
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Doctoral Science

2015

A Knowledge-driven Distributed Architecture for Context-Aware A Knowledge-driven Distributed Architecture for Context-Aware

Systems Systems

Dennis Lupiana
Technological University Dublin, dennis.lupiana@student.dit.ie

Follow this and additional works at: https://arrow.tudublin.ie/sciendoc

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Lupiana, D. (2015) A Knowledge-driven Distributed Architecture for Context-Aware Systems, Doctoral
Thesis, Technological University Dublin. doi:10.21427/D77C7T

This Theses, Ph.D is brought to you for free and open access by the Science at ARROW@TU Dublin. It has been
accepted for inclusion in Doctoral by an authorized administrator of ARROW@TU Dublin. For more information,
please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/sciendoc
https://arrow.tudublin.ie/scienthe
https://arrow.tudublin.ie/sciendoc?utm_source=arrow.tudublin.ie%2Fsciendoc%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fsciendoc%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

A Knowledge-driven Distributed

Architecture for Context-Aware

Systems

Dennis Lupiana, MSc.

Supervised by;

Dr. Fredrick J. Mtenzi, Mr. Ciaran O’Driscoll

and Prof. Brendan O’Shea

School of Computing

Dublin Institute of Technology, Ireland

Thesis submitted to the Office of Postgraduate Studies and Research at the

Dublin Institute of Technology in the fulfilment of the requirements for the

Degree of Doctor of Philosophy

January, 2015

mailto:dennis.lupiana@gmail.com
http://www.comp.dit.ie
http://www.dit.ie

To my family.

i

Abstract

As the number of devices increases, it becomes a challenge for the users to

use them effectively. Interacting with these devices becomes difficult and more

time consuming. This is more challenging when the majority of these devices are

mobile. The users and their devices enter and leave different environments where

different settings and computing needs may be required. To effectively use these

devices in such environments means to constantly be aware of their whereabouts,

functionalities and desirable working conditions. This is impractical and hence

it is imperative to increase seamless interactions between the users and devices,

and to make these devices less intrusive.

To address these problems, various responsive computing systems, called context-

aware systems, have been developed. These systems rely on architectures to

perceive their physical environments in order to appropriately and effortlessly

respond. Currently, the majority of the existing architectures focus on acquir-

ing data from sensors, interpreting and sharing it with these systems. These

architectures are developed with a limited model of the real world in which the

users and devices interact. Little has been done to develop a comprehensive

model of the real world, and an architecture that can use available information

to perceive and hence to enable these systems to adapt to social dynamics.

This research addresses these limitations by proposing a Knowledge-driven Dis-

tributed Architecture (KoDA). Centre to KoDA is a Knowledge-intensive Con-

text Model (KiCM). KiCM enables knowledge about the real world to be rep-

resented in KoDA. This knowledge enables KoDA to use available information

to dynamically perceive an environment and its dynamics. This research shows

that the accuracy of situation recognition increases significantly when knowledge

of the users and their computer-related activities, the users’ devices, location and

time is used. This research also shows that this accuracy is further increased

when knowledge of certainty level of each sensor is also used.

ii

Declaration

I certify that this thesis which I now submit for examination for the

award of Doctor of Philosophy, is entirely my own work and has not

been taken from the work of others, save and to the extent that such

work has been cited and acknowledged within the text of my work.

This thesis was prepared according to the regulations for postgradu-

ate study by research of the Dublin Institute of Technology, hereafter

referred to as the Institute, and has not been submitted in whole or

in part for another award in any Institute.

The work reported on in this thesis conforms to the principles and

requirements of the Institute’s guidelines for ethics in research.

The Institute has permission to keep, lend or copy this thesis in

whole or in part, on condition that any such use of the material of

the thesis be duly acknowledged.

. .

Dennis Lupiana

January, 2015

iii

Acknowledgements

I would like to express my sincere gratitude and appreciation to my

supervisors; Dr. Fredrick Mtenzi, Mr. Ciaran O’Driscoll and Prof.

Brendan O’Shea for their invaluable time, effort and expertise. I

could not have imagined having a better supervision team. Special

thanks to Prof. Brendan who had to commute, approximately 40

kilometres, occasionally to meet with me. Special thanks also to Dr.

Fredrick who has been more than a supervisor to me.

Many thanks to my examiners, Prof. Mike Wald and Dr. Susan

McKeever, and the chairperson of my defence, Dr. Anthony Betts,

for their insightful comments. I would also like to thank my govern-

ment and the administration of the Institute of Finance Management

(IFM) for allocating funds for this research. Many thanks also to the

administration of the School of Computing, DIT for giving me the

opportunities to participate in teaching activities.

I would also like to express my appreciation to my colleagues, staff

and students from the School of Computing, DIT and my friends,

Daisy, Flavio and Bhavin, for participating in my experiments. Many

thanks also to my colleagues from room 3030 Aungier Street, 34 New

Bride Street and A109 Kevin Street, DIT. They have always been

supportive and encouraging.

Many thanks also to my parents, my brother and my sisters for being

so supportive and encouraging. Special thanks to my beautiful and

loving wife, Vallerie, and to my loving kids, Lunotso and A’bema.

My wife has always been there for me, celebrating with me in any

progress I made and encouraging me whenever I felt lost. With warm

welcome from my kids whenever I come back home, and a series of

funny games afterwards, every morning I felt like a new person.

iv

Contents

1 Introduction 1

1.1 Background . 2

1.2 Key Definitions . 3

1.2.1 A Context Parameter . 4

1.2.2 A Situation . 5

1.2.3 A Context Model . 6

1.3 Research Motivation . 7

1.4 Problem Statement . 8

1.5 Thesis Statement . 10

1.6 Research Methodology . 10

1.7 Research Contributions and Limitations 13

1.7.1 Synthesised Taxonomy of Context Parameters 13

1.7.2 Knowledge-intensive Context Model 13

1.7.3 Knowledge-driven Distributed Architecture 14

1.8 Research Dissemination . 15

1.9 Thesis Structure . 16

2 Context Awareness 18

2.1 Introduction . 19

v

CONTENTS

2.2 Ubiquitous Computing . 20

2.2.1 Computing Everywhere 20

2.2.2 Invisible Computing . 22

2.3 Context-Awareness . 23

2.4 Survey of Context-Aware Systems 25

2.4.1 Service Triggering Systems 28

2.4.2 Content Gathering Systems 29

2.4.3 Content Delivery Systems 29

2.5 Taxonomies of Context Parameters 31

2.5.1 Survey of the Existing Taxonomies 32

2.5.2 A Synthesised Taxonomy of Context Parameters 35

2.6 Summary and Conclusion . 40

3 The State-Of-the-Art 42

3.1 Introduction . 43

3.2 Analysis of Architectures . 44

3.2.1 Initial Architectures . 44

3.2.2 Context Broker Architecture 45

3.2.3 Case-based Multi-agent Architecture 46

3.2.4 Context Engine Architecture 47

3.3 Analysis of Context Models . 48

3.3.1 Attribute-based Context Models 48

3.3.2 Ontology-based Context Models 49

3.3.3 Theory-based Context Models 51

3.4 Analysis of Inference Mechanisms 52

vi

CONTENTS

3.4.1 Logic-based Inference Mechanisms 53

3.4.2 Probabilistic Inference Mechanisms 54

3.4.3 Hybrid Inference Mechanisms 55

3.5 Discussion of the Analyses . 55

3.6 Summary and Conclusion . 57

4 Knowledge-intensive Context Model 59

4.1 Introduction . 60

4.2 Design Requirements . 61

4.3 Actor-Network Theory . 64

4.3.1 Framing . 65

4.3.2 Disentanglement . 65

4.4 Why Actor-Network Theory? 66

4.4.1 It Addresses Similar Questions as in this Research 66

4.4.2 Like UbiComp, It Aims to Redefine a User’s Life 67

4.4.3 It Treats the Potential Entities Equally 67

4.4.4 It Takes into Account Dynamic Relationships 68

4.5 Theoretical Background of the Model 68

4.5.1 Potential Entities . 70

4.5.2 Relationships Between the Potential Entities 72

4.6 Conceptual Representation of the Model 74

4.7 A Worked Example of Using KiCM 78

4.8 Summary and Conclusion . 84

5 Knowledge-driven Distributed Architecture 86

5.1 Introduction . 87

vii

CONTENTS

5.2 Design Requirements . 88

5.3 Conceptual Design of KoDA . 90

5.3.1 Perception Layer . 91

5.3.2 Inference Layer . 93

5.3.3 Application Layer . 97

5.4 Structural Representation of KoDA Implementation 98

5.5 Summary and Conclusion . 100

6 KoDA Prototype 102

6.1 Introduction . 103

6.2 Prototype Implementation . 104

6.2.1 Knowledge Acquisition 106

6.2.2 Knowledge Representation 107

6.2.3 Environment Monitoring 111

6.2.4 Data Interpretation . 113

6.2.5 Knowledge Reasoning . 114

6.3 Adding and Invoking Systems 115

6.4 Testing of the Prototype . 116

6.5 Application of KoDA . 117

6.5.1 An Application to Switch a Computer ON/OFF 117

6.5.2 Microsoft Cortana with KoDA 118

6.6 Fulfilment of the Design Requirements 119

6.7 Summary and Conclusion . 122

7 Performance Evaluation 123

7.1 Introduction . 124

viii

CONTENTS

7.2 Experimental Dataset . 125

7.2.1 Sensors Description . 125

7.2.2 Situations in the Dataset 127

7.2.3 Data Preparation . 128

7.3 Evaluation Methodology . 129

7.3.1 Evaluation Criteria . 129

7.3.2 Statistical Significance 130

7.4 In situ Evaluation . 131

7.4.1 Experiment Set-up . 132

7.4.2 Experiment 1: Recognition without Knowledge of Com-

puters and Activities . 133

7.4.3 Experiment-2: Recognition with Knowledge of Computers 134

7.4.4 Experiment-3: Recognition with Knowledge of Activities 135

7.4.5 Experiment-4: Effect of Time Duration to Monitor Activities141

7.4.6 Discussion of the Results 142

7.5 Offline Evaluation . 144

7.5.1 Experiment Set-up . 145

7.5.2 Experiment 1: Recognition without Certainty 147

7.5.3 Experiment 2: Recognition with Certainty 148

7.5.4 Discussion of the Results 151

7.6 Discussion of the Overall Results 151

7.6.1 Benefits of KoDA . 152

7.6.2 Limitations of KoDA . 154

7.7 Summary and Conclusions . 155

ix

CONTENTS

8 Conclusions and Future Work 157

8.1 Thesis Summary . 158

8.2 Summary of Contributions . 159

8.2.1 Synthesised Taxonomy of Context Parameters 160

8.2.2 Knowledge-intensive Context Model 160

8.2.3 Knowledge-driven Distributed Architecture 161

8.3 Benefits of the Research Outcomes 161

8.4 Research Limitations . 162

8.5 Future Directions . 163

Appendices 167

A Synthesised-taxonomy of Context Parameters 168

B A Process Flow of KoDA . 169

C Description of the Situations used in this Research 170

D Excerpts from the Knowledge Base 171

E A Bayesian Network for Situations Involving Three Users 172

F Excerpts from the Script Triggering Method 173

G Excerpts from the Mouse Activity Monitor 174

H Excerpts from the Keyboard Activity Monitor 175

I Excerpts from Accessing User Details 176

J Excerpts from the Application Manager 177

K Excerpts from the Server Listening Routine 178

L Excerpts from the Client Data Sending Routine 179

M Excerpts from the Reader Event Handler 180

N Experience Sampling Form . 181

x

CONTENTS

O Excerpt of Probability Distribution of Parents Nodes 182

References 198

xi

List of Tables

2.1 Survey of Existing Context-Aware Systems 27

4.1 Context Parameters from the ’busy on computer’ Situation . . . 81

6.1 Context Parameters Used in this Prototype 106

6.2 Summary of the Design Requirements for Architectures 120

7.1 Set of Experiments in In situ Evaluation 132

7.2 Precision, Recall and F-measure without Knowledge of the Par-

ticipants’ Computers and Computer-related Activities. 134

7.3 Confusion Matrix for Situation Recognition without Knowledge

of the Participants’ Computers and Computer-related Activities. 134

7.4 Confusion Matrix for Situation Recognition with Mouse and Key-

board Activities. 140

7.5 Comparison of Average F-measure with and without Mouse and

Keyboard Activities. 140

7.6 An Overall Probability for Each of the Situations Being Recog-

nised Correctly. 144

7.7 Certainty Level of Each Sensor Used in this Prototype 146

7.8 Average Precision, Recall and F-measure without Certainty. . . 147

xii

LIST OF TABLES

7.9 Confusion Matrix for Situation Recognition without Certainty. . 148

7.10 Comparison of Average F-measure with and without Certainty. . 151

xiii

List of Figures

2.1 A Partial Synthesised Taxonomy of Context Parameters 37

4.1 Knowledge-intensive Context Model 76

4.2 A Model of ’busy on computer’ by KiCM 83

5.1 Conceptual Design of KoDA . 90

5.2 Structural Representation of KoDA Implementation 99

6.1 Pseudocode of the Prototype System 105

6.2 Excerpt from the XML document 107

6.3 Rule Representing a ’busy on computer’ Situation 108

6.4 Bayesian Network for Situations Involving one User 110

6.5 A Script for Triggering MAM 112

6.6 A Script for Triggering KAM 113

6.7 Source Code for Reader Event 120

6.8 Source Codes for Reader Listener 121

7.1 Conceptual Representation of the Prototype 126

7.2 Comparison of Average Precision, Recall and F-measure with and

without Knowledge the Participants’ Computers. 135

xiv

LIST OF FIGURES

7.3 Average Precision, Recall and F-measure with Mouse, Keyboard

and both Mouse and Keyboard Activities (before excluding records).136

7.4 Average Precision, Recall and F-measure with Mouse, Keyboard

and both Mouse and Keyboard Activities (after excluding records).137

7.5 Precision with Mouse and Keyboard Activities. 138

7.6 Recall with Mouse and Keyboard Activities. 138

7.7 F-measure with Mouse and Keyboard Activities. 139

7.8 The Average Recall with Different Time Durations 141

7.9 The Average F-measure with Different Time Durations 142

7.10 The Comparison of Average Precision, Recall and F-measure for

Situation Recognition with and without Certainty. 148

7.11 The Average Precision with and without Certainty. 149

7.12 The Average Recall with and without Certainty. 150

7.13 The Average F-measure with and without Certainty. 150

xv

Chapter 1
Introduction

1

1.1 Background

1.1 Background

Ericsson (2011) predicts that more than fifty billion devices will be connected by

2020. Evans (2011), from Cisco, estimates the number of devices connected per

person to be more than three in 2015, and more than six in 2020. This figure will

drastically increase if the number of ‘anti-technology’ people is excluded. These

estimations show the sheer number of devices, whether connected to the Internet

or not, that will be at the users’ disposal. The survey conducted by Sophos lab1

indicates that currently one person is estimated to carry three mobile devices; a

Smartphone, laptop and tablet. This number, as the trend shows, will continue

to increase. By including stationary devices that the users interact with and

devices embedded almost everywhere, this figure will drastically increase.

This trend will have many benefits on the way people accomplish their daily

activities. While the future is promising, as the number of devices increases it

becomes a challenge for the users to effectively use them. Interacting with de-

vices becomes difficult and more time consuming. This is more challenging when

the majority of the devices are mobile. The users and their devices enter and

leave different environments where different settings and computing needs may

be required. To effectively use devices in such environments means to constantly

be aware of their whereabouts, functionalities, and desirable working conditions.

This is impractical and hence it is imperative to increase seamless interactions

between the users and devices, and to make these devices less intrusive.

To date, there has been a lot of effort devoted to develop context-aware systems

1http://www.sophos.com/en-us/press-office/press-releases/2013/03/mobile-security-
survey.aspx

2

1.2 Key Definitions

and their supporting architectures, known as context-aware architectures. These

systems utilise information about entities, such as the users, in an environment

to make devices respond appropriately (Schilit et al., 1994). The architectures

enable these systems to understand their environments and the users’ comput-

ing needs. A typical application of a context-aware system is when a person’s

Smartphone automatically switches to a silence mode when the person attends

a meeting. Such systems significantly reduce physical interactions between the

users and devices, and make devices less intrusive. The question is, however,

How would a context-aware system know when people are chatting or having a

meeting in order to make devices respond appropriately?

This research addresses this question by proposing a knowledge-driven dis-

tributed context-aware architecture. This research is in the Context-Awareness

research domain. This research domain seeks to realise the invisible nature of

devices as envisaged in Ubiquitous Computing (UbiComp). The pioneers of Ubi-

Comp, Weiser and his colleagues (1991), envisaged a world where people interact

and use hundreds of devices subconsciously. Hence, this research contributes to

making the use of devices intuitive. The discussion of the implications of this

vision and their research related mainstreams is provided in chapter 2. Section

1.2 provides definitions of the key concepts used in this thesis.

1.2 Key Definitions

There are various definitions of context (Chen, 2004; Coutaz et al., 2005; Dey,

2000; Kofod-Petersen, 2007; McKeever, 2011; Schilit et al., 1994, 2003; Schmidt

3

1.2 Key Definitions

et al., 1999b; Zimmermann et al., 2007). These definitions either refer to context

as an attribute of an entity, which is essential for a context-aware system to

accomplish its tasks, or as an abstraction of circumstances that influence a

context-aware system on how it operates. To differentiate these interpretations,

this thesis abstracts the latter and the former definitions of context with context

parameter and situation, respectively. The rest of this section defines context

parameter, situation and context model as used in this thesis.

1.2.1 A Context Parameter

In this thesis a context parameter is defined as a piece of meaningful information

about an entity that has an impact on a context-aware system. This information

may be interpreted from data captured by a sensor or acquired directly from

other sources such as a network or an application software. In this thesis, for

example, the name of the owner of a device interpreted from the device’s ID

captured by a sensor is a context parameter. The status of the user’s keyboard

or mouse usage is also a context parameter in this thesis. As referred by others,

these parameters are collectively referred to as low-level contexts.

A widely used synonym of a context parameter is a contextual information. This

term, however, is interchangeably used with singular and plural meaning. Gu

et al. (2005) and Chen (2004), for instance, refer to identity, location or time

as a contextual information while Ye et al. (2007) and Henricksen (2003) refer

to a set of context parameters as contextual information. Hence, to avoid this

confusion, the term context parameter is preferred in this thesis. In occasions

that this thesis refers to a related work that use contextual information in plural

4

1.2 Key Definitions

form, the term context parameters will be used.

1.2.2 A Situation

This research adopts the definition of a situation from Kofod-Petersen (2007)

who defines a situation as a social setting, such as a meeting, where the users

involved want to achieve various goals. This definition of situation differs from

that of Dey (2000), Henricksen (2003), and Ranganathan and Campbell (2003a)

as is not confined to a particular task. This definition emphasises meaningful

interactions between relevant entities required to sufficiently describe the real

world that is of interest to the users and their devices. A situation provides

a detailed picture of the real world environment whereas a context parameter

provides an aspect of the real world environment.

In situation, the process of reaching a decision to invoke context-aware systems

is complex. This process involves using various relevant context parameters si-

multaneously rather than using one context parameter separately. In situation,

for instance, a decision to switch users mobile phone into a silent mode is not

simply reached when the user enters a meeting venue. This decision, for instance,

is reached after taking into account information about the venue, existing users

in the venue, their social relations and activities, status of their devices and time.

5

1.2 Key Definitions

1.2.3 A Context Model

“To provide more interesting and useful applications...we must expect

to tackle difficult issues of knowledge modelling and representation”

Dey (2000)

This research adopts the definition of a model from Gregory (1993) who defines

a model as a simplified representation of a certain reality. The reality that this

research is interested with is the users’ situations. Hence, in this research a

context model is an abstract representation of meaningful relationships between

relevant entities required to sufficiently describe a situation. This definition of a

context model is important as it advocates for a knowledge-intensive and generic

context model, which is preferred in context-awareness (Dey, 2000; Strang &

Linnhoff-Popien, 2004). The analysis and discussion of the existing context

models is provided in section 3.3.

In this research, a context model supports a developer in different phases of

implementation. In the design phase, a developer uses the model to identify

sensing technologies required to monitor and capture different aspects of the

real world. In the implementation phase, a developer uses the model to sys-

tematically identify relevant knowledge about situations and as a guideline for

representing it in a context-aware architecture. Consequently, this knowledge

facilitates a context-aware architecture to reason about information it collects

from a physical environment and hence to recognise ongoing situation.

6

1.3 Research Motivation

1.3 Research Motivation

As more devices emerge, it becomes difficult and more time consuming for the

users to interact with and effectively use them. This is more challenging when the

majority of the devices are mobile. The users and their devices enter and leave

different environments where different settings and computing needs may be

required. To effectively use the devices in such environments means to constantly

be aware of their whereabouts, functionalities, and desirable working conditions.

This is impractical and hence it is imperative to increase seamless interactions

between the users and devices, and to make these devices less intrusive.

Researchers respond to these problems by developing smart artefacts (Kortuem

et al., 2010; Schmidt & Van Laerhoven, 2001; Streitz et al., 2005) and context-

aware systems (Kukkonen et al., 2009; Liu, 2010; van de Westelaken et al.,

2011). However, developing algorithms to recognise the user’s situations (Cimino

et al., 2012; Li et al., 2013; McKeever, 2011), frameworks (Biegel, 2005; Dey,

2000; Henricksen, 2003), middleware (Da et al., 2014; Ranganathan & Camp-

bell, 2003b; Roalter et al., 2010) and architectures (Chen, 2004; Kaenamporn-

pan, 2009; Kofod-Petersen, 2007) to support context-aware systems remain long

standing challenges. While each solution addresses the problem in its own unique

way, designing context-aware architectures, which is the focus of this research,

is crucial to these problems. To fully take advantage of these architectures,

however, their designs should also take into account social dynamics.

7

1.4 Problem Statement

1.4 Problem Statement

Research in Context-Awareness has proposed various architectures to support

context-aware systems. The architectures also support the development of active

computing environments called Smart environments. These architectures enable

context-aware systems to respond to information about entities within their

proximity. Subsequently, this enables Smart environments to automate repet-

itive tasks and to automatically provide user-tailored computing needs. The

users, for instance, can enter a Smart meeting room without worrying about the

settings of their mobile phones. Indeed, the research has significantly reduced

physical interactions between the users and devices.

Currently, however, the majority of the existing architectures focus on acquiring

data from sensors, interpreting it and sharing the resultant context parameters

with context-aware systems. These architectures are designed with little or no

consideration of social dynamics, or situations. These architectures are designed

with a limited representation of the real world in which the users and devices

interact. Hence, these architectures fail to exploit available information to dy-

namically recognise ongoing situations and hence to effectively and intelligently

support context-aware systems. As a result, context-aware systems respond to

individual context parameters rather than to occurring situations.

These architectures are designed based on limited context models. These models

are limited to the representation of knowledge about; (M1) a particular entity,

focusing on its specific attribute (Schilit, 1995), (M2) an entity, its subclasses and

its attributes (Chen, 2004) or (M3) different entities, relationships amongst them

8

1.4 Problem Statement

and their attributes (Kaenampornpan, 2009; Kofod-Petersen, 2007). The initial

models, M1 and M2, are developed for architectures that support context-aware

systems that automate repetitive tasks and hence fail to specify relationships be-

tween different entities in an environment. The recent models, M3, are developed

for architectures that support context-aware systems that provide personalised

computing needs and hence only few entities are considered to be relevant.

Therefore, the problem of how knowledge about different entities within a user’s

proximity can be effectively used to enable context-aware architectures to dy-

namically recognise ongoing situations is an open research problem. This re-

search aims to address this problem. In a broader sense, this problem is twofold;

P1 - Investigating what and how different entities within a physical envi-
ronment can be used to develop a generic and comprehensive model of
situations

P2 - Investigating how a context-aware architecture can be designed to dy-
namically and accurately recognise ongoing situations

This is a difficult problem. The number of entities that can be used to represent a

situation is numerous and relationships amongst them are dynamic. In addition,

as the users and their devices become mobile, computing environments become

open and hence dynamic. A slight change in such environments can have a

huge impact on the use of the devices and the users’ computing needs. To

keep up with these changes is a big challenge. Questions such as what changes

should be taken into account and how often, need to be addressed. Furthermore,

the majority of devices are resource-constrained and thus, to acquire, interpret,

9

1.5 Thesis Statement

store, aggregate and reason about abundant information about relevant entities

from an environment is a challenge.

1.5 Thesis Statement

This research hypothesises that if the relations between the users, an environ-

ment, time, computing devices and computing services are specified and utilised,

then a context-aware architecture can dynamically and accurately recognise the

users’ ongoing situations.

1.6 Research Methodology

”Science classifies knowledge. Experimental science classifies knowl-

edge derived from observations.” Denning (1980)

In this research, a Knowledge-driven Distributed Architecture (KoDA) and a

generic and Knowledge-intensive Context Model (KiCM) are proposed. To ex-

periment with KoDA, a prototype is implemented. As noted by Tichy (1998)

and Weiser (1991), experiments are crucial in scientific research in Computer

Science and are core to the evaluation of any UbiComp system. In line with

Tichy (1998) and Weiser (1991), this research has conducted a set of experi-

ments. Hence, this research is in line with the experimental computer science

research (Denning, 1980).

10

1.6 Research Methodology

To address P1, relevant literature on Actor-Network Theory (Callon, 1991) and

Semantic Network (Sowa, 1991; Woods, 1975) is reviewed. To identify the en-

tities and relationships required to develop the model, the framing and disen-

tanglement principles of the theory are used. The theoretical structure of the

theory is adopted to represent the entities and their relationships. To conceptu-

ally represent the model, the Semantic Network representation formalisms are

adopted. Chapter 4 provides a discussion of why the theory and the formalisms

are preferred and how they are applied in this research.

To address P2, the work by Chen (2004), Kofod-Petersen (2007), Kaenamporn-

pan (2009) and other relevant literature is reviewed to design KoDA with the

ability to (A1) sense and interpret information about relevant entities in envi-

ronments (A2) represent and reason with knowledge about situations and infor-

mation about the entities and (A3) run required applications. A1, A2 and A3

form a perception layer, inference layer and application layer of KoDA respec-

tively. Dynamism and distributed nature are the key features of any potential

solution and therefore KoDA is designed to incorporate them. To illustrate the

capabilities of KoDA and to experiment with it, a prototype is implemented.

To implement the perception layer, a number of technologies have been used. A

Radio Frequency Identification (RFID) technology has been used to identify the

users and the room. This research also implements Keyboard Activity Monitor

(KAM) and Mouse Activity Monitor (MAM) to remotely monitor the users’

keyboard and mouse activities respectively. To monitor status of the users’

computers and time, Java functions are also implemented. In this research a pair

of an RFID reader and antenna is referred to as a physical sensor while KAM,

11

1.6 Research Methodology

MAM and the Java functions are referred to as logical sensors. This research

uses eXtensible Markup Language1 (XML) and its Java API2 to represent and

interpret information about the entities respectively.

To implement the inference layer, both logical-based and probabilistic inference

mechanisms have been used, separately. In particular, Rete algorithm (Forgy,

1979) and the Microsoft Bayesian Network API3 (MSBN3) have been used to

implement rule-based and Bayesian inference mechanisms respectively. Conse-

quently, rule-based knowledge representation language and Bayesian network

have been used to represent knowledge about situations in the prototype. The

Bayesian inference is used to quantify and preserve uncertainties on situation

recognition. To implement and illustrate the application layer, Java data struc-

tures and Operating Systems utilities are used.

To implement the dynamism and distributed features of KoDA, event-driven

and network programming techniques are adopted. In event-driven program-

ming, procedures are automatically executed based on predefined actions or

events such as the users’ and sensors’ inputs. Network programming exploits

network resources to decentralise computing systems. The event-based pro-

gramming is adopted to continuously monitor the environment. The network

programming is adopted to facilitate communications of software components

between computers. A synthesis of the two techniques enables the prototype

to (i) dynamically respond to changes within an environment, (ii) to support

different environments and (iii) to support resource-constrained devices.

