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Abstract
An enhanced refractive index (RI) sensor based on a combination of a long period fiber grating
(LPG) and a small core singlemode fiber (SCSMF) structure is proposed and developed. Since
the LPG and SCSMF transmission spectra experience a blue and a red shift respectively as the
surrounding RI (SRI) increases, the sensitivity is improved by measuring the separation
between the resonant wavelengths of the LPG and SCSMF structures. Experimental results
show that the sensor has a sensitivity of 1028 nm/SRI unit in the SRI range from 1.422 to
1.429, which is higher than individual sensitivities of either structure alone used in the
experiment. Experimental results agree well with simulation results.

Keywords: refractive index sensor, long period fiber grating

(Some figures may appear in colour only in the online journal)

1. Introduction

Optical fiber based refractive index (RI) sensors have attracted
wide interest due to their unique advantages such as immunity
to electromagnetic interference, small size, high sensitivity,
remote operation capability, etc. The techniques used to
implement fiber based RI sensing include a fiber Bragg grating
(FBG) [1], long period fiber grating (LPG) [2, 3], surface
plasmon resonance [4], tapered fiber [5] and a singlemode–
multimode–singlemode (SMS) fiber structure [6, 7]. Among
these techniques, an SMS fiber structure based optical sensor
has the advantages of low cost and ease of fabrication and

4 Author to whom any correspondence should be addressed.

hence has attracted wide research interest [6–13]. As for RI
sensing, our recent investigations have shown that an etched
SMS fiber structure has high sensitivity with a demonstrated
maximum sensitivity of 1815 nm/RIU [6]. An alternative
approach is to use a small core singlemode fiber (SCSMF)
as a substitute for the etched MMF to construct an SCSMF
structure based refractometer [14, 15]. The advantage of
using an SCSMF is that it can be manufactured without
the use of fiber etching, which means it is possible to
guarantee the accuracy of the fiber diameter and smoothness
of the fiber surface, yielding a simpler and more repeatable
SCSMF structure based refractometer. Our investigations
have shown that this sensor exhibits wavelength red-shift as
the surrounding RI (SRI) increases [15]. On the other hand, the
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Figure 1. Schematic diagram of an LPG and SCSMF structure based RI sensor.

LPG is a promising technique for optical sensing [16, 17], for
example an LPG can be used as an RI sensor and may exhibit
wavelength blue-shift as the RI increases. If the two types
of sensors are combined with each other, the sensitivity will
be improved by monitoring the separation wavelength shifts
between the resonant wavelengths of the LPG and SCSMF
structures. In this paper we investigate for the first time the use
of a combination of LPG and SCSMF fiber structures for RI
sensing and show that the sensitivity achievable is higher than
that of either of the structures alone.

2. Principle

A schematic diagram of a combined LPG and SCSMF
structure based RI sensor is shown in figure 1. Both the
SCSMF section and SMF28 in figure 1 typically have a step
index profile. Cladding modes will be excited in the SCSMF
section when the light enters from the input SMF28. As light
is transmitted through the SCSMF, interference takes place
between these cladding modes. These cladding modes will
also be influenced by the SRI. At the output of the SCSMF
section, the power of the core mode coupled to the output
SMF28 is found to be wavelength dependent. Furthermore as
an LPG is imprinted in the output SMF28 fiber, the power in
this core mode is coupled to a cladding mode by the LPG. The
resonant wavelength of the LPG will also be influenced by the
SRI. Therefore as the RI of the surrounding liquid changes, the
resonant wavelengths of both the LPG and SCSMF structures
change, but with different wavelength shift directions: for
example, if the SRI decreases, the SCSMF structure exhibits
blue shift, while the LPG will have red shift. This separation
wavelength shift is larger than the individual wavelength
shifts of either LPG or SCSMF structure alone, and hence
the detectable sensitivity to SRI changes is higher than that
of either of the individual structures alone. Moreover, since
the LPG and SCSMF structures display different temperature
responses, it may be possible with the combined structure to
measure both temperature and RI.

