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K(π, 1)’S FOR ARTIN GROUPS OF FINITE TYPE

THOMAS BRADY AND COLUM WATT

1. Introduction.

This paper is a continuation of a programme to construct new K(π, 1)’s
for Artin groups of finite type which began in [4] with Artin groups on
2 and 3 generators and was extended to braid groups in [3]. These
K(π, 1)’s differ from those in [6] in that their universal covers are sim-
plicial complexes.

In [4] a complex is constructed whose top-dimensional cells correspond
to minimal factorizations of a Coxeter element as a product of re-
flections in a finite Coxeter group. Asphericity is established in low
dimensions using a metric of non-positive curvature. Since the non-
positive curvature condition is difficult to check in higher dimensions a
combinatorial approach is used in [3] in the case of the braid groups.

It is clear from [3] that the techniques used can be applied to any finite
Coxeter group W . When W is equipped with the partial order given
by reflection length and γ is a Coxeter element in W , the construction
of the K(π, 1)’s is exactly analogous provided that the interval [I, γ]
forms a lattice. In dimension 3, see [4], establishing this condition
amounts to observing that two planes through the origin meet in a
unique line. In the braid group case, see [3], where the reflections
are transpositions and the Coxeter element is an n-cycle this lattice
property is established by identifying [I, γ] with the lattice of non-
crossing partitions of {1, 2, . . . , n}.
In this paper, we consider the Artin groups of type Cn and Dn. Thus,
for each finite reflection groupW of type Cn or Dn, partially ordered by
reflection length, we identify a lattice inside W and use it to construct
a finite aspherical complex K(W ). In the Cn case this lattice coincides
with the lattice of noncrossing partitions of {1, 2, . . . , n,−1, . . . ,−n}
studied in [8]. The final ingredient is to prove that π1(K(W )) is iso-
morphic to A(W ), the associated finite type Artin group. As in [4] and
[3] this involves a lengthy check that the obvious maps between the
two presentations are well-defined.
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2 T. BRADY AND C. WATT

David Bessis has independently obtained similar results which can be
seen at [1]. His approach exploits in a clever way the extra structure
given by viewing these groups as complex reflection groups. In addition,
he has verified that in the exceptional cases that the interval [I, γ] forms
a lattice and that the corresponding poset groups are isomorphic to the
respective Artin groups of finite type. Combined with the results of our
section 5 below this provides the new K(π, 1)’s in these cases and we
thank him for drawing our attention to this fact.

In section 2 we collect some general facts about the reflection length
function on finite reflection groups and the induced partial order. In
section 3 we study the cube group Cn and its index two subgroup Dn.
In section 4 we identify the subposets of interest in Cn andDn and show
that they are lattices. In section 5 we define the poset group Γ(W,α)
associated to the interval [I, α] for α ∈ W . In the case where [I, α] is
a lattice we construct the complexes K(W,α) and show that they are
K(π, 1)’s. Section 6 shows that the groups Γ(Cn, γC) and Γ(Dn, γD)
are indeed the Artin groups of the appropriate type when γC and γD
are the respective Coxeter elements.

2. A partial order on finite reflection groups.

Let W be a finite reflection group with reflection set R and identity
element I. We let d : W × W → Z be the distance function in the
Cayley graph of W with generating set R and define the reflection
length function l : W → Z by l(w) = d(I, w). So l(w) is the length of
the shortest product of reflections yielding the element w. It follows
from the triangle inequality for d that l(w) ≤ l(u) + l(u−1w) for any
u,w ∈ W .

Definition 2.1. We introduce the relation ≤ on W by declaring

u ≤ w ⇔ l(w) = l(u) + l(u−1w).

Thus u ≤ w if and only if there is a geodesic in the Cayley graph from I
to w which passes through u. Alternatively, equality occurs if and only
if there is a shortest factorisation of u as a product of reflections which
is a prefix of a shortest factorisation of w. It is readily shown that
≤ is reflexive, antisymmetric and transitive so that (W,≤) becomes a
partially ordered set.

Since (u−1w)−1w = w−1uw is conjugate to u it follows that u−1w ≤ w
whenever u ≤ w. Furthermore, whenever α ≤ β ≤ γ we have

l(γ) = l(α) + (l(α−1β) + l(β−1γ)),
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so that α−1β ≤ α−1γ.

