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Exact Inverse Schrödinger Scattering

Jonathan M Blackledge

SFI Stokes Professor
Dublin Institute of Technology
http://eleceng.dit.ie/blackledge

Abstract

The paper briefly reviews the principles of conditional forward and inverse
Schrödinger scattering using Rutherford scattering as an example. An ap-
proach is considered which, in principle, provides an exact inverse scattering
solution from which the scattered field can be computed.

Key words: Inverse Schrödinger scattering, Rutherford scattering, Exact
solutions

1. Introduction

For a non-relativistic incident ion beam (described by a unit plane wave
function ψi), analysis of the scattered field ψs generated by the elastic scat-
tering of the beam with a nuclear potential V (r) is determined by solutions
to the three dimensional Schrödinger equation

(∇2 + k2)ψ(r, k) = V (r)ψ(r, k) (1)

where k is the wavenumber and ψ is a complex wavefunction. Let ψ = ψ±i +ψs

where (∇2 + k2)ψ±i = 0 with solutions ψ±i = exp(±ikn̂i · r), n̂i being a unit
vector that points in the direction of the incident ion beam.

For V (r) → 0 as r ≡| r |→ ∞, the Green’s function transformation to
equation (1) yields the Lippmann-Schwinger equation [1]

ψ(r, k) = ψ±i (r, k) + g(r, k)⊗3 V (r)ψ(r, k), g = −exp(ikr)

4πr
(2)

where ⊗3 denotes the three-dimensional convolution integral and g is the
outgoing free space Green’s function which is the solution of (∇2+k2)g(r, k) =
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δ3(r). A principal aim of ion beam analysis is to infer the characteristics of
V by measuring the scattering cross section | ψs |2. We present a solution to
this problem that is based on the transformation of equation (1) to [2]

V (r) =
ψ∗(r, k)

| ψ(r, k) |2
∇2

(
ψs(r, k)− k2

4πr
⊗3 ψs(r, k)

)
(3)

2. Formal Inverse Solutions

Equation (2) yields the following convergent iterative solution (the Born
series) for ψs subject to the condition ‖g(r, k)⊗3 V (r)‖ < 1:

ψs(r, k) = g(r, k)⊗3 V (r)ψ±i (r, k) + g(r, k)⊗3 V (r)[g(r)⊗3 V (r)ψ±i (r, k)] + ...
(4)

∼ g(r, k)⊗3 V (r)ψ±i (r), ‖g(r, k)⊗3 V (r)‖ << 1 (5)

Each term in equation (4) expresses the effects due to single, double, triple,
etc. scattering. An inverse scattering solution is achieved by letting V =
c1V1+c2V2+...cnVn and equating terms with common (real valued) coefficients
c1, c2,... This provides an iterative solution for computing Vj, j = 1, 2, ..., n.
V is then obtained from Vj by setting c = 1 [3] [4] - an iterative solution to
an iterative solution. Equation (5) describes the scattered field generated by
single scattering events (the Born approximation) and the inverse problem
is compounded in the deconvolution of equation (5) which is a near-field
problem. However, when ψs is measured in the far-field, for ψ+

i , the scattered
field is given by

ψs(rs, k) ∼ −exp(ikrs)

4πrs

ψ̃s(kn̂s), rs →∞

where

ψ̃s(kn̂s) =

∞∫
−∞

exp[−ik(n̂s − n̂i) · r]V (r)d3r (6)

and n̂s = rs/rs is a unit vector that points in the direction of the scat-
tered field. Note that this result is based on equation (5) which, in turn,
is based on the equation V ∼ (ψ+

i )−1(∇2 + k2)ψs. Also note that, in the
far-field, the forward scattering and inverse scattering problems are reduced
to forward Fourier and inverse Fourier transformations respectively, i.e. for
‖g(r, k) ⊗3 V (r)‖ << 1, far-field ion beam analysis is equivalent to Fourier
space analysis.