1http://www.w3schools.com/xml/xml whatis.asp
2http://jaxp.java.net/
3http://research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/msbn3/msbn3.htm

12

1.7 Research Contributions and Limitations

To evaluate KoDA, experiments were conducted. The data was gathered auto-

matically by the prototype and manually by participants. To facilitate manual

data gathering, this research adopts Experience Sampling Method and in partic-

ular the Experience Sampling Forms (Csikszentmihalyi & Larson, 1992; Larson

& Csikszentmihalyi, 1983). The resultant datasets are available for download

at http://www.ahisec.com/research. To assess the probability that the dif-

ferences between the outcomes of different experiments could be obtained by

chance, the Fisher’s test is used. To assess the probability that the outcome of

a set of the experiments could be obtained by chance, the binomial test is used.

1.7 Research Contributions and Limitations

This section summarises the contributions of this research and their limitations.

1.7.1 Synthesised Taxonomy of Context Parameters

The synthesised taxonomy of context parameters, appendix A, is an enhance-

ment of the existing taxonomies of context parameters. This taxonomy provides

a systematic way of identifying and representing knowledge about common en-

tities in Context-Awareness. This taxonomy is comprehensive as it is developed

without an influence of the development of any context-aware system.

1.7.2 Knowledge-intensive Context Model

The Knowledge-intensive Context Model (KiCM), figure 4.1, is a novel model of

a situation. It is developed to systematically identify and represent knowledge

13

http://www.ahisec.com/research

1.7 Research Contributions and Limitations

about entities required to sufficiently represent a situation. KiCM improves the

existing context models by including knowledge about more entities that are

essential for describing an occurrence of a situation. KiCM also allows a few

of the numerous context parameters of each of the entities to be used when

designing a context-aware architecture.

Like any other model, KiCM is also an approximation of the real world. Hence

KiCM does not provide a mirror image of real world situations. KiCM only

combines relevant knowledge about relevant entities to represent the world in

which the users and devices interact. In particular, it combines knowledge about

the users and their computer-related activities, location, time and devices to

approximate situations. This implies that the knowledge about situations that

KoDA possess is intensive but incomplete.

1.7.3 Knowledge-driven Distributed Architecture

The Knowledge-intensive Distributed Architecture (KoDA), figure 5.1, is a novel

context-aware architecture designed to dynamically recognise ongoing situation.

KoDA enables context-aware systems and subsequently devices to be effectively

and intelligently used. KoDA improves the existing context-aware architectures

as it is designed based on KiCM. Hence, KoDA is developed with a compre-

hensive model of the real world in which the users and devices interact. Thus,

KoDA can use available information to recognise ongoing situation.

In KoDA, however, knowledge about situations is encoded by a developer. Hence

the ability of KoDA to recognise ongoing situation is limited to this knowledge.

KoDA cannot infer new situations from the knowledge it possess. In addition,

14

1.8 Research Dissemination

since inference rules are specified based on context parameters, which some of

them are interpreted from data gathered by sensors, adding or removing a sensor

from KoDA requires a modification of these rules.

1.8 Research Dissemination

This section provides a list of publications related to this research.

1. Dennis Lupiana, Rose Tinabo, Fredrick Mtenzi, Ciaran ODriscoll and

Brendan OShea, “Alphanumeric Data: Minimising Privacy Concerns in

Smart Environments”, International Journal of Digital Society (IJDS),

Volume 2, Issue 3, 2011.

2. Dennis Lupiana, Ciaran O’Driscoll and Fredrick Mtenzi. “Defining

Smart Space in the Context of Ubiquitous Computing”, Ubiquitous Com-

puting and Communication Journal (UbiCC), Vol 4, Special Issue on Web

and Agent Systems, pp 516 - 524, 2009.

3. Dennis Lupiana, Ciaran O’Driscoll and Fredrick Mtenzi, “Characteris-

ing Ubiquitous Computing Environments”, International Journal of Web

Applications, Vol 4, Issue 4, pp 253 262, 2009.

4. Dennis Lupiana, Fredrick Mtenzi, Ciaran O’Driscoll, and Brendan O’Shea,

“Strictly alphanumeric data: Improving privacy in smart environments”,

In Proceedings of the 5th International Conference for Internet Technology

and Secured Transactions, pp 1 3, 2010.

5. Dennis Lupiana, Zanifa Omary, Fredrick Mtenzi, and Ciaran O’Driscoll,

15

1.9 Thesis Structure

“Smart Spaces in Ubiquitous Computing”, In Proceedings of the 4th In-

ternational Conference on Information Technology, 2009.

6. Dennis Lupiana, Ciaran O’Driscoll and Fredrick Mtenzi, “Taxonomy for

Ubiquitous Computing Environments”, In Proceedings of the 1st Interna-

tional Conference on Networked Digital Technologies, pp 469 - 475, 2009.

1.9 Thesis Structure

Chapter 2 provides a background on the Context-Awareness. This chapter pro-

vides a survey of the existing context-aware systems and taxonomies of context

parameters. This chapter uses the insights gained from the survey to develop a

synthesised taxonomy for context parameters. This chapter concludes that the

majority of the existing context-aware systems are responsive to individual or a

few context parameters rather than to the users’ ongoing situation.

To understand the problem, the analysis of the state-of-the-art of their sup-

porting architectures is provided in chapter 3. This chapter concludes that the

existing architectures are designed based on inadequate context models. The

majority of these models are not developed to model a situation. As a result,

the existing architectures are designed with little or no knowledge about situa-

tions to effectively use available information to recognise them.

To address the limitations of the existing context models, chapter 4 discusses

how this research extends the existing work in context models to develop a novel

generic and Knowledge-intensive Context Model (KiCM). This chapter discusses

how this research leverages a socio-technical theory, the Actor-Network Theory,

16

1.9 Thesis Structure

the Semantic Network and the synthesised taxonomy of context parameters to

develop this model.

To address the limitations of the existing context-aware architectures, chapter

5 discusses how this research leverages KiCM to design Knowledge-driven Dis-

tributed Architecture (KoDA). This chapter outlines the design requirements

and discusses each component of KoDA. This chapter also provides a structural

representation of the implementation of KoDA.

To illustrate the capabilities of KoDA for supporting context-aware systems,

chapter 6 provides a description of the implementation of the prototype. This

chapter shows how KiCM can be used to represent knowledge about situations.

This chapter also shows how KoDA can continuously monitor a real environment

and dynamically utilise the acquired information to recognise ongoing situations.

This chapter also illustrates how KoDA can be used in the real world.

Chapter 7 provides a description of how the performance of KoDA has been eval-

uated. In particular, this chapter describes the evaluation criteria, the adopted

statistical tests, the design of the experiments, how the data was gathered and

the dataset was created, and how the experiments were conducted. This chapter

also provides analysis of the gathered data and its interpretations. This chapter

concludes by drawing conclusions from the discussion of the results.

A summary and conclusion of the research is provided in chapter 8. The sum-

mary and benefits of the contributions from this research are provided. This

chapter also outlines limitations and projects the future directions of the research

in context-aware architectures and in Context-Awareness research community.

17

Chapter 2
Context Awareness

“The most profound technologies are those that disappear. They weave them-

selves into the fabric of everyday life until they are indistinguishable from it”

(Weiser, 1991). This excerpt implies that the ultimate goal of Ubiquitous Com-

puting (UbiComp) is to make devices invisible. This goal has two implications;

(i) devices should be abundant, everywhere and readily available and (ii) the

use of devices should be intuitive.

This research focuses on the second implication and hence this chapter provides

an extensive background on Context-Awareness. The chapter answers some

key questions about UbiComp and shows how Context-Awareness relates to

UbiComp. This chapter provides a survey of the existing context-aware systems

and taxonomies of context parameters. This chapter uses the insights gained

from these surveys to develop a synthesised taxonomy of context parameters.

18

2.1 Introduction

2.1 Introduction

The Ubiquitous Computing (UbiComp) paradigm has inspired the invention

of numerous devices. Although these devices offer the users many convenient

ways to accomplish their everyday tasks, it remains a challenge for the users

to use them effectively. This is more challenging as devices are mobile. The

users’ working environments become open and hence less predictable. The users

and their devices enter and leave different working environments where different

settings and computing needs may be required. This makes interacting with

devices difficult and more time consuming.

In response to these challenges, a Context-Awareness research strand emerged.

The main focus of this strand is to investigate different principles, methodologies

and techniques required to develop system software that can adapt to their

dynamic environments and the users’ computing needs. These systems are called

context-aware systems. Initial context-aware systems used location or identity

information to automatically provide users’ computing needs. To date there are

many context-aware systems, each exploiting different aspects of the real world.

Section 2.2 provides a background of the UbiComp paradigm, highlighting its

different research strands. This section also explains how research in Context-

Awareness fits under the rubric of UbiComp. Section 2.3 provides a background

of Context-Awareness followed by an analysis of the existing context-aware sys-

tems in section 2.4. Section 2.5 provides an analysis of the existing taxonomies

of context parameters and describes a synthesised taxonomy of context param-

eters. Section 2.6 provides a summary and conclusion remarks.

19

2.2 Ubiquitous Computing

2.2 Ubiquitous Computing

UbiComp is a computing paradigm that aims to inspire engineers and researchers

from different disciplines to invent human-centred devices (Weiser, 1991). Weiser

and his colleagues envisaged a world where people interact and use hundreds of

devices without consciously being aware of them. He argued that for devices to

be effectively utilised, they should disappear from the users’ everyday life.

This vision has two implications; (i) devices should be abundant, everywhere

and readily available and (ii) devices should be intuitive. To address these

challenges, different research strands emerged. This research categorises the

strands into Computing Everywhere and Invisible Computing. The rest of this

section provides a discussion on each of these categories.

2.2.1 Computing Everywhere

One of the goals of UbiComp is to enable the pervasive availability of computing

power. To achieve this goal, research in this strand develops new devices -

not as a single-box with mouse and keyboard attached to it. This strand is

characterised by devices of different sizes and shapes, and most importantly

devices that are capable of knowing their locations (Weiser, 1991). These devices

are either mobile or stationary. The pioneers in this research strand are Streitz

et al. (2005) and Russell et al. (2005).

UbiComp intends to extract computing power from a “single box” and dis-

tribute it into independent and yet interconnected devices. This is a new era

20

2.2 Ubiquitous Computing

of distributed computing. Unlike in traditional distributed systems, where com-

puting power is only available in predefined standalone terminals, computing

power in UbiComp is readily available almost everywhere. In this era, the users

are supported by multiple devices; some are wearable or handheld while others

are embedded or scattered almost everywhere in physical environments.

In this strand, the focus is on exploring different design principles, methodologies

and techniques to develop devices of different shapes, sizes and functionalities.

The strand also seeks to enhance connectivity technologies in order to facilitate

cooperation between devices. Although some of these devices are expensive, the

majority are reasonably inexpensive. This allows people to own more than one

device and hence increases their accessibility. Interconnected by wireless and

wired networks, these devices cooperate with each other to effectively support

the users and hence facilitate pervasive availability of computing power.

It is still a challenge, however, to precisely quantify computing everywhere. In

particular, what distance interval should be considered in order to conclude that

computing power is everywhere? Considering previous computing paradigms,

however, the availability of computing power in UbiComp should not be limited

to a single environment. If computing power is not in an entire city, country, or

world then it should be available at least in different environments in a building.

This scope, which this research is focusing on, is much more realistic. The

infrastructures to support connectivity between the devices are already in place,

and the users and their devices operate within similar social settings.

21

2.2 Ubiquitous Computing

2.2.2 Invisible Computing

Another goal of UbiComp is to make devices invisible. Its pioneers, Weiser and

colleagues, envisaged a computing era where the users interact with and use

hundreds of devices with no or less disruptions. Invisibility, however, is a well

established concept in Computer Science. In mainframe computers, for instance,

the users access computing power remotely without consciously knowing where

it come from. In Internet systems also, numerous servers are accessed in response

to a single search request. If invisibility of computing power is not a new concept,

then what is unique about it in UbiComp?

Invisibility in UbiComp comes with different scope and magnitude. The increas-

ing number of devices and their mobility make computing environments open

and hence devices operate in dynamic environments. Unlike other computing

paradigms where the operating scope of devices is well defined and static, com-

puting environments in UbiComp are dynamic and less predictable. In UbiComp

also numerous devices interact in support of the users. In this regard, invisibility

in UbiComp focuses on the disappearance of the abundant availability of devices

that are in support of the users (Buxton, 1997).

This kind of invisibility, which this research focuses on, is referred to as psy-

chological or mental disappearance (Russell et al., 2005; Weiser, 1991). In this

invisibility, the users use devices subconsciously. In this invisibility, context-

aware systems play a significant role. A discussion on context-aware systems is

provided in section 2.4. This invisibility, however, cannot be effectively achieved

by a standalone context-aware system. Hence, various context-aware systems

22

2.3 Context-Awareness

should be used to create a computing environment where interactions between

the users and devices are seamless and devices are less intrusive.

The physical invisibility of devices also plays a significant role in realising psy-

chological disappearance. Russell et al. (2005) refer to any invisibility resulted

from the physical appearance of devices as a physical invisibility. Devices in Ubi-

Comp come in different shapes and sizes in order to make them more accessible

(Weiser, 1991). It is through these features that the users can use wall-size dis-

plays, wearable and handheld devices subconsciously. Hence, the psychological

invisibility is not because these devices cannot be seen or touched, but because

they come in different forms than the users know.

Two decades have passed since Weiser and his colleagues envisaged computing

environments where devices will be everywhere and unobtrusive to effectively

support the users in their daily routines. The question is, Are we there yet?.

To address this question, a survey of the existing context-aware system is pro-

vided in section 2.4. Prior to this survey, a background on context-awareness is

required. This background is provided in section 2.3.

2.3 Context-Awareness

The philosophy behind context-awareness was originally introduced in UbiComp

by Weiser (1991). He asserted that information within a device’s proximity can

play an important role into making the use of devices intuitive. He argues that

if a device knows its location and surroundings it can adapt its behaviour in

significant ways. According to him, location is a physical environment rather

23

2.3 Context-Awareness

than merely a piece of information such as a name or geographical coordinates.

This is further elaborated when Weiser (1994) argued that understanding of

people’s surroundings is the key factor into making devices invisible.

Conforming to Weiser, Schilit et al. (1994) envisaged systems that examine and

adapt to the user’s dynamic contexts. They refer to such systems as context-

aware systems. They argue that as the users and their devices move, their

contexts change. Hence, these systems are meant to seamlessly adjust their

behaviours and provide or gather information in response to their environments

and the users’ computing needs. Schilit et al. (1994) argue that “the interesting

part of the world around us is what we can see, hear and touch”. They argue that

information about location, people you are with, nearby devices, environment

conditions and time is crucial to context-awareness.

Context-aware systems have a significant impact on how the users perform their

daily activities. Imagine walking to a room where a meeting is in progress and

your mobile phone automatically switches to a silent mode and back to its nor-

mal settings immediately after the meeting is finished. Imagine also walking

into a lecture room and a projector in the room automatically switches on and

displays your presentation slides. These scenarios, and many more, exemplify

how context-aware systems can be useful. The question is, How would a de-

vice know the users’ situations in order to appropriately respond?. This is the

question which this research aims to address.

Initial context-aware systems are described to directly respond to context pa-

rameters. Weiser (1991), for instance, describes systems that automatically open

doors to the right badge wearers, greet people by their names and forward calls

24

2.4 Survey of Context-Aware Systems

to the users’ locations. Schilit and Theimer (1994) describe a system that can

automatically provide the users with information about their current location.

To date, many context-aware systems have been developed. A survey of these

systems is provided in section 2.4.

2.4 Survey of Context-Aware Systems

A context-aware system is a computer system that can appropriately respond to

the user’s context (Brown et al., 1997; Harter et al., 2002; Schilit et al., 1994).

There is a number of surveys conducted on context-aware systems but with dif-

ferent focus. Chen and Kotz (2000) focused on identifying context parameters

that are commonly used. Baldauf et al. (2007) focused on architectural solu-

tions while Hong et al. (2009) focused on classifying context-aware research and

systems. This survey focuses on identifying how the term context is used in the

existing context-aware systems. As part of this survey, a classification of the

existing context-aware systems is provided.

Different context-aware systems provide different functionalities and hence are

categorised differently. Schilit et al. (1994) categorise these systems based on

their ability to provide information or execute computing services. They cat-

egorise them as proximate selection, automatic contextual reconfiguration, con-

textual information and commands and context-triggered action. Similarly, Dey

and Abowd (2000a) categorise these systems by their ability to present informa-

tion and services, execute services or facilitate acquisition and management of

information for later retrieval. They categorise them as presentation, execution

25

2.4 Survey of Context-Aware Systems

and tagging. Likewise, this research classifies the existing context-aware systems

based on their functionalities.

Schilit et al. (1994), and Dey and Abowd (2000a) refer to the systems that

provide information and list of services as proximate selection and presentation

respectively. Dey and Abowd (2000a) also categorise the systems that facilitate

the gathering of information as tagging. These systems, however, deliver or

gather some kind of content, whether in a text, audio or video format. Hence,

this research prefers to use generic terms and refers to these categories as Content

Delivery Systems and Content Gathering Systems respectively. The rest of the

categories from Schilit et al. (1994) and the execution category from Dey and

Abowd (2000a) are referred to as Service Triggering Systems.

The context-aware systems that are considered in this survey are those that

exhibit some kind of autonomy. This survey also takes into account only contexts

that trigger the systems’ responses. If a context-aware reminder, for instance,

takes the identity of the creator, the time when the reminder was created and the

locations where the reminder should be triggered, then only location is regarded

as a context. This is because the reminder will only be triggered at the specified

location. The information about the creator and time the reminder was created

only provide details of the reminder.

Table 2.1 provides a classification of the existing context-aware systems. The

first four columns represent the classes of these systems and the rest represent

different context parameters used. In this research, temporal is preferred over

time because it is not limited to time only. BioSignals is used to refer to any

internal state of the users such as mood.

26

Table 2.1: Survey of Existing Context-Aware Systems

SeTS CoDS CoGS Id Rol Loc Occ Tem Act Gest BioS
Lee & Cho (2013) x x X X X X x X x x x
van de Westelaken et al. (2011) x X x x x x x x x X x
Baltrunas et al. (2011) x X x X x X x X x x X
Liu (2010) x X x x x x x x x x X
Kukkonen et al. (2009) x x X x x X x X x x x
Adomavicius & Tuzhilin (2008) x X x X x X x x x x x
Froehlich et al. (2007) x x X x x x x x X x x
Ludford et al. (2006) x X x x x X x X x x x
Sohn et al. (2005) x X x x x X x x x x x
Raento et al. (2005) x x X x x X x X x x x
Intille et al. (2003) x x X x x X x X x x x
Dey & Abowd (2000b) x X x x x X x x x x x
Cheverst et al. (2000) x X x X x X x x x x x
Marmasse & Schmandt (2000) x X x x x X x X x x x
Dey et al. (1999) x X x X x X x x x x x
Abowd et al. (1997) x X x X x X x X x x x
Schilit & Theimer (1994) x X x X x x x x x x x
Want et al. (1992) X x x X x X x x x x x

Key:

SeTS - Service Triggering Systems Id - Identity Occ - Occupancy Gest - Gesture
CoDS - Content Delivery Systems Rol - Role Tem - Temporal BioS - BioSignals
CoGS - Content Gathering Systems Loc - Location Act - Activity

27

2.4 Survey of Context-Aware Systems

2.4.1 Service Triggering Systems

As discussed by Schilit et al. (1994), and Dey and Abowd (2000a), context-aware

systems in this category can automatically execute computing services. In such

systems, a context is used as an essential input to automatically trigger a certain

computing service. In the Active Badge location system (Want et al., 1992), for

instance, information about location and identity of call recipients is used to

automatically forward a call to the recipients.

As noted in table 2.1, little has been done in this category and therefore there

are many research opportunities. As part of this research, as will be discussed

in chapter 6, a system that remotely and automatically switches ON or OFF

the users’ computers is illustrated. The system switches a computer ON or OFF

depending on a recognised situation. The Mouse Activity Monitor and Keyboard

Activity Monitor, which are also developed as part of this research, also belong

to this category. These systems remotely and automatically execute services to

determine mouse and keyboard status of the users’ computers respectively.

From a Computer Science perspective, delivering or gathering of content is sub-

ject to the execution of certain computing services. As is evident from the

surveyed context-aware systems, however, in this category the definition of com-

puting service is limited to only the services which affect the behaviours of de-

vices. Therefore, context-aware systems that can assist the users by gathering

or delivering some kind of content are discussed separately.

28

2.4 Survey of Context-Aware Systems

2.4.2 Content Gathering Systems

In this category, context-aware systems support the users by automatically gath-

ering information. Likewise, a context is used as an input and hence these sys-

tems directly respond to context parameters. As shown in table 2.1, the com-

mon context parameters in this category are location (Kukkonen et al., 2009),

time (Kukkonen et al., 2009) and activity (Froehlich et al., 2007). The existing

context-aware systems in this category include classroom multimedia notes gen-

erating (Abowd, 1999) and experience capturing systems (Froehlich et al., 2007;

Intille et al., 2003; Kukkonen et al., 2009; Raento et al., 2005).

2.4.3 Content Delivery Systems

Context-aware systems in this category automatically provide a content to the

users. Likewise, a context is used as an input and hence these systems directly

respond to context parameters. As shown in table 2.1, the common contexts

in this category are identity (Cheverst et al., 2000), location (Adomavicius &

Tuzhilin, 2008), time (Baltrunas et al., 2011), gesture (van de Westelaken et al.,

2011) and biosignal (Baltrunas et al., 2011; Liu, 2010). The existing context-

aware systems in this category include reminder systems (Ludford et al., 2006;

Sohn et al., 2005), tour guide systems (Abowd et al., 1997; Cheverst et al., 2000)

and recommendation systems (Liu, 2010; van de Westelaken et al., 2011).

As noted in table 2.1, the content to be delivered can be of any type. For

instance, a system that provides map information to the tourists or a system

that reminds the users are both providing the users with content. The tour

29

2.4 Survey of Context-Aware Systems

guide system provides text, image and probably audio whereas the reminder

system may provide text or audio. As shown in table 2.1, the content delivered

by the systems in this category include text (Abowd et al., 1997; Cheverst et al.,

2000) and audio (Liu, 2010; van de Westelaken et al., 2011). As in the previous

category, a context is used as an essential input to automatically locate and

provide the users with appropriate content.

Brown et al. (1997) categorise the systems in this category as continuous and

discrete systems. They define a continuous system as a system that constantly

provides content to the users while a discrete system as a system that provides

content to the users only when a certain context parameter is met. They exem-

plify a tour guide system, where location information is constantly provided to

the tourists’ mobile devices, as a continuous system. Although it is plausible to

categorise such a system as a continuous system, its operations are limited to a

certain location. Hence, like discrete systems, the content delivered to the users

by continuous systems depends on a context parameter.

As is evident from the survey, the majority of the exiting context-aware systems

directly respond to a specific context parameter. Only few of these systems

respond to a number of context parameters. Baltrunas et al. (2011), for instance,

aggregate various context parameters to recommend musics to listeners. In

these systems, a set of context parameters is used as a condition required for

a task to be accomplished. In these systems, a task is regarded as a situation

(Dey, 2000; Henricksen, 2003). While these systems are more responsive to

their environments, they do not exploit the richness of information about their

environments to adapt to social dynamics.

30

2.5 Taxonomies of Context Parameters

With the increasing number of devices and their mobility, computing environ-

ments become open and hence less predictable. The users enter and leave dif-

ferent environments while using devices. The users also constantly interact with

their colleagues, who may have different social relations, in their daily routines.

Devices also interact with other heterogeneous devices. Furthermore, time and

physical properties of different environments do change. As a result, the users

and hence their devices operate in dynamic environments. Hence, it is important

for context-aware systems to be responsive to users’ ongoing situations rather

than to one or more context parameters that are specific to a task.

2.5 Taxonomies of Context Parameters

To enumerate context parameters, various taxonomies of context parameters are

developed. This section provides a survey of the existing taxonomies of context

parameters and proposes a synthesised taxonomy of context parameters. This

taxonomy provides a list of common entities and their context parameters. As

discussed in chapter 4, this list provides a basis for developing a knowledge-

intensive model of a situation. A complete list of entities required to develop

this model is provided in section 4.5.1.

The aim of this survey is to identify an extensive list of common context pa-

rameters without being influenced by a specific domain or the development of

a context-aware system. This survey also seeks to identify key entities in this

research domain. To consolidate the identified parameters, this research de-

velops a synthesised taxonomy. Section 2.5.1 provides a survey of the existing

31

2.5 Taxonomies of Context Parameters

taxonomies of context parameters.

2.5.1 Survey of the Existing Taxonomies

Schilit et al. (1994) identify information about “where you are”, “who you are

with” and “what resources are nearby” as important for developing context-

aware systems. Schilit (1995, p. 12 - 19) argues that such information is dy-

namic and hence categorises it as communication, environmental and location

dynamics. According to him, communication dynamics are changes associated

with communications, such as bandwidth and status of devices. Environmental

dynamics are changes, such as physical conditions, people and their social situ-

ations. From the user’s point of view, he defines location dynamics as changes

of physical locations as the user enters different environments.

Schmidt et al. (1999b) categorise context parameters into human and physical

environmental. Human parameters are sub-categorised into user, social envi-

ronmental and task. Similarly, the physical environmental parameters are sub-

categorised into physical condition, infrastructure and location. User parameters

refer to information about a particular user such as habits and emotion. Social

environmental parameters refer to information about nearby users and their so-

cial relations. Task parameters refer to goals and activities the user is involved

in. Physical parameters refer to physical properties of an environment such as

noise, temperature and light. Infrastructure parameters refer to information

about computing resources such as computers, displaying units and network

devices. Location parameters refer to information about an environment.

Dix et al. (2000) categorise context parameters into infrastructure, system, do-

32

2.5 Taxonomies of Context Parameters

main and physical. According to Dix et al. (2000), infrastructure parameters

refer to information about computing resources which are essential for facilitat-

ing computing mobility. These computing resources include, but are not limited

to, network devices. System parameters refer to computing entities which are

part of a context-aware system and their functionalities such as feedback mech-

anisms. Domain parameters refer to semantics of the system domain such as

consistent definitions of common terminologies and relationships between the

users and their mobile devices. Physical parameters refer to physical spaces of

a mobile host and a physical environment where the mobile host resides.

Mitchell (2002) categorises context parameters into identity, spatial, temporal,

environmental, social, resource, resource management, goal/tasks and user his-

tory. Identity refers to information about identity of a user whereas spatial

parameters refer to information related to location, orientation and velocity.

Temporal parameters refer to information related to time while environmental

parameters refer to physical properties of an environment such as light, noise and

temperature. Social parameters refer to information about nearby users whereas

resource parameters refer to information about nearby resources. Resource man-

agement parameters refers to information about resources availability and usage.

Goal/task parameters refer to information about scheduled or occurring tasks

while history parameters refer to previous user activities and interactions.

Göker and Myrhaug (2002), focusing on the users, categorise context parameters

into environmental context, personal context, social context, task context and

spacio-temporal context. Environmental parameters refer to information that

can be observed about a physical environment such as existing users, physical

33

2.5 Taxonomies of Context Parameters

properties and computing infrastructure. The personal context parameters are

further categorised into physiological and mental. Physiological parameters refer

to attributes of a user such as blood pressure, hair colour and weight whereas

mental refers to attributes of user such as emotion, stress and mood. Social

parameters refer to social relations between users such as colleague, supervisor

or leader. Task parameters refer to information about users and nearby users

activities such as goals, actions or events. Moreover, spacio-temporal parameters

refer to information related to time and location.

Han et al. (2008) categorise context parameters into physical, internal and so-

cial. Han et al. (2008) refer to physical parameters as information about nearby

users and any relevant physical objects. Referring to the users, they exemplify

internal parameters as emotion, goals and thoughts. Similarly, Han et al. (2008)

refer to social parameters as information about social relations and social phe-

nomenon. Han et al. (2008), however, relate each category of context parameters

to timeliness. They argue that each context belongs to certain time frames and

therefore time also plays an important role in realising context-awareness.

Soylu et al. (2009) categorise context parameters into user, device, system, in-

formation, environmental, time, historical and relational. User parameters are

sub-categorised into external user and internal user. Similarly, device parame-

ters are sub-categorised into hard device and soft device. In addition, environ-

mental parameters are sub-categorised into digital environmental and physical

environmental. External parameters refer to physical properties of a user such

as identity while internal parameters refer to properties such as emotion. Hard

device parameters refer to physical properties of devices such as display while

34

2.5 Taxonomies of Context Parameters

soft device parameters refer to software components. system parameters refer to

capabilities and system requirements of an system. Information parameters re-

fer to properties of information to be shared. Digital environmental parameters

refer to computing entities such as network devices while physical environmen-

tal parameters refer to physical entities. Time parameters refer to different

attributes of time such as hour, day and season. Historical parameters refer

to previous occurred situations while relational parameters refer to information

about relations between different context categories.

