporal error is reasonably approximated as independent
of the spatial resolution. Lower panel: The wall-time W in
seconds as a function of price resolution �S for the tests
described above. This data is used to fit the scaling law
W/�S�2 and is almost identical to the data presented for the
European case in figure 4. At moderate to high resolution
the law is clearly well obeyed. Reference lines scaling with �S�1

and �S�2 are also shown.
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wall-time W are plotted in figures 6 and 7 for the
European and American option pricing problems, respec-
tively. A range of temporal resolutions is considered,

�t¼ {T/(20� 2n) j n¼ 0, 1, . . . , 7, 8}, for the single spot
price spacing value �S¼ 1. The upper panel in each case
shows the temporal error Et while the lower panel
illustrates the wall-time W. STD_RE is not stable for
any values of �t in this range and so a reference value is
plotted for the minimal stable value of �t¼ 10�4. Table 3
explicitly provides all the errors and timings for this set of
tests as well as the benchmark values from which
ES¼ |V(K, 0)�V�S(K, 0)| is derived.

From the plots of Et in figures 6 and 7, the temporal
order of accuracy, p, for each scheme is 2, except for
INV_CN in the American option pricing case where
p¼ 1, as has already been confirmed. Again, the early
exercise constraint results in less smooth convergence
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Figure 6. Temporal error and wall-time scaling with time
resolution for European put option pricing. Temporal error Et

at the strike price (upper panel), and wall-time W in seconds
(lower panel) plotted against �t for a fixed value of �S¼ 5K/
500. Reference value are indicated for STD_RE with �t¼ 10�4

as it is unstable over the plotted range of �t. Errors are
calculated using a high-accuracy approximation to the exact
solution of equation (11) obtained from an independent code
modified to be second order in time (Ødegaarde 2007). This
data from the upper panel is used to fit 	 to the scaling law
	 ¼ 
��1=pE� S . Reference lines illustrating the approximate
scaling laws Et/�t2 and W/�t�1 are presented in the upper
and lower panels, respectively. Note that p¼ 2 in all cases.
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Figure 7. Temporal error and wall-time scaling with time
resolution for American put option pricing. Temporal error Et

at the strike price (upper panel), and wall-time W in seconds
(lower panel) plotted against �t for a fixed value of �S¼ 5K/
500. Reference value are indicated for STD_RE with �t¼ 10�4

as it is unstable over the plotted range of �t. Errors are
calculated using a high-accuracy approximation to the exact
solution of equation (11) obtained from an independent code
modified to be second order in time (Ødegaarde 2007). This data
from the upper panel is used to fit 	 to the scaling law
	 ¼ 
��1=pE� S . Reference lines illustrating the approximate
scaling laws Et/�tp and W/�t�1 are presented in the upper
and lower panels, respectively. Note that p¼ 2 in all cases except
for INV_CN where p¼ 1.

Table 1. Additional semi-empirical efficiency function param-
eters for CFL condition compliance of explicit schemes: (�, �, �).

European American

Method � � � � � �

STS_RE 0.0591 0.1791 0.0025 0.0591 0.4368 0.0031
STD_RE 0.0001 0.4787 0.0025 0.0001 1.7397 0.0031

Table 2. Parameters for semi-empirical efficiency functions:
(
, , p).

European American

Method 
  p 
  p

INV_CN 5.1672e� 07 1.1361 2 4.1479e� 07 1.1266 1
SOR_CN 5.6559e� 06 1.1188 2 7.6095e� 06 1.0978 2
INV_RE 6.3219e� 07 1.1852 2 2.5394e� 06 1.1607 2
SOR_RE 1.9042e� 05 1.1539 2 4.0585e� 05 1.1497 2
STS_RE 2.6033e� 04 0.4063 2 4.2956e� 04 0.4078 2
STD_RE 1.9161e� 05 0.3758 2 4.8678e� 05 0.3740 2
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profiles for the American option. Best-fit values for 	 are

obtained using equation (41).
High temporal accuracy solutions obtained using

the binomial tree method yield ES¼ 0.0024711638 for

the European option and ES¼ 0.0028769064 for the

American option. Then 
 ¼ 	E 
S follows from equa-

tion (41). The efficiency parameters (
, , p) are now fully

determined and presented in table 2.
The assumption of inverse scaling of W with �t given

by equation (36) is supported by the lower panels of

Table 3. Numerical value V(K ) at strike price S¼K with wall-timeW in seconds, and temporal error Et derived from high-accuracy
benchmark value (denoted Bench). �S¼ 5K/500 in all cases. Exact solution for European put option obtained from Black–Scholes
equation (denoted BS) or high-accuracy solution for American put option derived from binomial tree method (denoted BT) also

shown for reference.