Assuming the light in the input SMF28 has a fundamental
mode field distribution A(r, 0) within the core area and the
field profile within an SCSMF is �(r), the input field at the
SCSMF can be written as [15]

�(r) =
M∑

m=1

�m(r), (1)

A(r, 0) =
M∑

m=1

bm�m(r), (2)

where A(r, 0) is the eigenmode of the SMF28, �m(r) is the
mth eigenmode of the step index optical fiber SCSMF, M is
the total number of modes supported in the SCSMF and bm

is the excitation coefficient for the mth mode, which can be
expressed as

bm =
∫ ∞

0 A(r, 0)�m(r)r dr∫ ∞
0 A(r, 0)A(r, 0)r dr

. (3)

The field within the SCSMF section at a propagation
distance L1 can thus be calculated by

E(r, L1) =
M∑

m=1

bm�m(r) exp(jβmL1), (4)

where βm is the propagation constant of the mth eigenmode
within the SCSMF. At the interface between the SCSMF and
the output SMF28, the light will be coupled to both core and
cladding modes within SMF28, which can be expressed as

A(L1) =
∫ ∞

0 E(r, L1)A(r, 0)r dr∫ ∞
0 A(r, 0)A(r, 0)r dr

, (5)

Bn(L1) =
∫ ∞

0 E(r, L1)�n(r)r dr∫ ∞
0 �n(r)�n(r)r dr

, (6)

where �n(r) is the nth cladding mode within the SMF28.
It is noted that in the above equations, the mode fields are

normalized as∫ ∞

0
A(r, 0)A(r, 0)r dr =

∫ ∞

0
�m(r)�m(r)r dr

=
∫ ∞

0
�n(r)�n(r)r dr = 1. (7)

As both the core and cladding modes propagate through
the LPG, the output from the LPG can be expressed as [18](

A(L1 + L2)

B(L1 + L2)

)

=
(

cos(γ L2) + i σ
γ

sin(γ L2) i κ
γ

sin(γ L2)

i κ
γ

sin(γ L2) cos(γ L2) − i σ
γ

sin(γ L2)

)

×
(

A(L1)

Bn(L1)

)
, (8)

where κ is the ‘ac’ cross-coupling coefficient, σ is a general
‘dc’ self-coupling coefficient and γ = √

κ2 + σ 2.
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Figure 2. Simulated (a) spectral response and (b) wavelength shift of the sensor with different SRI.

3. Numerical simulations

Simulations based on the above structure were carried out as
shown in figure 2 demonstrating the spectral response under
different SRI conditions. In this simulation the SCSMF has
core and cladding diameters of 2.2 and 125 μm respectively
and the refractive indices of the core and cladding are 1.451 and
1.445 respectively, the SMF28 has core and cladding diameters
of 8.3 and 125 μm and the refractive indices of the core and
cladding are 1.449 and 1.444 respectively, and the LPG has a
period of 390 μm and length of 15.6 mm (40 periods) which
correspond to the LP06 cladding mode.

Figure 2(a) shows that as the SRI increases, the LPG
experiences wavelength blue-shift but the SCSMF structure
undergoes wavelength red-shift monotonically. Figure 2(b)
shows the simulated wavelength shifts for both the LPG and
SCSMF structure wavelength dips. From figure 2(b) it is
obvious that both LPG and SCSMF have a nonlinear response
for wavelength shift versus SRI; the higher the SRI range,
the higher the sensitivity for both resonant wavelengths of
LPG and SCSMF. The estimated sensitivities for the LPG and
SCSMF dips are −40 and 100 nm/SRIU (SRI unit) in the
SRI range from 1.33 to 1.34, and −280 and 820 nm/SRIU in
the range from 1.41 to 1.42 respectively. When the separation
wavelength shift is considered, the sensitivity increases to 140
and 1100 nm/SRI in the SRI range from 1.33 to 1.34 and from
1.41 to 1.42 respectively, which is the sum of the individual
LPG and SCSMF sensitivities.

