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We present an acceleration technique, effective for explicit finite difference schemes describing diffusive

processes with nearly symmetric operators, called Super-Time-Stepping (STS). The technique is applied

to the two-factor problem of option pricing under stochastic volatility. It is shown to significantly reduce

the severity of the stability constraint known as the Courant-Friedrichs-Lewy condition whilst retaining the

simplicity of the chosen underlying explicit method.

For European and American put options under Heston’s stochastic volatility model we demonstrate de-

grees of acceleration over standard explicit methods sufficient to achieve comparable, or superior, efficiencies

to benchmark implicit schemes. We conclude that STS accelerated methods are a powerful numerical tool

for the pricing of options that inherit the simplicity of explicit methods whilst achieving high accuracy at

low computational cost and offer a compelling alternative to conventional implicit techniques.
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1. Introduction

“Surprisingly, there seem to be no recognized rules for the comparison of alternative difference

schemes. Clearly there are three fundamental criteria-accuracy, simplicity, and stability”

Gilbert Strang, 1968 [39].

The Black-Scholes partial differential equation [5,27] laid the foundations for modern derivatives

pricing. However, the assumptions made in the Black-Scholes model are known to be overly re-

strictive. In particular, the Black-Scholes model assumes that the underlying asset price follows a

geometric Brownian motion with a fixed volatility. Many derivative pricing models have been devel-

oped subsequently that use more sophisticated stochastic processes for the underlying asset which

result in a better match to empirically observed details.

Using such stochastic processes is often more straightforward than relaxing the Black-Scholes

assumptions to allow for discrete time trading, transactions costs and other market imperfections.

Examples of more realistic stochastic processes include: jump-diffusion [28], Lévy [9], stochastic

volatility (SV) [17], SV jump-diffusion [4], and also combinations of these that exhibit SV as well as

jumps in both the asset price and volatility [12]. In many of these cases there may be no analytical

solution to the PDE describing the corresponding vanilla European option price. The PDE describing

the American analog does not have a closed form solution in any of these models. When a closed

form solution does not exist one popular way to proceed is to solve the PDE numerically using finite

difference (FD) methods, see [46] and [40].

Despite their increased complexity numerical valuations of options using FD methods based on

implicit discretizations are usually superior in terms of efficiency to approaches based on conventional

explicit discretizations. The principal reason for this is the Courant-Friedrichs-Lewy (CFL) stability

constraint on explicit schemes which limits the size of the time step relative to the square of the

spatial step size. In this paper, the restriction that the CFL constraint imposes is reduced significantly

using an acceleration technique for explicit algorithms known as Super-Time-Stepping (STS). STS

was recently introduced to the finance literature for the first time in the one-factor Black-Scholes

setting by [33] for vanilla European and American put options.

While the behavior of STS has only been analytically established for symmetric operators [2],

a novel splitting approach was used in [33] to deal with non-symmetric operators under STS. This

splitting method is based on the unique decomposition of the operator into its symmetric and skew-

symmetric parts. The former may then be treated via STS while the latter is efficiently integrated

via a suitable scheme in a procedure introduced by [31,32]. In this way, reference [33] demonstrated

formal stability for the accelerated scheme and showed that the splitting procedure is unnecessary

in the case of a weakly non-symmetric operator. In this work, we follow that precedent and do not



May 20, 2014 15:32 WSPC/INSTRUCTION FILE sts˙sv˙final˙wp

3

split the operator. As will be shown, for the problems under consideration here, the performance of

STS does not appear to suffer any discernible adverse implications to its stability properties as a

result.

The contribution of this paper to mathematical and computational finance is to extend the

application of the STS acceleration technology to the two-factor problem of pricing European and

American put options under the Heston model. STS is compared to a number of standard FD

methods used frequently in the literature for SV options pricing. We demonstrate that the efficiencies

attained using the STS algorithm are comparable, and often superior, to those of common implicit

differencing techniques. Crucially, this acceleration is achieved without any significant increase in

implementation complexity relative to the underlying standard explicit scheme.

Monte Carlo (MC) methods can be used to price American style options under the Heston model,

such as the least squares MC algorithm of [25]. There are also a number of tree based (explicit)

methods, see for example [1,24,14,45,3]. Both MC and tree-based methods discretize the stochastic

differential equation describing the joint dynamics of the stock price and its variance and price

options by backward recursion. MC methods are very general in terms of their applicability but are

computational expensive. The tree based methods mentioned above are promising alternatives to

implicit FD methods however the number of nodes in the grid for the stock price and variance must

grow at least quadratically with the number of time steps. Furthermore traditionally two-dimensional

tree based methods are complex to implement, although [3] and [1] have made significant progress

in reducing implementation complexity.

The focus of this paper is on numerically solving American style options under the Heston model

by discretizing and then solving the option pricing PDE. Successive overrelaxation (SOR) is the

most popular iterative method for obtaining the solution in the European option case (see [10] for

details) while projected SOR (PSOR) [11] is one of the most popular methods used to solve higher

dimensional linear complementarity problems (LCPs) that result from pricing American options.

With (P)SOR, as we refine the computational grid to obtain more accurate option prices the number

of iterations required to converge grows, however this effect can be reduced by appropriate (problem

dependent) tuning of the overrelaxation parameter.

Other approaches used to numerically solve the option pricing PDE under the Heston model

include: an incomplete LU (ILU) pre-conditioned conjugate gradient method with a penalty term

devised by [49] to handle the early exercise feature of American options; multigrid methods used

by [8] and [30] to price American options; a hopscotch scheme applied by [19] to price American

options; a finite element approach constructed by [47] to price European and barrier options; an

exponential fitting in combination with splitting and Yanenko method by [36]; various ADI schemes

augmented to include the cross derivative correlation term by [22] and an ADI predictor-corrector
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scheme by [48]. A number of schemes used to solve LCPs were also compared by [20,21] including

a PSOR method, a projected multigrid method, an operator splitting method and a component

wise splitting method. All of the schemes examined by these authors displayed varying levels of

superiority over the PSOR method in efficiently pricing American options under the Heston model.

All of the PDE solver methods mentioned above, with the exception of the hopscotch method

which is a mixed implicit-explicit method, are implicit algorithms which are faster but significantly

more complex in their implementation than their explicit differencing cousins. In particular, these

methods are global in the sense that the entire solution must be available in order to advance any

point and are therefore inherently difficult to parallelize. The principal selling point of the STS

algorithm is that it preserves the simplicity and flexibilty of explicit FD schemes while providing

efficiency to compete with their implicit counterparts. The local nature of the FD stencil for explicitly

differenced PDEs is inherited by the STS accelerated scheme. Parallelization is therefore a trivial

endeavor in this context.

The paper is arranged as follows. Sec. 2 reviews the Heston model, the corresponding PDEs de-

scribing vanilla European and American option prices, and the associated boundary conditions. Sec. 3

describes the implementation details required to construct the spatial (asset price and variance) grid

and reviews the standard FD schemes used to benchmark the STS implementation employed. Sec. 4

introduces the STS technique. The application of STS to option pricing under SV is the main contri-

bution of the paper. Sec. 5 contains comparative timings and discussion of results. Finally, in Sec. 6,

we offer concluding remarks.

2. Review

This section provides a review of the option pricing PDE and associated boundary conditions for

both European and American options under the Heston model. Furthermore this section contains

a brief discussion of the implementation issues concerned when the Heston option pricing PDE is

solved using FD methods.

2.1. Heston’s Stochastic Volatility Model

The Heston model, in the risk neutral measure, will be taken to be of the form:

dxt = rxtdt+
√
ytxtdzt,

dyt = {α (β − yt)− λγ
√
yt}dt+ γ

√
ytdwt, (2.1)

ρdt = dztdwt,

where xt and yt are the asset price and variance at time t respectively, r is the risk-free rate, α is

the mean reversion of the variance, β is the long run mean of the variance, γ is the volatility of
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the variance, ρ is the correlation of the asset price and the variance, and λ is the market price of

risk. We denote by u(x, y, τ) an option price with a time-to-maturity of τ = T − t where t is the

observation time and T is the expiry.

2.2. European Put Options

European options satisfy the following PDE under these asset price dynamics:

Lu =
∂u

∂τ
+Au = 0, (2.2)

where L is a generalized Black-Scholes type operator and A is its spatial component defined by

Au = −1

2
yx2uxx − ργyxuxy −

1

2
γ2yuyy − rxux − {α (β − y)− λγ√y}uy + ru. (2.3)

The payoff, or initial condition, on a European put option is u(x, y, 0) = g(x, y) = max [E − x, 0].

European put options satisfy u(0, y, τ) = e−rτg(0, y) on the boundary of x = 0. The PDE on the

boundary y = 0 reduces to

Lu =
∂u

∂τ
+Au =

∂u

∂τ
− rxux − αβuy + ru = 0. (2.4)

We note that through consideration of the Fichera function, the necessity for a boundary condi-

tion at y = 0 is only present when the Feller condition, αβ ≥ γ2/2, is violated. It has been argued

in [8] and [48] that, when required, the appropriate boundary condition to use at this boundary is

the payoff function. Furthermore, it is claimed in [48] that even when the Feller condition is not

violated, the solution should converge to the payoff function at this boundary. We note here that

this behavior is not observed in our solutions. As the present work is concerned with the efficiency

of numerical methods applied to the Heston model and our results are in good agreement with the

literature, we defer further discussion on boundary conditions for the model.

We use the following asymptotic boundary conditions for x = xmax and y = ymax (where xmax

is the maximum value of x considered in the approximation of the solution and ymax is defined

similarly):

lim
x→∞

∂2u(x, y, τ)

∂x2
= 0, lim

y→∞

∂2u(x, y, τ)

∂y2
= 0, (2.5)

except for the componentwise split scheme (introduced in Sec. 3.2) and the C code implementations

used for speed tests in Secs. 5.1 and 5.2 where the boundary condition

lim
x, y→∞

∂2u(x, y, τ)

∂x ∂y
= 0 (2.6)

is deployed.
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2.3. American Put Options

American options may be exercised early leading to the early exercise constraint u(x, y, τ) ≥ g(x, y).

In the continuation region where the constraint is inactive u satisfies the same PDE as the European

option, Lu = 0, as given by Eq. 2.2. Combining these relations we can write the American option

pricing problem as a time dependent LCP (for example see [21])Lu ≥ g, u ≥ g,

(Lu) (u− g) = 0,
(2.7)

in a domain {(x, y, τ) |x ≥ 0, y ≥ 0, τ ∈ [0, T ]}. Note that the payoff or initial condition of the Amer-

ican put option is the same as the European option.