2.5.2 A Synthesised Taxonomy of Context Parameters

It is evident from the survey, section 2.5.1, that the users, locations, time and

computing resources are the most common entities. Therefore, this research

develops the taxonomy based on these entities. In this research, however, the

specific terminologies are replaced by the generic terminologies. Therefore the

user, location and time are replaced by personal, spatial and temporal respec-

tively. Figure 2.1 shows the taxonomy with context parameters that are used

for implementing a prototype. Appendix A provides a complete synthesised

taxonomy of context parameters. The rest of this section discusses each of the

categories of context parameters.

Personal Context Parameters

In this taxonomy, any information that can characterise a person is categorised

as a personal context parameter. Since people can be characterised by their

physical and psychological attributes, the category is sub-categorised into phys-

ical parameters and psychological parameters. Since people belong to a physical

35

2.5 Taxonomies of Context Parameters

world and are associated with one or more devices, their relationships should be

established. Likewise, since people are part of a certain social community, the

relationships among them should also be established. In order to accommodate

these relationships, the taxonomy includes a relational parameters subcategory.

Similar categorisation can be observed from the existing taxonomies. Schmidt

et al. (1999b), for instance, categorise user parameters as part of human con-

text parameters. Schmidt et al. (1999b) describe user parameters as information

about habits and emotion of a person. Han et al. (2008) and Soylu et al. (2009)

also categorise emotion, thoughts and goals as internal parameters. Likewise,

Göker and Myrhaug (2002) categorise personal context parameters to physiolog-

ical parameters and mental parameters. Since both parameters describe internal

attributes of a person, they fit under the psychological parameters sub-category.

Mitchell (2002) identifies user’s identity as a context parameter which fits under

the physical parameters sub-category.

Temporal Context Parameters

As is evident in the survey, few taxonomies include time as one of their cate-

gories. Mitchell (2002), for instance, considers temporal information as one of

the essential categories of context parameters. Likewise, Göker and Myrhaug

(2002) consider temporal information by combining spatial and temporal con-

text parameters in one category. Furthermore, Soylu et al. (2009) identify time

as one of the crucial categories of context parameters. Therefore, in line with

the few taxonomies, this taxonomy categorises any information related to time

as temporal context parameters.

36

Figure 2.1: A Partial Synthesised Taxonomy of Context Parameters

37

2.5 Taxonomies of Context Parameters

Spatial Context Parameters

In this taxonomy, any information that can characterise a physical environ-

ment is categorised as spatial context parameter. Since environments can be

characterised by their physical attributes, the category is sub-categorised into

physical parameters. The users and computing resources are not part of a phys-

ical environment. Instead, the users and computing resources are only related

to a certain environment. Therefore, a sub-category of relational parameters is

included in order to accommodate relationships. Unlike physical context pa-

rameters, relational context parameters provide information about relationships

between physical environments and other relevant entities such as the users and

computing resources.

As is evident from the survey, information related to computing resources is

widely categorised as infrastructural parameters, which is part of environmental

context parameters. Schilit et al. (1994), for instance, categorise information

related to computing resources as infrastructural parameters. Similarly Soylu

et al. (2009) categorise the information in digital environmental parameters,

which is similar to infrastructural parameters. Furthermore, Dix et al. (2000)

categorise information related to computing resources as infrastructure context.

Schmidt et al. (1999b) also categorise information related to computing infras-

tructure in the infrastructure parameters. Additionally, Schmidt et al. (1999b)

sub-categorise information related to the users as part of environment context

parameters. As noted in the preceding paragraph, the users and computing

resources are not part of a physical environment.

Computing Resource Context Parameters

38

2.5 Taxonomies of Context Parameters

In this taxonomy, any information that can be used to characterise a computing

resource is categorised as computing resource context parameter. This research

defines a computing resource as any computing entity which can be hardware

or software. A computer and a computing service, for instance, are computing

resources. Since computing resources can be characterised by their physical

attributes, the category is sub-categorised into physical parameters. Likewise,

since a computing resource belongs to either a person or a particular physical

environment, a relational parameters sub-category is included.

It is evident from the survey that the majority of the existing taxonomies cate-

gorise information related to devices as a sub-category of environmental or spa-

tial context parameters as referred to in this taxonomy. Schmidt et al. (1999b),

for instance, referring to devices as infrastructure categorise them as a sub-

category of a physical environment. Like any other entities, devices can be

uniquely identified and each has its unique attributes. Information about re-

lations to a person or a physical environment is represented in the relational

parameters sub-category.

While these context parameters are essential for developing context-aware sys-

tems in different problem domains, they play different roles. To differentiate

them, Dey and Abowd (2000a) introduce the concept of primary context param-

eters. This concept is also emphasised by Chen and Kotz Chen & Kotz (2000).

Dey and Abowd (2000a) refer to a primary context parameter as a primary key

for determining other relevant context parameters of a particular entity. An

identity, for instance, can be used to determine the role and gender of a user.

In this taxonomy, the identity context parameters are referred to as primary

39

2.6 Summary and Conclusion

context parameters whereas the rest of the context parameters are referred to as

secondary context parameters. As for the temporal context parameters, there is

no single parameter to uniquely identify a timestamp and hence each element of

time is crucial. This is also true in practice since time can only be differentiated

by including all of its elements.

2.6 Summary and Conclusion

This chapter provided the background of Ubiquitous Computing paradigm and

discussed research in Context-Awareness where a survey of the existing context-

aware systems and the survey of the existing context taxonomies are provided.

The survey of the existing context-aware systems found that the majority of

the systems are not responsive to ongoing users’ situations. The majority of

these systems are responsive to individual context parameters. The few exist-

ing context-aware systems that respond to more than one context parameters

simultaneously are limited to specific tasks.

In literature, it is agreed that context-aware systems are to be used in the

natural settings of the users where different entities interact and each entity

has an impact on other entities. Such settings occur in environments which

are highly dynamic. In addition, the users’ computing needs are changing. To

effectively support the users in their daily routines, this research argue that social

aspects should be taken into account when designing supporting architectures

of context-aware systems. Hence, these architectures should be designed with a

comprehensive model of the real world in which the users and devices interact.

40

2.6 Summary and Conclusion

Since entities and their relationships are very important in modelling a situation,

identifying an extensive list of their context parameters is also important. This

research accomplished this by developing a synthesised taxonomy of context

parameters. The taxonomy is comprehensive and generic since it is developed

without an influence of a specific system domain or the development of a context-

aware system. The taxonomy plays an important role when developing a model

of situations. It provides a comprehensive and systematic way of identifying and

representing context parameters. Chapter 3 provides analyses of the existing

context-aware architectures.

41

Chapter 3
The State-Of-the-Art

This chapter provides analyses of the existing context-aware architectures and

their context models and inference mechanisms. Since architectural solutions

emerged to address limitations of the existing context-aware systems, there is

no one-to-one matching between the context-aware systems surveyed in section

2.4 and architectures reviewed in this chapter.

The chapter reveals that the existing context-aware systems are not responsive

to user’s situations. This limitation is because the existing context-aware archi-

tectures are designed based on context models which do not model situations.

As a result, the architectures fail to intelligently exploit available information to

dynamically recognise ongoing situations.

42

3.1 Introduction

3.1 Introduction

Context-aware systems are essential for increasing seamless interactions between

the users and devices and for making these devices less intrusive. As the number

of devices increases and as the majority are mobile, users and their devices oper-

ate in dynamic environments. Hence, context-aware systems should be adaptive

to these changes. Context-aware systems should be aware when a situation of

a user changes to appropriately respond. However, the majority of the existing

context-aware systems are not responsive to users’ ongoing situations. There-

fore, the question that this chapter addresses is why the majority of the existing

context-aware systems are not responsive to users’ ongoing situations?

To address this question, a review of the existing architectures is important be-

cause they enable context-aware systems to understand their environments and

the users’ computing needs. Central to these architectures are context models

and hence their review is also important. These models provide a basis for repre-

senting knowledge about the real world in which the users and devices interact.

The architectures, through this knowledge and their reasoning capabilities, en-

able the systems to understand their environments and the users’ computing

needs. This chapter also provides analyses of the existing inference mechanisms.

Section 3.2 provides an analysis of the existing context-aware architectures while

identifying their strengths and limitations. Section 3.3 provides an analysis of

the existing context models while identifying their strengths and limitations.

The analysis of the models, however, is limited to the models whose architec-

tures have been discussed in section 3.2. The analysis of the existing inference

43

3.2 Analysis of Architectures

mechanisms is provided in section 3.4. Section 3.5 provides a discussion of the

analyses while highlighting their limitations. Section 3.6 provides a summary

and conclusion remarks of the chapter.

3.2 Analysis of Architectures

Research in Context-Awareness has proposed various context-aware architec-

tures to support context-aware systems. This section provides an analysis of the

existing architectures.

3.2.1 Initial Architectures

The initial research (Cooperstock et al., 1997; Harter et al., 2002; Shafer et al.,

1998) has utilised context-aware systems to automate the user’s repetitive com-

puting tasks in a particular environment such as an office, a meeting room or a

classroom. The designs of their supporting architectures emphasise monitoring

the environments and interpreting data acquired by sensors. Cooperstock et al.

(1997), for instance, utilise motion detectors to monitor the users’ movement

and utilises the acquired data to automate conference appliances in a confer-

ence room. Little effort is taken to effectively utilise available information about

relevant entities in the environments to recognise ongoing situations.

The principal aim of these architectures is to reduce physical interactions be-

tween the users and devices in predefined settings. As a result, these archi-

tectures are designed with binary relationships between inputs, which are data

from sensors, and the typical computing services that may be required. As will

44

3.2 Analysis of Architectures

be discussed in section 3.3.1, a context model is regarded as a representation

of knowledge about an entity and in particular information about its specific

attribute. Thus, context models are used for data interpretation rather than

for recognising ongoing situations. These architectures are designed with the

assumption that the users’ working environments are static and thus their com-

puting needs remain uniform, regardless of the changes in the environment.

3.2.2 Context Broker Architecture

Chen (2004) identifies semantic limitations, among others, as the major short-

falls of the initial architectures. He argues that these architectures utilise context

models which are semantically poor and poorly represented. He contends that

these models are limited to a specific attribute of a particular entity. As a re-

sult, the knowledge about the entities is limited and is represented as objects

of a specific implementation language. These limitations inherently make the

initial architectures incapable of knowledge reasoning and sharing. To address

these limitations, he designs a Context-Broker Architecture (CoBrA).

Unlike the initial architectures, Chen (2004) focuses on representation, reasoning

and sharing of context parameters. He argues that the representation of context

parameters is important in order to facilitate interpretation of data acquired

from sensors. He also contends that reasoning of such information is important

in order to interpret, detect and resolve inconsistencies. Since it is rare for a

context-aware system to have a complete knowledge about its surroundings, he

also asserts that sharing of context parameters is crucial.

CoBrA, however, is not designed to utilise context parameters to recognise situ-

45

3.2 Analysis of Architectures

ations. Like many other context management architectures, such as de Andrade

(2007) and Gomes et al. (2010), CoBrA is designed to gather and share context

parameters with context-aware systems. Hence, a context model in CoBrA is

used for interpreting data from sensors, detecting and resolving inconsistencies.

Although CoBrA can infer other knowledge, its inference capabilities are lim-

ited. It is unable to establish relationships between different entities to recognise

ongoing situations. Thus CoBrA is also designed with the assumption that the

users’ surroundings are static and thus their computing needs are uniform.

3.2.3 Case-based Multi-agent Architecture

Inspired by the role of context in human reasoning, Kofod-Petersen (2007) argues

that for a context-aware system to automatically provide user-tailored comput-

ing needs, it should be able to determine the user’s ongoing situation. He defines

a situation as a social setting, such as a meeting, where the users want to achieve

various goals. He argues that such capability can be realised by an architecture

that can perceive and reason about relevant available information from an en-

vironment. To realise these capabilities, he designs an architecture, henceforth

referred to as a Case-based Multi-agent Architecture (CaMA).

Unlike the initial architectures and CoBrA, CaMA is designed to take into ac-

count information about different entities within an environment to determine

ongoing situations and hence to identify the user’s goals. Nonetheless, CaMA

is designed based on a limited model of the real world and hence recognises

situations based on limited knowledge about people, location and time. It is

designed based on a limited context model, as will be discussed in section 3.3.3.

46

3.2 Analysis of Architectures

Its context structures, which define the scope that CaMA can perceive its sur-

roundings, is built based on this model. As a result, CaMA relies on incomplete

information and little knowledge about ongoing situations.

3.2.4 Context Engine Architecture

In order to address the limitations of the existing architectures, Kaenampornpan

(2009) designs a context-aware architecture, henceforth referred to as Context

Engine Architecture (CEA). Like Chen (2004) and Kofod-Petersen (2007), she

identifies the semantic limitations as the major shortfall of the existing architec-

tures. She argues that the architectures are designed based on limited context

models due to a limited understanding of context. Kaenampornpan (2009, p.

55 - 56) asserts that the architectures, as a result, are application-specific and

hence they cannot be reused and extended.

Kaenampornpan (2009, p. 106 - 107) argues that the main goal of a context-

aware system is to support the users and hence the ability to infer their intentions

is of paramount importance. To achieve this, she argues that the systems should

be able to use implicitly acquired inputs and context. She defines context as a set

of interrelated context parameters about the user’s activities. She argues that

the relationships between the inputs (or context parameters) are also important.

To specify the parameters and their relationships, she designs a context model.

The discussion of the model is provided in section 3.3.3.

Like CaMA, CEA is designed to take into account information about entities in

an environment to infer the user’s intentions. CEA is also designed based on a

limited model of the real world. It is designed based on a context model which,

47

3.3 Analysis of Context Models

as will be discussed in section 3.3.3, is limited. The model specifies relationships

between people, locations and time. As a result, CEA relies on limited knowledge

limited knowledge about people, location and time. In addition, the model limits

the ability of CEA to perceive its surroundings and to sufficiently represent the

user’s typical situations. As a result, like CaMA, the CEA relies on incomplete

information and little knowledge about ongoing situations.

3.3 Analysis of Context Models

To support the design of the existing architectures, various context models have

been developed. This section explores the existing models. The aim is to iden-

tify any potential research opportunities. This research categorises the existing

models into attribute-based, ontology-based and theory-based. The rest of this

section discusses each of these models.

3.3.1 Attribute-based Context Models

In order to design context-aware architectures, the initial research exploits dis-

crete information within a user’s proximity. Schilit (1995), for instance, uses

location to automatically provide the users with location-based computing ser-

vices. Therefore, according to the initial architectures, a context model is a

representation of an entity and its attributes. As a result, much emphasis is on

representation of the models into machine-interpretable languages and imple-

mentation of appropriate data structures in order to facilitate interpretation of

sensed data. Subsequently, the models are implemented as objects of implemen-

48

3.3 Analysis of Context Models

tation languages (Chen, 2004, p. 4).

Focusing on the processes required to interpret data from sensors, Strang and

Linnhoff-Popien (2004) refer to these models as key-value. Their analysis, how-

ever, is limited on how data from sensors is organised, stored and interpreted.

The analysis does not explore how different entities, and their context parame-

ters and relationships within the user’s proximity can be used to model the real

world. Since much of the structure of these models is based on the notation of

attribute and value, this research, like Henricksen (2003), refers to these models

as attribute-based context models.

The attribute-based context models have two limitations which have a signifi-

cant impact on designing context-aware architectures; (i) they focus on a specific

attribute of an entity and therefore do not take into account the impact of other

nearby entities and (ii) they are implemented as objects of implementation lan-

guages and therefore are integral part of architectures. The former makes the ini-

tial architectures semantically poor and therefore incapable of supporting knowl-

edge reasoning and sharing. The latter makes the models language-specific and

tightly coupled to implementations and hence incapable of supporting knowledge

re-usability and subsequently limits knowledge reasoning and sharing.

3.3.2 Ontology-based Context Models

To abstract the representation of context parameters from any implementation

language and to support knowledge reasoning, sharing and re-usability, majority

of the researchers adopted Ontology-based approaches. Wang et al. (2004), Chen

(2004) and Gu et al. (2004a), for instance, adopt Ontology-based approaches.

49

3.3 Analysis of Context Models

A comprehensive list of the existing ontology-based context models and their

detailed discussion is provided by Ye et al. (2007). A number of surveys also

indicate that Ontology is a promising approach for context modelling (Baldauf

et al., 2007; Strang & Linnhoff-Popien, 2004).

Like the attribute-value context models, ontology-based context models organise

context parameters based on individual entities but provide more details about

these entities. Using Ontology, for instance, relationships between entities of

similar types can be specified by using is-a relationships. Ontology also speci-

fies different meaning of terminologies used to describe entities and constraints

for using these terminologies. Ontologies are represented using Semantic Web

knowledge representation languages, such as DAM+OIL and Web Ontology Lan-

guage (OWL), which are neutral from any implementation languages.

Hence, these models support knowledge sharing and subsequently interoperabil-

ity. Also through their is-a relationships, these models facilitate some kind of

knowledge reasoning. These relationships, for instance, enable knowledge about

the role of a user to be derived from the information about the user’s identity.

Nonetheless, ontology-based context models are still insufficient for developing

a model of a situation. These models only take into account relationships be-

tween entities of similar types. Hence, these models fail to capture relationships

between different entities, which are fundamental for modelling situations.

While it is plausible to argue that these models facilitate knowledge reasoning,

the answer to this is subjective. The degree of reasoning depends on the extent

of intelligence the underlying architecture is sought to demonstrate. If devices

are to disappear, as envisaged by Weiser (1991), this research argues that both

50

3.3 Analysis of Context Models

knowledge about entities and how they interrelate is required. As argued by

Kaenampornpan (2009, p. 75), a true solution to context-aware systems should

utilise various interrelated entities. Thus, apart from providing more and con-

sistent details about entities, a knowledge-intensive context model is required.

3.3.3 Theory-based Context Models

Recently, researchers have started to adopt socio-technical theories in effort to

provide an abstract representation of the real world. Kofod-Petersen (2007)

and Kaenampornpan (2009), for instance, adopt Cultural Historical Activity

Theory (CHAT) to model a situation. CHAT is an extension of Activity Theory

that provide a theoretical framework for analysing different aspects of human

activities in social settings while emphasising on a community (Igira & Gregory,

2009; Kaptelinin & Nardi, 1997). CHAT explores relationships between subject,

object, artifact, division of labour, rules and community.

Kofod-Petersen (2007) extends a context model from the AmbieSense1 project

by adding social related context parameters as specified by the theory. His con-

text model includes domain specific values, a copy of CHAT and a model that

specifies knowledge required by case-based systems. Kaenampornpan (2009) ex-

tends CHAT by including time as part of her model. Since the theory implicitly

includes a physical environment, she also adopts location as part of her model.

These models emphasises relationships between different entities of everyday

social settings. Nonetheless, the existing theory-based context models are de-

veloped to represent different social and physical aspects required in order to

1http://ambiesense.co.uk/the origin/index-1.html

51

3.4 Analysis of Inference Mechanisms

identify and accomplish a user’s objective. As a result, these models are lim-

ited to relationships between location, people and time. Subsequently, these

models limit context parameters to identities of a location and people, and to

the people’s roles. Kofod-Petersen (2007) also incorporates implementation de-

tails on his model. As noted by Newell (1982), a knowledge model should not

incorporate any implementation details.

In addition, both of the existing theory-based context models are based on Ac-

tivity Theory that treats entities differently and hence the relationships among

the entities are biased. The theory treats a subject as a “super entity”. As a

result, knowledge about whether nearby user(s) are present or not is used as an

input to provide user-tailored computing needs. Hence, knowledge of computer-

related activities of nearby users have no impact on situation recognition. This

is, however, the opposite in real world environments. The status of devices, the

users’ computer-related activities, and social relationships between the users

have a significant impact on ongoing situations.

3.4 Analysis of Inference Mechanisms

To reason about context parameters, a number of inference mechanisms have

been used. This section provides an analysis of the exiting inference mechanisms.

This research categorises the existing inference mechanisms into (i) logic-based,

(ii) probabilistic and (iii) hybrid inference mechanisms. Since the application

of inference mechanisms is broad, this research only considers the existing so-

lutions to context-aware systems. The rest of this section discusses inference

52

3.4 Analysis of Inference Mechanisms

mechanisms in each of these categories.

3.4.1 Logic-based Inference Mechanisms

Logic-based inference mechanisms use prepositional logic to evaluate inference

rules. Kofod-Petersen (2007), uses cases to represent inference rules but many

researchers (Chen, 2004; Dockhorn Costa et al., 2007; Gu et al., 2004b; Lee

et al., 2006) use rule-based knowledge representation language. Hence, many re-

searchers have been using the existing rule-based reasoning engines to evaluate

inference rules. Chen (2004), for instance, uses Jess1 rule engine while Dock-

horn Costa et al. (2007) use a variety of Jess rule engine called DJess. To address

uncertainties of context parameters, many researchers for instance Ciaramella

et al. (2010), Anagnostopoulos and Hadjiefthymiades (2010), and Haghighi et al.

(2008), use fuzzy logic to implement inference engines.

A number of researchers have been using custom logic-based approaches. Hen-

ricksen (2003), and Yau and Karim (2004), for instance, use tables to evaluate

inference rules. Since the output of a query is false or true, Henricksen (2003)

introduces another output called possibly true in order to deal with uncertain-

ties. This output is achieved by creating additional queries which replace values

of one or more conditions of the existing queries with null values. Thus, when

the gathered context parameters do not match with any set of conditions of the

original queries, alternative queries are used. If one or more of the conditions of

the alternative queries matches with the gathered context parameters, then the

corresponding situation is said to be possibly true.

1http://herzberg.ca.sandia.gov/

53

3.4 Analysis of Inference Mechanisms

3.4.2 Probabilistic Inference Mechanisms

As noted by Henricksen (2003), context parameters are not always complete

and their sources are unreliable. Thus, to reason with uncertainties, many

researchers have been using the existing techniques from machine learning to

develop probabilistic inference mechanisms. Many researchers, Lee and Cho

(2013), Santos et al. (2011) and Truong et al. (2005) for instance, adopt a

Bayesian Network (BN). A BN is a directed acyclic graph representing ran-

dom variables and their causal relationships (Heckerman, 1998; Jensen, 1996).

Some researchers use the existing BN inference mechanisms such as MSBNx1

and EBayes2. Biegel (2005) and Ranganathan et al. (2004), for instance, use

MSBNx and EBayes respectively, as their inference mechanisms.

Other researchers, Li et al. (2013), Zhang et al. (2010) and Lyu et al. (2010)

for instance, use Dempster-Shafer theory to develop their inference mechanisms.

McKeever (2011) extends Dempster-Shafer theory to include temporal knowl-

edge and quality information of sensors. She extends the operations of the theory

to create an evidence decision network. This network specifies processes required

to propagate evidence from sensors through a hierarchy of context levels (con-

text values, low level situations and higher-level situations). She defines context

values as interpretations of data from sensors. She exemplifies ’leave house’ and

’front door used’ as higher-level and low level situations respectively. To abstract

the processes required to propagate evidence, she uses Directed Acyclic Graph

(DAG). She also uses DAG to capture knowledge about situations and to assess

1http://research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/
2http://sites.poli.usp.br/pmr/ltd/Software/EBayes/index.html

54

3.5 Discussion of the Analyses

their belief based on data collected from sensors.

3.4.3 Hybrid Inference Mechanisms

A number of researchers have combined different approaches to develop their

inference mechanisms. Gu et al. (2004a,b), for instance, illustrate the use of

rule-based and Bayesian network inference mechanism in context-aware systems

supported by their middleware. Likewise, Ranganathan et al. (2004) illustrate

the use of rule-based, fuzzy logic and Bayesian inference mechanism. Devlic et al.

(2009) have illustrated the use of rule-based, Bayesian network and user feedback

to infer social relationships between users of the MUSIC middleware (Paspallis

et al., 2008). Cimino et al. (2012) have combined rule-based reasoning approach,

ontology reasoning approaches, fuzzy logic and user feedback to evaluate task-

based inference rules. Strobbe et al. (2012) have combined rule-based and case-

based reasoning approaches to evaluate task-based inference rules.

3.5 Discussion of the Analyses

A context model is a centrepiece of any context-aware architecture. The attribute-

based and ontology-based context models, however, are not developed to model

a situation. These models are developed to facilitate interpretation of data

acquired from sensors. Hence, the emphasis of these models is on represent-

ing domain concepts in order to enable context-aware architectures to interpret

data from sensors and share the resultant context parameters with context-aware

systems. As a result, context-aware architectures lack reasoning capability or

55

3.5 Discussion of the Analyses

is limited to detecting and resolving inconsistencies. This limits initial context-

aware systems to be responsive to individual context parameters.

To remedy this limitation, Dey (2000) and Henricksen (2003) proposed a situa-

tion abstraction model in their frameworks. This has become the de facto model

in context-aware systems (Lee & Cho, 2013; Liu, 2010; van de Westelaken et al.,

2011). In this model, context parameters required for a task to be accomplished

are used to specify task-specific inference rules in context-aware systems. This

enables context-aware systems to be responsive to more than one context pa-

rameters simultaneously. Nevertheless, these parameters are limited to a specific

task and hence these systems are unable to respond to social dynamics.

With the situation abstraction model, the role of a context-aware architecture

is to acquire and share context parameters with context-aware systems. Infer-

ence rules are specified in context-aware systems and hence duplication of the

rules is inevitable. Developers are also required to familiarise with knowledge

representation languages as these rules are specified by a knowledge representa-

tion language. The burden of validating inference rules, which is essentially a

knowledge reasoning task, is left to context-aware systems. This approach has

serious performance implications to resource-constrained devices and hence a

knowledge-driven distributed architecture is required.

In an effort to develop a context-aware architecture that can reason and hence

recognise ongoing situations, the theory-based models have been proposed. These

models are closer to model real world situations as they emphasise social related

aspects and relationships between more than one entity. The existing theory-

based models, however, are developed to enable architectures to support context-

56

3.6 Summary and Conclusion

aware systems that provide personalised computing needs. These models treat

one user as a “super entity” and hence knowledge about whether nearby user(s)

are present or not is used to determine the user’s goals. Hence, knowledge of

computer-related activities of nearby users have no impact.

Gregory (1993) argues that if a model is to play a significant role in developing a

system, it should correspond to the real world. He argues that (C1) the elements

of the model should refer to physical or abstract objects of the real world and

(C2) their relationships should have the same logical form as those in the real

world. Newell (1982) also argues that (C3) a knowledge model should not include

any implementation details. The attribute-based models fail to comply with C1

and subsequently with C2 and C3. The ontology-based models comply with C1

but not with C2 and C3. Similarly, the existing theory-based models partially

comply with C1 and C2, and Kofod-Petersen (2007) fails to comply with C3.

3.6 Summary and Conclusion

The survey of the existing context-aware systems, section 2.4, shows that the

majority of these systems are responsive to individual context parameters. This

survey shows that only few of these systems are responsive to more than one con-

text parameters that are specific to a task. This chapter provided the analysis of

the existing context-aware architectures, their context models and the inference

mechanisms with the intention of addressing the question raised in section 3.1.

This question sought to find the reasons as to why the majority of the existing

context-aware systems are not responsive to users’ ongoing situations.

57

3.6 Summary and Conclusion

This chapter concludes that the majority of the existing context-aware systems

are not responsive to the users’ ongoing situations because their supporting

architectures are not developed to recognise ongoing situations. Majority of

these architectures are developed to facilitate acquisition of data from sensors,

interpreting it and share the resultant context parameters with context-aware

systems. The few architectures that are developed to recognise ongoing sit-

uations are limited to providing personalised computing needs. Hence, these

architectures are developed with limited model of the world in which the users

and devices interact. Subsequently, these architecture lack reasoning capability

or is limited to detecting and resolving inconsistencies.

To remedy the limitations of the existing context-aware architectures and to

eliminate or reduce some of the challenges introduced by the alternative solu-

tion, knowledge-driven and distributed context-aware architecture is required.