We recall some general facts about orthogonal transformations from
[5]. If A ∈ O(n), we associate to A two subspaces of Rn , namely

M(A) = im(A− I) and F (A) = ker(A− I).

We recall that M(A)⊥ = F (A). We use the notation |V | for dim(V )
when V is a subspace of Rn. It is shown in [5] that

|M(AC)| ≤ |M(A)|+ |M(C)|
We define a partial order on O(n) by

A ≤o B ⇔ |M(B)| = |M(A)|+ |M(A−1B)|
and we note that A ≤o B if and only if M(B) = M(A) ⊕M(A−1B).
In particular A ≤o B implies that M(A) ⊆ M(B) or equivalently
F (B) ⊆ F (A). The main result we will use from [5] is that for each
A ∈ O(n) and each subspace V ofM(A) there exists a unique B ∈ O(n)
with B ≤o A and M(B) = V .

Our finite reflection group W is a subgroup of O(n), so the results of
[5] can be applied to the elements of W . We begin with a geometric
interpretation of the length function l on W .

Proposition 2.2. l(α) = |M(α)| = n− |F (α)|, for α ∈ W .

Proof. First note that the proposition holds when α = I so we will
assume α ̸= I and let k = |M(α)| > 0.

To establish the inequality l(α) ≤ k we show that α can be expressed
as a product of k reflections. We will use induction on k noting that the
case k = 1 is immediate. Consider the subspace F (α) ̸= Rn. Recall
from part (d) of Theorem 1.12 of [7] that the subgroup W ′ of W of
elements which fix F (α) pointwise is generated by those reflections R
in W satisfying F (α) ⊂ F (R). Since α ̸= I there exists at least one
such reflection R. Since M(A) = F (A)⊥ we have M(R) ⊂ M(α). The
unique orthogonal transformation induced on M(R) by α must be R
by Corollary 3 of [5]. Hence R ≤o α and

|M(Rα)| = |M(α)| − |M(R)| = k − 1.

By induction Rα can be expressed as a product of k − 1 reflections
and hence there is an expression α = R1 . . . Rk for α as a product of k
reflections. We note that by construction each of these reflections Ri

satisfies M(Ri) ⊂ M(α).

To establish the other inequality suppose α = S1S2 . . . Sm is an expres-
sion for α as a product of m reflections realizing l(α) = m. Repeated
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use of the identity |M(AC)| ≤ |M(A)|+ |M(C)| gives
k = |M(α)| ≤ |M(S1)|+ · · ·+ |M(Sm)| = m = l(α). q.e.d.

In particular the partial order ≤ on W is a restriction of the partial
order ≤o on O(n) and we will drop the subscript from ≤o from now on.
The following lemma is immediate.

Lemma 2.3. Let W be a finite Coxeter group with reflection set R and
let W1 be a subgroup generated by a subset R1 of R. Then the length
function for W1 is equal to the restriction to W1 of the length function
for W .

Definition 2.4. For each δ ∈ W we define the reflection set of δ, Sδ,
by Sδ = {R ∈ R | r ≤ δ}.

Repeated application of A ≤ B ⇒ |M(B)| = |M(A)| + |M(A−1B)|
gives M(δ) = Span{M(R) | R ≤ δ} so that Sδ determines M(δ).
However, in the case where δ ≤ γ, δ itself is determined by γ and Sδ

since δ is the unique orthogonal transformation induced on M(δ) by γ.
The following results are consequences of this fact.

Lemma 2.5. If α, β ≤ γ in W and Sα ⊆ Sβ then α ≤ β.

Proof. M(α) ⊂ M(β) ⊂ M(γ) and by uniqueness the transformation
induced on M(α) by β is the same as the transformation induced by
γ, namely α. q.e.d.

Lemma 2.6. Suppose α, β ≤ γ in W . If there is an element δ ∈ W
with δ ≤ γ and Sδ = Sα ∩ Sβ then δ is the greatest lower bound of α
and β in W , that is, if τ ∈ W satisfies τ ≤ α, β then τ ≤ δ.