At x = 0, the pertinent boundary condition is u(0, y, τ) = g(0, y). The linear complementarity

conditions on the boundary y = 0 areLu = ∂u
∂τ +Au = ∂u

∂τ − rxux − αβuy + ru ≥ g, u ≥ g,

(Lu) (u− g) = 0.
(2.8)

The boundary conditions adopted at x =∞ and y =∞ are the same as those for the European put

option given by Eqs. 2.5 or 2.6. This is the nearly equivalent system to that described by [8,21,30,49],

the only difference being we use second derivative asymptotic boundary conditions at x = ∞ and

y =∞ as opposed to first derivative boundary conditions.

3. Implementation Details

Although implementation details are crucial in any FD scheme the focus of this paper is on the

application of super-time-stepping in solving the option pricing PDE from the Heston model. Hence

implementation details are briefly covered in this section with additional detail available from quoted

references.

Our implementation details follow closely the details described by [21]. We use grid generating

functions (GGFs) to increase computational efficiency by decreasing the density of mesh points

away from regions of interest. Furthermore we restrict the GGFs order to ensure the spatial oper-

ator is an M-matrix (this is done to improve the stability properties of a numerical scheme called

componentwise splitting that is used as a benchmark in this paper, for more details see [21]). Like

[21] we choose the stock price GGF to be a quadratic function of the stock price subject to the

M-matrix constraints. The stock price grid spacing is set to be four times as dense at the exercise

price compared to the grid spacing at the maximum stock price. Preserving the M-matrix condition

constricts the shape of the stock price GGF at lower stock prices to be a straight line from the origin

superimposed onto the quadratic GGF as illustrated in figure 3(a). Furthermore we use a linear
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GGF for the variance and set the variance grid spacing to be twice as dense at low variance values

compared to the grid spacing at high variance values, see figure 3(b).

We also employ upwinding when the PDE becomes convection dominated to avoid spurious

oscillations in these regions as described by [21]. The main difference in our grid generation procedure

is that we iterate to fit the parameters dictating the point density over the domain exactly. We use

a conventional nine point stencil as opposed to the seven point prescription of [21], except for in the

implementation of the componentwise splitting benchmark method, and in all cases for the C code

timings quoted in Tabs. 2 and 4, where we use a seven point stencil.

3.1. Spatial Discretization

The FD discretizations are constructed on a non-uniform grid

(xi, yj , τk) ∈ {0 = x0, . . . , xm = X} × {0 = y0, . . . , yn = Y } × {0 = τ0, . . . , τl = T} . (3.1)

Standard FD methods are used to discretize the spatial operator A in Eq. 2.3. Centered FD is used

for the diffusion terms and, in most cases, for the convection terms. However, at certain boundaries,

and in areas where convection dominates over diffusion, upwinding is beneficial and one-sided dif-

ferences are used. Details on the treatment of one particular choice of boundary conditions and the

implementation of upwinding techniques are given in Appendix A and Appendix B respectively.

The Heston PDE at a reference point u = u (xi, yj) can be written compactly as

Lu =
∂u

∂τ
+Au = 0, (3.2)

in which A is a nine component operator matrix given by

A =


Alu Au Aru

Al Ac Ar

Ald Ad Ard

 , (3.3)

with

Ac = −
(

1

2
yx2aD + ργxycD +

1

2
γ2ybD + rxaC + α (β − y) bC − r

)
,

Ap = −
(

1

2
yx2aDp + ργxycDp + rxaCp

)
, for p ∈ {r, l}

Ap = −
(

1

2
γ2ybDp + ργxycDp + α (β − y) bCp

)
, for p ∈ {u, d}

Ap = −ργxycDp , for p ∈ {ru, rd, lu, ld}.

where aqp, b
q
p, c

q
p for p = {r, l, u, d, c, ru, rd, lu, ld} and q = {C,D} are the coefficients applied to the

central FD schemes used for the convection, C, and diffusion, D, components at the inner points
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of the computational mesh (away from the boundaries) when using grid generating functions. The

approach described above is easily applied to the case of American options as given by the time

dependent LCP Eq. 2.7.

3.2. Time Discretization

In this section the explicit, implicit and Crank-Nicolson (CN) time discretization methods are briefly

described. The Heston PDE for European options over the entire solution space can be written as

∂u

∂τ
+ Au = 0, (3.4)

where A is a block tridiagonal (m + 1)(n + 1) × (m + 1)(n + 1) matrix, u is a vector of length

(m+1)(n+1), m and n are the number of steps in the x−direction and y−direction respectively. The

vector u and tridiagonal matrix A are constructed by stacking each solution uij and corresponding

nine component operator matrix A into a column vector and block tridiagonal matrix respectively,

for i = 0, . . . ,m and j = 0, . . . , n. The θ-method of discretization applied to Eq. 3.4 results in the

following system:

Bu(k+1) −Cu(k) = 0, for k = 0, 1, . . . , l − 1, (3.5)

where B = I + θ∆τA and C = I− (1− θ) ∆τA.

For American options the scheme in Eq. 3.5 becomes a time dependent LCP as described in

Eq. 2.7 Bu(k+1) ≥ Cu(k), u(k+1) ≥ g(
Bu(k+1) −Cu(k)

)T (
u(k+1) − g

)
= 0,

(3.6)

where g is the early exercise value of the option.

When θ = 0, the θ-method corresponds to the explicit Euler scheme. This scheme is first order

accurate in time and second order accurate in space. The explicit Euler scheme is very simple to

implement, however, stability depends on the size of the time step which is in turn dictated by

the spatial step size and the coefficients of the governing PDE (see [46,40] for further details). In

particular when correlation ρ = 0, the theoretical upper limit on the time step is given by

∆τexpl ≤ min
0≤i≤m

0≤j≤n


[
x2
i yj

h (xi)
2 +

γ2yj

h (yj)
2

]−1
 (3.7)

where h (xi) = xi+1 − xi for i = 0, . . . ,m and h (yj) = yj+1 − yj for j = 0, . . . , n are the non-

uniform grid spacings in the x and y directions. In the more general case of non-zero correlation

Eq. 3.7 is found to be an effective estimate of the critical upper limit on the time step in the test

cases considered in this paper. This is the CFL constraint on the time step which may be severely

restrictive.
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When θ = 1 the θ-method corresponds to the fully implicit Euler scheme. The fully implicit

scheme is first order accurate in time, second order accurate in space and has no limitations on

the size of the time-step for stability, however, the desired accuracy of the solution still imposes a

constraint on the minimum number of time steps that may be used.

An alternative approach frequently used in the literature is the CN scheme which corresponds to

θ = 1/2. The CN scheme is second order accurate in time and space. Similarly to the fully implicit

method, CN has no limitations on the size of the time-step for stability. However the CN method

can lead to solutions with spurious oscillations if the initial value is not smooth (which is the case

for option payoffs). To alleviate this problem Rannacher time-stepping [34] is typically used in the

CN algorthim. For completness, we note that Rannacher time-stepping is where the first few time

steps are performed with the fully implicit scheme with a time step size of ∆τ/2 and thereafter the

time steps are performed with the CN scheme with a time step size of ∆τ . We use the first four

steps with the implicit scheme and the remaining l − 4 steps with the CN scheme.

In the fully implicit and CN schemes, LCPs can be solved iteratively at each time step by

employing any of a number of methods including PSOR, projected multigrid, and penalty (see

[8,30,21]). Direct methods also exist such as the componentwise splitting formulation presented by

[21] of the LU decomposition algorithm in [6].

We elect CN with PSOR, denoted CN-PSOR, as the standard benchmark scheme for comparison

with the proposed STS approach in tests solving Eq. 3.6. CN-PSOR is a suitable choice due to its

competitive performance with respect to other methods and its widespread usage (e.g. [40,46]). The

second benchmark scheme we chose is the CN componentwise splitting method of [21], denoted

by CN-PLU. This method splits the two dimensional spatial operator into three spatial operators

along the x, y and xy directions. Then a series of one-dimensional LCPs are directly solved along

each direction using LU decomposition with projection of the early exercise value in the backward

substitution step. This method is more efficient than CN-PSOR.

As noted by [21], CN-(P)LU is sensitive to the M-matrix property (realized by a diagonally dom-

inant matrix with positive diagonal elements and non-positive off-diagonal elements). To maintain

the M-matrix property requires non-trivial tuning of the grid-generation procedure. In particular,

for given grid characterization parameter values (such as the ratios of grid spacing at different posi-

tions), the problem can become intractable. We note that in this work, we employ an exact (iterative)

approach to the fitting of these parameters in contrast to [21] approximate method. Requiring the

M-matrix property also imposes the condition that the lower boundary in x may not be set iden-

tically to zero. The projection employed by the Brennan Schwartz algorithm [6] for American style

payoff functions is only effective when the location of the optimal exercise boundary is single valued

for all sweeps in all directions. As noted by [21], it may be possible to relax this restriction at the
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expense of efficiency.

We also observe that the implementation of self-consistent boundary conditions becomes difficult

under componentwise splitting. This is due to the fact that at each of the far-field boundaries the one-

dimensional sweeps in the directions both normal and oblique to the boundary influence the solution.

The farfield Neumann boundary conditions limx→∞
∂u(x,y,τ)

∂x = 0 and limy→∞
∂u(x,y,τ)

∂y = 0, as used

by [21], provide one possible consistent treatment. In this work, we prefer to apply the second order

condition given by Eq. 2.6 through an a priori adjustment of the terms in the coefficient matrix.

On a note of more debatable significance, since directionally split schemes necessarily order the

directional sweeps, one must be conscious of the possibility of the influence of the inherent directional

bias in any solution obtained. In this case it would appear the influence is not significant (unless

subtle). However, in general, it is not a desirable property that the concern exists in the first place.

Lastly, it is worth stating that the LU scheme is significantly more complex in its implementation

than any of the other schemes considered here.

The equation for the European option price, Eq. 2.2, may be solved analytically [17]. However,

as a proof of concept we test the efficacy of STS in solving Eq. 2.2 with respect to CN-SOR, a CN

scheme iteratively solved via simple successive overrelaxation (SOR) and with respect to CN-LU,

the CN componentwise splitting scheme described above without the projection of the early exercise

value. Finally, the standard explicit scheme to first order accurate in time, denoted EXPL-1, is

included in the tests to assess the relative acceleration achieved by STS over its base scheme in both

the American and European cases.

4. Super-Time-Stepping

In the previous section we reviewed a number of well known time discretization approaches fre-

quently used in FD methods for the integration of time-dependent PDEs. This section introduces

an alternative time discretization method known as super-time-stepping (STS) which can be used

to accelerate conventional explicit schemes for parabolic problems with nearly symmetric positive

definite evolution operators. In the following, we shall use the description of [2], itself a variant of a

method presented by [15], which is in turn essentially a pared-down Runge-Kutta-Chebyshev (RKC)

method [41,42,43,44,38].