2



3. Exact Inverse Solution

Since ‖ψs − (k2/4πr) ⊗3 ψs‖2 ≤ ‖ψs‖2[1 + k2
√
r/(4π)], in the far field,

equation (3) becomes

V =
−1

ψ±i + ψs

k2ψs ⊗3 ∇2

(
1

4πr

)
= k2Ψ−1[(ψ±i )∗ + ψ∗s ]ψs, r →∞ (7)

where Ψ−1 =| ψ±i + ψs |−2. Fourier analysis of equation (7) provides a far-
field solution for the scattered field that is compatible with the result given
by equation (6) under the Born approximation, i.e. Fourier-space far-field
equivalence. Taking the Fourier transform of equation (7) and using the
product theorem, for ψ−i , we obtain

Ṽ (kn̂) = k2[ψ̃s[k(n̂i − n̂)] + ψ̃∗s(kn̂)⊗3 ψ̃s(kn̂)]⊗3 Ψ̃−1(kn̂) (8)

where n̂ = k/k and ψ̃s is taken to be ψs in the far field by analogy with
equation (6). Since Ψ−1 = 1− ψ−i ψ∗s − ψs(ψ

−
i )∗− | ψs |2 +...,

Ψ̃−1(kn̂) = δ3(kn̂)− ψ̃∗s [k(n̂i + n̂)]− ψ̃s[k(n̂i − n̂)]− ψ̃s(kn̂)⊗3 ψ̃
∗
s(kn̂) + ...

With n̂i − n̂ = n̂s equation (8) is can be written in the form

ψ̃s(kn̂s)⊗3 Ψ̃−1[k(n̂i − n̂s)] =
Ṽ [k(n̂i − n̂s)]

k2

−ψ̃∗s [k(n̂i − n̂s)]⊗3 ψ̃s[k(n̂i − n̂s)]⊗3 Ψ̃−1[k(n̂i − n̂s)] (9)

Note that for back-scattering (when n̂i = −n̂s) equation (8) becomes

Ṽ (kn̂s) = k2[ψ̃s(−2kn̂s) + ψ̃∗s(kn̂s)⊗3 ψ̃s(kn̂s)]⊗3 Ψ̃−1(kn̂s)

4. Rutherford Scattering

For a screened Coulomb potential V (r) = exp(−ar)/r, a > 0 - used to ob-
tain a convergent integral in equation (6) - the intensity of the Born scattered
field as a function of the scattering angle θ is given by (ignoring scaling)

| ψs(θ) |2=
1

sin4(θ/2)
, a→ 0 (10)
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which is a characteristic ‘signature’ of Rutherford scattering. In order to
undertake the experiment, Rutherford required a thin foil to generate sin-
gle scattering events for which Gold leaf offered the best possible technical
solution. A thicker foil would have generated multiple scattering leading to
an indeterminacy in the results. In this sense, Rutherford’s 1909 experiment
was designed to interpret Born scattering in the far-field. The method re-
ported in this paper, involves computing the scattered field from the inverse
solution given by equation (8) to which different conditions can be applied.
For example, the conditions required to obtain equation (10) from equation

(9) are Ψ̃−1 ∼ δ3 and ψ̃∗s ⊗3 ψ̃s ∼ 0.

5. Conclusion

The scattering potential is obtained directly from data on the far-scattered-
field based on equation (8). The unconditional scattered field is computed
using the iteration

ψ̃m+1
s (kn̂s) =

Ṽ [k(n̂i − n̂s)]

k2
⊗3Ψ̃

m[k(n̂i−n̂s)]−ψ̃m
s [k(n̂i−n̂s)]⊗3(ψ̃

m
s )∗[k(n̂i−n̂s)]

where

ψ̃0
s(kn̂s) =

Ṽ [k(n̂i − n̂s)]

k2

The back-scattered intensity is obtained by computing | ψ̃m
s (kn̂s) |2, n̂s ∼

−n̂i for large m.
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