This architecture should be designed based on knowledge-rich context model

in order for this architecture to be developed with a comprehensive model of

the real world. The discussion on how this research designs a knowledge-driven

and distributed context-aware architecture is provided in chapter 5. Chapter

4 provides a discussion on how this research extends the work in theory-based

context models to develop a knowledge-intensive context model.

58

Chapter 4
Knowledge-intensive Context

Model

This chapter discusses how this research extends the work in the theory-based

context models to develop a model of situations. The chapter discusses how

the Actor-Network Theory (ANT) is adopted to systematically identify and

represent the key entities, and the relationships among them, required to develop

the model. The chapter also discusses how ANT and Semantic Network are

adopted to theoretically and conceptually represent this model.

59

4.1 Introduction

4.1 Introduction

A context model provides a simplified representation of the real world in which

the users and devices interact. Hence, a context model provides a systematic way

of identifying and representing knowledge about relevant entities and their rela-

tionships required to sufficiently represent a situation. Subsequently, a context

model forms a basis for representing and reasoning knowledge about situations

in a context-aware architecture. Thus, a context model plays a key role on de-

veloping a context-aware architecture that intelligently use available information

to recognise ongoing situations. Although currently there are various context

models, as discussed in section 3.5, they are limited.

This research extends the work in the theory-based context models to develop a

novel model of situations. This research adopts Actor-Network Theory (ANT)

and Semantic Network to develop a generic and Knowledge-intensive Context

Model (KiCM). ANT provides a systematic approach for identifying and repre-

senting potential entities and the relationships among them. ANT also treats the

entities equally. Therefore, KiCM is developed based on a comprehensive list of

entities and unbiased relationships. Its entities are described by an extensive list

of context parameters and hence makes KiCM knowledge intensive. Represented

by Semantic Network, KiCM is simple and consistently represented.

This chapter discusses how ANT and Semantic Network are adopted to develop

KiCM. Since design requirements are currently identified in an ad hoc manner,

section 4.2 synthesises the design requirements for developing context models.

Section 4.3 and 4.4 provide an overview of ANT and a discussion on why this

60

4.2 Design Requirements

research prefers ANT respectively. Section 4.5 provides a theoretical background

of KiCM while describing how ANT is applied. Section 4.6 provides a discus-

sion on how Semantic Network notations are adopted to conceptually represent

KiCM. Section 4.7 illustrates how KiCM can be used to model a situation.

Section 4.8 provides a summary and conclusion remarks.

4.2 Design Requirements

Researchers have outlined different design requirements when developing their

context models. Currently, however, there is no effort to identify, consolidate

and formalise design requirements which are generic and applicable to different

context models. As noted by Hong et al. (2009), such formalisation is important

for advancing the research in Context-Awareness. This section describes a set of

requirements that should be taken into consideration when developing context

models. The rest of this section discusses each of the design requirements.

Generic

Developing a context model is an expensive process because of time, money and

resources involved. Therefore, a reusable context model is preferred (Strang &

Linnhoff-Popien, 2004). However, different application domains have different

situations and hence may require similar entities but different context param-

eters to represent them. Therefore, a context model should have an extensive

but domain independent list of context parameters. In addition, in order to be

generic and hence to be reusable, a context model should be neutral from any

technology. As noted by Newell (1982), a knowledge model should not include

61

4.2 Design Requirements

any details on how it should be implemented.

Detailed

Different application domains have different interpretations of situations and

thus have different representation requirements of situations. While in one do-

main, such as healthcare, a user’s emotion may be a crucial context parameter,

it may not be in other domains. Therefore, in order to facilitate representation

of situations in different domains, a context model should include an extensive

and domain independent list of context parameters.

Nonetheless, academics in context-aware architectures should not claim to de-

velop a complete context model because in reality it is impossible. A model is a

simplified representation of a certain reality and therefore a model can never be

complete. As noted by Studer et al. (1998), “a model is only an approximation

of the reality”. Kaenampornpan (2009, p. 88) also noted that it is unrealis-

tic to develop a context model by incorporating every aspect of the real world.

Therefore a compromise is inevitable when developing a model.

Simple

The principal aim of a context model is to provide a systematic way of iden-

tifying and representing knowledge about relevant entities required in order to

sufficiently represent a real world. Therefore, despite being generic and detailed,

a context model should be simple in order to enable designers of context-aware

systems to make best use of it. As noted by Lueg (2002), one of the reasons for

the users’ reluctance from using context-aware systems is system errors. While

such errors can be as a result of semantically poor and knowledge limited con-

62

4.2 Design Requirements

text models, the complexity of the models can also be a contributing factor. If

the model consists of many entities, relationships and context parameters, all

meshed up, it can be easily misinterpreted.

Consistent

As noted by Kaenampornpan (2009, p. 69 - 70), unclear relationships between

entities lead to inconsistency of interpretations. This leads to context-aware ar-

chitectures being designed based on misinterpreted context models. In addition,

inconsistent interpretation can lead to poor representation of knowledge. Sub-

sequently, as noted by Lueg (2002), the systems become error prone and hence

make the users reluctant to use them. Therefore, it is also important that a con-

text model is represented with consistently defined notations and terminologies.

Scalable

Technology is still evolving and therefore developing a scalable context model

is important. As new technologies emerge, more sensors may be integrated

to context-aware architectures. As noted previously, context modelling is an

expensive and time consuming process. Therefore, a context model should be

detailed as well as scalable in order to facilitate context-aware architectures to

exploit emerging technologies. This requirement is also important in order to

enable the model to be adopted in different application domains. Therefore,

researchers should not limit their imagination to current technologies.

Realistic

Although a model is implicitly regarded as an abstract representation of a reality,

it is worth mentioning that a context model should be realistic. As noted by

63

4.3 Actor-Network Theory

Gregory (1993), entities of the model should refer to physical or abstract objects

of the real world and the relationships between them should have a logical form

as those of the real world. Therefore, a context model should logically specify

relationships between entities which are essential.

4.3 Actor-Network Theory

The Actor-Network Theory (ANT) emerged in the 1980s as a response to a social

and technology divide (Callon 1986; Latour 1991). Unlike typical social theories,

ANT focuses on describing the nature of societies without being limited to social

relations of human beings. Instead of focusing on frequency, distribution, and

homogeneity of human relations, ANT focuses on explaining the influence of

technology in societies (Callon 1991, Latour 1992, Law 1992). According to

ANT, a society is a set of relationships between heterogeneous human and non-

humans, or actors, who wish to accomplish a certain task.

ANT defines an actor as any entity that can act or be acted upon (Greimas

Courtes 1992; Latour 1996). Unlike typical social theories which inclusively

define an actor as a human being, this definition broadens the scope of actors to

include non-human actors. To avoid semantic confusions between human and

non-human actors, the term actor is replaced by actant. The obvious questions

are; (Q1) What and how actants should be identified in order to define a society?

and (Q2) How should the actants be interrelated in order to define a society?

To address Q2, the theory defines a network as a point of locus where actants

interact. The term network is applied in the theory as a point of interaction

64

4.3 Actor-Network Theory

of relationships between actants (Latour 1999). Therefore, a network in ANT

is used as a metaphor to describe the relationships between actants who wish

to accomplish a certain goal. Therefore, the question of how such relationships

can be defined in order to define a society is inevitable. To put it in a different

way, How can the scope of a society be defined? To answer Q1 and the follow-

up question of Q2, ANT proposes two principles; framing and disentanglement.

Section 4.3.1 and 4.3.2 provides a discussion of these principles.

4.3.1 Framing

A network is a summing-up of relationships between actants which aim to ac-

complish a certain goal. According to Callon (1986) and Latour (1999), however,

such relationships are dynamically formed as actants interact and are not per-

manent. The discussion of the permanency of the relationships is provided in

section 4.3.2. The theory argues that the relationships between actants should

not be stagnant and hence introduce the principle of translation. Later, Cal-

lon (1999) refers to this principle as framing. Callon (1999) defines framing as

a process of identifying distinct actants required to accomplish a certain task.

Latour (1999) refers to this process as summing-up.

4.3.2 Disentanglement

Callon (1991) explains the importance of the principle of substitution when iden-

tifying actants. This principle is reiterated in Callon (1999) under a different

title; disentanglement. This principle signifies the importance of actants’ flexi-

bility to enter and exit a network. Callon (1991) argues that it is only through

65

4.4 Why Actor-Network Theory?

this freedom that networks cannot be caught in a loop. If actants are limited

only to a particular network, then there will be a fixed set of actants in each

network and therefore only few will exist. This principle is also important for

defining attributes, intentions and actions of existing actants. Latour (1999)

argues that what matters most in framing actants is their influence on other

actants and not what actants can do. Law (1999) argues that actants acquire

their attributes when interacting with other actants.

4.4 Why Actor-Network Theory?

This theory is widely applied elsewhere (Kaghan and Bowker 2001; Lamb and

Kling 2003; Walsham 2006). This theory, however, has received little attention

in Context-Awareness. This raises intriguing question; Why ANT is currently

not adopted in Context-Awareness? And why this research prefers ANT over

Activity Theory (AT) for modelling situations? The obvious answer to the first

question is the emphasis on low level contexts and ad hoc modelling of situations

of the majority of the existing solutions. This section, therefore, addresses the

second question; Why this research prefers ANT for modelling situations?

4.4.1 It Addresses Similar Questions as in this Research

ANT typically addresses two questions regarding societies while at the same

time emphasising the role of non-human actants. The questions include (Q1)

What and how actants should be identified in order to define a society? and

(Q2) How should the actants be interrelated in order to define a society? These

66

4.4 Why Actor-Network Theory?

questions have the same goal as one of the problems of this research which

investigates what and how different entities can be utilised to develop a generic

and comprehensive model of situations. Among other reasons, the similarities

of the emphasis of this theory and the part of the problem which this research

is addressing motivate this research to adopt ANT.

4.4.2 Like UbiComp, It Aims to Redefine a User’s Life

Weiser (1991) argues that “the most profound technologies are those that inter-

weave themselves in the fabric of everyday life until they disappear”. It is evident

from the quote that UbiComp places technologies at the centre of the users’ ev-

eryday life. Likewise, ANT places technical aspects at the centre of the users’

everyday life. Therefore, both UbiComp and ANT focus on redefining the users’

everyday life. While UbiComp aims to make the users’ everyday life better,

ANT aims to appreciate the role of non-human actants in the users’ everyday

life. Unlike UbiComp, however, ANT provides approaches for establishing rela-

tionships between human and non-human actants. These approaches can also

be adopted to identify relationships between the users and their surroundings

and hence make ANT suitable for modelling situations.

4.4.3 It Treats the Potential Entities Equally

In today’s computing environments, a presence of one user may affect computing

services that are required by another user. Likewise, changes in the states of

devices and in the states of physical properties of the environment may have

a significant impact on the users and their computing needs. In other words,

67

4.5 Theoretical Background of the Model

each entity in today’s computing environments affects other entities. However,

Activity Theory (AT), which is adopted in the existing theory-based context

models, does not support the equality between its entities. AT considers a

subject as a super actant. In contrast, ANT considers its entities equally. In

ANT, an actant has a power to enrol and dominate other actants as well as to

be enrolled and be dominated. Hence, entities in ANT assume equal roles.

4.4.4 It Takes into Account Dynamic Relationships

Computing environments are open, dynamic and heterogeneous and so the users

and other entities within it constantly assume different states and roles. In order

for devices to disappear, as envisaged by Weiser (1991), there should be negotia-

tions between the users and the other entities. A context model should reflect a

certain reality and therefore a modelling approach that takes into account logical

forms of relationships between entities as they occur in reality is more prefer-

able. ANT takes into account the dynamism of relationships between actants

and therefore it is preferred in this research.

4.5 Theoretical Background of the Model

Section 4.3 and 4.4 addressed the what and why questions for adopting ANT in

this research respectively. However, little has been mentioned about the model

and its structure. Situations are dynamic, complex and heterogeneous. Hence,

how is ANT useful for modelling situations in order to facilitate a design of

a context-aware architecture that can reflect the dynamism, complexity and

68

4.5 Theoretical Background of the Model

heterogeneity of situations?

In principle, a situation occurs in a physical environment, henceforth referred

to as a venue, at a particular time whereby at least one user is involved. In

addition, the venue and/or the user has one or more devices. Depending on the

category of the venue, more than one situation can simultaneously occur. In

common areas such as a Cafeteria, for instance, the users may be chatting with

their colleagues while others may be having an informal meeting. While in a

digital world the users can coexist, in a real world the users can only exist in one

venue at a time. Any changes in the venue may imply a change of a situation. A

change can be caused by (i) adding new user, (ii) a change of physical properties

such as sound, light and temperature, (iii) a change in the state of devices, (iv)

a change of the user’s physical or psychological states and (v) a change of time.

The framing principle emphasises including relevant actants when identifying

the potential actants. Additionally, the disentanglement principle emphasises

the impacts the actants have on each other. This principle also emphasises the

flexibility of actants to join and quit a network. In addition, the theory defines a

network as a point of converging relationships between actants. Since a situation

describes the relationships between the users, venue, devices and time, it can be

regarded as a network. Subsequently, the users, venue, devices and time can be

regarded as actants. However, are these the only relevant actants? How do the

actants affect each other and what freedom do they have in joining and quitting

different situations? The rest of this section addresses these questions.

69

4.5 Theoretical Background of the Model

4.5.1 Potential Entities

Although context is interpreted differently, the literature maintains a consistent

list of key entities in the area. The synthesised taxonomy, section 2.5.2, for

instance, identifies people, environments, computing resources and time as the

key entities. The ontology-based context models, section 3.3.2, also emphasise

users, environment, time and computing entities. Thus, the users, venue, time

and computing resources, in particular computing devices, are the potential

entities for developing a model of situations in this research. As will be discussed

in this section, computing service, which is one of the computing resources, is

also important and hence this research adopts it as another potential entity.

“People are a major part of the dynamics of work environments” (Schilit, 1995,

p. 66). People belong to a certain community and hence their activities are

highly influenced by each other. As the majority of devices become mobile, the

users’ computing needs may also change due to, for instance, social relationships,

sensitiveness of information, and emotions of the users. The activity of a research

student, for instance, may change as the student’s supervisor enters the student’s

research room. This, subsequently, may change computing services the student

and the supervisors may need. Thus the knowledge about the users should also

be taken into account when modelling situations.

The users exist in a physical world. Hence knowledge about different venues

which are accessible to the users in their daily routines is also important for

modelling situations. Apart from location identity, which can be name or num-

ber, other physical properties such as temperature, sound and light are also im-

70

4.5 Theoretical Background of the Model

portant. Any change within a venue, which includes any environmental changes

such as temperature, sound and light, can imply a change in a situation. In an

office, for instance, if the users were quiet and then start talking it may imply

that a situation has changed from the users being ’busy working’ to ’working’.

Knowledge about devices which the users have or are available in different venues

is also important for modelling situations. If a meeting, for instance, is strictly

known to use a projector, then an absence of the projector in any room means

that a meeting situation cannot occur in such rooms. Devices can also be used to

determine the users’ computer-related activities which are important for recog-

nising the users’ ongoing situations. In addition, devices within a particular

venue can be a source of sound, temperature and light which, as pointed out in

the preceding paragraph, are essential for modelling situations.

It is plausible to ignore computing services and focus on the relationships be-

tween the users, devices and venues. These relationships, however, provide no

useful information about the users’ computer-related activities and hence it be-

comes difficult to recognise ongoing situation. Analogous to human natural life,

if only relationships between the users and their physical environments are taken

into account, it will be difficult to infer the users’ intentions. When a user wants

to print a document, for instance, he/she interacts with a computer which subse-

quently interacts with a printer. Therefore, knowledge about computing services

is also crucial for modelling situations.

The user’s activities occur within a period of time and therefore knowledge about

time is also important when modelling situations. Similar entities converge in

different timestamps in the course of a day to describe different situations. In or-

71

4.5 Theoretical Background of the Model

der to differentiate and keep records of these interactions and the situations they

describe, time is a crucial entity. Additionally, most of the activities are struc-

tured and hence they have deadlines which may imply a change in a situation.

Therefore, to differentiate between these situations time is required.

4.5.2 Relationships Between the Potential Entities

Disentanglement occurs naturally as the users interact in a venue and exits as

soon as they leave. Hence, the relationships between the entities are dynamic and

they continuously assume different states and roles. This research summarises

these relationships into active, heterogeneous, and dynamic and temporary rela-

tionships. The rest of this section provides a discussion of these relationships.

Active Relationships

ANT emphasises relationships that influence other actants. In particular, Cal-

lon (1986) insists on actants which are within a proximity. Similar emphasis can

be found in Context-Awareness (Weiser 1991; Schilit et al. 1994; Dey 2000). In

practice, the users affect devices while devices affect the users. The users, for

instance, may change the alerting mode of their mobile phones when attending a

meeting. Likewise, a mobile phone may affect the mood of the meeting and sub-

sequently its participants if it rings when the meeting is in progress. Similarly,

a change of physical properties of the venue may affect users’ computer-related

activities and consequently devices within the venue. Therefore, the existence

of either part continuously affects other entities.

Heterogeneous Relationships

72

4.5 Theoretical Background of the Model

ANT emphasises actants that are unrelated and separated, referring to the pro-

cess of enrolling actants as framing. The users, devices, computing services and

venue can be uniquely identified but yet are “foreigners” to each other. While

mobile devices are usually associated with their owners, each can uniquely be

identified. Similarly, although stationary devices are often associated with a

particular venue, each can uniquely be identified. Although the devices are as-

sociated with and hence inseparable to either the users or the venues, each can

uniquely be identified and hence they can be treated as unrelated.

Dynamic and Temporary Relationships

ANT emphasises relationships which are dynamic and temporary. To avoid ac-

tants from being entangled and caught in looped relationships, ANT emphasises

the freedom of actants to join and quit from different networks. In practice,

there is the freedom of actant mobility. The users enter and leave different

venues within a building while accomplishing their tasks. In the course of a day,

the users, and their devices, interact with different users in different venues who

also have different devices. Hence, the disentanglement occurs naturally as the

users, and devices, meet in different venues and exit as soon as they leave.

The analysis identifies the users, venues, devices, computing services and time as

the potential entities for modelling situations. The analysis also shows that the

entities affect each other and therefore they constantly assume different roles.

Although the theory lacks conceptual representation of the entities and their

relationships, it can be used to theoretically represent them as a network. In the

theory, a network is defined as a point of convergence of the relationships between

actants. Hence, the entities and their relationships can also be represented as a

73

4.6 Conceptual Representation of the Model

network where a situation will be the point of convergence.

The design requirements, among others, demand a detailed and a generic con-

text model. In order to fulfil these requirements, the synthesised taxonomy

for context parameters is adopted. The taxonomy provides detailed knowledge

about different entities which are essential for designing context-aware systems.

The taxonomy is developed without being motivated by implementation of any

context-aware system. Therefore, the specified context parameters are not lim-

ited to any sensing technologies or to a specific application domain.

In Computer Science, ideas cannot be well communicated without a conceptual

representation. Hence, a conceptual representation of the model is required. The

design requirements demand simplicity, consistency and generality of the model.

Thus, the question is, what representation notations are adequate for represent-

ing the model clearly and consistently? How can this model be represented to

enable developers to take advantage of it regardless of their application domains

or sensing technologies they have? Section 4.6 addresses these questions.

4.6 Conceptual Representation of the Model

“...when I establish a link of some type between two nodes, I am

building up a representation of something...” Woods (1975)

Indeed, when links are established between the users, environments, computing

devices, computing services and time, a knowledge-intensive context model is

developed. Since Semantic Network is renowned for knowledge representation,

74

4.6 Conceptual Representation of the Model

this research adopts it for conceptual representation of the model. A Semantic

Network is a graphical notation for representing knowledge. As noted by Woods

(1975, p. 14), the unique feature of Semantic Network is the notion of a link

which connects individual facts into a total structure. This research exploits

this notion to conceptually represent the model.

In a Semantic Network, there are two types of links; property links and relation

links (Sowa, 1991). A property link specifies a connection between a node and an

attribute or set of attributes while a relation link specifies a connection between

two nodes. According to Woods (1975, p. 35 - 37), if a connection specified

by a relation link is between two different nodes, then that relation link is an

assertional link. If a connection specified by a relation link is between nodes

of similar type, then that link is a structural link. The assertional links specify

associations between two nodes while the structural links provide more details

about the same node, such as is-a relationships in ontology-based context models.

Figure 4.1 provides a conceptual representation of KiCM. The entities are repre-

sented as nodes while the relationships are represented as arcs. To differentiate

the nodes and properties, the circle and oval shapes are used respectively. To

differentiate the property links and relation links, dotted and solid lines are used

respectively. The model does not specify any classification of entities and there-

fore only assertional links are used. The model uses context parameters from

the synthesised taxonomy, figure 2.1. To differentiate the primary and secondary

context parameters, the dotted and solid oval shapes are used respectively. As

noted by Henricksen (2003), a context model should cater for uncertainties and

hence each entity of KiCM is associated with a certainty level, shown as <p>.

75

Fig. 4.1: Knowledge-intensive Context Model

76

4.6 Conceptual Representation of the Model

According to Woods (1975, p. 24 - 25), each property of an entity should

be separately specified by a property link. If an entity has five properties, for

instance, then five separate property links should be specified. This rule is useful

when a finite property list of an entity can be well defined prior to developing a

model. In a case where the property list is ill defined and it changes depending

on where the model is applied or on what sensing technology is available, like in

Context-Awareness, this rule is inadequate. The links can also be meshed up if

the entities specified in a model have many properties. Subsequently, this can

make the model too complex and hence difficult to read and interpret.

Thus, to specify the relationships between an entity and its context parameters,

this research uses one property link. Since the visibility of an entity is determined

by its primary context parameter, its relation is separately specified. Hence, if an

entity has two categories of secondary context parameters, then three property

links are used (two links to specify the relationships between each category

of secondary context parameters and the entity, and one link to specify the

relationship between the primary context parameter and the entity). As shown

in figure 4.1, for instance, the identity of a user is a primary context parameter of

the user entity and therefore its relationship to the entity is specified separately

from other relationships. So depending on the categories of the property list of

an entity, there are at least two specified property links for each entity.

In this model, the primary context parameters of each of the entities are strictly

defined as the minimum knowledge required about an entity. As for the time

entity, all elements of a timestamp should be included when KiCM is used.

Through this specification, developers can include all the entities and their re-

77

4.7 A Worked Example of Using KiCM

lationships but only use a subset of the context parameters. Therefore, instead

of instantiating all context parameters of an entity even if only a few are used,

as suggested by Kaenampornpan (2009, p. 71 -72), only a subset can be instan-

tiated. Consequently, this enables the model to be reused in different problem

domains and to be adjusted accordingly. As is illustrated in section 4.7, KiCM

can be used to extensively model and represent knowledge about situations.

4.7 A Worked Example of Using KiCM

A developer models a situation (i.e identifies and maps knowledge about situa-

tions) and then uses the resultant model to represent knowledge about situations

in a context-aware architecture. The architecture then uses this knowledge to

reason about evidences it gathers from a physical environment to recognise this

situation whenever it occurs. KiCM supports developers in these two tasks. To

illustrate how KiCM supports a developer in these tasks, we model a worked ex-

ample of a situation whereby a research student writes to or reads from his/her

computer at his/her desk in his/her research room.

In this section we illustrate how a developer can use KiCM to model a situation.

The illustration of using KiCM to represent knowledge about situations is pro-

vided in section 6.2.2. To model a situation using KiCM, a developer needs to

follow these six steps; 1.) naming of a situation, 2.) identification of instances

of the entities, 3.) specifying relationships between instances, 4.) identifying

relevant context parameters, 5.) specifying relationships between the instances

and their context parameters and 6.) specifying certainty levels of the instances.

78

4.7 A Worked Example of Using KiCM

The rest of this section describes each of these steps.

Step 1: Naming of a Situation

In this step a developer abstracts a situation with a label that will then be used

to identify the situation. In our example, we use ’busy on computer’ label

to abstract the situation. In case a developer models more than one situation,

then different labels should be used. This is required for differentiating between

two or more situations that are within the same problem domain. Logically, the

first step should be to identify a situation. In most cases, however, a developer

knows the nature of a situation he/she wants to model. Hence including situation

identification as one of the steps to model a situation is trivial.

Step 2: Identifying Instances of the Entities

In this step, a developer uses KiCM to identify instances of the entities that are

required to model the ’busy on computer’ situation. In this research an instance

means a single occurrence of an entity specified in KiCM. To identity instances

of the entities, relevant nouns from a description of a situation should be used.

In case there is no relevant nouns or instance to match with any entity from

KiCM, verbs from the description of the situation and domain knowledge can

be used to deduce relevant instances.

In the description of our example situation, there are three nouns of interest; a

research student, a computer and a research room. These nouns represent

instances of the user, the computing devices and the location entities of KiCM.

To deduce instances of the computing processes entities, we use the verbs writes

to and reads from the description. Since the student writes to and reads from

79

4.7 A Worked Example of Using KiCM

the computer, then there should be at least two processes to monitor these

activities. This research uses Mouse Activity Monitor (MAM) and Keyboard

Activity Monitor (KAM), respectively, to monitor these activities. Section

6.2.3 provides a description of MAM and KAM. Since the student belongs to an

organisation, domain knowledge is used to deduce instances of the time entity.

Step 3: Specifying Relationships between Instances

In this step, a developer specifies the relationships between the instances iden-

tified in step 2 as indicated on KiCM.

Step 4: Identifying Relevant Context Parameters

In this step a developer identifies relevant context parameters of each of the

distinct instances identified in step 2. If the identified context parameters are

to be gathered from sensors, the developer should make sure that appropriate

sensing technologies are in place. If a developer identifies sound, for instance, as

an important context parameter for describing a situation then a technology to

monitor sound level should be available. Other context parameters are derivable

and hence not all context parameters are gathered by sensors.

In our example, name, role, officename and attendance status are important

context parameters for the user instance. The room identity and its category

are important context parameters for the location instance. The identity of

the computer, its owner, the room it is located and its status (whether is On

or Off) are important context parameters for the device instance. The name of

the processes, their host computer, their status (whether are active or inactive)

and timestamps are important context parameters for the process instances.

80

4.7 A Worked Example of Using KiCM

Timestamps and their time categories (working hours or out of work hours)

are important context parameter for the time instance. Table 4.1 provides a

summary of the identified context parameters.

Table 4.1: Context Parameters from the ’busy on computer’ Situation

Device Process User Room Time
Identity Name Name Identity Timestamp
Status Status Role Category Category
Owner Host Office
Room Timestamp Status

Identity and name are primary context parameters since they identify the com-

puter and the room, and the user and the process, respectively. Timestamp

is also a primary context parameter since it differentiates two points of time.

The rest are secondary context parameters. Office and host of the user and

process, respectively, are relational context parameters since they associate the

student and the processes with the room and the hosting device respectively.

The owner and room of the device are also relational context parameters since

they associate the computer with the student and the room respectively.

Step 5: Specifying Relationships between the Instances and their

Context Parameters.

In this step, a developer specifies the relationships between the instances and

their context parameters as indicated on KiCM.

Step 6: Specifying Certainty Levels of the Instances

Lastly, a developer specifies a certainty level of each of the sensors. A certainty

81

4.7 A Worked Example of Using KiCM

level is a value that indicates the degree of trustworthy of a sensor. As noted

by McKeever (2011), this value can be obtained from training data, domain

expert or manufacturer specifications while taking into account users’ actions.

In this research, five sensors have been used to monitor and gather data about

the entities specified in KiCM, as illustrated in section 6.2.3. In this example,

however, we assume that each of these sensors has a certainty level of 100% i.e

1.0. Figure 4.2 shows the resultant model of the ’busy on computer’ situation.

With the attribute-based and ontology-based context models, discussed in sec-

tion 3.3.1 and 3.3.2 respectively, this situation cannot be modelled as these

models do not specify relationship between individual entities. The existing

theory-based context models, discussed in section 3.3.3, exclude computing de-

vices and computer-related activities of the users and hence cannot be used to

model this situation. The situation abstraction model, discussed in section 3.5,

does not specify the entities required to model a situation. This model is also

limited to context parameters relevant to a particular task.

Context parameters of each entity is subject to availability of technologies to

gather relevant information about that entity. KiCM, however, requires the

primary context parameters of each entity to be used, at a minimum. This is

an important feature of KiCM because it ensures that a model of a situation

reflects all relevant objects in the real world and their relationships. Nonetheless,

the list of secondary context parameters can be as comprehensive as possible so

as to model situations close to the reality. This is also an important feature of

KiCM as it gives developers the flexibility to identify and use parameters that

are tailored to their application domain or sensing technologies they have.