Despite the fact that the STS method is approximately 30 years old, it has been reported in

use by relatively few researchers. The instances in the literature of STS being used which we are

aware of are in engineering and physical disciplines. These include: nonlinear degenerate convection-

diffusion [13]; electromagnetic wave scattering [37]; isotropic and anisotropic diffusion on biological

membranes [35]; and magnetic field diffusion in astrophysics [32,29]. Recently, STS has been applied

in finance and rigorously tested for the Black-Scholes pricing model by [33] where it was shown to
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be comparable, and in many cases superior, to the CN-(P)SOR scheme in terms of accuracy and

computational speed for European (American) put options.

To proceed we consider the PDE

∂u

∂τ
+ Au = 0, u (0) = u0, (4.1)

and we assume a linear explicit scheme on u ∈ R(m+1)(n+1) of the form

uk+1 = (I−∆τstsA)uk (4.2)

where the solution at time level k+ 1 is solved recursively using the solution at time level k, I is the

identity matrix and A ∈ R(m+1)(n+1) × R(m+1)(n+1) is a symmetric positive definite matrix.

Eq. 4.2 corresponds to the θ = 0 instance of the θ-method corresponding to the explicit Euler

scheme as described in Sec. 3.2. For stability the CFL constraint requires that

|1−∆τλ| < 1 (4.3)

for all eigenvectors λ of A. The maximal value of ∆τ may therefore be defined by

∆τexpl ≡
2

λmax
(4.4)

where λmax is the largest eigenvalue of A.

The essence of STS is that rather than requiring stability at each step of the time integration,

Nsts sub-steps of varying size ∆τj (j = 1 to Nsts) are rolled together into a single super-step ∆τsts

according to

∆τsts =

Nsts∑
j=1

∆τj (4.5)

and stability is only demanded at the end of the super-step a. We write the compound scheme as

uk+1 =

Nsts∏
j=1

(I−∆τjA)

uk. (4.6)

aIn [44] it is claimed that factorized RKC methods are impractical as they suffer from internal instability. Reference

[33] find no evidence of any such instability influencing their solutions for cases with Nsts
<∼ 30.
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[2] prove that the error at time level k between the exact solution to Eq. 4.1 and the approximate

solution to scheme in Eq. 4.6 is given by

∥∥ek∥∥ ≤ kλmax

2

Nsts∑
j=1

∆τ2
j

∥∥u0
∥∥ . (4.7)

Hence the method is essentially of order one with respect to the super-time-step ∆τsts.

For stability we require

∣∣∣∣∣∣
Nsts∏
j=1

(1−∆τjλ)

∣∣∣∣∣∣ < 1 (4.8)

for all eigenvectors λ of A. The properties of Chebyshev polynomials of degree Nsts [26] provide the

means to explicitly enforce stability while maximizing ∆τsts. The optimal values for the sub-steps

obtained in this way are given by

∆τj = ∆τexpl

[
(−1 + ν) cos

(
2j − 1

Nsts

π

2

)
+ 1 + ν

]−1

(4.9)

where ν is a user defined damping factor. The scheme is stable for ν > 0 and unstable in the limit

ν → 0 with the property

∆τsts → N2
sts∆τexpl as ν → 0. (4.10)

In practice the scheme may be marginally stable for low enough values of ν for a given choice of

Nsts. A balance between robustness and acceleration should therefore be struck by the user with

appropriate choices of the two free parameters.

We illustrate the efficacy of the acceleration process for Nsts = 30 in Fig. 4 for various choices of

ν. It can be seen that the first substep may be up to 25 times the stable limit for a standard explicit

integration as ν → 0 but subsequent substeps become small. The effect of this is a cumulative error

cancellation which recovers stability over the composite superstep. Crucially, there is a net payoff in

terms of the size of the superstep with respect to Nsts steps of size ∆texpl according to Eq. 4.10.

STS applied directly as described above results in a scheme which is first order in time [2].

From this point we shall refer to this scheme as the STS-1 scheme. It is not possible to introduce

additional temporal structure to an STS step since intermediate values obtained during an STS cycle

are physically meaningless and may not be used as approximations to the solution in any sense.

Therefore, predictor-corrector style methods are not applicable should higher order convergence be

required. On the other hand, we have found that Richardson extrapolation (RE) works well. By this
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method all the advantages of the STS-1 method are easily transferred to second (or higher) order

schemes.

The principal advantage of the STS method is not efficiency however, but simplicity. Explicit dis-

cretizations of even the most complex systems of parabolic equations are very straightforward within

this discretization paradigm. In particular, implementation of adaptive mesh refinement (AMR) tech-

nologies and/or parallelization via domain decomposition techniques present no great challenges

from within an explicit framework. On the contrary, when implicit methods are involved, tackling

problems of even a moderate level of complexity can be an exceedingly intricate task, especially in

parallel applications.

Note that although formal results only exist for linear schemes, there is ample evidence, as

described above, that non-linear target systems may be equally amenable to the STS method.

Formally, stability of the STS scheme is assured if A in Eq. (4.6) is symmetric positive definite [2].

However, in the Black Scholes PDE and the more general Heston PDE the spatial operator A is

weakly non-symmetric.

In the Black Scholes case a formal stability analysis for an alternative discretization of the non-

symmetric Black Scholes spatial operator A is given in [33]. The scheme presented therein is formally

stable under application of STS to the symmetric component of the multiplicitavely split operator.

The skew symmetric part of the operator is then integrated via a novel scheme developed by [31,32].

While the split scheme presented by [33] is formally stable and may be of particular interest for

systems with moderate to strong skew symmetric evolution operators, it was found by these authors

that this alternative scheme was not strictly necessary for weakly non-symmetric operators. In

agreement with this result, we find that splitting is unnecessary and that direct application of the

STS scheme to the Heston PDE is appropriate even though the Heston spatial operator A is not

fully symmetric.

Before comparing the performance of the STS method applied via Eq. (4.6) to the FD schemes

described in Sec. 3.2 we include a brief section on the use of RE in the STS scheme to achieve a

second order (in time) STS scheme.

4.1. Richardson Extrapolation

In this paper we employ two RE methods to render STS schemes second order accurate in time. The

first approach is to use RE in a step-wise fashion for STS as applied by [23] to first order fully implicit

schemes. We assume a smoothly convergent first order accurate method for the temporal integration

of the semi-discrete Eq. (4.1) with exact solution u∆x,∆y(x, y, τ) on a grid with spatial intervals ∆x,

∆y. Given a second order accurate solution at time level k such that uki,j = u∆x,∆y(i∆x, j∆y, k∆τ)+

(L− k)O(∆τ3) we may take a single step of size ∆τ to approximate the solution at time level k+ 1
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using uk+1
ij (∆τ) = u∆x,∆y(i∆x, j∆y, (k+ 1)∆τ) +C∆τ2 +O(∆τ3) for some constant C determined

by the leading truncation error term of the scheme. Similarly, taking two steps of size ∆τ/2, we have

uk+1
ij (∆τ/2) = u∆x,∆y(i∆x, j∆y, (k + 1)∆τ) + (C/2)∆τ2 + O(∆τ3). Subtracting the expression

for uk+1
ij (∆τ) from twice the expression for uk+1

ij (∆τ/2) yields a second order advancement in the

solution from time level k to level k + 1 according to

uk+1
ij = 2uk+1

ij (∆τ/2)− uk+1
ij (∆τ), for k = 0, 1, . . . , l − 1. (4.11)

We also consider the more usual post-processed form which requires two independently derived

solutions for use in the extrapolation of the final solution ulij = 2ulij(∆τ/2) − ulij(∆τ), see for

example [16].

We refer to the scheme presented in [23] as local RE and the latter scheme as global RE. The

significant difference is that, for local RE, a second order solution is immediately available at every

temporal mesh point. For global RE, this would require significant additional data storage and

handling. However, we find that global RE is less prone to numerical oscillations for very small

values of the damping parameter ν and is therefore preferable in general for use with STS. We note

that RE is computationally more expensive than some other higher order reconstructions. It requires

50% more computational effort than the predictor-corrector approach on a per-step basis. However,

it is simple to implement as it merely requires a reapplication of the first order scheme. When used

with STS it is of greater applicability than CN-PSOR as shall be demonstrated.

5. Numerical Experiments

In this section we analyze the efficiency of the STS accelerated explicit scheme relative to the

unaccelerated explicit scheme, the Crank Nicolson scheme and the componentwise splitting scheme

applied to the pricing of European and American options under the Heston model.

The default parameters of the problem are chosen to be

E = 10, T = 0.25, r = 0.1, α = 5, β = 0.16, γ = 0.9, λ = 0, and ρ = 0.1,

in order to permit direct comparison with the results of [49,8,30,21]. (Other parameter settings are

also tested at the end of this section.) The computational domain’s extent is defined by setting

xmin = 0, xmax = 20 and ymin = 0, ymax = 1. These values are again chosen for consistency with the

referenced works. We note, however, that xmax = 20 is close enough to the exercise price E = 10 for

the influence of the boundary to be apparent on the solution. This point is discussed further in the

subsequent error analysis of this section. The same grid generating functions, as described in Sec. 3,

are used to prescribe the interior grid points for all the FD schemes considered in these experiments.

The convention we use for a given test case for denoting the number of stock price steps, variance

steps and time steps respectively is {m,n, l}.
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Firstly, by way of an illustration the behavior of STS driven acceleration as ν → 0 over the time-

to-maturity of the option T , we fix Nsts = 30 and consider the performance of STS-1 for various

small values of ν. Panel (a) of Fig. 5 shows the number of supersteps, l, required to complete the

integration over time T versus the damping parameter ν on a grid where (m,n) = (512, 256), the

finest grid test case considered in the experiments below. The convergence of l to 50 as ν → 0 is clearly

evident in panel (b) (where the abscissa are logarithmic rather than linear in ν). From Eq. 4.10,

and using the minimum number of explicit steps required for stability on this grid (estimated to

be approximately lexpl = 31, 453 from Eq. 3.7), we expect a limiting value of l =
lexpl

N2
sts
≈ 51. This

is clearly in good agreement with our experimentally derived value and represents a speed-up by a

factor of approximately 30 relative to the explicit method.