European put American put

N Method V(K ) W (s) Et V(K ) W (s) Et

BS/BT 5.5735260222 6.0903702250
Bench 5.5710548584 6.0874933186

INV_CN 5.5582337988 0.0180 1.3e� 02 6.0494286083 0.0543 3.8e� 02
SOR_CN 5.5582337980 2.7834 1.3e� 02 6.0728821885 2.7081 1.5e� 02

20 INV_RE 5.5700055968 0.0147 1.0e� 03 6.0794452317 0.0160 8.0e� 03
SOR_RE 5.5700055955 10.3012 1.0e� 03 6.0840121118 10.4513 3.5e� 03
STS_RE 5.5640341499 0.1405 7.0e� 03 6.0799065958 0.1407 7.6e� 03

INV_CN 5.5711933839 0.0326 1.4e� 04 6.0746091394 0.0216 1.3e� 02
SOR_CN 5.5711933832 2.9173 1.4e� 04 6.0869159940 2.8169 5.8e� 04

40 INV_RE 5.5707713289 0.0284 2.8e� 04 6.0839310254 0.0304 3.6e� 03
SOR_RE 5.5707713279 10.4519 2.8e� 04 6.0861990167 10.6100 1.3e� 03
STS_RE 5.5709447761 0.2850 1.1e� 04 6.0872009272 0.2859 2.9e� 04

INV_CN 5.5710935500 0.0593 3.9e� 05 6.0809446348 0.0393 6.5e� 03
SOR_CN 5.5710935496 3.1840 3.9e� 05 6.0871705422 3.1208 3.2e� 04

80 INV_RE 5.5709809065 0.0559 7.4e� 05 6.0860502803 0.0601 1.4e� 03
SOR_RE 5.5709809058 11.1796 7.4e� 05 6.0870218427 11.3238 4.7e� 04
STS_RE 5.5710278176 0.5702 2.7e� 05 6.0872609232 0.5698 2.3e� 04

INV_CN 5.5710645318 0.1140 9.7e� 06 6.0841716547 0.0801 3.3e� 03
SOR_CN 5.5710645311 3.7710 9.7e� 06 6.0873924444 3.7226 1.0e� 04

160 INV_RE 5.5710359539 0.1083 1.9e� 05 6.0869151135 0.1193 5.8e� 04
SOR_RE 5.5710359531 12.8102 1.9e� 05 6.0873331963 12.9760 1.6e� 04
STS_RE 5.5710481552 1.1305 6.7e� 06 6.0875839962 1.1340 9.1e� 05

INV_CN 5.5710572768 0.2433 2.4e� 06 6.0858018523 0.1582 1.7e� 03
SOR_CN 5.5710572766 4.6564 2.4e� 06 6.0874354049 4.6028 5.8e� 05

320 INV_RE 5.5710500779 0.2224 4.8e� 06 6.0872476891 0.2408 2.5e� 04
SOR_RE 5.5710500788 16.0405 4.8e� 06 6.0874324039 16.0467 6.1e� 05
STS_RE 5.5710531897 2.2636 1.7e� 06 6.0874658348 2.2593 2.7e� 05

INV_CN 5.5710554631 0.5446 6.0e� 07 6.0866566365 0.4338 8.4e� 04
SOR_CN 5.5710554630 6.0882 6.0e� 07 6.0874801971 5.9971 1.3e� 05

640 INV_RE 5.5710536564 0.6477 1.2e� 06 6.0874145168 0.6917 7.9e� 05
SOR_RE 5.5710536564 20.7108 1.2e� 06 6.0874829213 20.7715 1.0e� 05
STS_RE 5.5710544422 4.4999 4.2e� 07 6.0874969531 4.5181 3.6e� 06

INV_CN 5.5710550096 1.5557 1.5e� 07 6.0870731887 1.2253 4.2e� 04
SOR_CN 5.5710550091 9.8862 1.5e� 07 6.0874890604 10.7403 4.3e� 06

1280 INV_RE 5.5710545571 2.2893 3.0e� 07 6.0874669422 2.3884 2.6e� 05
SOR_RE 5.5710545561 30.8410 3.0e� 07 6.0874905967 31.6979 2.7e� 06
STS_RE 5.5710547545 9.0119 1.0e� 07 6.0875020780 9.0130 8.8e� 06

