

Technological University Dublin ARROW@TU Dublin

Articles

School of Mathematics and Statistics

2002

A Partial Order on the Orthogonal Group

Colum Watt Technological University Dublin, colum.watt@TUDublin.ie

Thomas Brady Dublin City University, thomas.brady@dcu.ie

Follow this and additional works at: https://arrow.tudublin.ie/scschmatart

Part of the Mathematics Commons

Recommended Citation

Watt, C., Brady, T. : A Partial Order on the Orthogonal Group. Communications in Algebra, Vol. 30, (2002), no. 8, pp 3749–3754 doi.org/10.21427/gbt1-8m22

This Article is brought to you for free and open access by the School of Mathematics and Statistics at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

A partial order on the Orthogonal Group

Thomas BradyControlSchool of Mathematical SciencesSchoolDublin City UniversityTriGlasnevin, Dublin 9IrelandIrelandcolumn

Colum Watt School of Mathematics Trinity College Dublin 2 Ireland colum@maths.tcd.ie

Abstract: We define a natural partial order on the orthogonal group and completely describe the intervals in this partial order. The main technical ingredient is that an orthogonal transformation induces a unique orthogonal transformation on each subspace of the orthogonal complement of its fixed subspace.

Keywords: orthogonal group, partial order.

Recall that $A \in O(V)$ if $A : V \to V$ is linear and satisfies $\langle A(\vec{v}), A(\vec{w}) \rangle = \langle \vec{v}, \vec{w} \rangle$ for all $\vec{v}, \vec{w} \in V$. For standard results on symmetric bilinear forms and their associated orthogonal groups see [1], but note that we are making the further assumption that the form is anisotropic.

For each $A \in O(V)$, we define two subspaces of V, $F(A) = \ker(A - I)$ and $M(A) = \operatorname{im}(A - I)$, where I is the identity operator on V. We note that F(A) is the +1-eigenspace of A, sometimes called the fixed subspace of A. We will write $V = V_1 \perp V_2$ whenever V is the orthogonal direct sum of

subspaces V_1 and V_2 .

Proposition 1 $V = F(A) \perp M(A)$

Proof. Since the dimensions of F(A) and M(A) are complementary and the form is anisotropic, it suffices to show that these subspaces are orthogonal. So let $\vec{x} \in F(A)$ and $\vec{y} \in M(A)$. Then $\vec{x} = A(\vec{x})$ and $\vec{y} = (A - I)\vec{z}$ for some $\vec{z} \in V$. Thus

$$\langle \vec{x}, \vec{y} \rangle = \langle \vec{x}, (A - I)\vec{z} \rangle = \langle \vec{x}, A(\vec{z}) \rangle - \langle \vec{x}, \vec{z} \rangle = \langle A(\vec{x}), A(\vec{z}) \rangle - \langle \vec{x}, \vec{z} \rangle = 0.$$

q.e.d.

We will be concerned with how the dimensions of these subspaces behave when we take products in O(V). For notational convenience we will write |U| for dim(U).

Proposition 2 $|M(AB)| \leq |M(A)| + |M(B)|$ for $A, B \in O(V)$.

Proof. Using the identities $|U| + |V| = |U + V| + |U \cap V|$, $F(A) \cap F(B) \subseteq F(AB)$ and $F(A) + F(B) \subseteq V$ we find that

$$|F(A)| + |F(B)| = |F(A) + F(B)| + |F(A) \cap F(B)| \le n + |F(AB)|,$$

from which the result follows. q.e.d.

This result is proved in a more general setting in [2]. However, from the proof above we see that equality occurs if and only if

$$F(A) \cap F(B) = F(AB)$$
 and $F(A) + F(B) = V$.

Thus, using the identities $[U+V]^{\perp} = U^{\perp} \cap V^{\perp}$ and $U^{\perp} + V^{\perp} = [U \cap V]^{\perp}$ we get the following characterization.

Corollary 1 $|M(AB)| = |M(A)| + |M(B)| \Leftrightarrow M(AB) = M(A) \oplus M(B).$

Definition 1 We will write $A \leq C$ if $|M(C)| = |M(A)| + |M(A^{-1}C)|$.

Proposition 3 The relation \leq is a partial order on O(V) and satisfies

$$A \le B \le C \Rightarrow A^{-1}B \le A^{-1}C.$$

Proof. Reflexivity is immediate. To establish antisymmetry suppose $A \leq C$ and $C \leq A$. Then

$$|M(C)| = |M(A)| + |M(A^{-1}C)| = |M(C)| + |M(C^{-1}A)| + |M(A^{-1}C)|$$

giving $F(C^{-1}A) = F(A^{-1}C) = V$ or A = C.