We note that accelerated schemes are not stable for vanishing ν and some small but finite value

of ν is required. In these numerical experiments the STS-1 scheme remains stable for all values of l

greater than or equal to 51. However to ensure stability we step back from the stability limit and set

ν = 0.001 for the European option experiments and ν = 0.002 for the American option experiments

where more timesteps are needed to capture the early exercise boundary. Moreover, as the grid

resolution is increased the damping parameter can be pushed closer to zero whilst still maintaining

stable solutions.

In the following sections we shall examine the behavior of the schemes as both the spatial and

temporal resolutions are increased simultaneously. For EXPL-1, in order to achieve a stable solution

the number of timesteps is increased by 4 for every doubling of the spatial resolution. In all other

cases the resolution in time is scaled linearly with the spatial resolution.

5.1. European Options

We now present a series of test results for the pricing of European put options under the Heston

model. Table 1 displays European put option prices at five stock prices x = 8, . . . , 12 for an ini-

tial variance y = 0.0625 at a number of different resolutions. Six numerical schemes are tabulated:

the STS-1 method; the STS method with local RE (STS-RE-L); the STS method with global RE

(STS-RE-G); the standard explicit approach to first order accuracy in time (EXPL-1); the com-

ponentwise splitting scheme with LU decomposition (CN-LU) and the the Crank-Nicolson scheme

solved by means of successive overrelaxation (CN-SOR). We will refer to the STS-RE-L and STS-RE-

G schemes collectively as the STS-2 schemes. Two reference methods derived via the semi-analytical

results obtained using the FFT approach of [7] and a high resolution CN-SOR method are included

for reference. The accuracy of the FFT prices were ensured by varying the FFT inputs until the

relative price changes were of the order of 1× 10−10.

The CN-SOR European put prices are computed with a convergence tolerance measure tol =
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1×10−4 (tol = 1×10−5 on the high resolution grid). These values are approximately optimal in the

sense that we find decreasing the tolerance increases the run time for the scheme without improving

the accuracy. The overrelaxation parameter is varied with the grid resolution to ensure optimal

convergence rates for the scheme. All European STS prices are computed with a fixed number of

substeps Nsts = 25 and a fixed damping parameter of ν = 0.001. The number of supersteps, l, is

scaled in proportion to the number of points on the spatial grid in each dimension although we

purposely use a low number of timesteps to emphasize the acceleration achieved by the STS scheme.

It is clear from Table 1 that all six FD methods result in European put prices that converge as

expected to the reference prices as the grid and temporal resolutions increase. To evaluate the rate

of this convergence we examine the errors in the solutions obtained from the FD schemes relative

to reference prices.

Fig. 6 illustrates the errors in the solutions obtained from the FD schemes as a function of

the stock price at an initial variance y = 0.0625 on a range of resolutions. As stated previously,

the boundary at xmax = 20 is close enough to the exercise price E = 10, that the influence of the

boundary conditions are evident in the solution. While we have carried out tests with xmax moved to

larger values and confirmed that boundary induced errors may be reduced, as previously remarked,

we use xmax = 20 for consistency with the referenced tests from the literature. For the error analysis

we use a high resolution reference solution obtained via CN-SOR with (m,n, l) = (2048, 1024, 2050).

Note that the semi-analytical FFT results are inappropriate as the reference solution for this analysis

since they are not subject to the boundary conditions prescribed for the FD numerical schemes. We

note however that we have confirmed the high resolution CN-SOR solution converges to the semi-

analytical FFT solution at a rate of second order accuracy at ten sample interior points (x, y) =

([8, 9, . . . , 12]× [0.0625, 0.25]).

The error in the prices is in good agreement in all cases. STS-1 demonstrates larger errors than

the others due to its lower (first) order of accuracy in time. Despite also being first order in time,

the error in the EXPL-1 solution is close to those of the second order integrations. This is due to

the substantially larger number of timesteps required to maintain a stable solution which results in

a negligible first order temporal error with respect to the second order spatial error. The total error

therefore takes on the second order characteristics of the spatial error. We also note that the plots

are qualitatively similar for different variance values y, however, the errors do increase in magnitude

across all schemes when y is near the boundary values of y0 = 0 and yn = 1.

Table 2 displays the l2 norm errors calculated using ten European put prices at five stock prices

about the exercise price E, x = 8, 9, . . . , 12, and two different initial variance values y = 0.0625 and

y = 0.25. As before, since it is a first order accurate method in time, the STS-1 method displays the

largest errors in the l2 norm. We also found that the explicit method displays the smallest l2 norm
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error values since, as previously remarked, very high temporal resolution is necessary to maintain

stability. We may also observe that the STS-2 (STS-RE-L and STS-RE-G) schemes provide l2 norm

errors that are similar to standard explicit case. We may deduce therefore that the temporal error

in the STS-2 schemes is also small despite the more efficient time integration. Finally, we note that,

while not dramatically different, the CN-SOR and CN-LU schemes have the highest l2 norm errors

of the second order schemes.

Table 2 also provides error ratios between test cases with successively increased resolution. The

error ratios for STS-1 are approximately 2 which is a consequence of scheme with dominant first

order temporal error. In the case of EXPL-1 the error ratios scale as roughly 4 on doubling the

spatial resolution. As remarked earlier, the temporal resolution is necessarily very high for reasons

of stability resulting in a negligible temporal error and dominant second order spatial error. This is

compatible with our assumption of a scheme which is second order in space and first order in time.

The remaining schemes yield ratios of approximately 4 suggesting schemes which are second order

both in space and time. We remark that the convergence rates of the STS-2 methods are almost

identical to the CN-SOR, CN-LU and the standard explicit methods.

Table 2 gives the times for each scheme using MATLAB implementations. These indicate that on

the finest grid the STS-1 method is least computationally expensive, followed by STS-RE-L, STS-

RE-G, CN-LU, CN-SOR and finally EXPL-1 in that order. Notably, the STS-2 methods are approx-

imately twice as efficient as the CN-SOR scheme. This is despite the advantage of the overrelaxation

parameter in CN-SOR being chosen experimentally to ensure the fastest possible convergence of the

algorithm in each case.

The timings for the tests listed in Tab. 2 are plotted in Fig. 1. The left panel presents the timings

for all of the MATLAB codes as a function of the error as calculated in Tab. 2. The right panel

provides the C code timings. In each case reference lines are shown for inverse quadratic and inverse

quartic dependencies. It is evident that, for the schemes which are nominally first order accurate in

time (STS-1 and EXPL-1), to reduce the error in the solution by a factor of 2 requires an increase

in the time expended in calculation by a factor of 16. For the remaining schemes, to reduce the

error by the same factor requires an increase in the computational timeload by a factor of 4. At the

lowest, resolution for which the spatial and temporal intervals are extremely coarse, this factor is

closer lower. This is possibly related to the influence of the computational overheads for each of the

runs.

Lastly, when scheme timings are evaluated in C implementations the CN-LU scheme is the least

computationally expensive scheme, followed by STS-1, STS-RE-L, STS-RE-G, CN-SOR and finally
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Fig. 1. Benchtest timings on European option pricing against error.

The time in seconds for various schemes to achieve the test solution to the given error as presented in Tab. 2. The error

is measured as the l2-norm error of ten European put prices at stock prices of x = 8, 9, . . . , 12, and initial variance

values of y = 0.0625 and 0.25. The left panel presents the timings for the MATLAB codes and the right panel presents

the timings for the C codes. In each panel reference lines proportional to (time)−2 and (time)−4 are shown.

EXPL-1. However the CN-LU is a highly complex scheme to implement relative to all other schemes

tested in this paper including the STS-2 schemes. Furthermore the CN-LU scheme requires that

the spatial operator of the discretized PDE must be an M-matrix. This condition is satisfied for

the European options tested at the default parameters in Tabs. 1 and 2. However the M-matrix

condition cannot be satisfied using a different set of parameters relevant to equity market options,

see Tabs. 6 and 7. The CN-LU scheme does not converge to a suitable solution under these more

typical Heston parameter values. In this case STS-2 schemes are the most efficient schemes amongst

those considered.
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5.2. American Options

When pricing American options with the STS schemes, the early exercise constraint is applied at the

end of each superstep since the solution conditions inside the superstep are not meaningful as option

prices. Consequently, an increase (decrease) in the number of supersteps results in an increase (de-

crease) in the frequency at which the early exercise condition is enforced. This generates a trade-off

in the speed of the algorithm versus the resolution of the early exercise boundary. A similar trade-off

in speed versus accuracy typically arises for implicit methods. For PSOR, for example, projection

(replacement of the continuation value of the American option with its early exercise value when

optimal) must be carried out within each iteration. A direct consequence is that achieving conver-

gence becomes more laborious with increasing timestep size. The CN-PLU scheme also projects the

early exercise condition onto the solution in a backward substitution step of the LU decomposition.

Table 3 displays reference American put option prices at five stock prices x = 8, . . . , 12

for an initial variance y = 0.0625. High accuracy reference prices were calculated in two in-

dependent ways, firstly using a FD scheme from the QUANTLIB library with a grid of size

(m,n, l) = (4096, 2048, 4098), and secondly using a CN-PSOR scheme on a grid of size (m,n, l) =

(2048, 1024, 2050). We note that little difference between the prices obtained via QUANTLIB and

CN-PSOR is observed.

Table 3 also displays the FD American put prices derived using the STS-1, STS-RE-L, STS-

RE-G, EXPL-1, CN-PLU and CN-PSOR schemes using various grid resolutions. All STS American

put prices are computed with a reduced fixed number of substeps Nsts = 15 and a fixed damping

parameter of ν = 0.002. The number of supersteps, l, scales linearly with the spatial resolution in all

cases except EXPL-1 where l is scaled quadratically in order to maintain stability. The number of

timesteps used in the EXPL-1, l, doubles from the coarsest to next coarsest grid but thereafter scales

quadratically due to the non-uniform grid generating functions. We choose a smaller value of Nsts

relative to the European case in order to reduce errors associated with numerically capturing the

early exercise free boundary. The CN-PSOR prices are computed with tol = 1×10−4 (tol = 1×10−5

is used for the reference CN-PSOR prices) whilst the overrelaxation parameter is varied with the

grid step size to ensure optimal convergence.

Fig. 7 illustrates the errors in the American solutions obtained from the FD schemes as a function

of the stock price at an initial variance y = 0.0625 on a range of grid resolutions. For error analysis

we used a high resolution solution obtained using CN-PSOR with (m,n, l) = (2048, 1024, 2050).

We note that the error observed in the prices is small in all tests. As in the European case, STS-1

demonstrates errors of a greater magnitude due to its lower (first) order of accuracy in time. Again,

similarly to the European case, the error in the EXPL-1 solution is close to those of the second order

integrations because of the large number of timesteps required for stability resulting in a negligible
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first order temporal error. The American option error plots of Fig. 7 also illustrate the influence of

the free boundary which can be most clearly seen as a downward spike in the error for EXPL-1 for

a stock price of about 8.