INV_CN 5.5710548963 3.3009 3.8e� 08 6.0872818618 2.9442 2.1e� 04
SOR_CN 5.5710548963 24.5080 3.8e� 08 6.0874902341 24.0889 3.1e� 06

2560 INV_RE 5.5710547830 6.2863 7.5e� 08 6.0874838183 6.4247 9.5e� 06
SOR_RE 5.5710547835 66.6839 7.5e� 08 6.0874908470 67.6991 2.5e� 06
STS_RE 5.5710548325 17.8931 2.6e� 08 6.0874965528 17.9378 3.2e� 06

INV_CN 5.5710548679 7.3201 9.4e� 09 6.0873884923 6.4074 1.0e� 04
SOR_CN 5.5710548680 52.3461 9.5e� 09 6.0874926123 52.5042 7.1e� 07

5120 INV_RE 5.5710548396 14.6579 1.9e� 08 6.0874909960 14.9043 2.3e� 06
SOR_RE 5.5710548399 145.4471 1.9e� 08 6.0874927814 145.9531 5.4e� 07
STS_RE 5.5710548520 35.6537 6.5e� 09 6.0874926711 35.9482 6.5e� 07e

10 000 STD_RE 5.5710548540 2.6428 4.5e� 09 6.0874931545 3.2914 1.6e� 07
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figures 6 and 7 except for the SOR schemes at low
temporal resolution where the convergence properties of
these schemes are poor.

5.4. Stability constraint for explicit schemes:
determining �

As discussed in sections 2.2 and 4.1, explicit schemes
are limited by the CFL condition given by equation (26).
The critical error, Ecrit, below which this constraint
applies, is derived from equation (45). � and �, as
discussed in section 5.1, have been determined and are
presented in table 1. All that remains to characterize the
CFL constraint is to establish values for �.

For the cases under consideration here, with �¼ 0.2,
S1¼ 5K, and K¼ 100, equation (46) agrees with experi-
ment to within 1% and we take �STD RE ¼

�theorySTD RE ¼ 10�4. On the other hand, STS_RE turns out
to be particularly well suited to this problem and is stable
well beyond the value of �theorySTS RE ¼ 380�STD RE obtained
from equation (47) with NSTS¼ 30 and �¼ 5� 10�4. In
fact, we find experimentally that �STS RE ¼ 591�STD RE.
Presented in table 1, we now have (�, �, �) as required for
the CFL constraint on the explicit schemes STS_RE and
STD_RE.

5.5. Semi-empirical efficiency functions

We now present the semi-empirical evaluation of the
wall-time W in seconds, for each of the six schemes, as a
function of the error E for the European and American
variants of the option pricing problem under considera-
tion. Equation (43) is valid for all cases except for the
explicit schemes below the critical error Ecrit (equa-
tion (45)) when the appropriate expression becomes
equation (49) due to the CFL condition for stability.
The parameters (
, , p), required in the former instance,
and (�, �, �), as required in the latter instance, are
presented in tables 1 and 2 respectively.

The results of the estimated optimal scheme wall-times
are plotted in figure 8 in the range 10�6�E� 10�2. The
break in the power law can clearly be seen for STS_RE
at Ecrit¼ 0.0269 in the European option plot and at
0.0168 for the American case. No such break is visible
for the STD_RE lines because Ecrit4103 in both cases:
well above the maximum plotted error value.

Before interpreting these results it is important to
emphasize that the results are biased heavily in favour
of the implicit schemes. In particular, for the direct
matrix inversion methods, the necessary matrix inversions
are carried out only once before the timer is started. The
inversions are usually slower than the time integration
itself for �S
 1, and, in general, the coefficients may be
time varying and therefore this procedure will be required
at each time-step. Secondly, for the SOR methods
at �t0 10�3, the wall-time to convergence plateaus at
a value in excess of the assumed power law form.

Even with these advantages, STS_RE is clearly the
optimal performer when taken as a broad spectrum
method for this problem. At all but low accuracies for

some of the alternative implicit methods where wall-time
is low in any case, it is the most efficient option. When the
simplicity of the method and the above provisos are taken
into consideration, the case for using STS_RE as opposed
to any of the presented implicit methods is overwhelming.

