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Abstract: We define a natural partial order on the orthogonal group and
completely describe the intervals in this partial order. The main technical
ingredient is that an orthogonal transformation induces a unique orthogonal
transformation on each subspace of the orthogonal complement of its fixed
subspace.
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Let V be an n-dimensional vector space over a field F and let O(V ) be the
orthogonal group of V with respect to a fixed anisotropic symmetric bilinear
form ⟨ , ⟩. In this note we will define a natural partial order on O(V ) and
completely describe the intervals in this partial order. The main technical
ingredient is that an orthogonal transformation A on V induces a unique
orthogonal transformation on each subspace of the orthogonal complement
of the fixed subspace of A.

Recall that A ∈ O(V ) if A : V → V is linear and satisfies ⟨A(v⃗), A(w⃗)⟩ =
⟨v⃗, w⃗⟩ for all v⃗, w⃗ ∈ V . For standard results on symmetric bilinear forms and
their associated orthogonal groups see [1], but note that we are making the
further assumption that the form is anisotropic.

For each A ∈ O(V ), we define two subspaces of V , F (A) = ker(A − I) and
M(A) = im(A − I), where I is the identity operator on V . We note that
F (A) is the +1-eigenspace of A, sometimes called the fixed subspace of A.
We will write V = V1 ⊥ V2 whenever V is the orthogonal direct sum of
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subspaces V1 and V2.

Proposition 1 V = F (A) ⊥ M(A)

Proof. Since the dimensions of F (A) and M(A) are complementary and the
form is anisotropic, it suffices to show that these subspaces are orthogonal.
So let x⃗ ∈ F (A) and y⃗ ∈ M(A). Then x⃗ = A(x⃗) and y⃗ = (A− I)z⃗ for some
z⃗ ∈ V . Thus

⟨x⃗, y⃗⟩ = ⟨x⃗, (A− I)z⃗⟩ = ⟨x⃗, A(z⃗)⟩ − ⟨x⃗, z⃗⟩ = ⟨A(x⃗), A(z⃗)⟩ − ⟨x⃗, z⃗⟩ = 0.

q.e.d.

We will be concerned with how the dimensions of these subspaces behave
when we take products in O(V ). For notational convenience we will write
|U | for dim(U).

Proposition 2 |M(AB)| ≤ |M(A)|+ |M(B)| for A,B ∈ O(V ).

Proof. Using the identities |U |+ |V | = |U + V |+ |U ∩ V |, F (A) ∩ F (B) ⊆
F (AB) and F (A) + F (B) ⊆ V we find that

|F (A)|+ |F (B)| = |F (A) + F (B)|+ |F (A) ∩ F (B)| ≤ n+ |F (AB)|,

from which the result follows. q.e.d.

This result is proved in a more general setting in [2]. However, from the
proof above we see that equality occurs if and only if

F (A) ∩ F (B) = F (AB) and F (A) + F (B) = V.

Thus, using the identities [U + V ]⊥ = U⊥ ∩ V ⊥ and U⊥ + V ⊥ = [U ∩ V ]⊥ we
get the following characterization.

Corollary 1 |M(AB)| = |M(A)|+ |M(B)| ⇔ M(AB) = M(A)⊕M(B).

Definition 1 We will write A ≤ C if |M(C)| = |M(A)|+ |M(A−1C)|.

Proposition 3 The relation ≤ is a partial order on O(V ) and satisfies

A ≤ B ≤ C ⇒ A−1B ≤ A−1C.
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Proof. Reflexivity is immediate. To establish antisymmetry suppose A ≤ C
and C ≤ A. Then

|M(C)| = |M(A)|+ |M(A−1C)| = |M(C)|+ |M(C−1A)|+ |M(A−1C)|

giving F (C−1A) = F (A−1C) = V or A = C.

To establish transitivity, suppose A ≤ B and B ≤ C. Then

|M(C)| ≤ |M(A)|+ |M(A−1C)|
= |M(A)|+ |M(A−1BB−1C)|
≤ |M(A)|+ |M(A−1B)|+ |M(B−1C)|
= |M(A)|+ {|M(B)| − |M(A)|}+ {|M(C)| − |M(B)|}
= |M(C)|

So both of the inequalities are actually equalities. The first line gives A ≤ C
and ≤ is transitive. The third line gives the second assertion above. q.e.d.