Table 4 displays the l2 norm errors calculated using ten American put prices at five stock prices

about the exercise price E, x = 8, 9, . . . , 12, and two different initial variance values y = 0.0625 and

y = 0.25, where the CN-PSOR prices computed with 2050 time steps on a grid of size (m,n) =

(2048, 1024) are the high accuracy reference American put prices. We remark that the error ratios in

Table 4 are approximately 2 for STS-1 indicative of a scheme with first order accuracy in time. The

remaining schemes show ratios of roughly 4 on successive doubling of spatial resolution suggesting

second order accuracy in the leading error terms. In all cases except EXPL-1 this is the expected

behavior for schemes of second order accuracy in both space and time when the spatial and temporal

errors are comparable in magnitude. EXPL-1 has negligible temporal error and second order accuracy

may only be inferred in the spatial terms.

In terms of relative error magnitudes, the STS-1 method may be seen to have the largest error

followed by CN-PSOR. Furthermore, it is clear that the STS-2 methods have only slightly larger

errors relative to EXPL-1 despite the latter’s far greater, albeit first order accurate, temporal res-

olution. With regard to the scheme timings also provided by table 4, we find that, similarly to the

European case, STS-2 schemes are faster than the CN-PLU and CN-PSOR schemes and display

lower errors when using MATLAB implementations. Additionally, the STS-1 scheme is observed to

be approximately six times faster than the CN-PSOR scheme. When timings are compared in C

implementations, CN-PLU is the most efficient scheme, followed by the STS-2 schemes. However as

previously mentioned the CN-PLU scheme only converges if the spatial operator of the discretized

PDE is an M-matrix and the location of the optimal exercise boundary is single valued for all

sweeps in all directions. The second condition is satisfied by the American options considered in

this paper but the first condition is only satisfied at the default parameters. When a different set

of Heston parameters are used in Tabs. 6 and 7 the CN-PLU scheme does not converge hence the

STS-2 schemes become the most efficient schemes amongst those tested.

The timings for the tests listed in Tab. 4 are plotted in Fig. 2. As for Fig. 1, the left panel presents

the timings for all of the MATLAB codes as a function of the error as calculated in Tab. 4. The right

panel provides the C code timings. In each case reference lines are shown for inverse quadratic and

inverse quartic dependencies. Similarly to Fig. 1, it is clear that, for the schemes which are nominally

first order accurate in time (STS-1 and EXPL-1), to reduce the error in the solution by a factor

of 2 requires an increase in the time expended in calculation by a factor of 16. For the remaining

schemes, to reduce the error by the same factor requires an increase in the computational timeload

by a factor of 4. Again, at the lowest resolution, there is a deviation from this bevavior, perhaps

related to initialisation and assignment overheads in carrying out timing tests over very short times.
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Fig. 2. Benchtest timings on Amerpean option pricing against error.

The time in seconds for various schemes to achieve the test solution to the given error as presented in Tab. 4. The

error is measured as the l2-norm error of ten Amerpean put prices at stock prices of x = 8, 9, . . . , 12, and initial

variance values of y = 0.0625 and 0.25. The left panel presents the timings for the MATLAB codes and the right

panel presents the timings for the C codes. In each panel reference lines proportional to (time)−2 and (time)−4 are

shown.

Notably, CN-LU appears to hit a wall in its accuracy at the highest resolution presented. As this

does not occur in testing for the European analog, it is suggested that this is a consequence of the

influence of the free boundary on the componentwise split scheme.

Table 5 displays American put option prices at the five stock prices x = 8, 9, . . . , 12 calculated

with variances of y = 0.0625 and 0.25. Along with the two reference prices from table 4, three

sets of STS-RE-G prices are displayed for a single spatial grid of size (m,n) = (2048, 1024) but

different STS parameter settings. We first set Nsts = 30, ν = 0.0006 and l = 2050, so that results are
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comparable to the CN-PSOR results. We also examine two additional choices of parameter sets with

Nsts = 25, ν = 0.0006, l = 2750 and Nsts = 35, ν = 0.0006, l = 1800. These results are compared to

the American put option prices published in the literature using the same sets of SV parameters. We

find that the American option prices from all three STS parameter settings agree very closely with

the reference prices and those prices in the literature. In particular, agreement with prices quoted

by [21] is strong.

As a final exercise in validation, Tabs. 6 and 7 display the convergence of STS-RE-G European

and American put prices to benchmark prices for a different set of Heston parameters that would be

typical of a calibration of the model to equity market options. We also test different time-to-maturity

values and initial variance values. Both tables indicate the second order convergence of STS-RE-G

European and American put prices to benchmark prices and illustrate the high accuracy achieved

by the scheme with percentage differences between STS-RE-G prices and reference prices being less

than 1% on coarse resolutions and quickly converging to even higher accuracy on finer resolution

grids. Although not reported similar tables were produced for the CN-(P)SOR scheme where the

European and American put prices displayed a lower accuracy and required longer run times. Finally

the CN-(P)LU scheme could not produce prices at these parameters values.

6. Conclusion

An acceleration technique, known as Super-Time-Stepping (STS), for explicit finite difference (FD)

algorithms is introduced for the first time in the two-factor setting of stochastic volatility. We

demonstrate the efficacy of the method by pricing European and American put options in a series

of bench-tests with well-known FD techniques.

We demonstrate degrees of acceleration provided by the STS method which yield comparable, and

even superior, efficiencies to implicit differencing methods. Of central importance, this is achieved

with no significant increase in implementation complexity over and above that of the underlying

standard explicit algorithm.

Given that STS accelerated methods inherit the simplicity of explicit methods whilst achieving

high accuracy at low computational cost, we conclude that when faced with complex numerical

pricing problems, the approach presented here offers a compelling alternative to conventional im-

plicit techniques. Models involving multi-dimensional parameter spaces, non-uniform meshes, moving

boundaries, or meshes which are distributed in parallel over several processors will be particularly

amenable to STS accelerated explicit methods.
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Appendix A. Boundary Discretization

The following discretizations are used at the boundaries. At x0 we use a Dirichlet boundary con-

dition with u(x0, yj , τk) = exp (−rk∆t) max [E − x0, 0] for European options and u(x0, yj , τk) =

max [E − x0, 0] for American options. At xmax we use a Neumann condition given by

∂u2
m,j

∂2x
≈ aDll um−2,j + aDl um−1,j + aDum,j = 0,

⇒ um,j =− 1

aD
(
aDll um−2,j + aDl um−1,j

)
,

where

aDll =
hr (xm−1)

hl (xm−1) (hl (xm−1) + hr (xm−1))
,

aDl =− hl (xm−1) + hr (xm−1)

hl (xm−1)hr (xm−1)
,

aD =
hl (xm−1) + 2hr (xm−1)

hr (xm−1) (hl (xm−1) + hr (xm−1))
.

At ymax a Neumann condition is also used

∂ui,n
∂y

≈ bDddui,n−2 + bDd ui,n−1 + bDui,n = 0,

⇒ ui,n =− 1

bD
(
bDddui,n−2 + bDd ui,n−1

)
,

where

bDdd =
hu (yn−1)

hd (yn−1) (hd (yn−1) + hu (yn−1))
,

bDd =− hd (yn−1) + hu (yn−1)

hd (yn−1)hu (yn−1)
,

bD =
hd (yn−1) + 2hu (yn−1)

hu (yn−1) (hd (yn−1) + hu (yn−1))
.

At y0 the value for ui,0 satisfies a reduced PDE and is solved explicitly or implicitly in the same

way as the solution to ui,j at the inner points on the grid. The PDE at y0 is given by

∂ui,0
∂τ
− rxi

∂ui,0
∂x
− αβ ∂ui,0

∂y
+ rui,0 = 0,

⇒∂ui,0
∂τ
− rxi

(
ui+1,0 − ui,0
hr (xi)

)
− αβ

(
ui,1 − ui,0
hu (y0)

)
+ rui,0 = 0.

Appendix B. Upwinded Differencing

Recall from Sec. 3.1 that the Heston PDE at a reference point u = uij can be written as follows:

Lu =
∂u

∂τ
+Au = 0,
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in which A is a nine component operator matrix given by

A =


Alu Au Aru

Al Ac Ar

Ald Ad Ard

 ,
with

Ac = −
(

1

2
yx2aD + ργxycD +

1

2
γ2ybD + rxaC + α (β − y) bC − r

)
,

Al = −
(

1

2
yx2aDl + ργxycDl + rxaCl

)
,

Ar = −
(

1

2
yx2aDr + ργxycDr + rxaCr

)
,

Ad = −
(

1

2
γ2ybDd + ργxycDd + α (β − y) bCd

)
,

Au = −
(

1

2
γ2ybDu + ργxycDu + α (β − y) bCu

)
,

Ald = −ργxycDld, Alu = −ργxycDlu
Ard = −ργxycDrd, Aru = −ργxycDru,

where the superscript D denotes diffusion terms and the superscript C denotes convection terms

defined in Sec. 3.1. To adjust for upwinding we first define forward and backward convection terms

as follows:

aCFl = 0, aCFr =
1

hr
, aCBl = − 1

hl
, aCBr = 0,

bCFd = 0, bCFu =
1

hu
, bCBd = − 1

hd
, aCBr = 0.

At each point on the grid we adjust the nine component operator matrix A to implement upwinding.

For example Ac is adjusted as follows:

Auwc = −
(

1

2
yx2aD + ργxycD +

1

2
γ2ybD

+ rx
[
aC1{Al<0,Ar<0} + aCFr 1{Al>0} + aCBl 1{Ar>0}

]
+ α (β − y)

[
bC1{Au<0,Ad<0} + bCFu 1{Ad>0} + bCBd 1{Au>0}

]
− r
)
.

Similarly we adjust the other convection components of the operator matrix A as follows:

aCl → aCl 1{Al<0,Ar<0} + aCFl 1{Al>0} + aCBl 1{Ar>0},

aCr → aCr 1{Al<0,Ar<0} + aCFr 1{Al>0} + aCBr 1{Ar>0},

bCd → bCl 1{Ad<0,Au<0} + bCFd 1{Ad>0} + bCBd 1{Au>0},

bCu → bCu 1{Ad<0,Au<0} + bCFu 1{Ad>0} + bCBu 1{Au>0}.
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Mathematische Annalen, 77 (1916) 213–258, translated by J. Grossman from original Russian article

published in 1892.

[27] R. C. Merton, The theory of rational option pricing, Bell Journal of Economics and Management

Science 4 (1973) 141–183.