3. The Cube groups Cn and Dn.

For general facts about the groups Cn and Dn see [2] or [7]. Let I =
[−1, 1] and let Cn denote the group of isometries of the cube In in Rn.
That is

Cn = {α ∈ O(n) : α(In) = In}
Let e1, . . . , en denote the standard basis for Rn and let x1, . . . , xn denote
the corresponding coordinates. The set Rc of all reflections in Cn

consists of the following n2 elements. For each i = 1, . . . , n, reflection
in the hyperplane xi = 0 is denoted [i] and also by [−i]. For each
i ̸= j, reflection in the hyperplane xi = xj is denoted by any one of
the four expressions ((i, j)), ((j, i)), ((−i,−j)) and ((−j,−i)), while reflection
in the plane xi = −xj is denoted by any one of the four expressions
((i,−j)), ((−i, j)), ((j,−i)), and ((−j, i)). The set of these n(n− 1) reflections,
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in hyperplanes of the form xi = ±xj, is denoted Rd and the subgroup
they generate, Dn, is well known to be an index two subgroup of Cn.
The group Cn acts on the set {e1, . . . , en,−e1, . . . ,−en} in the obvious
manner and this action satisfies α · (−ei) = −(α ·ei) for each i and each
α ∈ Cn. Thus we obtain an injective homomorphism p from Cn into
the group Σ2n of permutations of the set {1, 2, . . . , n,−1,−2, . . . ,−n}.
Note that for each i, p([i]) is a transposition in Σ2n, while each element
of Rd is mapped to a product of two disjoint transpositions. Thus
p(Dn) is contained in the subgroup of even permutations.
For each cycle c = (i1, . . . , ir) in Σ2n, we define the cycle c̄ by

c̄ = (−i1, . . . ,−ir)

Note that c̄ = z0cz0 where z0 = (1,−1)(2,−2) . . . (n,−n) has order
two. Note also that z0 = p(ζ0) where ζ0 = [1][2] · · · [n] is the nontrivial
element in the centre of Cn.

Proposition 3.1. The image p(Cn) is the centraliser Z(z0) of z0 in
Σ2n. It consists of all products of disjoint cycles of the form

(1) c1c̄1 . . . ckc̄kγ1 . . . γr where γj = γ̄j ∀ j = 1, . . . , r.

The image p(Dn) consists of all elements of the form (1) with r even.

Proof. Since z0 has order 2 and z0c1c2 . . . ckz0 = c̄1c̄2 . . . c̄k for any
product of cycles in Σ2n, it follows that the centraliser Z(z0) consists
of those products of disjoint cycles c1c2 . . . ck for which

c1c2 . . . ck = c̄1c̄2 . . . c̄k

By uniqueness (up to reordering) of cycle decomposition in Σ2n, for
each i either ci = c̄j for some j ̸= i or else ci = c̄i. It follows that the
centraliser of z0 is precisely the set of elements in Σ2n of the form (1).
For each α ∈ Cn, the identity ζ0αζ0 = α implies that p(α) lies in the
centraliser of z0. Thus p(Cn) ⊂ Z(z0). In the reverse direction, if
c = (i1, . . . , ik) is disjoint from c̄, one may readily verify that

(2) cc̄ = p (((i1, i2)) ((i2, i3)) . . . ((iq−1, iq)))

Likewise, if c = c̄ then c must be the form c = (i1, . . . , ik,−i1, . . . ,−ik)
for some −n ≤ i1, i2, . . . , ik ≤ n and one may verify that

c = (i1,−i1)(i1, i2)(−i1,−i2) . . . (ik−1, ik)(−ik−1,−ik)(3)

= p ([i1]((i1, i2)) . . . ((ik−1, ik)))(4)

It follows that any element of the form (1) lies in p(Cn) and hence
p(Cn) = Z(z0).
Let α ∈ Dn and write p(α) = c1c̄1 · · · ckc̄kγ1 · · · γr. Since p(α) and each
cic̄i is an even permutation while each γj is an odd permutation, r must
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be even. To show that every element of the form (1) with r even is in
p(Dn), we need only note the following facts.

• If the cycle c is disjoint from c̄ then equation (2) implies that
cc̄ ∈ p(Dn).

• If i ̸= j then [i][j] = ((i, j)) ((i,−j)) and hence is an element of
p(Dn). It now follows from equation (3) that if c1 = c̄1 and
c2 = c̄2 are disjoint cycles then c1c2 ∈ p(Dn). q.e.d.