6. Conclusion

An acceleration technique, known as Super-Time-
Stepping (STS), for explicit finite difference algorithms
is introduced for the first time in computational finance.
We demonstrate the efficacy of the method by pricing
European and American put options in a series of bench-
tests with several well-known finite difference techniques.
Simple vanilla options are chosen as case studies for
their inherent simplicity. However, in practice, the target
application for this method is the numerical modeling
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Figure 8. Evaluation of semi-empirical efficiency functions for
European and American put options with �¼ 0.2, r¼ 0.05,
T¼ 1.0, S1¼ 5K, and K¼ 100. Wall-time W in seconds is
plotted against required total error E in the solution for value
at strike price V(K ). Upper panel: European put option. For
E0 10�4, STS_RE is inferior only to the direct matrix inversion
methods, otherwise it is equivalent or superior. Note the break
at Ecrit¼ 0.0269 in the case of STS_RE below which the optimal
relationship between the spatial and temporal errors, ES and Et,
is constrained by the CFL condition. Lower panel: American
put option. In this test, STS_RE is superior for E9 10�2.
Note the break at Ecrit¼ 0.0168 for STS_RE.
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of more complex systems for which implicit methods
quickly become prohibitively difficult to implement. For
example, we suggest multi-dimensional systems requiring
decomposed and/or adaptive meshes. Stability is formally
demonstrated for a novel operator split implementation
of the technique. This composite method is of greater
generality and it is suggested that it may be the
appropriate approach when considering pricing of more
exotic financial instruments.

A novel methodology to assess and compare the
schemes’ efficiencies is also introduced. Applying this
technique to test cases we demonstrate degrees of
acceleration provided by the STS method which yield
comparable, and even superior, efficiencies to implicit
differencing methods. The implicit methods considered
are PSOR and direct matrix inversion in both European
and American cases. Of central importance, this is
achieved with no significant increase in implementation
complexity over and above that of the underlying
standard explicit algorithm.

Given that STS accelerated methods inherit the
simplicity of explicit methods whilst achieving high
accuracy at low computational cost, we conclude that
when faced with complex pricing models this approach
offers a highly attractive alternative to the substantial
challenges presented by conventional implicit techniques.
Promising targets include models involving multi-
dimensional parameter spaces, variable meshes, or
moving boundaries.
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Appendix A: Composite acceleration method

The fully explicit (�¼ 1) expression of equation (22) is

Vn ¼ ðI��tPÞVnþ1 ��tbnþ1; ðA1Þ

with all quantities defined as in section 2.2.
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Although in sample cases STS applied to a non-

symmetric operator has been shown to result in a slight

flattening of the stability region (Alexiades et al. 1996),

formally stability may only be established for the
symmetric positive definite case. For the problems

considered in the present work, we have found that STS

may be applied to the weakly non-symmetric matrix

P with negligible impact on the scheme’s stability. For

completeness, however, we now proceed to determine

conditions for strict stability of an alternate finite

differencing of the Black–Scholes equation which does

incorporate a symmetric positive definite operator. This

scheme formally admits application of the STS accelera-

tion method.
P may be trivially decomposed according to

P ¼ Aþ K; ðA2Þ

where A	 (PþPT)/2 and K	 (P�PT)/2 are the sym-

metric and skew-symmetric parts of P, respectively,

with �T denoting a transpose operation. Explicitly, these
matrices are given by

A ¼

b1
1
2 ða2 þ c1Þ � � � 0

..

. . .
. . .

. ..
.

0 � � � 1
2 ðaJ�1 þ cJ�2Þ bJ�1

2
64

3
75; ðA3Þ

and

K ¼

0 � 1
2 ða2 � c1Þ � � � 0

..

. . .
. . .

. ..
.

0 � � � 1
2 ðaJ�1 � cJ�2Þ 0

2
64

3
75: ðA4Þ

Prescribing the update of Vn to Vnþ1 via Multiplicative

Operator Splitting (MOS) we write

Vn ¼ RTVnþ1 ��tbnþ1: ðA5Þ

Strict stability requires that kRTk� 1 for any operator

norm (Morton 1980). By multiplicative dominance

kRTk�kRk kTk. For stability we therefore demand

kRk� 1 and kTk� 1 for operators R and T consistent

with equation (A1). We shall adopt the Euclidean

operator norm, denoted k�k2, hereafter.
Note that, for any complex square matrix X, we may

write kXk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðXyXÞ

p
, where Xy denotes the complex

conjugate of X2C
n
�C

n and �(�) indicates the spectral

radius of an operator (i.e. the maximum of the absolute
values of the operator’s eigenvalues).

We propose R¼ I��tA, which is symmetric by

construction and clearly consistent with equation (A1).