82

Figure 4.2: A Model of ’busy on computer’ by KiCM

83

4.8 Summary and Conclusion

4.8 Summary and Conclusion

This research has extended the work in theory-based context models by devel-

oping a generic and Knowledge-intensive Context Model (KiCM). To develop

KiCM, this research has adopted the Actor-Network Theory (ANT), the syn-

thesised taxonomy and Semantic Networks (SNs). ANT provides a systematic

approach to identify and represent potential entities and the relationships among

them. This feature enables KiCM to be developed by adding computing devices

and computing services as among the potential entities for modelling situations.

ANT also treats entities equally and hence each entity in KiCM plays equal

roles. This is an important feature to KiCM as it enables KiCM to take into

account computer-related activities of nearby users. This makes KiCM knowl-

edge intensive and hence more realistic to model situations where the users

and their devices continuously interact. Hence KiCM can be used to design

context-aware architectures that can support more than one user in dynamic

environments. The synthesised taxonomy provides an extensive list of context

parameters to describe the entities specified by KiCM and semantics to differ-

entiate between these parameters.

SNs’ notations are used to conceptually represent KiCM. SNs are renowned for

knowledge representation. These notations provide a clear distinction between

nodes, attributes and the type of links required to establish the relationships

between nodes, and between a node and its attribute or attribute list. This

simplifies and consistently represents the complicated relationships between the

entities, and entities and their context parameters in KiCM. Consequently, this

84

4.8 Summary and Conclusion

representation enables few context parameters to be used to model a situation.

This feature gives developers the flexibility to identify and use parameters tai-

lored to their application domain or sensing technologies they have.

Since the entities specified are generic and a subset of context parameters can

be used to model a situation, KiCM can also be reused. In addition, its generic

graphical representation makes KiCM simple to use and abstracts it from any

knowledge representation formalism. Hence, it gives developers the flexibility of

using any knowledge representation formalism and subsequently any inference

mechanism. As illustrated in section 6.2.2, knowledge about situations captured

by KiCM can be represented as a rule and as a Bayesian network.

85

Chapter 5
Knowledge-driven Distributed

Architecture

This chapter discusses how a Knowledge-driven Distributed Architecture (KoDA)

is designed to take advantage of KiCM. The chapter outlines the design require-

ments for context-aware architecture while taking into consideration the require-

ments imposed by KiCM. The chapter also describes the design of KoDA and

discusses each of its components.

86

5.1 Introduction

5.1 Introduction

Centre to a context-aware system is a context-aware architecture. The architec-

ture provides a mechanism to monitor a physical environment and intelligently

use the information to understand the environment and the users’ computing

needs. This enables context-aware systems to understand their surroundings and

the users’ computing needs to appropriately respond. To date, there are many

context-aware architectures. The existing architectures, however, are designed

with little or no consideration of situations. As a result, the architectures use

limited or no knowledge about situations and therefore are unable to understand

their environments and the users’ computing needs.

This research addressed the limitations of the existing context models by de-

veloping a generic and Knowledge-intensive Context Model (KiCM), in chapter

4. To take advantage of KiCM and subsequently to address the limitations

of the existing context-aware architectures, this research designs a Knowledge-

driven Distributed Architecture (KoDA). KiCM influences the design of KoDA

by specifying (i) the minimum sensing capabilities (ii) what and how knowl-

edge about entities within a physical environment should be represented and

(iii) how knowledge about situations should be represented and reasoned. These

design requirements enable KoDA to intelligently use available information to

understand its environments and the users’ computing needs.

Section 5.2 provides a discussion of the design requirements for context-aware

architectures as reported in the literature and as imposed by KiCM. Section 5.3

provides a description of the conceptual design of KoDA where each layer and

87

5.2 Design Requirements

its components is discussed. Section 5.4 provides a description of the structural

representation of the implementation of the architecture. Section 5.5 provides a

summary and conclusion remarks.

5.2 Design Requirements

To guide the design of KoDA, a set of design requirements have been derived.

These requirements are derived from relevant literature while taking into account

KiCM. This section provides the discussion of each of the design requirements.

Flexible and Scalable

Technology is advancing rapidly and more technologies are emerging. Therefore,

a context-aware architecture should be designed to easily accommodate new

technologies. Although currently this is regarded as a technical problem, this

research argues that it is also a semantic and knowledge problem. A context

model plays a significant role on specifying the entities and context parameters

that the architectures can exploit. Therefore, a context model plays a significant

role when selecting sensors that can be used. Therefore, the problem should also

be seriously considered during developing context models.

Distributed Nature

The majority of computing devices are resource-constrained. As a result, in-

dividual computing devices cannot, independently, recognise ongoing situations

in order to appropriately respond. Although the research in designing context-

aware mobile computing devices are is in progress (Gellersen et al., 2002; Miluzzo,

88

5.2 Design Requirements

2011), given the diversity of sensors required to monitor environments, it is

unlikely that an individual computing device can sufficiently determine ongo-

ing situations. One of the solutions to this problem is to implement a dis-

tributed context-aware architecture. The architecture which utilises a cen-

tralised resource-rich computing device for heavy processes which are involved

and leave the resource-poor computing devices as the clients.

Continuous Monitoring

It is widely agreed that context is dynamic (Dourish, 2004; Schilit et al., 1994).

Therefore the ability of a context-aware architecture to continuously monitor its

environment is required. As noted by Dey (2000, p. 29) and Kaenampornpan

(2009, p. 80), a context-aware architecture should be able to continuously ac-

quire context parameters. This implies that a context-aware architecture should

be able to continuously listen to the environment, detect any changes and com-

municate the changes to the appropriate components of the architecture.

Dynamic Inferencing and Responding

The fundamental goal of a context-aware architecture is to effectively support

the users by intuitively providing relevant computing services that the users may

require based on ongoing situations. One of the requirements is to continuously

monitor the environment. Subsequently, a context-aware architecture should

be able to react to any changes that are detected within the environment to

dynamically infer ongoing situation and appropriately respond.

89

5.3 Conceptual Design of KoDA

5.3 Conceptual Design of KoDA

As proposed by Coutaz et al. (2005) and like the majority, this research de-

signs KoDA as a 3-layer architecture but based on KiCM. As shown in figure

5.1, KoDA consists of perception layer, inference layer and application layer.

The perception layer monitors an environment while the inference layer intel-

ligently uses available information from the environment to recognise ongoing

situations. The application layer shares the knowledge about ongoing situations

with context-aware applications. The rest of this section describes each of these

layers. Appendix B provides a process flow of KoDA.

Figure 5.1: Conceptual Design of KoDA

90

5.3 Conceptual Design of KoDA

5.3.1 Perception Layer

The perception layer establishes connections with available sensors within an

environment, and acquires and interprets data from the sensors. In order to

realise these capabilities, the perception layer is designed as an interplay of four

components; sensors, sensor platform, context interpretor, and concept base.

The rest of this section describes each of these components.

Sensors

In order to monitor its environment, KoDA is designed to use various sensors.

These sensors can be physical or logical sensors. Physical sensors are hardware

sensors such as Bluetooth and RFID1 while logical sensors are other sources of

data such as applications that monitors network activities or CPU usage. KoDA

is designed based on KiCM, figure 4.1. Since KiCM requires each of its entities

to be used, KoDA is designed to monitor all the entities specified in KiCM. As

is described in the sensor platform, KoDA is designed to easily add new sensing

technologies as they emerge. For a discussion on relevant sensing technologies

in Context-Awareness refer to Schmidt et al. (1999a).

Sensor Platform

In order to accommodate new sensing technologies as they emerge, KoDA is de-

signed with the sensor platform. This platform is a middleware which separates

sensors from interpretation processes. This platform is responsible for discov-

ering and establishing connections with and acquiring data from sensors. This

platform is designed to contain an array of software modules which are required

1RFID is an acronym for Radio Frequency Identification

91

5.3 Conceptual Design of KoDA

by different sensors in order to be used by KoDA. This platform, therefore, is

a bridge between sensors and a context interpretor. This enables sensors to be

added or removed without affecting the rest of the components and hence makes

KoDA both flexible and scalable.

Context Interpretor

In order for a context-aware architecture to recognise ongoing situation, it should

be aware of different aspects of its environment. In KoDA, this is achieved by

monitoring changes within the environments and is accomplished by the sensors

and the sensor platform components. Sensors, through the sensor platform,

acquire data about different aspects of the environment. The context interpretor

is responsible for interpreting this data to context parameters. In addition, the

interpretor aggregates and hands over these parameters to the inference engine,

which is a component of the inference layer. In order to interpret the data, the

interpretor utilises the knowledge stored in a concept base.

Concept Base

In practice, a context-aware architecture is implemented in the real world envi-

ronment where sensors acquire data specific to that environment. To interpret

this data and make use of it, the architecture should have a prior knowledge

about entities in the environment. This knowledge is represented by developers

using a context model which is designed for that architecture. In KoDA, such

knowledge is stored in the concept base and developers use KiCM to represent it.

Among others, the concept base stores knowledge about the mapping between

the users’ true identities and the devices used to identify the users.

92

5.3 Conceptual Design of KoDA

As the technology is advancing, it is important for a context-aware architecture

to be flexible and scalable in order to allow any changes that may be required to

accommodate new technologies. In addition, a context-aware architecture should

be able to continuously monitor its environment in order to provide appropriate

computing services at all times. KoDA implements the sensor platform which

takes care of the sensors and hence it enables new sensors to be added without

affecting the rest of the components. The solution to the continuous monitoring

of the environment and aggregation of the information, however, is more of a

procedure and hence cannot be depicted on the design. As will be demonstrated

in chapter 6 the ability of KoDA to continuously monitor its environment is

implemented using event-driven programming technique.

5.3.2 Inference Layer

To exploit information, or evidence, collected from an environment to recognise

ongoing situation, a context-aware architecture should be able to reason about

this information. In KoDA, this is achieved by the inference layer. This layer

utilises the information from the perception layer, knowledge about typical sit-

uations within an environment, and its reasoning capabilities. To realise these

capabilities, the layer is designed as an interplay of five components; knowledge

base, inference engine, other knowledge sources, context broker and user broker.

The rest of this section describes each of these components.

Knowledge Base

For a context-aware architecture to exploit evidence collected from an envi-

ronment, it should possess knowledge about that environment. In KoDA, this

93

5.3 Conceptual Design of KoDA

knowledge is represented based on KiCM and stored in the knowledge base. The

knowledge base is where the rule, the case or the Bayesian network described

in section 4.7 is stored. KoDA uses this knowledge and the evidence collected

to infer ongoing situation. Hence, the comprehensiveness of a context model

is crucial for the richness of knowledge about an environment. Subsequently,

this is crucial for the ability of a context-aware architecture to perceive its en-

vironment and hence to enable applications to adapt to social dynamics. As

discussed in section 3.6, the existing context models are limited and hence their

architectures have limited or no knowledge about situations.

Inference Engine

The inference engine is responsible for inferring ongoing situations. Based on

evidence collected from an environment, the inference engine assigns truth values

to the knowledge stored in the knowledge base based on specified constraints.

The engine assigns true truth values when the constraints are met and false

truth values when the constraints are not met. The true truth values mean

that a situation that matches the collected evidence is found. In logical-based

inference techniques, discussed in section 3.4, the engine terminates the inference

cycle if one or more constraints do not match the collected evidence. In contrast,

in probabilistic inference techniques, the engine assigns low probability to the

recognised situation. In a real world application, this means that the architecture

will not provide any computing services to the users or will only provide default

computing services which are predefined by developers.

Although providing the users with the default computing services can be the

best alternative, it can be a source of the users’ annoyance and hence the users’

94

5.3 Conceptual Design of KoDA

reluctance to use context-aware applications, as noted by Lueg (2002). To rem-

edy this problem, KoDA is designed to seek other sources of knowledge about

situations and to constantly seek the users’ confirmation about their ongoing sit-

uations. To accomplish this, the inference layer is designed with three additional

components; other knowledge sources, context broker and user broker.

Other Knowledge Sources

The other knowledge sources represents any source of knowledge that KoDA

can refer to. These sources may include Websites, cooperate Website or mobile

devices such as Smartphones and tablets. Through these alternative sources of

knowledge, KoDA can access knowledge about, for instance, the users’ sched-

uled events such as meeting, lecture and conference. Unlike the knowledge in

the knowledge base, the knowledge from these sources can be in any format.

Therefore, a proper mechanism is required to access and render this knowledge

to the application layer. In KoDA, this is accomplished by a context broker.

Context Broker

The context broker is responsible for establishing connections with the alterna-

tive sources of knowledge, acquiring the knowledge and representing it to the

application layer. To accomplish this, the context broker refers to the knowledge

about the users and the environment which is specified in the concept base. The

context broker, for instance, may acquire calendar entries from the users’ Smart-

phone and transform the output into eXtensible Markup Language which can be

interpreted by the application manager of the application layer. In case there is

no connection established between the broker and the sources, or no knowledge

is acquired from any of the sources, the broker notifies the user broker.

95

5.3 Conceptual Design of KoDA

User Broker

The user broker liaises communications between the inference engine and the

users. KoDA is designed to request for confirmation of the users’ ongoing situa-

tion before invoking the required applications. Additionally, KoDA is designed

to request the users to specify their ongoing situations in case there is no knowl-

edge about a specific situation in the knowledge base and from the alternative

sources. The user broker listens from the inference engine and the context broker

for any request of feedback from the users. The user broker sends any feedback

to the application manager. Depending on the feedback, the application man-

ager may provide the user with default applications or applications that are

appropriate to the ongoing situation.

There are a number of studies that have been conducted to evaluate the usability

of context-aware applications and their results show that users of these applica-

tion feel not in control of their life (Barkhuus & Dey, 2003). This is particularly

true in some application domains. In hospital environments, for instance, the

users want control of computing services and information they access. In such

domains, user feedback is required. KoDA is designed to support the users by

providing feedback mechanism.

Although the idea of constantly requesting users’ feedback contradicts with the

design principles of UbiComp systems, as they are supposed to be invisible, it

ensures that computing services are offered as the users expect. Subsequently,

this makes the users feel in control. However, a trade-off should be made in order

to minimise the times when the users need to give feedback. Developers should

decide an acceptable balance between annoying the users and compromising the

96

5.3 Conceptual Design of KoDA

design. In KoDA, this is achieved by inferring ongoing situations by utilising

available information within an environment.

5.3.3 Application Layer

The central goal of KoDA is to use available information within an environment

to recognise ongoing situation and subsequently enable applications to respond

appropriately. Like the majority of the existing context-aware architectures,

KoDA is designed with an application layer. This layer is responsible for invoking

applications based on the users’ ongoing situations. To achieve this goal, this

layer is designed as an interplay of two components; application manager and

application suite. The rest of this section describes these components.

Application Manager

The application manager is responsible for executing appropriate applications

depending on a recognised situation, as inferred by KoDA or as specified by the

users. In case no situation is recognised and there is no knowledge from the

alternative sources and feedback from the users, the manager will invoke default

applications as designated by developers. If the recognised situation is a formal

meeting, for instance, the manager searches for appropriate applications and

executes them. The typical inputs the manager accepts include a recognised

situation and the details of available devices in the room.

Application Suite

The application suite is where the available applications exist. Applications can

exist independently or as a suite of applications for a specific function. KoDA

97

5.4 Structural Representation of KoDA Implementation

is designed to execute applications from a user’s devices and a specialised ap-

plication server. KoDA, for instance, can execute an application in the a user’s

Smartphone to remotely change the alerting mode from ringing to silence. Like-

wise, KoDA can execute an application from an application server to automati-

cally power ON a projector within a particular venue.

The separation of the application manager and the application suite enables

either part to be modified without affecting the other. A new application, for

instance, can be added in KoDA without affecting how the application manager

operates. Likewise, the application manager can be modified without affecting

the operations of the applications. This design philosophy enables KoDA to be

easily modified and hence more applications can be added as the needs arise.

This, as a result, makes KoDA flexible and scalable.

5.4 Structural Representation of KoDA Imple-

mentation

Although all the components of KoDA can be implemented in a centralised

resource-rich computer, henceforth referred to as a server, this research designs

some of components to be separately implemented. As shown in figure 5.2, the

components of the perception layer are designed to be partially implemented in

a distributed computer designated for each venue, henceforth referred to as a

proxy computer. All sensors for monitoring a particular venue are connected to a

designated proxy computer. Except for the interpretation of the data regarding

the users, the interpretation of other data is conducted in the proxy computer.

98

Figure 5.2: Structural Representation of KoDA Implementation

99

5.5 Summary and Conclusion

The aim is to separate data acquisition and interpretation processes, which can

be resource demanding as the number of sensors increases, from the reasoning

processes which by themselves are complex. Instead of the server allocating huge

resources to discover and establish connections with each sensor, and acquire

and interpret its data, in this design the server only deals with connections with

proxy computers and interpretations of their data. This not only fulfils the

distributed nature of design requirement and provides a clean design but it also

enables KoDA to accommodate a large number of environments. Subsequently,

this gives the ability of KoDA to monitor a large part of a building and hence

to provide the users with computing services almost everywhere.

5.5 Summary and Conclusion

The analysis of the state-of-the-art revealed that the existing context-aware ar-

chitectures are developed based on limited context models. These models are

inadequate for developing a model of the real world in which the users and

devices interact. As a result, these architectures have limited monitoring and

reasoning capabilities to use available information to recognise ongoing situa-

tions. In chapter 4, this research has developed a Knowledge-intensive Context

Model (KiCM). This chapter described the design of the Knowledge-driven Dis-

tributed Architecture (KoDA) that takes advantage of KiCM.

KoDA differs from the existing architectures as it also reasons about information

it gathers to recognise ongoing situations. These situations are not confined to

a particular task and hence KoDA enables context-aware systems to respond to

100

5.5 Summary and Conclusion

social dynamics. Central to KoDA is KiCM. KiCM facilitates sufficient rep-

resentation of knowledge about situations in KoDA. Consequently, it enables

KoDA to reason about available information to recognise ongoing situations.

KiCM treats each entity equally and hence knowledge about situations is rep-

resented without favouring a particular entity. This enables KoDA to equally

treat the users and hence to support one or more users. KiCM also imposes

minimum monitoring capabilities on KoDA as it requires at least one context

parameter of each entity to be monitored.

Complemented by its ability to refer to external sources of knowledge, KoDA

provides more flexibility on recognising ongoing situation. Through its dis-

tributed nature, KoDA can be used to support multiple rooms within a build-

ing. In addition, KoDA can be used to support resource-constrained devices.

Through its ability to continuously monitor, infer and respond, KoDA can dy-

namically recognise ongoing situations. Complemented by KiCM, which is de-

veloped by generic entities and allows a subset of context parameters to be im-

plemented, KoDA can accommodate new technologies as they emerge. Chapter

6 discusses how KoDA can be implemented.

101

Chapter 6
KoDA Prototype

This chapter illustrates the application of KoDA on supporting context-aware

systems. In this chapter we illustrate how KiCM can be used to represent

knowledge about situations in KoDA. In this chapter we also illustrate how

KoDA can monitor a physical environment, interpret the acquired data and use

the resultant information to recognise ongoing situations and to automatically

invoke required context-aware systems.

102

6.1 Introduction

6.1 Introduction

A context-aware architecture plays an important role enabling context-aware

systems to respond appropriately to the users’ computing needs and their en-

vironments. Central to a context-aware architecture is a context model. A

context model provides a simplified representation of the real world in which

the users and devices interact. Such representation provides a systematic way of

identifying and representing knowledge about situations. Although researchers

have proposed a number of context-aware architectures, these architectures are

unable to reason about information they gather from the environments.

To address these limitations, this research has designed the Knowledge-intensive

Context Model (KiCM), in chapter 4, and the Knowledge-driven Distributed Ar-

chitecture (KoDA), in chapter 5. KoDA is designed based on KiCM, which is

a comprehensive model of the real world in which the users and devices inter-

act. This chapter illustrates the use of KoDA and KiCM by implementing a

prototype. This research uses both an operational context-aware system and a

scenario to illustrate the application of KoDA in the real world environment.

Section 6.2.1 and 6.2.2 describe how knowledge about situations was acquired

and represented in the prototype respectively. The ability of KoDA to monitor

and interpret the data acquired by sensors is illustrated in section 6.2.3 and 6.2.4

respectively. Section 6.2.5 describes how the reasoning capability is implemented

and used to recognise ongoing situations. The process of adding and invoking

context-aware systems is illustrated in section 6.3. Section 6.4 describes how the

prototype was tested and section 6.5 illustrates how KoDA can be used in the

103

6.2 Prototype Implementation

real world environment. Section 6.6 explains how the design requirements are

met. Section 6.7 provides the summary and conclusion remarks.

6.2 Prototype Implementation

This research implements a prototype in order to illustrate the feasibility of

KoDA. Chen (2004) implements a prototype smart meeting room to support a

research group’s meetings at the University of Maryland1. Likewise, this proto-

type is implemented to recognise research-related situations of a specific group

of research students in a research room. These students are part of the Applied

Intelligence Research Centre2 (AIRC) of the School of Computing at the Dublin

Institute of Technology.

Central to KoDA is the generic Knowledge-intensive Context Model (KiCM).

Section 4.7 illustrated how KiCM can be used to model a situation. This section

illustrates how KiCM can be used to represent knowledge about situations in

KoDA. This section also illustrates how KoDA uses this knowledge to dynam-

ically recognise ongoing situations. The pseudo-code, in figure 6.1, represents

an algorithm that the prototype implements. The rest of this section describes

how the layers of KoDA, and some of their components, are implemented.

1http://ebiquity.umbc.edu/
2http://www.comp.dit.ie/aigroup/

104

Figure 6.1: Pseudocode of the Prototype System

105

6.2 Prototype Implementation

6.2.1 Knowledge Acquisition

To acquire knowledge about situations different techniques have been used. Chen

(2004), for instance, uses his experience, Kofod-Petersen (2007) uses observation

and Kaenampornpan (2009) uses scenarios. This research, like Chen (2004), uses

the researcher’s experience. Being part of this group, the researcher has observed

different situations that have been occurring daily. The researcher has also been

regularly interacting with his supervisors and observed numerous similar inter-

actions from other research students. Using this experience, the researcher has

outlined six common situations, appendix C. These situations were communi-

cated to and agreed by the other research students of this group.

Table 6.1: Context Parameters Used in this Prototype

User Device Computing Service Room Time
Name Identity Name Name Timestamp
Role Status Status Category Category
Office Owner Host
Status Room Timestamp
Social relation Category

These situations were modelled using KiCM, as illustrated in section 4.7. This is

done by identifying and mapping relevant knowledge about situations to KiCM.

After modelling these situations, we end up with eighteen context parameters as

shown in table 6.1. These parameters and the models form a basis for represent-

ing knowledge about situations, monitoring the environment and recognising

ongoing situations. Section 6.2.2 describes how knowledge about individual en-

tities specified in KiCM and knowledge of these situations is represented.

106

6.2 Prototype Implementation

6.2.2 Knowledge Representation

To represent knowledge about individual entities specified in KiCM, eXtensi-

ble Markup Language1 (XML) is used. Alternatively, Ontology can be used

but is more useful when software modules from different vendors, and which

have different semantics, interact. For software modules developed with simi-

lar semantics, as in this research, XML is suitable and hence preferred in this

research. The XML document is stored in the concept base of the perception

layer of KoDA. As shown in figure 6.2, among others, the document contains

knowledge about the users.

Figure 6.2: Excerpt from the XML document

Knowledge about the situations identified in section 6.2.1 need be represented, or

encoded, in KoDA as inference rules in order to be processed. In this prototype,

the rule-based knowledge representation language and the Bayesian network has

been used. Our intention is to illustrate the use of both, but separately, logical-

1http://www.w3schools.com/xml/xml whatis.asp

107

6.2 Prototype Implementation

based and probabilistic inference mechanisms and in particular rule-based and

Bayesian inference mechanisms, discussed in section 3.4. We used rule-based

language and Bayesian network as they are common in Context-Awareness and

there are many existing inference mechanisms that support them.

Representing Situations as a Rule

The rule-based is the knowledge representation language in production systems.

A production system is a program that provides pseudo intelligence by emulat-

ing cognitive ability of a human being (Davis & King, 1975; Newell, 1973).

Figure 6.3: Rule Representing a ’busy on computer’ Situation

In this language, knowledge about a situation is represented as an IF THEN

108

6.2 Prototype Implementation

rule, as shown in figure 6.3. The context parameters are represented as patterns

of conditions at the left hand side of the rule while their relationships are main-

tained by logical operators. The right hand side of the rule specifies actions to

be invoked when the conditions are satisfied. In this example, the rule displays

a message and invokes the application manager, described in section 5.3.3.

Each model of the situations is represented as a rule where the parameters

outlined in table 6.1 are used. As shown in figure 6.3, all primary context

parameters do not appear in the rule. This is because the primary context

parameters have no direct impact on the occurrence of a situation and hence

are indirectly used to determine the secondary context parameters. Hence, the

number of the parameters per rule is reduced to thirteen. Since each situation

takes different values of context parameters, each model resulted to more than

one rule. Hence, we end up with forty six rules in the knowledge base. The

excerpts of the knowledge base is provided in appendix D.

Representing Situations as a Bayesian Network

A Bayesian Network (BN) is a directed acyclic graph where nodes represent

random variables from a problem domain and directed arcs represent causal

relationships between the variables (Heckerman, 1998; Jensen, 1996). A node

that causes effects is called a parent node while the affected node is called a child

node. When building a BN, one should start by identifying variables of interest,

then establish relationships between these variables and finish by quantifying

the identified relationships (Korb & Nicholson, 2003). Quantifying relationships

means to specify a conditional probability distribution for each node.

In this research the first two steps of building a BN are simplified since the

109

6.2 Prototype Implementation

Figure 6.4: Bayesian Network for Situations Involving one User

variables and the relationships between them are specified in a model of a situ-

ation. After identifying which variable affects which variable, the resultant BN

is shown in figure 6.4. This BN implies that (i) the likelihood of a mouse or a

keyboard to be active depends on the user’s presence in the room and the status

of her computer and (ii) the probability of a situation to occur depends on the

presence of the user in the room, her role, category of the room, time and the

status of the computer, mouse and keyboard.

The primary context parameters of each of the entities are excluded from this

BN as they do not have a direct impact on the occurrence of a situation. The

relationships between a device, a user, and a room are implicit and hence are not

shown in the BN. A BN allows variables to take different states and hence one

110

6.2 Prototype Implementation

BN has been created to represent the ’busy at desk’ and the ’busy on computer’

situations, which occur when only one user is in a room. Thus there is no need

to show social relation and this reduces the number of parent nodes of this

BN to seven. For a BN that involves more than one user refer to appendix

E. A Bayesian network can be seen as a knowledge base containing probability

clauses. Section 6.2.3 illustrates how KoDA monitors and captures data about

relevant entities within the room.

6.2.3 Environment Monitoring

To recognise ongoing situations, the prototype needs information about a phys-

ical environment and in particular information about the entities specified in

KiCM. To gather this information, this research uses both physical sensors and

logical sensors. A pair of an RFID1 reader and antenna has been used to iden-

tify the room and the users entered the room. RFID is a promising technology

in UbiComp (ODriscoll et al., 2008; Want, 2004). Initially, Bluetooth technol-

ogy was used but as observed in this research and as noted by Kaenampornpan

(2009, p. 254), it is unsuitable for room identification. To monitor whether the

users’ computers are ON or OFF, a Java function is implemented. To determine

time, a Java function that uses the clock of the server is also implemented.

To monitor users’ computer-related activities, two applications - Mouse Activ-

ity Monitor (MAM) and Keyboard Activity Monitor (KAM) - have been im-

plemented. These applications are installed in the users’ computers and are

routinely triggered by the server. Both MAM and KAM are written in Java.

1RFID is an acronym for Radio Frequency Identification

111

6.2 Prototype Implementation

MAM utilises Java API for mouse monitoring while KAM utilises a Linux utility

called logkeys1. MAM and KAM continuously listen to and log mouse positions

and keystrokes respectively. When triggered, MAM reads its log file and com-

pares the positions of the entries within a specified period of time (e.g 5 minutes).

If the positions are different, MAM returns true and false if otherwise. When

triggered, KAM reads its log file to determine if there is any new entry. If there

is a new entry, KAM returns true and false if otherwise.