Notation. From now on we will identify Cn and Dn with their respec-
tive images in Σ2n. If a cycle c = (i1, . . . , ik) is disjoint from c̄ then we
write

((i1, . . . , ik)) = cc̄ = (i1, . . . , ik)(−i1, . . . ,−ik)

and we call cc̄ a paired cycle. If k = 1 then c = (i1) and the paired
cycle cc̄ = ((i1)) fixes the vector ei1 . If c = c̄ = (i1, . . . , ir,−i1, . . . ,−ir)
then we say that c is a balanced cycle and we write

c = [i1, . . . , ik].

This notation is consistent with that introduced earlier for the elements
of the generating setRc. With these conventions, proposition 3.1 states
that each element of Cn may be written as a product of disjoint paired
cycles and balanced cycles. If α ∈ Cn fixes the standard basis vector ei
then we will assume that the paired cycle ((i)) appears in the correspond-
ing expression (1) for α.

Denote the length function for Cn with respect to the generating set
Rc by l. Lemma 2.3 allows us to use the same symbol l for the length
function of Dn with respect to the set Rd. The length function for Σ2n

with respect to the set T of all transpositions is denoted by L.

Lemma 3.2. The fixed space F (((i1, . . . , ik))) has dimension n − k + 1
and is given by

{x ∈ Rn : xi1 = xi2 = · · · = xik}

where xi means −x|i| for i < 0. The fixed space F ([i1, . . . , ik]) has
dimension n− k and is given by

{x ∈ Rn : xi1 = xi2 = · · · = xik = 0}

Proof. By inspection. q.e.d.

Lemma 3.3. The l-length of a paired cycle cc̄ = ((i1, . . . , ik)) is k −
1. Moreover, no minimal length factorisation of cc̄ as a product of
elements of Rc contains a generator of the form [i].
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Proof. The fixed space F (cc̄) has dimension n − k + 1 by lemma 3.2
and thus l(cc̄) = n− (n− k + 1) = k − 1.
If a minimal l-length factorisation of cc̄ contained a term of the form
[i], we would obtain a factorisation of cc̄ as a product of fewer than
2(k − 2) + 1 = 2k − 3 transpositions. As L(cc̄) = 2k − 2 this is
impossible. q.e.d.

Lemma 3.4. The l-length of γ = [j1, . . . , jr] as a product of elements
of Rc is r. Moreover any minimal length factorisation of γ as a product
of elements of Rc contains exactly one generator of the form [i].

Proof. As the fixed space F (γ) is (n − r)-dimensional by lemma 3.2,
we find l(γ) = n− (n− r) = r.
As L(γ) = 2r−1, any factorisation of γ as a product of r elements ofRc

can contain at most one generator of the form [i]. If such a factorisation
contained no element of this form, we would have an expression for γ
as a product of an even number of transpositions. But this contradicts
the fact that the 2r-cycle γ has odd parity in Σ2n. q.e.d.

Proposition 3.5. If α = c1c̄1 . . . cac̄aγ1 . . . γb ∈ Cn is a product of
disjoint cycles then

l(α) =
a∑

i=1

l(cic̄i) +
b∑

j=1

l(γj)

Proof. By choosing a new basis from {e1, . . . , en,−e1, . . . ,−en} if nec-
essary, we may assume that ci = (ji−1 + 1, ji−1 + 2, . . . , ji) and γi =
[ki−1 + 1, ki−1 + 2, . . . , ki] where 1 = j0 < j1 < · · · < ja < ja +
1 = k0 < k1 < · · · < kb = n. Then cic̄i (resp. γj) maps Ui =
span(eji−1+1, eji−1+2, . . . , eji) (resp. Vi = span(eki−1+1, eki−1+2, . . . , eki))
to itself and leaves all the other U ’s and V ’s pointwise fixed. As cic̄i
(resp. γj) fixes a 1 (resp. 0) dimensional subspace of Ui (resp. Vj), we see
that α fixes an a-dimensional subspace of Rn. Therefore l(α) = n− a.
Since

∑
(1 + l(cic̄i)) +

∑
l(γj) = n by lemmas 3.3 and 3.4, the result

follows. q.e.d.

Consider now the effect of multiplying α ∈ Cn on the right by a re-
flection R = ((i, j)) or R = [i]. It is clear that only those cycles which
contain an integer of R will be affected. The following example lists
the possibilities and the corresponding changes in lengths.
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Example 3.6. The following four identities can be verified directly.