[28] R. C. Merton, Option Pricing when the Underlying Returns are Discontinuous, Journal of Financial

Economics 3 (1976) 125–144.

[29] A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni and A. Ferrari, PLUTO: A

Numerical Code for Computational Astrophysics, The Astrophysical Journal Supplement Series 170(1)

(2007) 228–242.

[30] C. W. Oosterlee, On multigrid for linear complementarity problems with applications to American-style

options, Electronic Transactions Numerical Analysis 15 (2003) 165–185.

[31] S. O’Sullivan and T. P. Downes, An explicit scheme for multifluid magnetohydrodynamics, Monthly

Notices of the Royal Astronomical Society 366 (2006) 1329–1336.

[32] S. O’Sullivan and T. P. Downes, A three-dimensional numerical method for modelling weakly ionized

plasmas, Monthly Notices of the Royal Astronomical Society 376 (2007) 1648-1658.

[33] S. O’Sullivan and C. O’Sullivan, On the acceleration of explicit finite difference methods for option

pricing, Quantitative Finance 11(8) (2011) 1177–1191.

[34] R. Rannacher, Finite element solution of diffusion problems with irregular data, Numerical Mathematics

43 (1984) 309–327.

[35] I. F. Sbalzarini, A. Hayer, A. Helenius and P. Koumoutsakos, Simulations of (an)isotropic diffusion on

curved biological surfaces, Biophysical Journal 90(3) (2006) 878–885.

[36] R. Sheppard, Pricing Equity Derivatives under Stochastic Volatility: A Partial Differential Equation

Approach (MSc Thesis, University of the Witwatersrand, 2007).

[37] Y. Shi, L. Li and C. H. Liang, Multidomain pseudospectral time-domain algorithm based on super-

time-stepping method, IEE Proceedings Microwaves, Antennas and Propagation 153 (2006) 55–60.

[38] B. P. Sommeijer, L. F. Shampine and J. G. Verwer, RKC: An explicit solver for parabolic PDEs (Tech-

nical Report MAS-R9715, CWI Amsterdam, 1997).

[39] G. Strang, On the construction and comparison of difference schemes, SIAM Journal of Numerical

Analysis, 5 (1968) 506–517.

[40] D. Tavella and C. Randall, Pricing financial instruments: the finite difference method (John Wiley and

Sons, New York, 2000).

[41] P. J. van der Houwen, Construction of integration formulas for initial value problems (North-Holland,



May 20, 2014 15:32 WSPC/INSTRUCTION FILE sts˙sv˙final˙wp

27

Amsterdam-New York, 1977).

[42] P. J. van der Houwen and B. P. Sommeijer, On the internal stability of explicit m-stage Runge–Kutta

methods for large values of m, Z. Angew. Math. Mech. 60 (1980) 479–485.

[43] J. G. Verwer, W. H. Hundsdorfer and B. P. Sommeijer, Convergence Properties of the Runge-Kutta-

Chebyshev Method, Numer. Math. 57 (1990) 157–178.

[44] J. G. Verwer, Explicit Runge-Kutta methods for parabolic partial differential equations, Appl. Num.

Math 22 (1996) 359–379.

[45] M. Vellekoop and H. Nieuwenhuis, A tree-based method to price American options in the Heston model,

Journal of Computational Finance, 13(1) (2009) 1–21.

[46] P. Wilmott, S. Howison and J. Dewynne, Option pricing: mathematical models and computation (Oxford

Financial Press, 1995).

[47] G. Winkler, T. Apel and U. Wystup, Valuation of options in Heston’s stochastic volatility model using

finite element methods (Working Paper, Chemnitz University of Technology, 2001). .

[48] S.-P. Zhu and W.-T. Chen, A predictorcorrector scheme based on the ADI method for pricing American

puts with stochastic volatility, Computers and Mathematics with Applications 62 (2011) 1–26.

[49] R. Zvan, P. A. Forsyth, and K. R. Vetzal, Penalty methods for pricing American options with stochastic

volatility, Journal of Computational and Applied Mathematics 91 (1998) 199–218.



May 20, 2014 15:32 WSPC/INSTRUCTION FILE sts˙sv˙final˙wp

28

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ppx2

p
p
y
2

(a) Non-uniform grid step size in the x-direction
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Fig. 3. Grid step size as a function the stock price and variance.

These figures plot the stock price grid step size against the stock price and the variance grid step size against the

variance. The plots emphasize how the grid step size reduces around areas of interest such as the exercise price or low

variance values.
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Fig. 4. Illustration of acceleration via STS.

Fig. 4 plots accumulated time,
∑j

k=1 ∆τk, in STS versus the substep number j over a single superstep ∆τsts with

Nsts = 30 for a range of damping factors ν. The accumulated time is plotted in units of the standard explicit

timestep ∆τexpl. A reference line at Nsts∆τexpl (= 30 in units of ∆τexpl) indicates the time attained over Nsts

unaccelerated standard explicit steps. Note that acceleration approaches Nsts times this value as ν → 0, in agreement

with equation (4.10). Note also that deceleration occurs for the highest considered damping factor of ν = 0.5.
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(b) Number of supersteps l versus log10 ν

Fig. 5. Number of supersteps as a function of ν and log10 ν.

This figure depicts the number of supersteps as a function of ν and as a function of the logarithm of ν (log base

10) with Nsts fixed at 25 on a grid of size (m,n) = (512, 256). In this example the minimum number of standard

explicit steps required for stability is 31,453. The minimum number of supersteps possible is equal to
lexpl

N2
sts
≈ 51.

The total number of steps taken in the STS scheme using minimal l is equal to l ×Nsts = 51 × 25 = 1, 275. This is

approximately a factor of 24.7 times less steps than that required for the standard explicit scheme. However, we do

not expect the solutions to be stable for vanishing ν. In our numerical experiments on European options we choose

ν = 0.0001 which results in 130 supersteps for the grid of size (m,n) = (512, 256). This represents a speed-up by a

factor of approximately 9.7 relative to the explicit scheme. This illustrates that the numerical experiments conducted

in this paper were well within the limits of stability.
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(d) Error for (m,n) = (512, 256)

Fig. 6. Error in European put prices versus the stock price for y = 0.0625.

This figure depicts the error in European put option prices as a function of the stock price using various FD schemes.

The error is given by ufd − uref where ufd and uref denote the FD prices and the reference CN-SOR prices

respectively. EXPL-1 is the explicit scheme, CN-SOR is the CN successive overrelaxation scheme, CN-LU is the CN

LU decomposition scheme, STS-RE-L is the STS scheme with local RE, STS-RE-G is the STS scheme with global

RE and STS is the STS-1 scheme without any extrapolation.
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(d) Error for (m,n) = (512, 256)

Fig. 7. Error in American put prices versus the stock price for y = 0.0625.

This figure depicts the error in American put option prices as a function of the stock price using various FD schemes.

The error is given by ufd − uref where ufd and uref denote the FD prices and the reference CN-PSOR prices

respectively. EXPL-1 is the explicit scheme, CN-PSOR is the CN projected successive overrelaxation scheme, CN-

PLU is the CN projected LU decomposition scheme, STS-RE-L is the STS scheme with local RE, STS-RE-G is the

STS scheme with global RE and STS is the STS-1 scheme without any extrapolation.
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Table 1. European put prices evaluated using stock prices x = 8, 9, . . . , 12 and an initial variance value of y = 0.0625

with STS parameters of ν = 0.001 and Nsts = 25.

x

Method Grid (m,n, l) 8 9 10 11 12

Reference (FFT) 1.838868 1.048347 0.501466 0.208187 0.080429

Reference (CN-SOR) (2048, 1024, 2050) 1.838868 1.048347 0.501465 0.208187 0.080428

STS-1 (64, 32, 18) 1.837184 1.048494 0.503367 0.208989 0.079770

(128, 64, 34) 1.837928 1.048394 0.502491 0.208642 0.080088

(256, 128, 66) 1.838351 1.048332 0.501956 0.208392 0.080231

(512, 256, 130) 1.838602 1.048344 0.501726 0.208298 0.080330

STS-RE-L (64, 32, 18) 1.839215 1.048509 0.501356 0.208138 0.080530

(128, 64, 34) 1.838979 1.048391 0.501439 0.208188 0.080472

(256, 128, 66) 1.838886 1.048328 0.501417 0.208158 0.080425

(512, 256, 130) 1.838872 1.048342 0.501453 0.208179 0.080427

STS-RE-G (64, 32, 18) 1.839197 1.048481 0.501372 0.208121 0.080507

(128, 64, 34) 1.838974 1.048383 0.501443 0.208184 0.080466

(256, 128, 66) 1.838885 1.048326 0.501418 0.208157 0.080423

(512, 256, 130) 1.838872 1.048341 0.501453 0.208179 0.080427

EXPL-1 (64, 32, 1× 103) 1.839102 1.048481 0.501452 0.208157 0.080469

(128, 64, 2× 103) 1.838932 1.048384 0.501480 0.208201 0.080450

(256, 128, 8× 103) 1.838874 1.048326 0.501428 0.208161 0.080419

(512, 256, 32× 103) 1.838869 1.048341 0.501456 0.208180 0.080426

CN-LU (64, 32, 18) 1.839425 1.048000 0.500811 0.208246 0.080858

(128, 64, 34) 1.839000 1.048254 0.501291 0.208175 0.080528

(256, 128, 66) 1.838890 1.048292 0.501377 0.208150 0.080437

(512, 256, 130) 1.838873 1.048333 0.501443 0.208178 0.080430

Grid (m,n, l, iterav , w)

CN-SOR (64, 32, 18, 17.17, 1.59) 1.839444 1.048513 0.501125 0.208092 0.080657

(128, 64, 34, 20.29, 1.75) 1.839017 1.048374 0.501386 0.208155 0.080475

(256, 128, 66, 24.61, 1.84) 1.838895 1.048323 0.501404 0.208149 0.080425

(512, 256, 130, 31.59, 1.87) 1.838874 1.048341 0.501450 0.208177 0.080427
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Table 2. The (l2-norm) errors calculated using ten European put prices at stock prices of x = 8, 9, . . . , 12, and initial

variance values of y = 0.0625 and 0.25. Also reported are the the ratio of consecutive errors, and the run times

in seconds for codes implemented in MATLAB. The run times for C implementations of the schemes are shown in

parentheses (with iterav , w in the case of the SOR scheme).