Figure 6.5: A Script for Triggering MAM

MAM and KAM are triggered by the server through shell scripts, as shown in

figure 6.5 and 6.6 respectively. The outputs from these applications are trans-

mitted to the server. To establish remote connections between the server and

the users’ computers, which is mandatory for these applications to be automat-

ically triggered, the Secure Shell cryptographic network protocol is utilised. In

particular, this research utilises the OpenSSH2 tool. This tool is installed and

configured in both the server and the users’ computers. This tool is configured

to allow the server to access the computers without prompting for passwords.

Appendices F, G and H provide excerpts from the source code of the server’s

method for triggering MAM script, MAM and KAM respectively.

1http://manpages.ubuntu.com/manpages/maverick/man8/logkeys.8.html#contenttoc2
2http://www.openssh.org/

112

6.2 Prototype Implementation

Figure 6.6: A Script for Triggering KAM

6.2.4 Data Interpretation

After monitoring the environment, the prototype interprets data from the sen-

sors. Data forms a basis of facts required by the inference engine of the per-

ception layer in order to infer about ongoing situations. Nonetheless, the data

captured by the physical sensors is meaningless if it cannot be interpreted in

meaningful domain-related concepts, or context parameters. To achieve this,

there must be a mechanism to map the data and context parameters of the rel-

evant entities. The knowledge for mapping the data and context parameters is

provided in the XML document in the concept base.

To retrieve relevant knowledge from the XML document, the Document Object

Model interface1 has been utilised to implement the context interpretor of the

perception layer. Since the knowledge is about a specific entity, Java objects have

been created for each entity. Java arrays have also been implemented for each

of these objects in order to temporarily store knowledge of different instances of

the entities. When the data from a sensor is received, the interpretor retrieves

relevant knowledge and creates relevant objects. These objects are then inserted

into relevant arrays ready to be inserted into the inference engine. Appendix I

provides an excerpt from the source code of accessing information about users.

1http://jaxp.java.net/

113

6.2 Prototype Implementation

6.2.5 Knowledge Reasoning

With the use of the rule language, KoDA can now resemble the architecture of a

Production System (PS). The PS’s architecture consists of production memory,

working memory and an interpreter, or a reasoning engine, which imitate long-

term memory, short-term memory and reasoning capabilities respectively. In

this research, the Knowledge Base can be regarded as the production memory

while the temporary storage of context parameters can be regarded as short-term

memory. To implement reasoning capabilities, this research uses the Drools rule

engine1 which implements a Rete algorithm (Forgy, 1979).

Rete algorithm is an efficient pattern-matching algorithm (Forgy, 1979). In this

language, Rete algorithm is the most commonly used algorithm for implement-

ing inference mechanisms. Alternative algorithms include TREAT (Miranker,

1987) and LEAPS (Don, 1994). Rete algorithm is preferable in this research be-

cause a number of researchers in Context-Awareness have successfully used it,

as discussed in section 3.4. Alternative Java-based rule engines that implement

Rete algorithm include Zilonis2 and Jess3. The Drools rule engine is preferred

in this research because it offers an explanation facility, which is particularly

important in this research for performance evaluation of KoDA.

The algorithm outlines procedures required to match patterns with the observed

facts while the reasoning engine implements the procedures. These procedures

are match, select and act. In the match procedure, the algorithm compares the

1http://docs.jboss.org/drools/release/5.5.0.Final/drools-expert-docs/html/index.html
2http://www.zilonis.org/
3http://herzberg.ca.sandia.gov/

114

6.3 Adding and Invoking Systems

patterns of each of the existing rules with the set of context parameters. The

possible outcome from this procedure is (i) no match, (ii) one match, or (iii) more

than one match. The role of the select procedure is to analyse the output in

order to halt the engine (if there is no match) or to choose a rule that should be

executed (Forgy, 1982). The role of the act procedure is to execute instructions

specified in the consequence part of the rule. In this prototype the instructions

include triggering the application manager and displaying a feedback message.

6.3 Adding and Invoking Systems

The process of adding a context-aware system to be supported by KoDA is

simple. A developer of a context-aware system is simply required to add the

name of the system in an application configuration file and specify the situations

that the system should be invoked. If a developer wants to add system A to

be executed in situation X and Y, for instance, she just needs to open the

configuration file and type two lines of texts; A, X and A, Y. A developer is also

required to add executable file of her system in the same folder the configuration

file is stored. The name of the executable file should similar to the name of the

system specified in the configuration file.

To illustrate the process of invoking context-aware system, we use a worked

example of an application that automatically switches ON or OFF the users’

computers depending on a situation. When a situation is recognised, the appli-

cation manager is invoked and supplied by the name of the recognised situation

and the details of the users involved. Using this knowledge, the application man-

115

6.4 Testing of the Prototype

ager reads the application configuration file and determines that the application

to switch computers ON or OFF needs to be invoked. The application manager

reads information about the users and extracts IP addresses of their computers

and uses this information to invoke the application. The source code that shows

the implementation of these processes is provided in appendix J.

6.4 Testing of the Prototype

A number of tests were conducted before using the prototype. These tests aimed

to identify if the prototype appropriately monitors its environments, interprets

data acquired by its sensors and uses the resultant information to recognise

ongoing situation. These tests were conducted by the researcher of this research

and other independent researchers within the research group. The emphasis of

these tests is not on assessing how accurately the prototype recognises situations.

Evaluation on accuracy of situation recognition is provided in chapter 7.

The results of these tests are appealing. All sensors are 100% accurate. The

prototype also appropriately monitors its environments, interprets data acquired

by its sensors and uses the resultant information to recognise situations. These

tests also raised an important issue about the RFID reader and antenna used in

this prototype. This research utilises a mid-range reader and antenna and hence

have distance limitations. These tests revealed that the pair is only reliable

within a 20-cm range. Section 6.5 provides application scenarios of KoDA.

116

6.5 Application of KoDA

6.5 Application of KoDA

To evaluate a context-aware architecture, framework or middleware, researchers

use imaginary or working context-aware systems. Kaenampornpan (2009), Kofod-

Petersen (2007) and Henricksen (2003), for instance, use scenarios to illustrate

how their solutions can be used. Biegel (2005), Chen (2004) and Dey (2000)

implement and use working context-aware systems to demonstrate how their

solutions can be used. Using scenarios is a feasible approach since the focus

of these solutions is not on implementing context-aware systems. Nonetheless,

scenarios are far from reality to fully show the potentials of these solutions.

Hence, this research adopts both approaches to evaluate KoDA. In addition,

this research provides a performance evaluation of KoDA, in chapter 7.

6.5.1 An Application to Switch a Computer ON/OFF

This application remotely switches ON or OFF a computer depending on a sit-

uation. This application is developed as part of this research. When entering

the room where the prototype is implemented, a user points his/her RFID card

on the RFID reader. The prototype interprets this data to identify the user

and the room entered, and determines the user’s role and the room’s category.

Concurrently, the prototype records the time the user entered the room and de-

termines whether it is during working hours, lunch hours or not. The prototype

also identifies the user’s computer and checks whether it is ON or OFF. If the

computer is OFF, the prototype triggers the application to switch it ON.

Since only one user is in the room and he/she just entered, there are no computer-

117

6.5 Application of KoDA

related activities to be recorded from the user. The prototype waits for five min-

utes or for another user to enter the room to check the status of the user’s mouse

and keyboard activities. The five minutes waiting is to prevent the prototype

from recognising situations based on temporary changes, such as when a mouse

is used. After five minutes, the prototype checks if the user has been using her

computer by checking her mouse and keyboard activities. Using this new knowl-

edge and the previous knowledge about the room, the prototype recognises the

ongoing situation. For illustration purposes, after the situation is recognised the

prototype invokes the application to switch OFF the user’s computer.

Consider that this is an application to remotely change the alert mode of the

users’ mobile phones. If the recognised situation is a meeting, for instance,

KoDA would trigger this application to seamlessly change the settings of the

user’s phone from a ringing mode to a silence or vibrating mode. The users

would not have to worry about where they enter and what settings their phones

are. KoDA would make the use of mobile phone intuitive and thus contributing

to the vision of UbiComp.

6.5.2 Microsoft Cortana with KoDA

Microsoft Cortana1, henceforth referred to as Cortana, is an intelligent personal

assistant application for Microsoft Smartphones. It combines voice recognition

and context-awareness to effortlessly assist a user. One of the boasting feature of

Cortana is its ability to automatically transfer phone calls to voicemail when you

do not want to be disrupted. This feature is useful, for instance, when you are

1http://www.microsoft.com/en-us/mobile/campaign-cortana/

118

6.6 Fulfilment of the Design Requirements

briefing your boss about a product or giving a keynote speech in a conference.

With Cortana installed in your Smartphone, you simply need turn it ON when

you do not want to be disrupted and OFF when you are in your normal routines.

Nonetheless, Cortana cannot recognise ongoing situations and hence depends

on a user to turn the feature ON or OFF. Subsequently, this requires a user to

continuously be aware of her social settings and settings of her Smartphone to

effectively use this feature. So before meeting your boss for the briefing, you

need to remember about the meeting and turn this feature ON beforehand. Once

you finish the meeting, you need to remember to turn this feature OFF. Using

Cortana with KoDA removes the need of the users to continuously remember

about their social settings and the settings of their devices. Hence there is a

potential for increasing the users’ productivity when KoDA is used.

6.6 Fulfilment of the Design Requirements

Section 5.2 outlines the design requirements for developing context-aware archi-

tectures. This section explains how each of these requirements is met. Table 6.2

provides a summary of these requirements.

To implement R1 and R2, this research adopts network programming technique

in order to facilitate communications between the server and the clients (proxy

and a user’s computers). The technique exploits network resources to decen-

tralise the prototype’s components. This research exploits the technique to

separate the components which deals with monitoring and decision making. In

addition to freeing the server for resource-intensive processes, the separation

119

6.6 Fulfilment of the Design Requirements

Table 6.2: Summary of the Design Requirements for Architectures

Requirement Details
R1 Flexible and Scalable An architecture that can be easily modified

to accommodate new sensors as they emerge.
R2 Distributed Nature An architecture with multiple software and

hardware components interacting through a
network or several networks.

R3 Continuous Monitoring An architecture which can detect any
changes whenever they occur.

R4 Dynamic Inferencing and
Responding

An architecture that can infer and dynami-
cally respond to ongoing situation whenever
there are changes.

also enables different proxy computers and users’ computers located in differ-

ent rooms to be connected. This makes KoDA capable of supporting different

rooms. This, however, has not been illustrated in this prototype but addressed

in the designing of KoDA. The proxy computer transmits data regarding the

room to the server. Appendix K and L provide excerpts from the source code

of communications between the server and the proxy computer respectively.

Figure 6.7: Source Code for Reader Event

To implement R3 and R4, this research adopts an event-driven programming

technique. In this technique, procedures are automatically executed based on

predefined actions or events such as users’ or sensors’ inputs. This technique is

120

6.6 Fulfilment of the Design Requirements

adopted to continuously listen to RFID-chipped ID cards from the proxy com-

puters and mouse movements from the users’ computers respectively. These

features enable the prototype to spontaneously trigger appropriate procedures

required to recognise ongoing situations. Figure 6.7 and 6.8 provide source code

for an event and event listener for listening to the cards. Appendix M provides

excerpts of source code for the handler of reader event.

Figure 6.8: Source Codes for Reader Listener

Unlike other prototypes, like EasyMeeting (Chen, 2004), this prototype is imple-

mented to automatically gather data about its inference and a user’s computer-

related activities. This feature is very essential for performance evaluation of

the architecture. Unlike the majority, therefore, this research also evaluates per-

formance of the architecture through various experiments as recommended by

Weiser (1991) and Tichy (1998). Unlike Kofod-Petersen (2007), however, this

research evaluates performance of the architecture as a whole and in the real

world with real users. Chapter 7 describes performance evaluation of KoDA.

121

6.7 Summary and Conclusion

6.7 Summary and Conclusion

This chapter has illustrated how the Knowledge-driven Distributed Architec-

ture (KoDA) can be used to support context-aware systems. This chapter has

illustrated how Knowledge-intensive Context Model (KiCM) can be used to rep-

resent knowledge about situations in KoDA. In this chapter we have illustrated

how knowledge about situations, represented using KiCM, can be represented

using rule-based knowledge representation language and the Bayesian network.

This chapter has also illustrated how different sensors can be used to imple-

ment the perception layer of KoDA. This chapter has also illustrated how the

inference layer of KoDA can use the encoded knowledge about situation and

the information gathered from the environment to recognise ongoing situations.

This chapter has also illustrated how context-aware systems can be added and

supported by KoDA. In particular, this chapter has described how the appli-

cation manager of KoDA uses the knowledge about a recognised situation to

automatically invoke the required context-aware systems.

This chapter has also described the pilot tests that have been done to the pro-

totype. The results of the tests are appealing but raised an important issue

regarding the RFID reader and antenna used in the prototype. The tests re-

vealed that the pair is only reliable within a 20-cm range. This chapter has also

explained how the design requirements for context-aware architectures are met.

In particular, this chapter has explained how the network programming and

the event-driven programming techniques have addressed these requirements.

Chapter 7 provides a discussion on the performance evaluation of KoDA.

122

Chapter 7
Performance Evaluation

In section 1.5, this research hypothesised that if the relations between the users,

an environment, time, devices and computing services are specified and utilised,

then a context-aware architecture can dynamically and accurately recognise the

users’ ongoing situations. In chapter 4 a context model that takes into accounts

these entities is developed. This model is used in chapter 5 to develop KoDA.

This chapter evaluates KoDA by assessing the accuracy on situation recognition.

This chapter shows that when KoDA recognises situations based on limited

knowledge of the users, time and location, the accuracy of situation recognition

is very low. This accuracy increases significantly when knowledge of the users’

computer-related activities is included in situation recognition. This chapter

also shows that this accuracy is further increased when knowledge of certainty

level of each sensor is included in situation recognition.

123

7.1 Introduction

7.1 Introduction

To date, researchers evaluate their context-aware architectures by illustrating

how they can be used in the real world, as illustrated in section 6.5. Among

the researchers, only Kofod-Petersen (2007) evaluates the performance of his

architecture by evaluating its parts separately. As noted by Weiser (1991) and

Tichy (1998), experiments are crucial in scientific research in Computer Science

and are core to the evaluation of any UbiComp system. While evaluating each

component of the architectures can be useful, evaluating them as a whole is

important in order to draw fair and useful conclusions. Hence, this research also

conducts experimental evaluation of KoDA as whole.

Since context-aware architectures are designed to be used in real world envi-

ronments, evaluating them in a natural setting of the users is very important.

Hence, this research evaluates KoDA both in a real world environment and of-

fline. In the real world evaluation, the prototype implemented in chapter 6 is

used by real users in their working environment. This research has implemented

one application for illustration purpose and hence there is little the users can

benefit from it. Thus, apart from the illustration in section 6.5, the usability

evaluation of KoDA is not conducted in this research.

Section 7.2 describes the experimental dataset where the description of sensors

used in the evaluation is also provided. The methodology of this evaluation,

which includes evaluation criteria and statistical significance, is provided in sec-

tion 7.3. Section 7.4 describes the evaluation of KoDA in the real world envi-

ronment and provides a discussion of its results. Section 7.5 describes the offline

124

7.2 Experimental Dataset

evaluation of KoDA and provides a discussion of its results. The discussion of

the overall results is provided in section 7.6. Section 7.7 provides a summary

and conclusion of the evaluations.

7.2 Experimental Dataset

In this research a dataset of 929 records was gathered over ten days by monitor-

ing three research students in their research room. The number of participants

in the room varied but was at most three at any particular time. This dataset

is available for download at http://www.ahisec.com/research. This dataset in-

cludes data gathered by the prototype, as evidences to its inferences, and the

recognised situations.

The datasets provided by PlaceLab (Logan et al., 2007), Van Kasteren et al.

(2008) and McKeever (2011) were considered in this research. These datasets,

however, focus on one user and hence are unsuitable for assessing the accuracy of

situation recognition when more than one user is involved. Nevertheless, using

a dataset from a third party in this evaluation means sensor events similar to

those used to gather the dataset should be provided. This requires a compromise

to the prototype, which can be error-prone.

7.2.1 Sensors Description

This prototype is implemented to gather data about (i) the users and their mouse

and keyboard activities, (ii) the room the users occupy, (iii) the computers the

users use while they are in the room, (iv) the time the users occupy the room

125

7.2 Experimental Dataset

and (v) the time the users interact with their computers.

Figure 7.1: Conceptual Representation of the Prototype

To gather this data, this prototype is implemented with five heterogeneous sen-

sors (one physical and four logical), as described in section 6.2.3. A pair of an

RFID reader and antenna has been used to identify the room and the partici-

pants. As shown in figure 7.1, the antenna is connected to the proxy computer

through the reader and the proxy computer is connected to the server through

a LAN. To be identified in the room, each participant was given an RFID card

and asked to wave the card on the reader when entering or leaving the room. To

monitor whether the users’ computers are ON or OFF, a Java function, hence-

forth referred to as a computer sensor, has been implemented in the server. To

determine time, a Java function, henceforth referred to as a time sensor, has

126

7.2 Experimental Dataset

also been implemented in the server.

To gather data about mouse and keyboard activities, each of the participants’

computer has been installed with KAM and MAM. Siewiorek et al. (2003) utilise

ten minutes of sensor data to determine the user’s state. This research utilises

a five-minute duration, which is commonly used in Operating Systems, to de-

termine if the participants have recently used their keyboard or mouse. The

server recognises situations whenever a participant enters or leaves the room, or

after every five minutes and hence KAM and MAM are only triggered during

this time. This is an important feature as it prevents situations from being

recognised based on temporary changes, such as when a mouse is used.

7.2.2 Situations in the Dataset

The participants annotated four situations; (1) busy on computer, (2) busy at

desk, (3) working and (4) busy working. Each of these situations is derived from

combining thirteen context parameters that are derived from the five sensors, as

described in section 6.2.1 and 6.2.2. At any particular time, KoDA is designed

to recognise one situation of the user(s).

To annotate their ongoing situations, participants used experience sampling

form, shown in appendix N. In this form the participants filled in details such

as name of a situation, the time it occurred and other participants who were

in the room. Although it is more correct to fill in the forms whenever there is

a change in the room, the task was too demanding. Hence, by consulting the

participants, a five-minute time slice was determined to be reasonable.

127

7.2 Experimental Dataset

7.2.3 Data Preparation

The ID of the reader and of each of the cards is abstracted to the ID of the room

and name of each of the participants, respectively. Using this data, the prototype

also determines the participants’ role and the room’s category. The output from

the computer sensor is abstracted to ’on’ or ’off’. The output of the time sensor

is abstracted to ’WorkingHours’, ’LunchHours’ or ’AfterWorkingHours’. The

outputs of MAM and KAM are abstracted to ’true’ or ’false’. The MAM and

KAM outputs are ’true’ if mouse positions are different and if their is new

keystroke in the last five minutes, respectively, and are ’false’ if otherwise.

This data was gathered at the same time the data about the actual occurred

situations was gathered by the participants. The data about the actual occurred

situation is also available for download at http://www.ahisec.com/research.

Since the prototype was also inferring situations when a participant enters or

leaves the room, only instances of recognised situations that correspond to the

data about the actual occurred situations were used. Since the prototype recog-

nises situations after every five minutes and the users annotated their ongoing

situation after every five minutes, the five-minute time slice is used.

This data was gathered with different settings on the prototype on each day. In

day 1, no participants’ computers and computer-related activities were included

in situation recognition. In day 2, knowledge of the participants computer-

related was included in situation recognition. In day 3 and 4, knowledge of the

participants’ mouse activities and keyboard activities, respectively, was included

in situation recognition. In day 5, knowledge of the participants’ mouse and

128

http://www.ahisec.com/research

7.3 Evaluation Methodology

keyboard activities was included in situation recognition. In day 6, 7, 8, 9 and

10, the time duration to determine whether the participants used their computer

was set to 1, 2, 3, 4 and 5 minutes respectively.

7.3 Evaluation Methodology

This research conducted two types of evaluations; an in situ evaluation and an

offline evaluation. The in situ evaluation assessed the ability to use available

information to accurately recognise ongoing situations in the real world envi-

ronment. The offline evaluation assessed the ability to recognise situations with

uncertainties. Section 7.4 and 7.5 provide more details about the in situ and

offline evaluations respectively.

7.3.1 Evaluation Criteria

To our knowledge, researchers of the existing context-aware architectures have

not conducted experimental evaluations to evaluate their architectures. Hence

there are no established criteria for evaluating context-aware architectures. In

section 1.5, this research hypothesised that if the relations between the users,

an environment, time, computing resources and computing services are specified

and utilised, then a context-aware architecture can dynamically and accurately

recognise the users’ ongoing situations.

Hence, to evaluate KoDA on its ability to recognise ongoing situations this

research adopts three widely used statistical classification parameters; precision,

recall and f-measure. Precision is the ratio of the times that a situation is

129

7.3 Evaluation Methodology

correctly recognised (SrecogCorr) to the times it is recognised (Srecog). Recall

is the ratio of the times that a situation is correctly recognised (SrecogCorr) to

the times it appears in the dataset (Sinst). F-measure is the weighted mean of

precision and recall which is used to measure an accuracy of a test. The precision,

recall and f-measure are calculated by equation 7.1, 7.2 and 7.3 respectively.

Precision =
SrecogCorr

Srecog

(7.1)

Recall =
SrecogCorr

Sinst

(7.2)

F −measure = 2× Precision×Recall

Precision + Recall
(7.3)

7.3.2 Statistical Significance

To assess the significance of the outcomes of the experiments, this research

adopts the Fisher’s test and the binomial test. This research also adopts 0.05

as a significance level. The Fisher’s test is used to assess the probability that

the differences between the outcomes of different sets of the experiments could

be obtained by chance. The binomial test is used to assess the probability that

the outcome of a set of the experiments could be obtained by chance.

The binomial test performs a test about the probability of success in a Bernoulli

process. The Bernoulli process is a sequence of independent, constant probability

of success (Lindley & Phillips, 1976). The experiments in this research deter-

130

7.4 In situ Evaluation

mine how many times the prototype correctly or incorrectly recognises ongoing

situations. Each outcome of the experiments does not affect the probability of

other outcomes. Therefore, each of the experiments is a Bernoulli process.

7.4 In situ Evaluation

The aim of this evaluation was to assess KoDA on its ability to use information,

or evidence, it gathers from the real world environment to accurately recognise

ongoing situations. KoDA is designed based on Knowledge-intensive Context

Model (KiCM). Hence, KoDA relies on a number of evidence about the partic-

ipants, the room, time, the participants’ computers and their computer-related

activities to recognise ongoing situation. In contrast, the closest that the exist-

ing architectures can recognise situations is by relying on limited evidence about

users, room and time. Hence it is important in this evaluation;

Ob1 - To assess the accuracy of situation recognition when knowledge of the
participants’ computers and their computer-related activities is missing.

Ob2 - To assess the accuracy of situation recognition when knowledge of the
participants’ computers and their computer-related activities is avail-
able.

Ob1 is important for establishing a baseline while Ob2 for assessing the impact

of knowledge about the participants’ computers and computer-related activities

on the accuracy of situation recognition.

131

7.4 In situ Evaluation

Table 7.1: Set of Experiments in In situ Evaluation

Objective

Experiment 1 To assess the accuracy of situation recognition when knowl-
edge of the participants’ computers and computer-related ac-
tivities is missing.

Experiment 2 To assess the accuracy of situation recognition when knowl-
edge of the participants’ computer-related activities is miss-
ing.

Experiment 3 To assess the accuracy of situation recognition when knowl-
edge of the participants’ computers and computer-related ac-
tivities is available.

Experiment 4 To assess the effect of time duration used to determine
whether the participants are using their computers or not on
the accuracy of situation recognition.

To fulfil these objectives, five sets of experiments were conducted. Table 7.1

states objective of each of these experiments. Experiment 1 took into account

knowledge of the participants, room and time in situation recognition. Exper-

iment 2, in addition, knowledge of available computers was used in situation

recognition. Experiment 3, knowledge of the participants’ computer-related ac-

tivities was also used in situation recognition. Ob1 is fulfilled by experiment 1

while Ob2 by experiment 2 and 3. Experiment 4 was conducted to give more

insights on the impact of the time duration used to determine whether the partic-

ipants are using their computers or not on the accuracy of situation recognition.

7.4.1 Experiment Set-up

The prototype is built with inference rules about these situations. Hence, the

prototype uses these rules and evidences it gathers from the room at a particular

time to recognise an ongoing situation. In this evaluation, all sensors are equally

132

7.4 In situ Evaluation

trusted (with 1.0 certainty level) and hence the evidences are treated as facts.

To assess the accuracy of situation recognition, the data about the recognised

situations is compared with the data about the actual occurred situations.

This research assumed that if a participant is working on his/her computer,

he/she will not spend more than five minutes without using his/her computer’s

keyboard or mouse. Hence, this research utilises records of the last five minutes

to determine if the participants have recently used their computers’ keyboard

or mouse, as explained in section 7.2. Thus, if KAM or MAM determines that

a participant has used her keyboard or mouse in the last five minutes, it was

assumed that the participant was working on the computer at that time.

7.4.2 Experiment 1: Recognition without Knowledge of

Computers and Activities

In this experiment, situations were recognised while taking into account knowl-

edge of the participants, the room and time. Table 7.2 shows the precision, recall

and f-measure from this experiment. Table 7.3 shows a breakdown of situation

recognition errors. In table 7.3, the actual occurred situations are shown in the

first column, on the the left side, while the recognised situations are shown in

the first row, on the top. Each of the remaining rows provide a breakdown

of how each situation was recognised. The recall for the accurately recognised

situations is shown in bold.

Table 7.2 shows that ’busy on computer’ and ’busy working’ are not recognised

at all. Looking at the confusion matrix, table 7.3, these situations are recog-

nised entirely as ’busy at desk’ and ’working’ respectively. In these situations,

133

7.4 In situ Evaluation

Table 7.2: Precision, Recall and F-measure without Knowledge of the Partici-
pants’ Computers and Computer-related Activities.

Precision Recall F-measure

busy at desk 0.41 1.0 0.58
busy on computer 0.0 0.0 0.0
working 0.37 1.0 0.54
busy working 0.0 0.0 0.0

Table 7.3: Confusion Matrix for Situation Recognition without Knowledge of
the Participants’ Computers and Computer-related Activities.

busy at desk busy on
computer

working busy
working

busy at desk 1.0 0.0 0.0 0.0
busy on computer 1.0 0.0 0.0 0.0
working 0.0 0.0 1.0 0.0
busy working 0.0 0.0 1.0 0.0

the only distinguishing factor is knowledge of the participants’ computer-related

activities but is excluded from this experiment. Thus, ’busy on computer’ and

’busy working’ cannot be distinguished from ’busy at desk’ and ’working’ respec-

tively. The impact of knowledge of the participants’ computer-related activities

on situation recognition is shown in section 7.4.4.

7.4.3 Experiment-2: Recognition with Knowledge of Com-

puters

In this experiment, knowledge of the status of the participants’ computers was

also included in situation recognition. Figure 7.2 shows a comparison of the av-

erage precision, recall and f-measure for situation recognition with and without

knowledge of the participants’ computers. As figure 7.2 shows, the average of

134

7.4 In situ Evaluation

precision, recall and f-measure remain the same when knowledge of the partic-

ipants’ computers is included or excluded from situation recognition. This is

because, knowledge of the participants’ computer-related activities is excluded

from this experiment. Hence, like in experiment 1, ’busy on computer’ and ’busy

working’ cannot be distinguished from ’busy at desk’ and ’working’ respectively.

Figure 7.2: Comparison of Average Precision, Recall and F-measure with and
without Knowledge the Participants’ Computers.

7.4.4 Experiment-3: Recognition with Knowledge of Ac-

tivities

In this set of experiments, knowledge of the participants’ computer-related ac-

tivities was also included in situation recognition. To assess the effect of this

knowledge separately and when combined, this experiment was done in three

135

7.4 In situ Evaluation

steps; (i) when knowledge of mouse activities was used (ii) when knowledge of

keyboard activities was used and (iii) when knowledge of keyboard and mouse

activities was used. Figure 7.3 and 7.4 show the average precision, recall and

f-measure when knowledge of the participants’ mouse and keyboard activities

was included separately and when combined. Figure 7.4 shows these averages

after excluding records when the participants forgot to use their RFID cards.