[i1, i2, . . . , ik][ik] = ((i1, i2, . . . , ik))

[i1, i2, . . . , ik]((ij, ik)) = [i1, . . . , ij]((ij+1, ij+2, . . . , ik))

((i1, i2, . . . , ik)) ((ij, ik)) = ((i1, . . . , ij)) ((ij+1, ij+2, . . . , ik))

[i1, . . . , ij][ij+1, . . . , ik]((−ij, ik)) = ((i1, i2, . . . , ik))

Since each reflection has order 2, the following identities are immediate.

[i1, i2, . . . , ik] = ((i1, i2, . . . , ik))[ik]

[i1, i2, . . . , ik] = [i1, . . . , ij]((ij+1, ij+2, . . . , ik)) ((ij, ik))

((i1, i2, . . . , ik)) = ((i1, . . . , ij)) ((ij+1, ij+2, . . . , ik)) ((ij, ik))

[i1, . . . , ij][ij+1, . . . , ik] = ((i1, i2, . . . , ik)) ((−ij, ik))

By proposition 3.5, we see that

l([i1, i2, . . . , in]) = l(((i1, i2, . . . , in))) + 1

l([i1, i2, . . . , in]) = l([i1, . . . , ij]((ij+1, ij+2, . . . , in))) + 1

l(((i1, i2, . . . , in))) = l(((i1, . . . , ij)) ((ij+1, ij+2, . . . , in))) + 1

l([i1, . . . , ij][ij+1, . . . , ik]) = l(((i1, i2, . . . , ik))) + 1

Definition 3.7. Let σ = c1c2 · · · ck and τ = d1d2 · · · dl be two products
of disjoint cycles in Σ2n. We say that σ is contained in τ (and write
σ ⊂ τ) if for each i we can find j such that the set of integers in the
cycle ci is a subset of the set of integers in the cycle dj. This notion
restricts to give a notion of containment for elements of Cn.
A reflection ((i, j)) is s-contained in α = c1c̄1 . . . cac̄aγ1 . . . γb ∈ Cn (and
we write ((i, j)) @ α) if i is contained in γk and j is contained in γl for
some k ̸= l.

Lemma 3.8. Let α ∈ Cn and R ∈ Rc. Then R ≤ α if and only if
R ⊂ α or R @ α.

Proof. By proposition 3.5 and the calculations in example 3.6 we see
that l(αR) < l(α) if and only if R ⊂ α or R @ α. Since R ≤ α if and
only if l(αR) < l(α), the lemma follows. q.e.d.

4. The lattice property

In this section we show that the interval [1, γ] in (W ≤) is a lattice for
W = Cn, Dn and γ a Coxeter element in W . Since all Coxeter elements
in W are conjugate we can choose our favourite one in each case.

Definition 4.1. We choose the Coxeter elements γC in Cn and γD in
Dn given by γC = [1, 2, . . . , n] and γD = [1][2, 3, . . . , n].
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Proposition 4.2. Write the Coxeter element γC ∈ Cn (resp. γD ∈
Dn) as γC = R1R2 . . . Rn (resp. γD = R1R2 . . . Rn) for reflections
R1, . . . , Rn in Rc (resp. Rd) and let bi denote the number of balanced
cycles in R1R2 · · ·Ri. Then there exists i0 such that bi = 0 for i < i0
and bi = 1 (resp. bi = 2) for i ≥ i0. In the Dn case, if bi = 2 then one
of the balanced cycles in R1 · · ·Ri must be [1].

Proof. By example 3.6, if the multiplication of α ∈ Cn by R ∈ Rc

increases the number of balanced cycles then l(αR) = l(α) + 1 and
αR contains either 1 or 2 balanced cycles more than α. Conversely,
if multiplication of α by R decreases either the number of balanced
cycles or the size of a balanced cycle, then l(αR) = l(α) − 1. Since
l(R1 · · ·Ri) + 1 = l(R1 · · ·Ri+1) it follows that bi+1 − bi ∈ {0, 1, 2}. As
γC consists of a single balanced cycle, the claim for Cn is immediate.
For γD, none of the Ri can be of the form [j] and hence bi+1−bi cannot
be 1. As the passage from R1 · · ·Ri to R1 · · ·Ri+1 cannot decrease the
size of any balanced cycle and as γD contains the balanced cycle [1],
this cycle must be present in R1 · · ·Ri for each i ≥ i0. q.e.d.