The association of the subspace M(A) to an element A ∈ O(V ) defines a
mapM from O(V ) to the set of subspaces of V . The next sequence of lemmas
shows that the restriction of M to the interval [I, C] = {A ∈ O(V ) | A ≤ C}
is a bijection onto the set of subspaces of M(C).

In what follows we fix C and a subspace W of M(C) and we suppose that
A ∈ O(V ) satisfies M(A) = W . We define U to be the unique subspace of
M(C) which satisfies |U | = |W | and (C − I)U = W . This is possible since
C − I is invertible when restricted to M(C).

Lemma 1 If W ⊆ M(C) then V = W⊥ ⊕ U .

Proof. Since the subspaces have complementary dimensions it suffices to
show that their intersection is trivial. So let x⃗ ∈ W⊥ ∩ U . Then x⃗ ∈ W⊥

and (C − I)x⃗ = w⃗ for some w⃗ ∈ W . Thus Cx⃗ = x⃗ + w⃗, with x⃗ ∈ W⊥ and
w⃗ ∈ W so that

⟨x⃗, x⃗⟩ = ⟨Cx⃗, Cx⃗⟩ = ⟨x⃗+ w⃗, x⃗+ w⃗⟩ = ⟨x⃗, x⃗⟩+ ⟨w⃗, w⃗⟩.

Thus w⃗ = 0⃗ since ⟨ , ⟩ is anisotropic and x⃗ = 0⃗ since C− I is an isomorphism
on M(C). q.e.d.

Lemma 2 F (A−1C) ⊆ F (C) ⊥ U .
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Proof. Let x⃗ ∈ F (A−1C). Then A−1Cx⃗ = x⃗, which implies Cx⃗ = Ax⃗ and
(C − I)x⃗ = (A− I)x⃗. Using V = F (C) ⊥ M(C) we can express x⃗ uniquely
as x⃗ = y⃗ + z⃗ with y⃗ ∈ F (C) and z⃗ ∈ M(C). Thus

(C − I)z⃗ = (C − I)x⃗ = (A− I)x⃗ ∈ M(A) = W,

giving z⃗ ∈ U . This gives F (A−1C) ⊆ F (C) +U and the orthogonality of the
subspaces follows since U ⊆ M(C). q.e.d.

Lemma 3 If M(A) = W and A ≤ C then F (A−1C) = F (C) ⊥ U .

Proof. Since A ≤ C we have |M(A−1C)| = |M(C)| − |M(A)| so that

|F (A−1C)| = n− |M(A−1C)| = n− |M(C)|+ |W | = |F (C)|+ |U |.

This dimension calculation can now be combined with Lemma 2. q.e.d.

It is now possible to give a formula for A. If V = V1 ⊕ V2 we define the
projection ProjV2

V1
to be the linear transformation which coincides with the

identity on V1 and with the zero transformation on V2.

Lemma 4 If A ≤ C and M(A) = W then A = I + (C − I)ProjW
⊥

U .

Proof. If M(A) = W then F (A) = W⊥ so that A coincides with I on W⊥.
Since F (A−1C) contains U by Lemma 3, A coincides with C on U . Thus
A− I coincides with the zero transformation on W⊥ and with C − I on U ,
giving A− I = (C − I)ProjW

⊥

U , by Lemma 1. q.e.d.

It is not at all clear from this formula that A is orthogonal. However this is
indeed the case.

Lemma 5 A = I + (C − I)ProjW
⊥

U ∈ O(V ).