Figure 7.3: Average Precision, Recall and F-measure with Mouse, Keyboard
and both Mouse and Keyboard Activities (before excluding records).

As shown in figure 7.4, the average precision, recall and f-measure are almost

equal when knowledge of the participants’ mouse and keyboard activities is

included separately and combined. This is because all sensors were 100% trusted

and hence any movement of a mouse or keystroke meant a participant was using

her computer. Figure 7.5, 7.6 and 7.7 shows the precision, recall and f-measure,

136

7.4 In situ Evaluation

Figure 7.4: Average Precision, Recall and F-measure with Mouse, Keyboard
and both Mouse and Keyboard Activities (after excluding records).

respectively, when knowledge of the participants’ mouse and keyboard activities

is excluded, and when it is included separately and combined.

As shown in figure 7.5, the precision for all situations improves, with that for

’busy on computer’ and ’busy working’ jumped from 0 to as high as 0.79 and

0.83 respectively. Figure 7.6 shows the recall for ’busy on computer’ and ’busy

working’ also improves, with the exception of ’busy at desk’ and ’working’. This

is because with the inclusion of knowledge of the participants’ mouse and key-

board activities on situation recognition, ’busy on computer’ and ’busy working’

can now be recognised. Hence, any brief use of a mouse or a keyboard by the

participants when were ’busy at desk’ and ’working’ led to these situations be

recognised as ’busy on computer’ and ’busy working’ respectively.

Figure 7.7 shows that the f-measure for all situations increases, with that for

137

7.4 In situ Evaluation

Figure 7.5: Precision with Mouse and Keyboard Activities.

Figure 7.6: Recall with Mouse and Keyboard Activities.

138

7.4 In situ Evaluation

’busy on computer’ and ’busy working’ jumped from 0 to as high as 0.81 and

0.83 respectively. With inclusion of knowledge of the participants’ mouse and

keyboard activities in situation recognition, ’busy on computer’ and ’busy work-

ing’ can now be distinguished from ’busy at desk’ and ’working’, respectively.

Looking at the confusion matrix, in table 7.4, ’busy on computer’ and ’busy

working’ are now less confused with ’busy at desk’ and ’working’, respectively.

Figure 7.7: F-measure with Mouse and Keyboard Activities.

The confusion matrix also shows ’busy at desk’ and ’working’ are largely recog-

nised as ’busy on computer’ and ’busy working’ respectively. This is because the

participants sometimes briefly used their mouse or keyboard when were ’busy at

desk’ or ’working’. Since any mouse or keyboard activity of the last five minutes

is valid and situations are recognised after every five minutes, the chances of any

brief use of a mouse or keyboard to be included in situation recognition is high.

139

7.4 In situ Evaluation

This suggests that the recall for ’busy at desk’ and ’working’ will increase as the

duration of time to determine whether the participants use their computers or

not is decreased. This is shown in experiment-4, section 7.4.5.

Table 7.4: Confusion Matrix for Situation Recognition with Mouse and Key-
board Activities.

busy at desk busy on
computer

working busy
working

busy at desk 0.69 0.31 0.0 0.0
busy on computer 0.21 0.79 0.0 0.0
working 0.0 0.0 0.60 0.40
busy working 0.0 0.0 0.13 0.86

Table 7.5 shows average f-measure when knowledge of the participants’ comput-

ers and computer-related activities was included and excluded from situation

recognition. As table 7.5 shows, the accuracy of situation recognition increases

almost three times when knowledge of the participants’ computer-related activi-

ties is included in situation recognition. To check if this difference is significant,

Fisher’s test was used as described in section 7.3.2. This test shows that this

difference is statistically significant to the 99.9999% level. This table also shows

the accuracy of situation recognition is the same if knowledge of the participants’

computer is included or excluded from situation recognition.

Table 7.5: Comparison of Average F-measure with and without Mouse and
Keyboard Activities.

No Computers & Activities Computers Activities

Avg. f-measure 0.28 0.28 0.74

140

7.4 In situ Evaluation

7.4.5 Experiment-4: Effect of Time Duration to Monitor

Activities

In this set of experiments, the effect of duration of time used to determine if a

participant is using a computer or not is assessed. This set of experiments was

conducted when the duration was set to one, two, three, four and five minutes.

As figure 7.8 shows, the average recall increases up to when the duration is three

minutes and then decreases. Looking deeper, figure 7.9 shows that the best re-

sult for situation recognition is achieved when the duration is three minutes, as

opposed to five minutes used in this evaluation.

Figure 7.8: The Average Recall with Different Time Durations

As shown on figure 7.9, the average recall for ’busy at desk’ and ’working’ de-

creases as the duration increases whereas that of ’busy on computer’ and ’busy

141

7.4 In situ Evaluation

working’ increases. This is because as the duration to determine whether the

participants are using their computers or not is longer, the chances of a brief

use of a mouse or keyboard when the participants are ’busy at desk’ or ’work-

ing’ to be taken into account on situation recognition is very high. In contrast,

the chances of any duration of time the participants are ’busy on computer’ or

’busy working’ and not using their mouse or keyboard to be taken into account

in situation recognition is very low.

Figure 7.9: The Average F-measure with Different Time Durations

7.4.6 Discussion of the Results

This evaluation shows that when knowledge of the participants’ computer-related

activities is included in situation recognition, the accuracy of situation recogni-

tion improves almost three times compared to when this knowledge is excluded

142

7.4 In situ Evaluation

from situation recognition. This improvement was expected because in the real

life, the users are engaged in different computer-related activities in different sit-

uations. Hence, by taking into account knowledge of the users’ computer-related

activities in situation recognition, a context-aware architecture can differentiate

between different situations.

This evaluation also shows knowledge of whether the participant’s computer is

ON or OFF is less important in situation recognition. This finding was also ex-

pected because knowledge of whether the participant’s computer is ON or OFF,

without knowing the participant’s computer-related activities, adds nothing to

a context-aware architecture to differentiate between different situations. This

knowledge is important for determining the participants’ computer-related ac-

tivities. These findings justify our decision to include knowledge of the users,

location, time, devices and computer services in our context model.

Further investigation shows the accuracy of situation recognition changes as

the duration of time to determine whether the participants interact with their

computers changes. This evaluation shows the accuracy of situation recognition

improves by 7% when monitoring duration is reduced to three minutes but

decreases as the duration is further reduced. Although this improvement is not

statistically significant, as shown by the Fisher’s test, it gives the impression

that the duration of time to determine whether the participants are using their

computers or not is an important factor in situation recognition.

The Binomial test shows that the overall probability for accurately recognising

553 or fewer situations in 884 trials is <0.0001. This is statistically significant

and hence this research concludes that the results obtained by KoDA are not

143

7.5 Offline Evaluation

Table 7.6: An Overall Probability for Each of the Situations Being Recognised
Correctly.

busy at desk busy on
computer

working busy
working

Probability 0.0537 0.0024 <0.0001 <0.0001

by chance. Table 7.6 shows a breakdown of the probability for recognising each

situation. As shown in table 7.6, the probability for accurately recognising ’busy

on computer’, ’working’ and ’busy working’ situations is statistically significant

except the marginal result of the ’busy at desk’ situation.

In this evaluation, all sensors were equally trusted and hence lack of any context

parameter resulted in poor performance. As shown in experiment 1 and 2, lack

of knowledge of the participants’ computer-related activities resulted in 28%

accuracy of situation recognition. And as shown in experiment 3, figure 7.3 and

7.4, by excluding records where the participants forgot to use their RFID cards,

the accuracy of situation recognition increases. The aim of this evaluation was

to assess the ability of KoDA to use information gathered from the real world

environment to accurately recognise ongoing situation. Hence, this evaluation

did not take into account uncertainties. The investigation of the impact of

uncertainties in situation recognition is provided in section 7.5.

7.5 Offline Evaluation

This evaluation aims at assessing the impact of knowledge of certainty levels of

sensors on the accuracy of situation recognition. Instead of equally trusting the

sensors, as in the in situ evaluation, in this evaluation each sensor is assigned

144

7.5 Offline Evaluation

with a certainty level. In this evaluation, situation recognition is done by a

Bayesian inference engine instead of the logical-based inference engine.

The dataset described in section 7.2 is used in this evaluation. Since the aim is

to assess the impact of knowledge of certainty levels on the accuracy of situation

recognition, only records that involve one participant were used. The time du-

ration used to determine whether the participants are using their computer or

not is less important in this evaluation. Thus, only records that were gathered

when the time duration was set to five minutes were used. Hence, a total of 219

records from the dataset were used in this evaluation.

To accomplish the aim of this evaluation, two experiments were conducted each

with one objective;

Ob1 - To assess the accuracy of situation recognition without knowledge of
certainty levels.

Ob2 - To assess the accuracy of situation recognition with knowledge of cer-
tainty levels.

Ob1 is important for establishing a baseline while Ob2 for assessing the impact

of knowledge of certainty levels on the accuracy of situation recognition.

7.5.1 Experiment Set-up

This research uses the Microsoft Bayesian Network API (MSBN3) to implement

the Bayesian inference. The Bayesian network created in section 6.2.2 is used

as an input to this inference engine. Certainty levels used in this evaluation

145

7.5 Offline Evaluation

for each sensor is provided in table 7.7. The data from the dataset is used

as evidences for situation recognition. To automate the process of acquiring

and assigning evidences to the inference engine, this research has developed a

tool in C# programming language. This tool also writes inference results to a

spreadsheet file and hence simplifies data analysis process. The source code of

the tool is available for download at http://www.ahisec.com/research.

As described in section 6.4, all sensors used in this prototype are 100% accurate.

However, as noted by McKeever (2011), users’ actions can degrade quality of

information received from these sensors. In this prototype, users’ actions are

involved on RFID, MAM and KAM. Hence, to determine a certainty level of

RFID we used all data from the dataset. We counted the number of times the

participants are indicated to be out of the room while KAM and MAM indicated

there were mouse and keyboard activities on their computers. We then divided

this number by the number of times the participants were required to use their

RFID cards. This gives us 0.79 certainty level of RFID sensor.

Table 7.7: Certainty Level of Each Sensor Used in this Prototype

Time Sensor Computer Sensor RFID KAM MAM

Accuracy 1.0 1.0 0.79 1.0 0.87

To determine certainty levels of MAM and KAM, we run one test prior to

this evaluation. This test ran over three days and involved one user. The

user was asked to note her mouse and keyboard activities of one hour in each

day while MAM and KAM have been simultaneously logging these activities.

The user indicated to use the mouse 41 times while MAM indicated the mouse

146

http://www.ahisec.com/research

7.5 Offline Evaluation

has been used 47 times. Thus, 87% of the mouse activities were correct i.e

the certainty level of 0.87. Both the participant and KAM indicated that the

keyboard was used 28 times. Thus, 100% of the keyboard activities were correct

i.e the certainty level of 1.0. Table 7.7 provides the certainty level of each

sensor used in the prototype. Appendix O provides an excerpt of probability

distribution of parents nodes used in this evaluation.

7.5.2 Experiment 1: Recognition without Certainty

In this set of experiments, knowledge of certainty levels of sensors is excluded

from situation recognition. Table 7.8 shows the average of precision, recall and

f-measure from these experiments. Table 7.9 shows a breakdown of situation

recognition errors. Table 7.8 shows that ’busy on computer’ is poorly recognised.

Table 7.8: Average Precision, Recall and F-measure without Certainty.

Precision Recall F-measure

busy at desk 0.61 0.58 0.51
busy on computer 0.51 0.47 0.49

Looking at the confusion matrix, table 7.9, ’busy on computer’ is largely recog-

nised as ’busy at desk’. This is because these values are calculated by combining

even the situations recognised when knowledge of the participants’ computer-

related activities is excluded from situation recognition.

147

7.5 Offline Evaluation

Table 7.9: Confusion Matrix for Situation Recognition without Certainty.

busy at desk busy on computer

busy at desk 0.58 0.42
busy on computer 0.53 0.47

7.5.3 Experiment 2: Recognition with Certainty

In this set of experiments, each sensor was assigned with its certainty level as

shown in table 7.7. Figure 7.10 shows a comparison of the average precision,

recall and f-measure for situation recognition with and without knowledge of

certainty levels. As figure 7.10 shows, the average of precision and recall in-

creases, with overall improvement of 22% in f-measure, when a certainty level

of each sensor is taken into account in situation recognition.

Figure 7.10: The Comparison of Average Precision, Recall and F-measure for
Situation Recognition with and without Certainty.

148

7.5 Offline Evaluation

Figures 7.11, 7.12 and 7.13 show a comparison of precision, recall and f-measure

by situation, respectively, of situation recognition with and without knowledge of

certainty levels. Figure 7.11 shows precision for all situations improves. Figure

7.12 shows the recall of ’busy at desk’ decreases while that of ’busy on com-

puter’ increases. Subsequently, this causes the f-measure of the ’busy at desk’

to decrease, as shown in figure 7.13. This is because when knowledge of the

participants’ computer-related activities is excluded from situation recognition

and the status of their computers is ON, all the ’busy at desk’ situations are

recognised as ’busy on computer’.

Figure 7.11: The Average Precision with and without Certainty.

Table 7.10 shows average f-measure when knowledge of certainty level of each

sensor was included and excluded from situation recognition. As table 7.10

149

7.5 Offline Evaluation

Figure 7.12: The Average Recall with and without Certainty.

Figure 7.13: The Average F-measure with and without Certainty.

150

7.6 Discussion of the Overall Results

shows, the accuracy of situation recognition improves by 21% when knowledge

of certainty levels is included in situation recognition compared to when this

knowledge is excluded from situation recognition. To check if this difference is

significant, Fisher’s test is used. This test shows that this difference is statisti-

cally significant to the 99.9999% level.

Table 7.10: Comparison of Average F-measure with and without Certainty.

No Certainty Levels With Certainty Levels

Avg. f-measure 0.53 0.66

7.5.4 Discussion of the Results

This evaluation shows the accuracy of situation recognition increases by 25%

when knowledge of certainty level of each sensor is included in situation recogni-

tion. This improvement was expected because with certainty levels, uncertain-

ties of context parameters are quantified and preserved in situation recognition.

Context parameters are treated as beliefs rather than facts and hence situations

are recognised even if some of the parameters are missing. With certainty levels,

for instance, situations are recognised even in occasions where the participants

forgot to use their RFID cards.

7.6 Discussion of the Overall Results

This research hypothesised that if the relations between the users, an envi-

ronment, time, computing resources and computing services are specified and

151

7.6 Discussion of the Overall Results

utilised, then a context-aware architecture can dynamically and accurately recog-

nise the users’ ongoing situations. Our results significantly support this hypoth-

esis. Our results show that when KoDA recognises situations based on limited

knowledge of the users, time and location, the accuracy of situation recognition

is very low. This accuracy increases significantly when knowledge of the users’

computer-related activities is included in situation recognition. Our results also

show that this accuracy is further increased when knowledge of certainty level

of each sensor is included in situation recognition.

7.6.1 Benefits of KoDA

KoDA makes the use of devices intuitive and hence has the potential to increase

the users’ productivity. As illustrated in section 6.5, KoDA enables context-

aware systems to respond to the users’ ongoing situation. It knows when the

users’ situation changes to dynamically invoke appropriate context-aware sys-

tems. Hence, the users do not have to worry about the settings of their devices.

In KoDA, inference rules (or knowledge about situations) are encoded by a

developer. This process can be very difficult when there is no model to follow

and there are hundreds of sensors and subsequently context parameters to be

used. KiCM simplifies this process by providing a systematic way of identifying

and representing relevant entities, their context parameters and the relationships

amongst them prior representing inference rules.

In KiCM, each entities has equal importance. This feature enables KiCM to

take into account knowledge about computer-related activities of nearby users

in situation recognition. Hence, KiCM can be used to design context-aware

152

7.6 Discussion of the Overall Results

architectures that can support more than one user in dynamic environments.

As shown in the evaluations, KoDA takes into account the computer-related

activities of all of the existing users in recognising ongoing situation.

KiCM only specifies minimum knowledge required from each of the entities in

order to model a situation. In contrast, it does not specify the limit of this

knowledge. This feature has two benefits (i) it imposes minimum monitoring

capabilities of context-aware architectures and (ii) it provides a flexibility to

developers to instantiate only a subset of context parameters depending on their

problem domain or availability of sensing technologies.

The generic graphical representation of KiCM makes it simple to use and ab-

stracts it from any knowledge representation formalism. This gives developers

the flexibility to use different knowledge representation formalisms and subse-

quently different inference mechanisms. As illustrated in section 6.2.2, knowl-

edge about situations is represented as a rule and as a Bayesian network.

In KoDA, inference rules are not limited to a task required to be accomplished

by a context-aware system. In KoDA, inference rules represent occurrence of

a situation in which the users may be involved in a number of tasks. Hence,

KoDA removes the need of specifying inference rules in context-aware systems

which subsequently prevents unnecessary repetitions of inference rules.

The process of adding context-aware systems to be supported in KoDA is sim-

plified. As illustrated in section 6.3, to add a context-aware system a developer

simply specifies the names of situations in which the systems should be invoked.

This process does not require developers of context-aware systems to familiarise

with any knowledge representation language.

153

7.6 Discussion of the Overall Results

KoDA is responsible for gathering data from sensors, interpret it and use the

resultant context parameters and other directly acquired context parameters

to recognise ongoing situation and invoke appropriate context-aware systems.

Hence, KoDA removes the reasoning burden from resource-constrained devices.

This implies that even the most miniature and resource-constrained device can

be made aware of ongoing situation to appropriately respond.

A number of researchers, including Chen (2004), propose to use information

about users’ scheduled events from sources such as electronic diaries in order

to recognise ongoing situations. This approach, however, relies on the users to

specify these events. In case a user forgets, which is most likely, a situation

cannot be recognised. KoDA removes the need of relying on this information.

7.6.2 Limitations of KoDA

A model is an approximation of the real world and hence KiCM does not provide

a mirror image of situations. KiCM only combines relevant knowledge about

the people and their computer-related activities, location, time and devices to

approximate situations. This implies that the knowledge about situations that

KoDA possess is intensive but incomplete.

In KoDA, knowledge about situations is encoded by a developer and hence the

ability of KoDA to recognise ongoing situations is limited to this knowledge.

KoDA cannot infer new situations from the knowledge it possess. In future we

plan to extend KoDA to utilise information it gather about the environment and

its inferences to derive new situations.

154

7.7 Summary and Conclusions

In this research we used five sensors and four situations to evaluate KoDA on the

accuracy of situation recognition, where three research students were involved.

Whilst the results from this research are promising, further investigations of

KoDA which use more sensors and situations and involve more users with dif-

ferent roles are required to confirm the performance of KoDA.

Since inference rules are specified based on context parameters, adding or remov-

ing a sensor from KoDA requires a modification of these rules. This limitation

can be addressed by specifying inference rules with numerous unused context

parameters. This solution, however, may result to performance issues and hence

care should be taken when adopting it.

7.7 Summary and Conclusions

This chapter has described two approaches used in this research to evaluate the

ability of KoDA to recognise ongoing situation. In the first approach, KoDA was

evaluated in a real world environment where a prototype was used to recognise

situations of the real users. The aim of this evaluation was to assess the ability

of KoDA to use information it gathers from the real world environment to ac-

curately recognise ongoing situations. Hence, this evaluation did not take into

account uncertainties. In the second approach the impact of including knowledge

of certainty levels of sensors in situation recognition was assessed.

The results of these evaluations significantly support our hypothesis. The results

show that when KoDA recognises situations based on limited knowledge of the

users, time and location, the accuracy of situation recognition is very low. This

155

7.7 Summary and Conclusions

accuracy increases significantly when knowledge of the users’ computer-related

activities is included in situation recognition. The results also show that this

accuracy is further increased when knowledge of certainty level of each sensor is

included in situation recognition.

This shows that KoDA takes advantage of accessible information about a physi-

cal environment to recognise ongoing situations and invoke appropriate context-

aware systems. This information is not limited to a specific task and hence

KoDA enables context-aware systems to adapt to social dynamics. KoDA also

removes the need of relying on information about the users’ scheduled events

in order to recognise ongoing situations. Consequently, KoDA makes the use of

devices intuitive and hence contributing to the vision of UbiComp.

156

Chapter 8
Conclusions and Future Work

This chapter provides a summary and conclusion of this research. This chapter

provides a summary of the contributions from this research and outlines the ben-

efits of the research outcomes. This chapter also outlines limitations and projects

the future directions of this research and the research in context-awareness.

This research concludes that the knowledge of the users and their computer-

related activities, the users’ devices, location and time is crucial for a context-

aware architecture to accurately recognise an ongoing situation. This research

also concludes that knowledge of certainty level of each sensor is also crucial for

for a context-aware architecture to accurately recognise an ongoing situation.

157

8.1 Thesis Summary

8.1 Thesis Summary

As the number of devices increases, it is imperative to increase seamless inter-

actions between the users and devices, and to make these devices less intrusive.

This is because as more devices emerge, it becomes difficult and more time

consuming for the users to interact with and effectively use them. Among the

solutions to this problem, researchers have been developing computing systems

that are responsive to their environments. In Context-Awareness research do-

main, these systems are called context-aware systems.

The survey of the existing context-aware systems, section 2.4, shows that few of

these systems can respond to a set of context parameters that correspond to a

specific task. Since these systems are supported by context-aware architectures,

in chapter 3 we conducted their analysis. Our analysis concludes that this is

because these architectures are not developed to recognise situations. As a result,

these architectures are designed with limited representation of the real world in

which the users and devices interact. Subsequently, these architectures lack

reasoning capability to use available information to recognise ongoing situations

and hence to enable context-aware systems to respond to situations.

This research proposes a Knowledge-driven Distributed Architecture (KoDA),

chapter 5. To design KoDA, we first developed a Knowledge-intensive Context

Model (KiCM), chapter 4. KiCM is a comprehensive model of the real world.

It provides a systematic way of identifying and representing knowledge of the

relevant entities required to sufficiently represent situations in KoDA. To suffi-

ciently and consistently describe the entities specified in KiCM, we developed a

158

8.2 Summary of Contributions

synthesised taxonomy, section 2.5.2. This taxonomy provides an extensive list

of common context parameters used in context-awareness research community.

To illustrate the application of KoDA and KiCM, this research has implemented

a prototype, chapter 6. In this prototype we have illustrated how KiCM can

be used to represent knowledge about situations in KoDA. Since all entities are

equally treated in KiCM, computer-related activities of nearby users are taken

into account when modelling a situation. This makes the resultant model more

realistic. We also illustrated how KoDA can monitor a physical environment, in-

terpret the acquired data and use the resultant information to recognise ongoing

situation and automatically invoke required context-aware systems.

To assess on how accurate KoDA is on recognising ongoing situations, we con-

ducted performance evaluation in chapter 7. This evaluation shows that the

accuracy of situation recognition increases significantly when knowledge of the

users and their computer-related activities, the users’ devices, location and time

is used. This evaluation also shows that this accuracy is further increased when

knowledge of certainty level of each sensor is also used. Section 8.2 provides a

summary of the contributions of this research.

8.2 Summary of Contributions

This section summarises the contributions of this research as follows;

159

8.2 Summary of Contributions

8.2.1 Synthesised Taxonomy of Context Parameters

The synthesised taxonomy of context parameters, appendix A, is an enhance-

ment of the existing taxonomies of context parameters. This taxonomy provides

a systematic way of identifying and representing knowledge about common en-

tities in Context-Awareness. This taxonomy is comprehensive as it is developed

without an influence of the development of any context-aware system. The

prime feature of this taxonomy is its classification of context parameters based

on the entities. This feature provides a focused lens where numerous context

parameters about an entity can be identified and represented.

8.2.2 Knowledge-intensive Context Model

The Knowledge-intensive Context Model (KiCM), figure 4.1, is a novel model of

a situation. It is developed to systematically identify and represent knowledge

about entities required to sufficiently represent a situation. KiCM improves

the existing theory-based models by including knowledge of the users’ computer

and their computer-related activities to model a situation. This extension is

justified in the in-situ evaluation, section 7.4, as it shows that the accuracy

of situation recognition is significantly increased when knowledge of the users’

computers and computer-related activities is included in situation recognition.

The benefits of KiCM are provided in section 7.6.1.

160

8.3 Benefits of the Research Outcomes

8.2.3 Knowledge-driven Distributed Architecture

The Knowledge-intensive Distributed Architecture (KoDA), figure 5.1, is a novel

context-aware architecture designed to dynamically recognise ongoing situation.

KoDA improves the existing context-aware architectures as it can also reason

about information it gathers to recognise ongoing situations. KoDA is designed

based on KiCM and hence with a comprehensive model of the real world in

which the users and devices interact. Hence these situations are not confined

to a particular task and thus KoDA enables context-aware systems to respond

to social dynamics. As shown in the in-situ evaluation, section 7.4, KoDA uses

information it gathers about the participants and their computer-related activ-

ities, location, time and computers to accurately recognise ongoing situations.

The benefits of KoDA are provided in section 7.6.1.

8.3 Benefits of the Research Outcomes

1. The taxonomy can be used by developers of context-aware systems to iden-

tify context parameters which may be required to sufficiently represent key

entities. The developers can also use the taxonomy to identify appropriate

technologies which may be required to monitor these entities.

2. KiCM can be used by;

• Researchers seeking to use KiCM for further investigations.

• Developers seeking to use KiCM to identify and represent knowledge

about situations.

161

8.4 Research Limitations

3. KoDA can be used by;

• Researchers seeking to implement KoDA for further investigations.

• Developers seeking to implement KoDA for supporting existing or

new context-aware systems.

• Users benefit from KoDA by being able to intuitively use their de-

vices. With KoDA, for instance, a context-aware recommendation

application will recommend settings of devices not only when the

user is in a specific venue, but based on ongoing situation.

• The ability of the users to intuitively use their devices may increase

the users’ efficiency and productivity in an enterprise. KoDA has also

a potential to optimise workflow in enterprises by providing real time

information about resources, such as employees and equipments.

4. The results of this research can be used by other researchers seeking to

design novel context-aware architectures or to improve exiting ones.

8.4 Research Limitations

Throughout the evaluations, only three research students were involved. Hence

KoDA was limited to recognise only situations that involved research students.

It is worth investigating how KoDA would recognise other situations that involve

users with different roles.

The prototype used in the evaluations cannot differentiate, for instance, if the

user is at her desk or elsewhere in the room. Hence, on occasions where a par-

162

8.5 Future Directions

ticipant was in a the room but not interacting with her computer, this research

assumed that the participant was at her desk.

Throughout the offline evaluation, we used a specific time period to determine

whether the participants are using their computers or not. Although this yields

reasonable results, an alternative approach is to consider this as uncertainty and

thus to apply fuzziness, as described by McKeever (2011, p. 96).

8.5 Future Directions

The emerging context-aware architectures, like KoDA, are capable of storing

information about recognised situations and evidences used to infer these situ-

ations. This information can be used as another source of knowledge to these

architectures. The majority of the existing inference mechanisms in context-

awareness, however, are incapable of learning. Much effort is devoted to de-

velop inference mechanisms that are capable of quantifying and preserving un-

certainties on situation recognition. Hence, research on learning mechanisms for

knowledge-driven context-aware architectures is required. Researcher can adapt

lessons learnt from similar work such as from Munguia Tapia (2008), Ravi et al.

(2005) and Bao & Intille (2004). Such mechanisms, however, should be able to

dynamically use information from multiple sources such as social media websites,

usage profiles of devices, smart meters, smart energy and smart grid.

The majority of the existing context-aware architectures are designed to acquire

knowledge from other sources such as social media, cloud storages and informa-

tion kiosks. Such knowledge comes in different formats which may differ from

163

8.5 Future Directions

the internal knowledge representation of a context-aware architecture. The ques-

tion is; How can new inference rules be dynamically added in a context-aware

architecture without conflicting the existing inference rules and subsequently af-

fecting its operations? Research is required to investigate how knowledge from

different sources can be transformed and added in the existing knowledge of a

context-aware architecture without affecting it.

Context-aware architectures are designed to enable context-aware systems to un-

derstand their changing environments and the users’ computing needs and hence

to effectively use them to support the users. The goal is to increase seamless

interactions between the users and computing devices, and to make computing

devices less intrusive and hence to reduce the users’ cognitive overload. Since

the cognitive overload is associated with the users’ efficiency in their every day

activities, it is worth investigating the impact of context-aware architectures on

the users’ efficiency.