Corollary 4.3. If α ≤ γC in Cn then α has at most one balanced cycle.
If β ≤ γD in Dn then β has either no balanced cycles or two balanced
cycles. In the latter case, one of these balanced cycles is [1].

4.1. The Cn lattice. Set γ = γC = [1, 2, . . . , n].

Definition 4.4. The action of γ defines a cyclic order on the set A =
{1, . . . , n,−1, . . . ,−n} in which the successor of i is γ(i) (thus 1 is
the successor of −n). An ordered set of elements i1, i2, . . . , is in A is
oriented consistently (with the cyclic order on A) if there exist integers
0 < r2 < . . . < rs ≤ 2n − 1 such that ij = γrj(i1) for j = 2, . . . , s. A
cycle ((i1, . . . , is)) or [i1, . . . , is] is oriented consistently if the ordered set
i1, . . . , is,−i1, . . . ,−is in A is oriented consistently.

Definition 4.5. Two disjoint reflections R1 = ((i, j)) and R2 = ((k, l))
(resp. R2 = [k]) are said to cross if one of the following four ordered
sets is oriented consistently in A: i, k, j, l or i,−k, j,−l or k, i, l, j or
k,−i, l,−j (resp. i, k, j,−k or i,−k, j, k or k, i,−k, j or −k, i, k, j).
Two disjoint cycles ζ1 and ζ2 in Cn are said to cross if there exist
crossing reflections R1 and R2 which are contained in ζ1 and ζ2 respec-
tively. An element σ ∈ Cn is called crossing if some pair of disjoint
cycles of σ cross. Otherwise σ is non-crossing.

Proposition 4.6. If σ ∈ Cn satisfies σ ≤ γ then the cycles of σ are
oriented consistently and are noncrossing.
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Proof. We will proceed by induction on n − l(σ). If l(σ) = n then
σ = γ and the two conditions of the conclusion are satisfied.
We assume therefore that the proposition is true for τ ∈ Cn with
n − l(τ) = 0, 1, . . . , k − 1 and that σ ≤ γ satisfies l(σ) = n − k. By
definition there is an expression for γ as a product of n reflections
γ = R1R2 . . . Rn−kRRn−k+2 . . . Rn with σ = R1R2 . . . Rn−k. We define
τ = σR so that l(τ) = l(σ) + 1 and τ ≤ γ. By induction, the cycles of
τ are noncrossing and oriented consistently with γ.
We know that R is either of the form ((i, j)) or [i] and that R ≤ τ ≤ γ.
Lemma 3.8 thus implies that R is contained in some paired cycle or
some balanced cycle of τ . The effect of multiplying this cycle by R is
thus described by one of the first three equations in Example 3.6. Since
the cycles of τ are noncrossing and oriented consistently with γ, we see
that the same is true for σ. q.e.d.

Proposition 4.7. Let σ ∈ Cn. If the cycles of σ are oriented consis-
tently and are noncrossing then σ ≤ γ.

Proof. Assume that σ ∈ Cn satisfies the two hypotheses of the propo-
sition. Write σ = c1c̄1 . . . cac̄aγ1 . . . γb and set t(σ) = a+ b. We proceed
by induction on t(σ). If t(σ) = 1 then either σ consists of a single
balanced cycle or a single paired cycle. In the former case, consistent
orientation implies that σ ≤ γ. In the latter case, consistent orienta-
tion implies that σ = ((i, i + 1, . . . , n,−1, . . . ,−i + 1)) for some i. As
l(σ) = n− 1 and σ[i− 1] = γ, we see that σ ≤ γ.