To establish transitivity, suppose $A \leq B$ and $B \leq C$. Then

$$|M(C)| \leq |M(A)| + |M(A^{-1}C)|$$

= $|M(A)| + |M(A^{-1}BB^{-1}C)|$
 $\leq |M(A)| + |M(A^{-1}B)| + |M(B^{-1}C)|$
= $|M(A)| + \{|M(B)| - |M(A)|\} + \{|M(C)| - |M(B)|\}$
= $|M(C)|$

So both of the inequalities are actually equalities. The first line gives $A \leq C$ and \leq is transitive. The third line gives the second assertion above. q.e.d.

The association of the subspace M(A) to an element $A \in O(V)$ defines a map M from O(V) to the set of subspaces of V. The next sequence of lemmas shows that the restriction of M to the interval $[I, C] = \{A \in O(V) \mid A \leq C\}$ is a bijection onto the set of subspaces of M(C).

In what follows we fix C and a subspace W of M(C) and we suppose that $A \in O(V)$ satisfies M(A) = W. We define U to be the unique subspace of M(C) which satisfies |U| = |W| and (C - I)U = W. This is possible since C - I is invertible when restricted to M(C).

Lemma 1 If $W \subseteq M(C)$ then $V = W^{\perp} \oplus U$.

Proof. Since the subspaces have complementary dimensions it suffices to show that their intersection is trivial. So let $\vec{x} \in W^{\perp} \cap U$. Then $\vec{x} \in W^{\perp}$ and $(C - I)\vec{x} = \vec{w}$ for some $\vec{w} \in W$. Thus $C\vec{x} = \vec{x} + \vec{w}$, with $\vec{x} \in W^{\perp}$ and $\vec{w} \in W$ so that

$$\langle \vec{x}, \vec{x} \rangle = \langle C\vec{x}, C\vec{x} \rangle = \langle \vec{x} + \vec{w}, \vec{x} + \vec{w} \rangle = \langle \vec{x}, \vec{x} \rangle + \langle \vec{w}, \vec{w} \rangle.$$

Thus $\vec{w} = \vec{0}$ since \langle , \rangle is anisotropic and $\vec{x} = \vec{0}$ since C - I is an isomorphism on M(C). q.e.d.

Lemma 2 $F(A^{-1}C) \subseteq F(C) \perp U$.

Proof. Let $\vec{x} \in F(A^{-1}C)$. Then $A^{-1}C\vec{x} = \vec{x}$, which implies $C\vec{x} = A\vec{x}$ and $(C-I)\vec{x} = (A-I)\vec{x}$. Using $V = F(C) \perp M(C)$ we can express \vec{x} uniquely as $\vec{x} = \vec{y} + \vec{z}$ with $\vec{y} \in F(C)$ and $\vec{z} \in M(C)$. Thus

$$(C - I)\vec{z} = (C - I)\vec{x} = (A - I)\vec{x} \in M(A) = W,$$

giving $\vec{z} \in U$. This gives $F(A^{-1}C) \subseteq F(C) + U$ and the orthogonality of the subspaces follows since $U \subseteq M(C)$. q.e.d.

Lemma 3 If M(A) = W and $A \leq C$ then $F(A^{-1}C) = F(C) \perp U$.

Proof. Since $A \leq C$ we have $|M(A^{-1}C)| = |M(C)| - |M(A)|$ so that

$$|F(A^{-1}C)| = n - |M(A^{-1}C)| = n - |M(C)| + |W| = |F(C)| + |U|.$$

This dimension calculation can now be combined with Lemma 2. q.e.d.

It is now possible to give a formula for A. If $V = V_1 \oplus V_2$ we define the projection $Proj_{V_1}^{V_2}$ to be the linear transformation which coincides with the identity on V_1 and with the zero transformation on V_2 .

Lemma 4 If $A \leq C$ and M(A) = W then $A = I + (C - I) \operatorname{Proj}_{U}^{W^{\perp}}$.

Proof. If M(A) = W then $F(A) = W^{\perp}$ so that A coincides with I on W^{\perp} . Since $F(A^{-1}C)$ contains U by Lemma 3, A coincides with C on U. Thus A - I coincides with the zero transformation on W^{\perp} and with C - I on U, giving $A - I = (C - I) \operatorname{Proj}_{U}^{W^{\perp}}$, by Lemma 1. q.e.d.

It is not at all clear from this formula that A is orthogonal. However this is indeed the case.

Lemma 5 $A = I + (C - I) \operatorname{Proj}_{U}^{W^{\perp}} \in O(V).$

Proof. Let $\vec{x}, \vec{y} \in V$ and use Lemma 1 to express $\vec{x} = \vec{x}_1 + \vec{x}_2$, $\vec{y} = \vec{y}_1 + \vec{y}_2$, with $\vec{x}_1, \vec{y}_1 \in U$ and $\vec{x}_2, \vec{y}_2 \in W^{\perp}$. Then, using the fact that A coincides with I on W^{\perp} and with C on U,