Method Grid (m,n, l) Error Ratio Run Times

STS-1 (64, 32, 18) 0.004797 0.05 (0.01)

(128, 64, 34) 0.003041 1.58 0.17 (0.04)

(256, 128, 66) 0.001591 1.91 0.97 (0.31)

(512, 256, 130) 0.000827 1.92 11.33 (3.30)

STS-RE-L (64, 32, 18) 0.001584 0.15 (0.02)

(128, 64, 34) 0.000233 6.80 0.50 (0.11)

(256, 128, 66) 0.000079 2.94 3.62 (0.87)

(512, 256, 130) 0.000017 4.73 33.77 (10.17)

STS-RE-G (64, 32, 18) 0.001512 0.18 (0.02)

(128, 64, 34) 0.000212 7.12 0.58 (0.11)

(256, 128, 66) 0.000076 2.78 4.81 (0.92)

(512, 256, 130) 0.000016 4.66 36.48 (10.04)

EXPL-1 (64, 32, 1× 103) 0.001274 0.11 (0.02)

(128, 64, 2× 103) 0.000113 11.23 0.38 (0.10)

(256, 128, 8× 103) 0.000055 2.04 6.08 (1.49)

(512, 256, 32× 103) 0.000014 4.06 109.94 (33.30)

CN-LU (64, 32, 18) 0.001915 0.82 (0.004)

(128, 64, 34) 0.000343 5.58 3.09 (0.03)

(256, 128, 66) 0.000126 2.73 13.33 (0.27)

(512, 256, 130) 0.000030 4.15 64.19 (2.98)

CN-SOR (64, 32, 18) 0.002086 0.23 (0.01 7.05 1.44)

(128, 64, 34) 0.000347 6.01 1.34 (0.08 12.89 1.58)

(256, 128, 66) 0.000110 3.16 9.40 (1.14 23.54 1.68)

(512, 256, 130) 0.000024 4.64 70.51 (16.15 41.45 1.77)
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Table 3. American put prices evaluated using stock prices x = 8, 9, . . . , 12 and an initial variance value of y = 0.0625

with STS parameters of ν = 0.002 and Nsts = 15.

x

Method Grid (m,n, l) 8 9 10 11 12

Reference (QuantLib) (4096, 2048, 4098) 2.000000 1.107611 0.520024 0.213675 0.082043

Reference (CN-PSOR) (2048, 1024, 2050) 2.000000 1.107620 0.520030 0.213676 0.082043

STS-1 (64, 32, 66) 1.999921 1.106901 0.520042 0.213628 0.081801

(128, 64, 130) 1.999984 1.107469 0.520194 0.213745 0.081947

(256, 128, 258) 2.000000 1.107598 0.520140 0.213714 0.081985

(512, 256, 514) 2.000000 1.107636 0.520115 0.213714 0.082021

STS-RE-L (64, 32, 66) 1.999872 1.106672 0.519336 0.213349 0.082015

(128, 64, 130) 1.999984 1.107342 0.519812 0.213584 0.082044

(256, 128, 260) 2.000002 1.107525 0.519936 0.213625 0.082030

(512, 256, 514) 1.999999 1.107595 0.520008 0.213665 0.082041

STS-RE-G (64, 32, 66) 1.999874 1.106666 0.519331 0.213343 0.082011

(128, 64, 130) 1.999984 1.107343 0.519810 0.213582 0.082043

(256, 128, 258) 2.000001 1.107529 0.519937 0.213624 0.082029

(512, 256, 514) 1.999999 1.107600 0.520010 0.213666 0.082041

EXPL-1 (64, 32, 1× 103) 1.999875 1.106723 0.519428 0.213380 0.081985

(128, 64, 2× 103) 1.999984 1.107374 0.519863 0.213604 0.082032

(256, 128, 8× 103) 2.000001 1.107535 0.519948 0.213628 0.082025

(512, 256, 32× 103) 1.999999 1.107601 0.520012 0.213666 0.082039

CN-PLU (64, 32, 66) 2.000044 1.106537 0.519185 0.213711 0.082387

(128, 64, 130) 1.999997 1.107487 0.519872 0.213675 0.082121

(256, 128, 258) 2.000000 1.107654 0.520002 0.213667 0.082055

(512, 256, 514) 2.000000 1.107675 0.520052 0.213688 0.082052

Grid (m,n, l, iter-avg, w)

CN-PSOR (64, 32, 66, 10.26, 1.60) 1.999880 1.106140 0.516512 0.211312 0.081334

(128, 64, 130, 14.16, 1.75) 1.999984 1.107239 0.519397 0.213218 0.081876

(256, 128, 258, 17.84, 1.84) 2.000001 1.107499 0.519826 0.213520 0.081974

(512, 256, 514, 20.16, 1.87) 1.999999 1.107589 0.519984 0.213644 0.082030
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Table 4. The (l2-norm) errors calculated using ten American put prices at stock prices of x = 8, 9, . . . , 12, and initial

variance values of y = 0.0625 and 0.25. Also reported are the the ratio of consecutive errors, and the run times

in seconds for codes implemented in MATLAB. The run times for C implementations of the schemes are shown in

parentheses (with iterav , w in the case of the SOR scheme).

Method Grid (m,n, l) Error Ratio Run Times

STS-1 (64, 32, 66) 0.001350 0.12 (0.01)

(128, 64, 130) 0.000588 2.30 0.39 (0.09)

(256, 128, 260) 0.000391 1.50 2.24 (0.72)

(512, 256, 514) 0.000246 1.59 27.02 (8.08)

STS-RE-L (64, 32, 66) 0.002780 0.37 (0.04)

(128, 64, 130) 0.000588 4.73 1.19 (0.27)

(256, 128, 258) 0.000188 3.12 7.66 (2.32)

(512, 256, 514) 0.000045 4.22 84.30 (25.38)

STS-RE-G (64, 32, 66) 0.002788 0.37 (0.04)

(128, 64, 130) 0.000585 4.76 1.16 (0.27)

(256, 128, 258) 0.000178 3.29 7.10 (2.20)

(512, 256, 514) 0.000033 5.42 81.34 (24.68)

EXPL-1 (64, 32, 1× 103) 0.002525 0.19 (0.02)

(128, 64, 2× 103) 0.000457 5.53 0.58 (0.14)

(256, 128, 8× 103) 0.000153 2.98 8.10 (2.31)

(512, 256, 32× 103) 0.000031 4.99 144.60 (47.65)

CN-PLU (64, 32, 66) 0.002381 2.77 (0.02)

(128, 64, 130) 0.000271 8.79 11.53 (0.17)

(256, 128, 258) 0.000139 1.95 50.85 (1.35)

(512, 256, 514) 0.000125 1.11 251.88 (14.00)

CN-PSOR (64, 32, 66) 0.005354 0.86 (0.01 3.15 1.22)

(128, 64, 130) 0.001066 5.02 4.93 (0.13 5.61 1.35)

(256, 128, 258) 0.000334 3.19 29.42 (1.96 11.03 1.47)

(512, 256, 514) 0.000076 4.37 182.13 (27.15 18.32 1.59)
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Table 5. American put reference prices calculated using the STS-RE-G and CN-PSOR schemes at various stock prices,

x, and for two initial variances: y = 0.0625, 0.25 on a grid of size (m,n, l). These price are compared to benchmark

prices computed using code from QUANTLIB, a freeware financial software resource. Other reference prices published

in the literature are also included.

x

Reference y 8 9 10 11 12

STS-RE-G m = 2048, n = 1024, l = 2050 0.0625 2.000000 1.107622 0.520032 0.213678 0.082044

Nsts = 30, ν = 0.0006 0.25 2.078364 1.333633 0.795977 0.448273 0.242811

STS-RE-G m = 2048, n = 1024, l = 2750 0.0625 2.000000 1.107622 0.520032 0.213678 0.082044

Nsts = 25, ν = 0.0006 0.25 2.078364 1.333633 0.795977 0.448273 0.242810

STS-RE-G m = 2048, n = 1024, l = 1800 0.0625 2.000000 1.107622 0.520032 0.213678 0.082044

Nsts = 35, ν = 0.0006 0.25 2.078357 1.333623 0.795967 0.448264 0.242803

STS-RE-G m = 2048, n = 1024, l = 1600 0.0625 2.000000 1.107622 0.520032 0.213678 0.082045

Nsts = 30, ν = 0.0002 0.25 2.078364 1.333633 0.795977 0.448274 0.242811

STS-RE-G m = 2048, n = 1024, l = 1400 0.0625 2.000000 1.107622 0.520033 0.213678 0.082045

Nsts = 30, ν = 0.00005 0.25 2.078364 1.333633 0.795977 0.448274 0.242811

CN-PSOR m = 2048, n = 1024, l = 2050 0.0625 2.000000 1.107620 0.520030 0.213676 0.082043

tol = 1× 10−5, w = 1.85 0.25 2.078363 1.333631 0.795974 0.448271 0.242809

QuantLib m = 4096, n = 2048, l = 4098 0.0625 2.000000 1.107611 0.520024 0.213675 0.082043

0.25 2.078355 1.333626 0.795972 0.448271 0.242803

[21] 0.0625 2.000000 1.107629 0.520038 0.213681 0.082046

0.25 2.078372 1.333640 0.795983 0.448277 0.242813

[8] 0.0625 2.0000 1.1080 0.5316 0.2261 0.0907

0.25 2.0733 1.3290 0.7992 0.4536 0.2502

[49] 0.0625 2.0000 1.1076 0.5202 0.2138 0.0821

0.25 2.0784 1.3337 0.7961 0.4483 0.2428

[30] 0.0625 2.000 1.107 0.517 0.212 0.0815

0.25 2.079 1.334 0.796 0.449 0.243
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Table 6. Convergence of European put prices versus analytical solution of Heston. Parameters: E = 100, r = 0.05,

γ = 0.01, α = 3, β = 0.04, and ρ = −0.7. For a given number of spatial steps m, n = m
2

and l = m
4

+ 2. The STS

parameters are Nsts = 25 and ν = 0.001 when T = 0.0833, Nsts = 30 and ν = 0.0006 when T = 0.25 and Nsts = 35

and ν = 0.0003 when T = 0.5.