KoDA makes context-aware systems responsive to situations and hence the

physical environment and the people in them smart. Its ability to intelligently

use available information and dynamically recognise ongoing situations enable

context-aware systems to constantly be aware of the desirable settings that de-

vices should adhere to and computing needs that the users may require. With

the exponential increase of technology, it is worth investigating how KoDA will

perform when more users, with different roles, are involved and when more sit-

uations and technologies are used.

With the unprecedented increase of handheld and wearable devices that are

packed with sensors, technology will enable people to be more conscious about

164

8.5 Future Directions

their health. Using their handheld devices, people will be able to know how many

of calories, for instance, they are about to consume from eating their food and

how many physical activities they will need to do in order to remain healthier. In

addition, patients will be warned when they are about to overdose themselves

or will be notified when they are supposed to take their medications. The

technology to monitor the users’ activities, such as the Nike Fuel Band1 wearable

device, is already in place. Products in supermarkets are already attached with

RFID tags. In addition, recently handheld devices have been developed with

the capability of reading RFID tags, such as NFC2 enabled Smartphones.

To date, many navigation systems rely on data from GPS. This trend will change

in the feature. Navigation systems will be relying on the data from sensors

embedded almost everywhere. Physical buildings, roads, signposts, bins and any

object you can think of will be attached with sensors. These sensors will contain

information about the objects. Sensors attached to a building, for instance, may

contain the name of the building, the names of the streets the building is located,

and whether the building is a shopping mall or a hospital. Using handheld

devices, this information can be used for navigation purposes such as helping

blind people walk or identifying tourist cites. A lot of effort has been devoted

to localise objects in indoor environments. With the unprecedented increase of

sensors, the same lessons can be adapted in localising objects outdoors.

Different sensing technologies are emerging and information sources, such as so-

cial media websites, usage profiles of devices, smart meters, smart energy and

smart grid, are rapidly increasing. The number of handheld and wearable devices

1http://www.nike.com/us/en us/c/nikeplus-fuelband
2NFC is an acronym for Near Field Communication

165

8.5 Future Directions

per person is also rapidly increasing. These technologies provide unprecedented

access to information about us. Such information may reveal our intentions,

medical conditions and our interests. With access to such information, context-

aware architectures will make our devices more aware of and responsive to our

social life. Devices will become social-aware; they will respond as we want and

when we want them to. Devices will be able to predict our intentions and deter-

mine the best way to support us. In a academic conferences, for instance, the

participants’ devices will not only seamlessly download the presentation slides

of a keynote speaker but will also provide relevant literature based on the par-

ticipants’ tweets. In lecture sessions, students’ devices will gather lecture notes

and acquire relevant real world examples based on students’ cultural, ethnic and

geographical background.

166

Appendices

167

Appendix A Synthesised-taxonomy of Context Parameters

168

Appendix B A Process Flow of KoDA

169

Appendix C Description of the Situations used in this Research

Situation Description
busy on com-
puter

A situation whereby a research student is at his/her desk in
his/her research room while interacting with his/her computer.
In this situation, the student may be writing to or reading from
the computer.

busy at desk A situation whereby a research student is at his/her desk in
his/her research room without interacting with his/her com-
puter. In this situation, the student may be engaged in activities
that do not involve the usage of a keyboard, a mouse or both.

busy working A situation whereby two or more research students are at their
desks in their research room while both of them are interacting
with their computers.

working A situation whereby two or more research students are at their
desks in their research room but one or both of them are not
interacting with their computers.

informal meeting A meeting whereby a research student meets with his/her su-
pervisor(s) and/or adviser(s) for informal discussions. This sit-
uation occurs when a venue is occupied by other students, who
may be interacting with their computers.

semi-formal
meeting

A meeting whereby a research student meets with his/her super-
visor(s) and adviser(s) for less formal discussions. This situation
occurs only when a venue is unoccupied by other students.

170

Appendix D Excerpts from the Knowledge Base

171

Appendix E A Bayesian Network for Situations Involving Three Users

172

Appendix F Excerpts from the Script Triggering Method

173

Appendix G Excerpts from the Mouse Activity Monitor

174

Appendix H Excerpts from the Keyboard Activity Monitor

175

Appendix I Excerpts from Accessing User Details

176

Appendix J Excerpts from the Application Manager

177

Appendix K Excerpts from the Server Listening Routine

178

Appendix L Excerpts from the Client Data Sending Routine

179

Appendix M Excerpts from the Reader Event Handler

180

Appendix N Experience Sampling Form

181

Appendix O Excerpt of Probability Distribution of Parents Nodes

182

REFERENCES

Abowd, G. (1999). Classroom 2000: An experiment with the instrumentation

of a living educational environment. IBM Systems Journal , 38, 508–530.

Abowd, G., Atkeson, C., Hong, J., Long, S., Kooper, R. & Pinker-

ton, M. (1997). Cyberguide: A mobile contextaware tour guide. Wireless

Networks , 3, 421–433.

Adomavicius, G. & Tuzhilin, A. (2008). Context-aware recommender sys-

tems. In Proceedings of the 2008 ACM conference on Recommender systems ,

335–336, ACM.

Anagnostopoulos, C. & Hadjiefthymiades, S. (2010). Advanced fuzzy

inference engines in situation aware computing. Fuzzy sets and systems , 161,

498–521.

Baldauf, M., Dustdar, S. & Rosenberg, F. (2007). A survey on context-

aware systems. INTERNATIONAL JOURNAL OF AD HOC AND UBIQUI-

TOUS COMPUTING , 2, 263 – 277.

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F.,

Aydin, A., Lüke, K.H. & Schwaiger, R. (2011). Incarmusic: Context-

183

REFERENCES

aware music recommendations in a car. In E-Commerce and Web Technolo-

gies , 89–100, Springer.

Bao, L. & Intille, S.S. (2004). Activity recognition from user-annotated

acceleration data. In Pervasive computing , 1–17, Springer.

Barkhuus, L. & Dey, A. (2003). Is context-aware computing taking control

away from the user? three levels of interactivity examined. In UbiComp 2003:

Ubiquitous Computing , 149–156, Springer.

Biegel, G. (2005). A Programming Model for Mobile, Context-Aware Applica-

tions . Ph.D. thesis, University of Dublin, Trinity College.

Brown, P.J., Bovey, J.D. & Chen, X. (1997). Context-aware applications:

from the laboratory to the marketplace. Personal Communications, IEEE , 4,

58–64.

Buxton, W. (1997). Living in augmented reality: Ubiquitous media and reac-

tive environments. Video mediated communication, 363384.

Callon, M. (1991). Techno-economic networks and irreversibility. A sociology

of monsters: Essays on power, technology and domination, 38, 132–161.

Chen, G. & Kotz, D. (2000). A survey of context-aware mobile computing

research. Tech. rep., Citeseer.

Chen, H. (2004). An Intelligent Broker Architecture for Pervasive Context-

Aware Systems . Ph.D. thesis, University of Maryland.

Cheverst, K., Davies, N., Mitchell, K., Friday, A. & Efstratiou,

C. (2000). Developing a context-aware electronic tourist guide: some issues

184

REFERENCES

and experiences. In Proceedings of the SIGCHI conference on Human factors

in computing systems , 17–24, ACM.

Ciaramella, A., Cimino, M.G., Marcelloni, F. & Straccia, U. (2010).

Combining fuzzy logic and semantic web to enable situation-awareness in ser-

vice recommendation. In Database and Expert Systems Applications , 31–45,

Springer.

Cimino, M.G., Lazzerini, B., Marcelloni, F. & Ciaramella, A. (2012).

An adaptive rule-based approach for managing situation-awareness. Expert

Systems with Applications , 39, 10796–10811.

Cooperstock, J.R., Fels, S.S., Buxton, W. & Smith, K.C. (1997).

Reactive environments. Commun. ACM , 40, 65–73.

Coutaz, J., Crowley, J.L., Dobson, S. & Garlan, D. (2005). Context

is key. Commun. ACM , 48, 49–53.

Csikszentmihalyi, M. & Larson, R. (1992). The experience of psychopathol-

ogy: Investigating mental disorders in their natural settings , chap. Validity

and reliability of the experience sampling method, 43–57. Cambridge Univer-

sity Press.

Da, K., Roose, P., Dalmau, M., Nevado, J. & Karchoud, R. (2014).

Kali2much: a context middleware for autonomic adaptation-driven platform.

In Proceedings of the 1st ACM Workshop on Middleware for Context-Aware

Applications in the IoT , 25–30, ACM.

185

REFERENCES

Davis, R. & King, J. (1975). An overview of production systems. Tech. rep.,

Defence Technical Information Center.

de Andrade, M.T.P. (2007). Architectural support for ubiquitous access to

multimedia content . Ph.D. thesis, University of Porto.

Denning, P. (1980). Acm president’s letter: What is experimental computer

science? Communications of the ACM , 23, 543–544.

Devlic, A., Reichle, R., Wagner, M., Pinheiro, M.K., Vanrompay,

Y., Berbers, Y. & Valla, M. (2009). Context inference of users’ social

relationships and distributed policy management. In Pervasive Computing

and Communications, 2009. PerCom 2009. IEEE International Conference

on, 1–8, IEEE.

Dey, A. & Abowd, G. (2000a). Towards a better understanding of context

and context-awareness. In CHI 2000 workshop on the what, who, where, when,

and how of context-awareness , 304–307.

Dey, A., Salber, D., Abowd, G. & Futakawa, M. (1999). The conference

assistant: Combining context-awareness with wearable computing. In Proceed-

ings of the 3rd International Symposium on Wearable Computers , 21–28.

Dey, A.K. (2000). Providing Architectural Support for Building Context-Aware

Applications . Ph.D. thesis, Georgia Institute of Technology.

Dey, A.K. & Abowd, G.D. (2000b). Cybreminder: A context-aware system

for supporting reminders. In Handheld and Ubiquitous Computing , 172–186,

Springer.

186

REFERENCES

Dix, A., Rodden, T., Davies, N., Trevor, J., Friday, A. & Palfrey-

man, K. (2000). Exploiting space and location as a design framework for

interactive mobile systems. ACM Trans. Comput.-Hum. Interact., 7, 285–321.

Dockhorn Costa, P., Almeida, J., Ferreira Pires, L. & Van Sin-

deren, M. (2007). Situation specification and realization in rule-based

context-aware applications. In Distributed Applications and Interoperable Sys-

tems , 32–47, Springer.

Don, B. (1994). The leaps algorithms. Tech. rep., Department of Computer

Science, The University of Texas.

Dourish, P. (2004). What we talk about when we talk about context. Personal

and ubiquitous computing , 8, 19–30.

Ericsson (2011). More than 50 billion connected devices. Tech. rep., Ericsson.

Evans, D. (2011). The internet of things how the next evolution of the internet

is changing everything. Tech. rep., Cisco.

Forgy, C. (1979). On the Efficient Implementation of Production Systems .

Ph.D. thesis, Department of Computer Science, Carnegie-Mellon University.

Forgy, C. (1982). Rete: A fast algorithm for the many pattern/many object

pattern match problem. Artificial Intelligence, 19, 17–37.

Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B. & Landay,

J.A. (2007). Myexperience: a system for in situ tracing and capturing of user

feedback on mobile phones. In Proceedings of the 5th international conference

on Mobile systems, applications and services , 57–70, ACM.

187

REFERENCES

Gellersen, H.W., Schmidt, A. & Beigl, M. (2002). Multi-sensor context-

awareness in mobile devices and smart artifacts. Mobile Networks and Appli-

cations , 7, 341–351.

Göker, A. & Myrhaug, H. (2002). User context and personalisation. In

Workshop proceedings for the 6th European Conference on Case Based Rea-

soning .

Gomes, D., Gonçalves, J.M., Santos, R.O. & Aguiar, R. (2010). Xmpp

based context management architecture. In GLOBECOM Workshops (GC

Wkshps), 2010 IEEE , 1372–1377, IEEE.

Gregory, F. (1993). Cause, effect, efficiency and soft systems models. Journal

of the Operational Research Society , 333–344.

Gu, T., Pung, H.K. & Zhang, D.Q. (2004a). A bayesian approach for deal-

ing with uncertain contexts. In Second International Conference on Pervasive

Computing .

Gu, T., Pung, H.K. & Zhang, D.Q. (2004b). Toward an osgi-based in-

frastructure for context-aware applications. Pervasive Computing, IEEE , 3,

66–74.

Gu, T., Pung, H.K. & Zhang, D.Q. (2005). A service-oriented middleware

for building context-aware services. Journal of Network and computer appli-

cations , 28, 1–18.

188

REFERENCES

Haghighi, P.D., Krishnaswamy, S., Zaslavsky, A. & Gaber, M.M.

(2008). Reasoning about context in uncertain pervasive computing environ-

ments. In Smart Sensing and Context , 112–125, Springer.

Han, L., Jyri, S., Ma, J. & Yu, K. (2008). Research on context-aware

mobile computing. In Advanced Information Networking and Applications -

Workshops, 2008. AINAW 2008. 22nd International Conference on, 24–30.

Harter, A., Hopper, A., Steggles, P., Ward, A. & Webster, P.

(2002). The anatomy of a context-aware application. Wireless Networks , 8,

187–197.

Heckerman, D. (1998). A tutorial on learning with Bayesian networks .

Springer.

Henricksen, K. (2003). A Framework for Context-Aware Pervasive Computing

Applications . Ph.D. thesis, School of Information Technology and Electrical

Engineering, The University of Queensland.

Hong, J.y., Suh, E.h. & Kim, S.J. (2009). Context-aware systems: A liter-

ature review and classification. Expert Systems with Applications , 36, 8509–

8522.

Igira, F. & Gregory, J. (2009). Cultural historical activity theory. Handbook

of research on contemporary theoretical models in information systems , 434–

454.

189

REFERENCES

Intille, S.S., Rondoni, J., Kukla, C., Ancona, I. & Bao, L. (2003).

A context-aware experience sampling tool. In CHI’03 extended abstracts on

Human factors in computing systems , 972–973, ACM.

Jensen, F.V. (1996). An introduction to Bayesian networks , vol. 210. UCL

press London.

Kaenampornpan, M. (2009). A Context Model, Design Tool and Architecture

for Context-Aware Systems Design. Ph.D. thesis, Department of Computer

Science, University of Bath.

Kaptelinin, V. & Nardi, B.A. (1997). Activity theory: basic concepts and

applications. In CHI ’97 extended abstracts on Human factors in computing

systems: looking to the future, CHI EA ’97, 158–159, ACM, New York, NY,

USA.

Kofod-Petersen, A. (2007). A Case-Based Approach to Realising Ambient

Intelligence among Agents . Ph.D. thesis, Department of Computer and Infor-

mation Science, Norwegian University of Science and Technology.

Korb, K.B. & Nicholson, A.E. (2003). Bayesian artificial intelligence. cRc

Press.

Kortuem, G., Kawsar, F., Fitton, D. & Sundramoorthy, V. (2010).

Smart objects as building blocks for the internet of things. Internet Comput-

ing, IEEE , 14, 44–51.

190

REFERENCES

Kukkonen, J., Lagerspetz, E., Nurmi, P. & Andersson, M. (2009).

Betelgeuse: A platform for gathering and processing situational data. Perva-

sive Computing, IEEE , 8, 49–56.

Larson, R. & Csikszentmihalyi, M. (1983). The experience sampling

method. New Directions for Methodology of Social & Behavioral Science.

Lee, S., Kim, J., Wang, H., Bae, D., Lee, K., Lee, J. & Jeon, J. (2006).

Architecture of rete network hardware accelerator for real-time context-aware

system. In Knowledge-Based Intelligent Information and Engineering Sys-

tems , 401–408, Springer.

Lee, Y.S. & Cho, S.B. (2013). A mobile picture tagging system using tree-

structured layered bayesian networks. Mob. Inf. Syst., 9, 209–224.

Li, Z.Y., Park, J.C., Lee, B. & Youn, H.Y. (2013). Situation awareness

based on dempster-shafer theory and semantic similarity. In Computational

Science and Engineering (CSE), 2013 IEEE 16th International Conference

on, 545–552, IEEE.

Lindley, D.V. & Phillips, L. (1976). Inference for a bernoulli process (a

bayesian view). The American Statistician, 30, 112–119.

Liu, H. (2010). Biosignal controlled recommendation in entertainment systems.

Technische Universiteit Eindhoven, Eindhoven, 1–133.

Logan, B., Healey, J., Philipose, M., Tapia, E.M. & Intille, S. (2007).

A long-term evaluation of sensing modalities for activity recognition. Springer.

191

REFERENCES

Ludford, P.J., Frankowski, D., Reily, K., Wilms, K. & Terveen,

L. (2006). Because i carry my cell phone anyway: functional location-based

reminder applications. In Proceedings of the SIGCHI conference on Human

Factors in computing systems , 889–898, ACM.

Lueg, C. (2002). On the gap between vision and feasibility. In Pervasive Com-

puting , 45–57, Springer.

Lyu, C.H., Choi, M.S., Li, Z.Y. & Youn, H.Y. (2010). Reasoning with

imprecise context using improved dempster-shafer theory. In Web Intelligence

and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM Interna-

tional Conference on, vol. 2, 475–478, IEEE.

Marmasse, N. & Schmandt, C. (2000). Location-aware information delivery

with commotion. In Handheld and Ubiquitous Computing , 157–171, Springer.

McKeever, S. (2011). Recognising Situations Using Extended Dempster-Shafer

Theory . Ph.D. thesis, School of Computer Science and Informatics, National

University of Ireland.

Miluzzo, E. (2011). Smartphone Sensing . Ph.D. thesis, Dartmouth College.

Miranker, D. (1987). Treat: a better match algorithm for ai production sys-

tems. In Proceedings of the sixth National conference on Artificial intelligence-

Volume 1 , 42–47, AAAI Press.

Mitchell, K. (2002). Supporting The Development of Mobile Context-Aware

Systems . Ph.D. thesis, Computing Department, Lancaster University.

192

REFERENCES

Munguia Tapia, E. (2008). Using machine learning for real-time activity recog-

nition and estimation of energy expenditure. Ph.D. thesis, Massachusetts In-

stitute of Technology.

Newell, A. (1973). Production systems: Models of control structures. Tech.

rep., Defence Technical Information Center.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 1, 87–127.

ODriscoll, C., MacCormac, D., Deegan, M., Mtenzi, F. & OShea,

B. (2008). Rfid: An ideal technology for ubiquitous computing? Ubiquitous

Intelligence and Computing , 490–504.

Paspallis, N., Rouvoy, R., Barone, P., Papadopoulos, G.A.,

Eliassen, F. & Mamelli, A. (2008). A pluggable and reconfigurable archi-

tecture for a context-aware enabling middleware system. In On the Move to

Meaningful Internet Systems: OTM 2008 , 553–570, Springer.

Raento, M., Oulasvirta, A., Petit, R. & Toivonen, H. (2005). Con-

textphone: A prototyping platform for context-aware mobile applications.

Pervasive Computing, IEEE , 4, 51–59.

Ranganathan, A. & Campbell, R.H. (2003a). An infrastructure for

context-awareness based on first order logic. Personal and Ubiquitous Com-

puting , 7, 353–364.

Ranganathan, A. & Campbell, R.H. (2003b). A middleware for context-

aware agents in ubiquitous computing environments. In Middleware 2003 ,

143–161, Springer.

193

REFERENCES

Ranganathan, A., Al-Muhtadi, J. & Campbell, R.H. (2004). Reasoning

about uncertain contexts in pervasive computing environments. IEEE Perva-

sive Computing , 3, 62–70.

Ravi, N., Dandekar, N., Mysore, P. & Littman, M.L. (2005). Activity

recognition from accelerometer data. In AAAI , vol. 5, 1541–1546.

Roalter, L., Kranz, M. & Möller, A. (2010). A middleware for intelli-

gent environments and the internet of things. In Ubiquitous Intelligence and

Computing , 267–281, Springer.

Russell, D.M., Streitz, N.A. & Winograd, T. (2005). Building disap-

pearing computers. Commun. ACM , 48, 42–48.

Santos, E., Gu, Q. & Santos, E.E. (2011). Incomplete information and

bayesian knowledge-bases. In Systems, Man, and Cybernetics (SMC), 2011

IEEE International Conference on, 2989–2995, IEEE.

Schilit, B. (1995). A System Architecture for Context-Aware Mobile Comput-

ing . Ph.D. thesis, Graduate School of Arts and Sciences, Columbia University.

Schilit, B. & Theimer, M. (1994). Disseminating active map information to

mobile hosts. Network, IEEE , 8, 22 –32.

Schilit, B., Adams, N. & Want, R. (1994). Context-aware computing ap-

plications. In Mobile Computing Systems and Applications, 1994. WMCSA

1994. First Workshop on, 85 –90.

Schilit, B.N., LaMarca, A., Borriello, G., Griswold, W.G., Mc-

Donald, D., Lazowska, E., Balachandran, A., Hong, J. & Iver-

194

REFERENCES

son, V. (2003). Challenge: Ubiquitous location-aware computing and the

place lab initiative. In Proceedings of the 1st ACM international workshop on

Wireless mobile applications and services on WLAN hotspots , 29–35, ACM.

Schmidt, A. & Van Laerhoven, K. (2001). How to build smart appliances?

Personal Communications, IEEE , 8, 66–71.

Schmidt, A., Aidoo, K., Takaluoma, A., Tuomela, U., Van Laer-

hoven, K. & Van de Velde, W. (1999a). Advanced interaction in context.

In Handheld and ubiquitous computing , 89–101, Springer.

Schmidt, A., Beigl, M. & Gellersen, H.W. (1999b). There is more to

context than location. Computers & Graphics , 23, 893–901.

Shafer, S., Krumm, J., Brumitt, B., Meyers, B., Czerwinski, M. &

Robbins, D. (1998). The new easyliving project at microsoft research. In

Proceedings of the 1998 DARPA/NIST Smart Spaces Workshop, 127–130.

Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A., Moraveji,

N., Reiger, K., Shaffer, J. & Wong, F.L. (2003). Sensay: A context-

aware mobile phone. ISWC\’03 .

Sohn, T., Li, K.A., Lee, G., Smith, I., Scott, J. & Griswold, W.G.

(2005). Place-its: A study of location-based reminders on mobile phones .

Springer.

Sowa, J. (1991). Principles of semantic networks.

195

REFERENCES

Soylu, A., Causmaecker, P.D. & Desmet, P. (2009). Context and adap-

tivity in pervasive computing environments: Links with software engineering

and ontological engineering. Journal of Software, 4, 992–1013.

Strang, T. & Linnhoff-Popien, C. (2004). A context modeling survey. In

In: Workshop on Advanced Context Modelling, Reasoning and Management,

UbiComp 2004 - The Sixth International Conference on Ubiquitous Comput-

ing, Nottingham/England .

Streitz, N., Rocker, C., Prante, T., van Alphen, D., Stenzel, R. &

Magerkurth, C. (2005). Designing smart artifacts for smart environments.

Computer , 38, 41 – 49.

Strobbe, M., Van Laere, O., Dhoedt, B., De Turck, F. & De-

meester, P. (2012). Hybrid reasoning technique for improving context-aware

applications. Knowledge and Information systems , 31, 581–616.

Studer, R., Benjamins, V.R. & Fensel, D. (1998). Knowledge engineering:

Principles and methods.

Tichy, W. (1998). Should computer scientists experiment more? Computer ,

31, 32–40.

Truong, B.A., Lee, Y.K. & Lee, S.Y. (2005). Modeling and reasoning

about uncertainty in context-aware systems. In e-Business Engineering, 2005.

ICEBE 2005. IEEE International Conference on, 102–109.

196

REFERENCES

van de Westelaken, R., Hu, J., Liu, H. & Rauterberg, M. (2011).

Embedding gesture recognition into airplane seats for in-flight entertainment.

Journal of Ambient Intelligence and Humanized Computing , 2, 103–112.

Van Kasteren, T., Noulas, A., Englebienne, G. & Kröse, B. (2008).

Accurate activity recognition in a home setting. In Proceedings of the 10th

international conference on Ubiquitous computing , 1–9, ACM.

Wang, X.H., Zhang, D.Q., Gu, T. & Pung, H.K. (2004). Ontology based

context modeling and reasoning using owl. 18–22.

Want, R. (2004). Enabling ubiquitous sensing with rfid. Computer , 37, 84–86.

Want, R., Hopper, A., Falcão, V. & Gibbons, J. (1992). The active

badge location system. ACM Trans. Inf. Syst., 10, 91–102.

Weiser, M. (1991). The computer for the 21st century. Scientific American.

Weiser, M. (1994). The world is not a desktop. interactions , 1, 7–8.

Woods, W. (1975). What’s in a link: Foundations for semantic networks. Tech.

rep., DTIC Document.

Yau, S.S. & Karim, F. (2004). An adaptive middleware for context-sensitive

communications for real-time applications in ubiquitous computing environ-

ments. Real-Time Systems , 26, 29–61.

Ye, J., Coyle, L., Dobson, S. & Nixon, P. (2007). Using situation lattices

to model and reason about context. In Modeling and Reasoning in Context

(MRC) with Special Session on the Role of Contextualization in Human Tasks

(CHUT) which is held in conjunction with CONTEXT , 1–12.

197

REFERENCES

Zhang, D., Guo, M., Zhou, J., Kang, D. & Cao, J. (2010). Context rea-

soning using extended evidence theory in pervasive computing environments.

Future Generation Computer Systems , 26, 207–216.

Zimmermann, A., Lorenz, A. & Oppermann, R. (2007). An operational

definition of context. In Modeling and using context , 558–571, Springer.

198

	A Knowledge-driven Distributed Architecture for Context-Aware Systems
	Recommended Citation

	Abstract
	Contents
	1 Introduction
	1.1 Background
	1.2 Key Definitions
	1.3 Research Motivation
	1.4 Problem Statement
	1.5 Thesis Statement
	1.6 Research Methodology
	1.7 Research Contributions and Limitations
	1.8 Research Dissemination
	1.9 Thesis Structure

	2 Context Awareness
	2.1 Introduction
	2.2 Ubiquitous Computing
	2.3 Context-Awareness
	2.4 Survey of Context-Aware Systems
	2.5 Taxonomies of Context Parameters
	2.6 Summary and Conclusion

	3 The State-Of-the-Art
	3.1 Introduction
	3.2 Analysis of Architectures
	3.3 Analysis of Context Models
	3.4 Analysis of Inference Mechanisms
	3.5 Discussion of the Analyses
	3.6 Summary and Conclusion

	4 Knowledge-intensive Context Model
	4.1 Introduction
	4.2 Design Requirements
	4.3 Actor-Network Theory
	4.4 Why Actor-Network Theory?
	4.5 Theoretical Background of the Model
	4.6 Conceptual Representation of the Model
	4.7 A Worked Example of Using KiCM
	4.8 Summary and Conclusion

	5 Knowledge-driven Distributed Architecture
	5.1 Introduction
	5.2 Design Requirements
	5.3 Conceptual Design of KoDA
	5.4 Structural Representation of KoDA Implementation
	5.5 Summary and Conclusion

	6 KoDA Prototype
	6.1 Introduction
	6.2 Prototype Implementation
	6.3 Adding and Invoking Systems
	6.4 Testing of the Prototype
	6.5 Application of KoDA
	6.6 Fulfilment of the Design Requirements
	6.7 Summary and Conclusion

	7 Performance Evaluation
	7.1 Introduction
	7.2 Experimental Dataset
	7.3 Evaluation Methodology
	7.4 In situ Evaluation
	7.5 Offline Evaluation
	7.6 Discussion of the Overall Results
	7.7 Summary and Conclusions

	8 Conclusions and Future Work
	8.1 Thesis Summary
	8.2 Summary of Contributions
	8.3 Benefits of the Research Outcomes
	8.4 Research Limitations
	8.5 Future Directions

	Appendices
	A Synthesised-taxonomy of Context Parameters
	B A Process Flow of KoDA
	C Description of the Situations used in this Research
	D Excerpts from the Knowledge Base
	E A Bayesian Network for Situations Involving Three Users
	F Excerpts from the Script Triggering Method
	G Excerpts from the Mouse Activity Monitor
	H Excerpts from the Keyboard Activity Monitor
	I Excerpts from Accessing User Details
	J Excerpts from the Application Manager
	K Excerpts from the Server Listening Routine
	L Excerpts from the Client Data Sending Routine
	M Excerpts from the Reader Event Handler
	N Experience Sampling Form
	O Excerpt of Probability Distribution of Parents Nodes
	References