$$\begin{aligned} \langle A(\vec{x}), A(\vec{y}) \rangle &= \langle C(\vec{x}_1) + \vec{x}_2, C(\vec{y}_1) + \vec{y}_2 \rangle \\ &= \langle C\vec{x}_1, C\vec{y}_1 \rangle + \langle C\vec{x}_1, \vec{y}_2 \rangle + \langle \vec{x}_2, C\vec{y}_1 \rangle + \langle \vec{x}_2, \vec{y}_2 \rangle \\ &= \langle \vec{x}_1, \vec{y}_1 \rangle + \langle C\vec{x}_1, \vec{y}_2 \rangle + \langle \vec{x}_2, C\vec{y}_1 \rangle + \langle \vec{x}_2, \vec{y}_2 \rangle \\ &= \langle \vec{x}, \vec{y} \rangle + \langle (C-I)\vec{x}_1, \vec{y}_2 \rangle + \langle \vec{x}_2, (C-I)\vec{y}_1 \rangle \\ &= \langle \vec{x}, \vec{y} \rangle, \end{aligned}$$

since both $(C - I)\vec{x}_1$ and $(C - I)\vec{y}_1$ lie in W. q.e.d.

We will call A the transformation induced by C on W. Combining the above lemmas we get the following result.

Theorem 1 If $C \in O(V)$ and W is a subspace of M(C) then there exists a unique $A \in O(V)$ satisfying $A \leq C$ and M(A) = W.

The induced transformations are familiar objects for two special classes of subspace.

Corollary 2 If $W \subseteq M(C)$ is an invariant subspace of C, then the induced transformation on W is the restriction of C to W.

Proof. In this case, U = W and the projection in the formula for A becomes an orthogonal projection. q.e.d.

Corollary 3 If $char(\mathbf{F}) \neq 2$ and W is a one dimensional subspace of M(C) then the orthogonal transformation induced by C on W is always the orthogonal reflection in W^{\perp} .

Proof. Since W is one-dimensional A must act on W by multiplication by a scalar α . The orthogonality of A forces $\alpha^2 = 1$ and W = M(A) gives $\alpha \neq 1$. q.e.d.

The poset $(O(V), \leq)$ is not a lattice, since distinct elements C_1 and C_2 with $M(C_1) = M(C_2)$ cannot have a common upper bound. However the intervals are lattices and can be easily described.

Theorem 2 If $A \leq C$ in O(V) and |M(C)| - |M(A)| = m then the interval $[A, C] = \{B \in O(V) \mid A \leq B \leq C\}$ is isomorphic to the lattice of subspaces of \mathbf{F}^m under inclusion.

Proof. The lattices of subspaces of \mathbf{F}^m under inclusion is isomorphic to the interval [M(A), M(C)] in the lattice of subspaces of V. The function $B \mapsto M(B)$ is a bijection from the interval [A, C] to the latter interval by Theorem 1. This map respects the partial orders by Corollary 1. To see that the inverse map respects the partial orders suppose that $M(A) \subseteq$ $W_1 \subseteq W_2 \subseteq M(C)$. Let B_1 , B_2 be the transformations induced on W_1 , W_2 respectively by C and let B'_1 be the transformation induced on W_1 by B_2 . Then $B'_1 \leq B_2 \leq C$ gives $B'_1 \leq C$, but $M(B_1) = M(B'_1) = W_1$ so the uniqueness part of Theorem 1 gives $B_1 = B'_1$ and $B_1 \leq B_2$. q.e.d.

Each chain in M(C) thus gives rise to a special factorization of C.

Corollary 4 If $C \in O(V)$ and $W_1 \subset W_2 \subset \cdots \subset W_k = M(C)$ is a chain of subspaces in M(C) then C factors uniquely as a product of k transformations $C = B_1B_2 \ldots B_k$, with $B_1B_2 \ldots B_i \leq C$ and $M(B_1B_2 \ldots B_i) = W_i$.

Proof. If we define C_i to be the transformation induced by C on W_i then $B_i = (C_{i-1})^{-1}C_i$. q.e.d.

The case where this chain is maximal gives a strong version of the Cartan-Dieudonné theorem.

Corollary 5 If $char(\mathbf{F}) \neq 2$, $C \in O(V)$ with |M(C)| = k and $W_1 \subset W_2 \subset \cdots \subset W_k = M(C)$ is a maximal flag in M(C) then C factors uniquely as a product of k reflections, $C = R_1 R_2 \ldots R_k$, with $M(R_1 R_2 \ldots R_i) = W_i$.

Proof. Here the transformation B_i defined in Corollary 4 satisfies $|M(B_i)| = 1$ so that B_i is a reflection by Corollary 3. q.e.d.

Note 1 Using similar methods one can prove analogs of all the above results in the case of a unitary transformation over a finite-dimensional complex vector space. In this case we deal with complex linear subspaces, the induced transformations are unitary (and hence complex linear) and complex reflections replace the above reflections.

References

- N. Jacobson. Basic Algebra I, Second edition. Freeman: San Francisco, 1985.
- [2] P. Scherk. On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 1950, 1, 481–491.