Assume now that t(σ) ≥ 2 and that the proposition is true for each
element θ ∈ Cn with t(θ) < t(σ). If σ contains a balanced cycle, the
non-crossing hypothesis implies that there can be only one which we
denote τ = [i1, . . . , ir]. Otherwise let τ = ((i1, . . . , ir)) be some paired
cycle of σ. As σ ̸= τ , there exists an ik whose successor does not lie in
{±i1, . . . ,±ir}. By choosing one of the other 2r − 1 cycle expressions
for τ if necessary, we may assume that the successor j1 of ir does not
lie in {±i1, . . . ,±ir}. Let ρ = ((j1, . . . , js)) be the paired cycle of σ which
contains j1 and let R = ((ir, js)). Then σ = τρσ1 . . . σk for some disjoint
paired cycles σ1, . . . , σk (some k ≥ 0) and

σR =

{
[i1, . . . , ir, j1, . . . , js]σ1 . . . σk or
((i1, . . . , ir, j1, . . . , js))σ1 . . . σk.

Note that t(σR) = t(σ) − 1. As the cycles τ and ρ do not cross and
each is oriented consistently, our choice of j1 ensures that the ordered
set i1, . . . , ir, j1, . . . , js,−i1, . . . ,−ir,−j1, . . . ,−js is also oriented con-
sistently.
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Assume now that one of the cycles σe crosses the cycle τρR of σR.
Then there exist crossing reflections R1 and R2 contained in τρR and
σe respectively. Since σe is paired, R2 is necessarily paired; R2 = ((c, d))
say. Since σ is non-crossing, R1 cannot be contained in τ or in ρ. There
are three cases to consider

(1) R1 = ((ia, jb)) for some 1 ≤ a ≤ r and 1 ≤ b ≤ s.
(2) R1 = ((jb,−jb)) for some 1 ≤ b ≤ s (τ is necesarily balanced ).
(3) R1 = ((ia,−jb)) for some 1 ≤ b ≤ s (τ is necesarily balanced ).

By a suitable choice of the representativeR = ((c, d)) = ((d, c)) = ((−c,−d)) =
((−d,−c)), the first case splits into two essential subcases: (a) the ordered
set ia, c, jb, d is oriented consistently and (b) the ordered set c, ia, d, jb is
oriented consistently. We know that c is not in {±i1, . . . ,±ir,±j1, . . . ,±js}.
In particular c ̸= ir, j1. In case (1a), if c precedes ir, then S = ((i1, ir))
is contained in τ and crosses R2, contradicting the fact that σ is non-
crossing. Likewise, if c follows ir then c follows j1 and S = ((j1, jb)) is
contained in ρ and crosses R2, again contradicting the fact that σ is
non-crossing. Thus case (1a) is impossible. A similar argument shows
that case (1b) is also impossible.
As in case 1, case 2 splits into two subcases: (a) the ordered set
jb, c,−jb, d is oriented consistently and (b) the ordered set c, jb, d,−jb
is oriented consistently. In case (2a), if c precedes −ir then the or-
dered set ir, jb, c,−ir, d is oriented consistently and hence ((c, d)) crosses
[−ir] ⊂ τ . But this contradicts the fact that σ is non-crossing. If
c follows −ir, then c necessarily succeeds −j1 and we find that the
ordered set −j1, c,−jb, d is consistently oriented. Thus ((c, d)) crosses
((−j1,−jb)) ⊂ ρ, again contradicting the fact that σ is non-crossing.
Thus case (2a) is impossible. A similar argument shows that case (2b)
is also impossible.
Finally, case 3 also splits into two subcases: (a) the ordered set ia, c,−jb, d
is oriented consistently and (b) the ordered set c, ia, d,−jb is oriented
consistently. We show that (3b) is impossible (the proof that case (3a)
is impossible is similar). We are given that the ordered set c, ia, d,−jb
is oriented consistently. If d precedes −ia then ((c, d)) crosses [ia] in σ,
a contradiction. Therefore d follows −ia. If d now precedes −ir, then
the ordered set c,−ia, d,−ir is oriented consistently. Hence ((−ia,−ir))
crosses ((c, d)) in σ, a contradiction. Therefore d follows −ir and hence
−j1. But now ((−j1,−jb)) crosses ((c, d)) in σ, a contradiction. Thus case
(3b) is impossible.
We conclude that the cycles τρR and σe do not cross. Since no two dis-
tinct elements of σ1, . . . , σk cross (because σ is assumed non-crossing),
it follows that σR is non-crossing. As t(σR) = t(σ)− 1 and the cycles
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of σR are oriented consistently, it follows by induction that σR ≤ γ.
Thus there exist reflections R1, . . . , Rk with k = n− l(σR) and

(5) σRR1 . . . Rk = γ

As l(σR) = l(σ) + 1 by lemmas 3.3 and 3.4 and proposition 3.5, we
see that k + 1 = n− l(σ). Hence equation (5) also implies that σ ≤ γ.
q.e.d.