STS-RE-G Error %

x y T m = 128 m = 254 m = 512 FFT solution m = 128 m = 254 m = 512

90 0.04 0.0833 9.655248 9.653773 9.653443 9.653325 0.019921 0.004639 0.001215

95 0.04 0.0833 5.206435 5.207229 5.207338 5.207351 -0.017595 -0.002347 -0.000241

100 0.04 0.0833 2.094308 2.096436 2.096933 2.097064 -0.131443 -0.029954 -0.006259

105 0.04 0.0833 0.604844 0.605187 0.605291 0.605300 -0.075244 -0.018580 -0.001502

110 0.04 0.0833 0.127056 0.126702 0.126586 0.126538 0.409478 0.129959 0.038288

90 0.09 0.0833 9.991716 9.990898 9.990553 9.990508 0.012095 0.003901 0.000453

95 0.09 0.0833 6.012879 6.014981 6.015478 6.015535 -0.044151 -0.009208 -0.000950

100 0.09 0.0833 3.125651 3.129033 3.130110 3.130211 -0.145683 -0.037643 -0.003231

105 0.09 0.0833 1.394354 1.395989 1.396666 1.396709 -0.168641 -0.051533 -0.003105

110 0.09 0.0833 0.537258 0.536843 0.536736 0.536712 0.101657 0.024401 0.004379

90 0.16 0.0833 10.566300 10.566655 10.566812 10.566820 -0.004916 -0.001562 -0.000073

95 0.16 0.0833 6.930261 6.932232 6.933392 6.933456 -0.046085 -0.017659 -0.000921

100 0.16 0.0833 4.180959 4.183520 4.185075 4.185155 -0.100260 -0.039081 -0.001914

105 0.16 0.0833 2.319261 2.321053 2.322144 2.322195 -0.126319 -0.049148 -0.002185

110 0.16 0.0833 1.187492 1.187961 1.188209 1.188216 -0.060924 -0.021414 -0.000529

90 0.04 0.25 9.568362 9.569655 9.569749 9.569752 -0.014526 -0.001012 -0.000025

95 0.04 0.25 5.965771 5.968806 5.969099 5.969191 -0.057279 -0.006440 -0.001536

100 0.04 0.25 3.375074 3.376676 3.376922 3.377001 -0.057059 -0.009629 -0.002320

105 0.04 0.25 1.740750 1.740859 1.740991 1.741018 -0.015381 -0.009117 -0.001538

110 0.04 0.25 0.826157 0.825904 0.825947 0.825944 0.025842 -0.004860 0.000375

90 0.09 0.25 10.585299 10.588851 10.589306 10.589348 -0.038243 -0.004700 -0.000397

95 0.09 0.25 7.322196 7.330208 7.331539 7.331628 -0.128641 -0.019365 -0.001215

100 0.09 0.25 4.820075 4.829095 4.830881 4.830971 -0.225545 -0.038832 -0.001855

105 0.09 0.25 3.030404 3.037092 3.038697 3.038754 -0.274793 -0.054706 -0.001875

110 0.09 0.25 1.828656 1.831585 1.832510 1.832528 -0.211292 -0.051507 -0.000983

90 0.16 0.25 11.821484 11.825471 11.828632 11.828688 -0.060906 -0.027202 -0.000478

95 0.16 0.25 8.792611 8.798588 8.803449 8.803526 -0.123978 -0.056086 -0.000871

100 0.16 0.25 6.361643 6.368078 6.373400 6.373476 -0.185666 -0.084688 -0.001197

105 0.16 0.25 4.487568 4.493018 4.497581 4.497641 -0.223954 -0.102789 -0.001341

110 0.16 0.25 3.094478 3.098059 3.101081 3.101118 -0.214138 -0.098645 -0.001207

90 0.04 0.5 9.752382 9.756872 9.757127 9.757185 -0.049225 -0.003205 -0.000587

95 0.04 0.5 6.715471 6.719646 6.719801 6.719880 -0.065620 -0.003483 -0.001178

100 0.04 0.5 4.428801 4.431038 4.431119 4.431181 -0.053725 -0.003220 -0.001407

105 0.04 0.5 2.810043 2.810586 2.810656 2.810692 -0.023107 -0.003792 -0.001273

110 0.04 0.5 1.724230 1.723919 1.723997 1.724013 0.012551 -0.005497 -0.000972

90 0.09 0.5 11.070181 11.079542 11.080573 11.080652 -0.094497 -0.010016 -0.000706

95 0.09 0.5 8.220840 8.234499 8.236168 8.236268 -0.187323 -0.021484 -0.001217

100 0.09 0.5 5.959693 5.974240 5.976189 5.976281 -0.277568 -0.034152 -0.001550

105 0.09 0.5 4.229980 4.242325 4.244187 4.244254 -0.336312 -0.045439 -0.001574

110 0.09 0.5 2.948419 2.956688 2.958192 2.958229 -0.331618 -0.052075 -0.001234

90 0.16 0.5 12.600626 12.610309 12.617017 12.617096 -0.130535 -0.053796 -0.000628

95 0.16 0.5 9.901845 9.913698 9.922244 9.922334 -0.206491 -0.087035 -0.000906

100 0.16 0.5 7.675352 7.687440 7.696449 7.696535 -0.275224 -0.118158 -0.001117

105 0.16 0.5 5.878813 5.889482 5.897678 5.897750 -0.321095 -0.140183 -0.001218

110 0.16 0.5 4.456918 4.465086 4.471552 4.471605 -0.328447 -0.145773 -0.001182
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Table 7. Convergence of American put prices versus benchmark PSOR American put prices. Parameters: E = 100, r

= 0.05, γ = 0.01, α = 3, β = 0.04, and ρ = −0.7. For a given number of spatial steps m, n = m
2

and l = m+ 2. The

STS parameters are Nsts = 15 and ν = 0.002 when T = 0.0833 and T = 0.25, and Nsts = 25 and ν = 0.001 when

T = 0.5.

STS-RE-G Error %

x y T m = 128 m = 254 m = 512 PSOR benchmark m = 128 m = 254 m = 512

90 0.04 0.0833 10.000159 9.999994 10.000000 10.000000 0.001586 -0.000057 0.000002

95 0.04 0.0833 5.322143 5.324939 5.325618 5.325781 -0.068307 -0.015809 -0.003050

100 0.04 0.0833 2.122503 2.125806 2.126623 2.126811 -0.202537 -0.047228 -0.008819

105 0.04 0.0833 0.610137 0.610812 0.611020 0.611051 -0.149621 -0.039097 -0.005170

110 0.04 0.0833 0.127813 0.127533 0.127442 0.127402 0.322032 0.101892 0.030569

90 0.09 0.0833 10.164952 10.165177 10.165012 10.165053 -0.000997 0.001218 -0.000401

95 0.09 0.0833 6.088480 6.091362 6.092038 6.092144 -0.060138 -0.012832 -0.001741

100 0.09 0.0833 3.154605 3.158548 3.159786 3.159902 -0.167642 -0.042864 -0.003669

105 0.09 0.0833 1.404123 1.406051 1.406825 1.406877 -0.195731 -0.058740 -0.003710

110 0.09 0.0833 0.540182 0.539886 0.539823 0.539814 0.068141 0.013424 0.001737

90 0.16 0.0833 10.680890 10.681852 10.682066 10.682113 -0.011448 -0.002446 -0.000442

95 0.16 0.0833 6.989753 6.992251 6.993482 6.993559 -0.054429 -0.018703 -0.001108

100 0.16 0.0833 4.209737 4.212704 4.214339 4.214416 -0.111007 -0.040610 -0.001829

105 0.16 0.0833 2.332273 2.334329 2.335482 2.335527 -0.139313 -0.051286 -0.001945

110 0.16 0.0833 1.193015 1.193633 1.193919 1.193926 -0.076342 -0.024529 -0.000577

90 0.04 0.25 10.121287 10.122365 10.122803 10.122932 -0.016247 -0.005598 -0.001273

95 0.04 0.25 6.210118 6.215412 6.216273 6.216466 -0.102110 -0.016954 -0.003098

100 0.04 0.25 3.477684 3.480630 3.481205 3.481323 -0.104547 -0.019922 -0.003391

105 0.04 0.25 1.781571 1.782295 1.782596 1.782637 -0.059830 -0.019177 -0.002335

110 0.04 0.25 0.841591 0.841603 0.841728 0.841731 -0.016658 -0.015173 -0.000410

90 0.09 0.25 10.954471 10.957124 10.957261 10.957328 -0.026071 -0.001858 -0.000615

95 0.09 0.25 7.532389 7.540086 7.541313 7.541403 -0.119533 -0.017462 -0.001200

100 0.09 0.25 4.935069 4.944235 4.946053 4.946130 -0.223635 -0.038307 -0.001551

105 0.09 0.25 3.091239 3.098209 3.099886 3.099928 -0.280288 -0.055432 -0.001332

110 0.09 0.25 1.859958 1.863124 1.864113 1.864119 -0.223207 -0.053410 -0.000342

90 0.16 0.25 12.113858 12.117522 12.119984 12.120029 -0.050920 -0.020681 -0.000373

95 0.16 0.25 8.981922 8.987820 8.992250 8.992302 -0.115432 -0.049839 -0.000580

100 0.16 0.25 6.481603 6.488135 6.493254 6.493299 -0.180122 -0.079522 -0.000695

105 0.16 0.25 4.562212 4.567829 4.572326 4.572355 -0.221830 -0.098990 -0.000631

110 0.16 0.25 3.140229 3.143974 3.146992 3.147002 -0.215226 -0.096230 -0.000316

90 0.04 0.5 10.559084 10.565530 10.566484 10.566684 -0.071922 -0.010918 -0.001892

95 0.04 0.5 7.150543 7.157001 7.157677 7.157826 -0.101743 -0.011516 -0.002074

100 0.04 0.5 4.660408 4.664079 4.664455 4.664531 -0.088382 -0.009683 -0.001622

105 0.04 0.5 2.931602 2.932948 2.933187 2.933212 -0.054881 -0.009002 -0.000862

110 0.04 0.5 1.787218 1.787347 1.787522 1.787521 -0.016997 -0.009765 0.000030

90 0.09 0.5 11.758555 11.765023 11.765729 11.765798 -0.061559 -0.006588 -0.000588

95 0.09 0.5 8.664867 8.677192 8.678778 8.678854 -0.161166 -0.019158 -0.000876

100 0.09 0.5 6.240929 6.255178 6.257198 6.257257 -0.260949 -0.033229 -0.000956

105 0.09 0.5 4.405683 4.418195 4.420181 4.420213 -0.328714 -0.045665 -0.000729

110 0.09 0.5 3.057096 3.065630 3.067257 3.067262 -0.331450 -0.053219 -0.000167

90 0.16 0.5 13.219887 13.227923 13.232897 13.232940 -0.098639 -0.037911 -0.000325

95 0.16 0.5 10.343800 10.354643 10.362094 10.362140 -0.176995 -0.072353 -0.000443

100 0.16 0.5 7.987239 7.998831 8.007258 8.007296 -0.250477 -0.105709 -0.000478

105 0.16 0.5 6.097026 6.107525 6.115470 6.115495 -0.301997 -0.130326 -0.000400

110 0.16 0.5 4.608622 4.616785 4.623179 4.623187 -0.315041 -0.138483 -0.000188
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