Proof. Let x⃗, y⃗ ∈ V and use Lemma 1 to express x⃗ = x⃗1 + x⃗2 , y⃗ = y⃗1 + y⃗2,
with x⃗1, y⃗1 ∈ U and x⃗2, y⃗2 ∈ W⊥. Then, using the fact that A coincides with
I on W⊥ and with C on U ,

⟨A(x⃗), A(y⃗)⟩ = ⟨C(x⃗1) + x⃗2, C(y⃗1) + y⃗2⟩
= ⟨Cx⃗1, Cy⃗1⟩+ ⟨Cx⃗1, y⃗2⟩+ ⟨x⃗2, Cy⃗1⟩+ ⟨x⃗2, y⃗2⟩
= ⟨x⃗1, y⃗1⟩+ ⟨Cx⃗1, y⃗2⟩+ ⟨x⃗2, Cy⃗1⟩+ ⟨x⃗2, y⃗2⟩
= ⟨x⃗, y⃗⟩+ ⟨(C − I)x⃗1, y⃗2⟩+ ⟨x⃗2, (C − I)y⃗1⟩
= ⟨x⃗, y⃗⟩,
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since both (C − I)x⃗1 and (C − I)y⃗1 lie in W . q.e.d.

We will call A the transformation induced by C on W . Combining the above
lemmas we get the following result.

Theorem 1 If C ∈ O(V ) and W is a subspace of M(C) then there exists a
unique A ∈ O(V ) satisfying A ≤ C and M(A) = W .

The induced transformations are familiar objects for two special classes of
subspace.

Corollary 2 If W ⊆ M(C) is an invariant subspace of C, then the induced
transformation on W is the restriction of C to W .

Proof. In this case, U = W and the projection in the formula for A becomes
an orthogonal projection. q.e.d.

Corollary 3 If char(F) ̸= 2 and W is a one dimensional subspace of M(C)
then the orthogonal transformation induced by C on W is always the orthog-
onal reflection in W⊥.

Proof. Since W is one-dimensional A must act on W by multiplication by a
scalar α. The orthogonality of A forces α2 = 1 and W = M(A) gives α ̸= 1.
q.e.d.

The poset (O(V ),≤) is not a lattice, since distinct elements C1 and C2 with
M(C1) = M(C2) cannot have a common upper bound. However the intervals
are lattices and can be easily described.

Theorem 2 If A ≤ C in O(V ) and |M(C)| − |M(A)| = m then the interval
[A,C] = {B ∈ O(V ) | A ≤ B ≤ C} is isomorphic to the lattice of subspaces
of Fm under inclusion.

Proof. The lattices of subspaces of Fm under inclusion is isomorphic to
the interval [M(A),M(C)] in the lattice of subspaces of V . The function
B 7→ M(B) is a bijection from the interval [A,C] to the latter interval
by Theorem 1. This map respects the partial orders by Corollary 1. To
see that the inverse map respects the partial orders suppose that M(A) ⊆
W1 ⊆ W2 ⊆ M(C). Let B1, B2 be the transformations induced on W1,
W2 respectively by C and let B′

1 be the transformation induced on W1 by
B2. Then B′

1 ≤ B2 ≤ C gives B′
1 ≤ C, but M(B1) = M(B′

1) = W1 so the
uniqueness part of Theorem 1 gives B1 = B′

1 and B1 ≤ B2. q.e.d.

Each chain in M(C) thus gives rise to a special factorization of C.

5



Corollary 4 If C ∈ O(V ) and W1 ⊂ W2 ⊂ · · · ⊂ Wk = M(C) is a chain of
subspaces in M(C) then C factors uniquely as a product of k transformations
C = B1B2 . . . Bk, with B1B2 . . . Bi ≤ C and M(B1B2 . . . Bi) = Wi.

Proof. If we define Ci to be the transformation induced by C on Wi then
Bi = (Ci−1)

−1Ci. q.e.d.

The case where this chain is maximal gives a strong version of the Cartan-
Dieudonné theorem.

Corollary 5 If char(F) ̸= 2, C ∈ O(V ) with |M(C)| = k and W1 ⊂ W2 ⊂
· · · ⊂ Wk = M(C) is a maximal flag in M(C) then C factors uniquely as a
product of k reflections, C = R1R2 . . . Rk, with M(R1R2 . . . Ri) = Wi.

Proof. Here the transformationBi defined in Corollary 4 satisfies |M(Bi)| = 1
so that Bi is a reflection by Corollary 3. q.e.d.

Note 1 Using similar methods one can prove analogs of all the above results
in the case of a unitary transformation over a finite-dimensional complex vec-
tor space. In this case we deal with complex linear subspaces, the induced
transformations are unitary (and hence complex linear) and complex reflec-
tions replace the above reflections.
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