We now proceed to establish the positive definiteness and

stability properties for this definition.
By Sylvester’s criterion, a matrix is positive definite if

and only if the determinants of all upper-left sub-matrices

are positive. The determinant, Dj, for the upper-left j� j

sub-matrix of the tri-diagonal matrix (23) is easily

expressed by means of a simple three-term recurrence

relation (e.g., Hager 1988)

Dj ¼ bjDj�1 �
1

4
ðaj þ cj�1Þ

2Dj�2; ðA6Þ

with D�1	 0 and D0	 1. It is straightforward to show

that

Dj ¼
Xj
k¼0

djk�
2kr j�k; ðA7Þ

where djk is a positive real number for all values of k.
Under the condition r40, A is therefore strictly

positive-definite. Note that this result does not depend

on uniform �(S ) and r(S ). Incidentally, this result implies

that P must be positive stable.
In order to determine the stability limit �tSTD,

Gerschgorin’s (1931) theorem may be invoked. The

eigenvalues �Aj of A are bounded by the relation

j�Aj � bjj � j
1
2 ðaj þ cj�1Þj þ j

1
2 ðajþ1 þ cjÞj; ðA8Þ

for j¼ {1, . . . , J� 1}.
Under the usual assumption of �2S1/r� 1, we find

�Amax � 2�2S2
1=�S2. Therefore, since A is symmetric

positive definite we have kRk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�ðR2Þ

p
¼ 1��t�Amax.

The resultant stability constraint is again given by

equation (26), i.e. �t � �S2=�2S2
1.

We now require a suitable prescription for T to

complete the definition of the scheme. The simple choice

of T¼ I��tK is unconditionally unstable since the

eigenvalues of any skew symmetric real matrix are

purely imaginary (or zero).
However, applying an update derived from a full-step

predictor for a skew-symmetric operator is known to

retrieve conditional stability for explicit schemes

(O’Sullivan and Downes 2006, 2007), i.e. TVnþ1 ¼

Vnþ1 ��tKV̂nþ1 where V̂nþ1 ¼ ðI��tKÞVnþ1.
Hence, we adopt the following prescription for T:

T ¼ I��tKþ�t2K2: ðA9Þ

We proceed by establishing the stability properties of T.
Since K is real and skew symmetric, we have TyT¼

(Iþ�tKþ�t2K2)(I��tKþ�t2K2)¼ Iþ�t2K2
þ�t4K4.

Furthermore, K is normal and may therefore be

represented via the relation K¼Uy,KU where

U2C
J�1
�C

J�1 is unitary and ,K
2C

J�1
�C

J�1 is a

diagonal matrix formed from the eigenvalues of K, which

occur in imaginary conjugate pairs �K ¼ 
i�̂K (plus

0 if the dimension is an odd integer). Now, TyT¼

Uy(Iþ�t2(,K)2þ�t4(,K)4)U and therefore kTk2 ¼

½ð1��t2ð�̂KÞ2 þ�t4ð�̂KÞ4Þmax�
1=2 since kUk2¼ 1. We

apply Gerschgorin’s theorem to establish that

j�̂Kjmax � j�
2 � rjS1=�S and hence the condition for

stability �t��S/|�2� r|S1. This will in general be an

insignificant constraint with respect to equation (26).
The conditionally stable split scheme is therefore

Vn ¼ ðI��tAðI��tKþ�t2K2ÞVnþ1 ��tbnþ1: ðA10Þ

Since A is proven positive definite, acceleration via STS

is formally admissible with the inner sub-steps, �tj,

derived from the normal explicit time-step limit �tSTD
using equation (31). In particular, recall that �tSTS !

N2
STS�tSTD as �! 0 where � is a user-defined damping
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parameter, and �tSTS ¼
PNSTS

j¼1 �tj. The full accelerated
scheme may therefore be written as

Vn ¼
YNSTS

j¼1

ðI��tjAÞ

 !
ðI��tKþ�t2K2ÞVnþ1 ��tbnþ1;

ðA11Þ

with the usual CFL condition �t � �S2=�2S2
1.

In summary, via MOS of the base scheme (A1), we have
established strict stability of the consistent scheme (A11)
under the usual time-step constraint (26). However, in this

case, STS is formally admissible and yields acceleration
in line with the results demonstrated in the main body
of this work. In trials, we find that for the tests presented

in this paper, the scheme (A11) yields negligible difference
from the unsplit case (A1). This is in agreement with other
authors who have noted in test cases that relaxing the

symmetric positive definite requirement for the applica-
tion of STS results only in a slight reduction of the
stability region in the complex plane along the imaginary

direction as long as the evolution operator is only weakly
non-symmetric.
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