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A partial order on the Orthogonal Group

Thomas Brady Colum Watt
School of Mathematical Sciences School of Mathematics
Dublin City University Trinity College
Glasnevin, Dublin 9 Dublin 2
Ireland [reland
tom.brady@dcu.ie colum@maths.tcd.ie

Abstract: We define a natural partial order on the orthogonal group and
completely describe the intervals in this partial order. The main technical
ingredient is that an orthogonal transformation induces a unique orthogonal
transformation on each subspace of the orthogonal complement of its fixed
subspace.

Keywords: orthogonal group, partial order.

Let V be an n-dimensional vector space over a field F and let O(V') be the
orthogonal group of V' with respect to a fixed anisotropic symmetric bilinear
form (, ). In this note we will define a natural partial order on O(V) and
completely describe the intervals in this partial order. The main technical
ingredient is that an orthogonal transformation A on V induces a unique
orthogonal transformation on each subspace of the orthogonal complement
of the fixed subspace of A.

Recall that A € O(V) if AV — V is linear and satisfies (A(?), A(W)) =
(U, W) for all v, € V. For standard results on symmetric bilinear forms and
their associated orthogonal groups see [1], but note that we are making the
further assumption that the form is anisotropic.

For each A € O(V), we define two subspaces of V', F(A) = ker(A — I) and
M(A) = im(A — I), where I is the identity operator on V. We note that
F(A) is the +1-eigenspace of A, sometimes called the fixed subspace of A.
We will write V.= V; L V5 whenever V is the orthogonal direct sum of



subspaces V; and V5.
Proposition 1 V = F(A) L M(A)

Proof. Since the dimensions of F'(A) and M (A) are complementary and the
form is anisotropic, it suffices to show that these subspaces are orthogonal.
So let ¥ € F(A) and ¥ € M(A). Then ¥ = A(Z) and ¢ = (A — I)Z for some
Z € V. Thus

(7,9) = (7, (A= D3) = (7, A(D)) — (7, 2) = (@), A(2)) — (7.5) = 0.
q.e.d.

We will be concerned with how the dimensions of these subspaces behave
when we take products in O(V). For notational convenience we will write

\U| for dim(U).
Proposition 2 |M(AB)| < |[M(A)| + |M(B)| for A,B € O(V).

Proof. Using the identities |U| + |V| = |U + V| +|UNV|, F(A)N F(B) C
F(AB) and F(A) + F(B) CV we find that

[E(A)| +[F(B)] = |F(A) + F(B)| + [F(A)N F(B)| < n+ [F(AB)],

from which the result follows. q.e.d.

This result is proved in a more general setting in [2]. However, from the
proof above we see that equality occurs if and only if

F(A)NF(B) = F(AB) and F(A)+ F(B) =V,

Thus, using the identities [U + V]* = U+ NV+ and Ut +V+ = [UNV]* we
get the following characterization.

Corollary 1 |M(AB)| = |M(A)|+ |M(B)| & M(AB) = M(A) ® M(B).
Definition 1 We will write A < C if |M(C)| = |M(A)| + |M(A~1C)].
Proposition 3 The relation < is a partial order on O(V') and satisfies

A<B<(C=A"'B< A lC.



Proof. Reflexivity is immediate. To establish antisymmetry suppose A < C'
and C' < A. Then

[M(O)| = [M(A)| + |M(ATIC)| = [M(C)| + [M(CTA) + [M(A™C)]

giving F(C7'A)=F(A'C)=V or A=C.
To establish transitivity, suppose A < B and B < C. Then

|M(C)] |M(A)] + [M(A™'C))
|M(A)| + |M(A*BB~'C)|

(4)
(4)
< |M(A)|+[M(AT'B)|[ + M (B0
(4)
(©)

[M(A)| +{IM(B)| = [M(A)[} +{[M(C)| = |M(B)]}
[M(C)]

So both of the inequalities are actually equalities. The first line gives A < C
and < is transitive. The third line gives the second assertion above. q.e.d.

The association of the subspace M(A) to an element A € O(V) defines a
map M from O(V) to the set of subspaces of V. The next sequence of lemmas
shows that the restriction of M to the interval [I,C] ={A € O(V)| A< C}
is a bijection onto the set of subspaces of M (C).

In what follows we fix C' and a subspace W of M (C') and we suppose that
A € O(V) satisfies M(A) = W. We define U to be the unique subspace of
M (C) which satisfies |U| = |W| and (C — I)U = W. This is possible since
C' — I is invertible when restricted to M (C).

Lemma 1 If W C M(C) then V =W+ o U.

Proof. Since the subspaces have complementary dimensions it suffices to
show that their intersection is trivial. So let ¥ € W+ NU. Then ¥ € W+
and (C' — I)Z = w0 for some @ € W. Thus CZ = 7 + o, with ¥ € W and
w € W so that

(Z,7) = (CF,C%) = (¥ + W, T+ W)y = (¥, %) + (W, D).
Thus @ = 0 since (, ) is anisotropic and @ = 0 since C'— I is an isomorphism

on M(C). q.e.d.
Lemma 2 F(A™'C)C F(C) L U.