4. Experimental investigation

An experimental setup to utilize the combined LPG and
SCSMF structure for RI sensing is shown in figure 3. The
SCSMF used in our experiments was 460HP which has a
step index profile. The LPG was fabricated by a CO2 laser
in an SMF28 with a grating period of 390 μm and length
of 15.6 mm. One end of the SCSMF is fusion spliced to an
SMF28 and the other end of the SCSMF is fusion spliced to an
LPG. The length of the SCSMF is 20 mm. The combined RI
sensor structure is driven by a broadband source operating in
the infrared wavelength range and the spectrum was measured

 

 

 

 

Sensor head 

Broadband source 

OSA 
Liquid 

Figure 3. Schematic experimental setup for RI sensing.

by an optical spectrum analyzer (OSA) (Agilent 86142B) with
a resolution of 0.5 nm.

The measured spectral response of the combined LPG and
SCSMF structure immersed in different RI liquids is shown in
figure 4(a), displaying as expected two distinct dip or resonant
regions. The RI liquids were made with dimethyl sulfoxide
mixed with water in different concentrations. The refractive
indices of the mixed liquids were then calibrated with an Abbe
5 refractometer at a wavelength of 589 nm.

Figure 4(a) shows that as the SRI increases, the resonant
wavelength of the LPG decreases and the resonant wavelength
of the SCSMF structure increases monotonically. Figure 4(b)
shows the measured wavelength shifts for both the LPG and
SCSMF structure wavelength dips.

From figure 4(b) it is estimated that the LPG and SCSMF
dips have sensitivities of −38 and 59 nm/SRIU in the SRI
range from 1.335 to 1.36, and −319 and 709 nm/SRIU in the
range from 1.422 to 1.429 respectively. When the separation
wavelength shift is considered, the sensitivity increases to 97
and 1028 nm/SRI in the SRI range from 1.335 to 1.36 and from
1.422 to 1.429 respectively, which is the sum of the individual
LPG and SCSMF sensitivities. This sensitivity is much higher
than that of an FBG based RI sensor, for example a sensitivity
of 2.3 nm/RIU in an RI range from 1.446 to 1.458 is reported
in [1].

The temperature dependence of the RI sensor was also
experimentally investigated as shown in figure 5. Since the test
RI liquids used in the experiments utilized different mixtures
of dimethyl sulfoxide and water with different concentrations,
the dimethyl sulfoxide will evaporate as the temperature
increases which in turn will change the RI of the liquids. Thus

3
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Figure 4. Measured (a) spectral response and (b) wavelength shifts of the sensor with different SRI.
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Figure 5. Wavelength shift versus temperature of the RI sensor
immersed in pure water.

investigations on the temperature dependence of the RI sensor
were only carried out by immersing the sensor in pure water,
the temperature of which could be controlled.

Figure 5 shows the sensor response, for the sensor
immersed in pure water, as the temperature increases from
25 to 45 ◦C. Both the LPG and SCSMF experience
wavelength shifts in the same direction with value of −0.125
and −0.427 nm ◦C−1 respectively. Since the LPG and SCSMF
have opposite wavelength shift directions as SRI varies, it
is possible to set up two independent equations which are
functions of the LPG and SCSMF wavelength shifts versus
SRI and temperature, and hence by solving the two equations
it is possible to simultaneously determine both temperature
and RI.

5. Conclusions

In this paper we propose to use a combined LPG and SCSMF
structure as an enhanced sensitivity RI sensor. The underlying
principle is that the transmission spectra of both the LPG and
SCSMF structures are sensitive to the SRI but with different
wavelength shift directions for the same SRI change. By

measuring the wavelength separation shift of the LPG and
SCSMF structure, the sensitivity can be improved and both our
theoretical and experimental investigations have demonstrated
that this sensor has a higher sensitivity than any individual
sensor based on either an LPG or SCSMF structure alone.
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