Proof. Let ¥ € F(A™'C). Then A~'C% = ¥, which implies CZ = AZ and
(C—-1i¥=(A—-1)Z Using V = F(C) L M(C) we can express Z uniquely
as ¥ =y + Z with g € F(C) and Z € M(C). Thus

(C—-D)F=(C-Di=(A-ID)TeMA =W,

giving Z € U. This gives F(A™'C) C F(C) + U and the orthogonality of the
subspaces follows since U C M (C). q.e.d.

Lemma 3 If M(A) =W and A < C then F(A™'C) = F(C) L U.
Proof. Since A < C we have |[M(A7'C)| = |M(C)| — |[M(A)| so that
[F(ATIC) =n— IM(AT'C)| = n — |M(C)| + [W| = [F(C)] + |U].

This dimension calculation can now be combined with Lemma 2. q.e.d.

It is now possible to give a formula for A. If V = V; & V5 we define the
projection Proj“;f to be the linear transformation which coincides with the
identity on V; and with the zero transformation on V5.

Lemma 4 If A< C and M(A) =W then A= 1+ (C — I)Projl¥"

Proof. If M(A) = W then F(A) = W+ so that A coincides with [ on W+.
Since F(A™'C') contains U by Lemma 3, A coincides with C' on U. Thus

A — I coincides with the zeroLtransformation on W+ and with C' — I on U,
giving A — I = (C — I)Proj;y , by Lemma 1. q.e.d.

It is not at all clear from this formula that A is orthogonal. However this is
indeed the case.

Lemma 5 A =1+ (C —1I)Projl" € O(V).

Proof. Let Z,7/ € V and use Lemma 1 to express & = 71 + Zo , ¥ = 1 + i,
with 71,7, € U and %, 7 € W+. Then, using the fact that A coincides with
I on W+ and with C on U,

(A(@), A(Y)) (C(71) + o, () + F2)

(CTy, Cyr) + (CT1, 1) + (T2, CU1) + (T2, 7o)
(Z1, 1) + (CT1, o) + (T2, CU) + (T2, 2)

( )
(z,

T, 1) + ((C — 1)T1, 42) + (To, (C — It
7,

%31



since both (C' — I)Z; and (C' — )y liein W. q.e.d.

We will call A the transformation induced by C' on W. Combining the above
lemmas we get the following result.

Theorem 1 [fC € O(V) and W is a subspace of M(C) then there exists a
unique A € O(V') satisfying A < C and M(A) = W.

The induced transformations are familiar objects for two special classes of
subspace.

Corollary 2 If W C M(C) is an invariant subspace of C, then the induced
transformation on W s the restriction of C' to W.

Proof. In this case, U = W and the projection in the formula for A becomes
an orthogonal projection. q.e.d.

Corollary 3 If char(F) # 2 and W is a one dimensional subspace of M(C)
then the orthogonal transformation induced by C on W is always the orthog-
onal reflection in W+,

Proof. Since W is one-dimensional A must act on W by multiplication by a
scalar a.. The orthogonality of A forces a® =1 and W = M(A) gives a # 1.
q.e.d.

The poset (O(V), <) is not a lattice, since distinct elements C; and Cy with
M(Cy) = M(C3) cannot have a common upper bound. However the intervals
are lattices and can be easily described.

Theorem 2 [fA < C in O(V) and |M(C)| — |M(A)| = m then the interval
[A,C] ={B € O(V) | A< B < C} is isomorphic to the lattice of subspaces

of ™ under inclusion.

Proof. The lattices of subspaces of F under inclusion is isomorphic to
the interval [M(A), M(C)] in the lattice of subspaces of V. The function
B +— M(B) is a bijection from the interval [A,C] to the latter interval
by Theorem 1. This map respects the partial orders by Corollary 1. To
see that the inverse map respects the partial orders suppose that M(A) C
Wy, € Wy € M(C). Let By, By be the transformations induced on W,
W, respectively by C and let Bj be the transformation induced on W; by
Bs. Then B} < By, < C gives B} < C, but M(B;) = M(B}) = Wj so the
uniqueness part of Theorem 1 gives By = B and B; < By. q.e.d.

Each chain in M (C') thus gives rise to a special factorization of C.
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Corollary 4 IfC € O(V) and Wy, C Wy C --- C Wy, = M(C) is a chain of
subspaces in M(C') then C factors uniquely as a product of k transformations

Proof. If we define C; to be the transformation induced by C' on W; then
B’i = (Cl‘,l)_lci. qed

The case where this chain is maximal gives a strong version of the Cartan-
Dieudonné theorem.

Corollary 5 If char(F) # 2, C € O(V) with |[M(C)| =k and W, C Wy C
<o C Wi = M(C) is a mazimal flag in M(C) then C factors uniquely as a
product of k reflections, C' = R1Rs ... Ry, with M(R Ry ... R;) = Wi.

Proof. Here the transformation B; defined in Corollary 4 satisfies |M (B;)| = 1
so that B; is a reflection by Corollary 3. q.e.d.

Note 1 Using similar methods one can prove analogs of all the above results
in the case of a unitary transformation over a finite-dimensional complex vec-
tor space. In this case we deal with complex linear subspaces, the induced
transformations are unitary (and hence complex linear) and complex reflec-
tions replace the above reflections.
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