Lemma 4.8. If σ ≤ γ and τ ≤ γ then σ ≤ τ if and only if σ ⊂ τ .

Proof. Follows from Lemma 2.5 and lemma 3.8. q.e.d.

Combining the previous three results yields the following Theorem.

Theorem 4.9. Let NCP denote Reiner’s non-crossing partition lattice
for the Cn group from [8]. The mapping

: {α ∈ Cn : α ≤ γ} −→ NCP

which takes α to the noncrossing partition defined by its cycle structure
is a bijective poset map. In particular, {α ∈ Cn : α ≤ γ} is a lattice.

4.2. The Dn lattice. Set γ = γD = [1][2, 3, . . . , n] and suppose α ≤ γ.
Recall from Corollary 4.3 that for such an α either [1][k] ≤ α for
some k ∈ {2, 3, . . . , n} or l and −l are in different α orbits for all
l ∈ {1, 2, . . . , n}. In the former case we will call α balanced and in the
latter case we will call α paired.

We note that lattices are associated to the groups Cn and Dn in [8].
We have shown the Reiner Cn lattices are isomorphic to ours. How-
ever the Reiner Dn lattices are not the same as the ones we consider.
In particular, the Reiner Dn lattices are subposets of the Reiner Cn

lattices.

To show that the interval [I, γ] in Dn is a lattice we will compute
α∧β for α, β ≤ γ. Since the poset is finite the existence of least upper
bounds follows. We will consider different cases depending on the types
of α and β. In all cases we will construct a candidate σ for α ∧ β and
show that σ ∈ Dn, σ ≤ α, β and Sα ∩ Sβ ⊂ Sσ. Since the reverse
inclusion is immediate it follows from Lemma 2.6 that σ = α ∧ β.

Note 4.10. In this section we will frequently pass between the posets
determined by Cn, Dn and several other finite reflection subgroups of
Cn. As the partial order on each of these groups is the restriction of
the partial order on O(n), we can use the same symbol ≤ to denote the
partial order in each case. The reflection subgroup in question should
be clear from the context.
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Suppose first that both α and β are balanced. Since Dn ⊂ Cn and
Cn−1 can be identified with the subgroup of Cn which fixes 1, each
balanced element of Dn can be used to define a balanced element of
Cn−1, that is, an element containing a balanced cycle. Thus we define
the balanced Cn−1 elements α′ and β′ by

α = [1]α′ and β = [1]β′

and the Cn−1 element σ′ = α′ ∧ β′, where the meet is taken in Cn−1.
Now σ′ may or may not be balanced. If σ′ is balanced define the Cn

element σ by σ = [1]σ′. If σ′ is not balanced set σ = σ′.

Proposition 4.11. If α and β are balanced and σ is defined as above
then σ ∈ Dn, σ ≤ α, β and Sα ∩ Sβ ⊂ Sσ.

Proof. We show that σ ∈ Dn and σ ≤ α. The proof that σ ≤ β is
completely analogous. First consider the case where σ′ is balanced.
Thus [k] ≤ σ′ ≤ α′ in Cn−1 for some k satisfying 2 ≤ k ≤ n. So we can
find reflections R1, . . . , Rs in Cn−1 with

α′ = R1R2 . . . Rs, σ′ = R1R2 . . . Rt, R1 = [k],

where l(α′) = s ≥ t = l(σ′). Since α′ ∈ Cn−1, Lemma 3.4 gives
R2, . . . , Rs all of the form ((i, j)) or ((i,−j)) for 2 ≤ i < j ≤ n. In par-
ticular, these reflections lie in Dn. Now α is of length s + 1 in Cn

and

α = [1]R1R2 . . . RtRt+1 . . . Rs

= [1][k]R2 . . . RtRt+1 . . . Rs

= ((1, k))((1,−k))R2 . . . RtRt+1 . . . Rs.

This last expression only uses Dn reflections so that

σ = ((1, k))((1,−k))R2 . . . Rt ≤ α in Dn.

Next we consider the case where σ′ is paired. Here σ′ ≤ α′ and α′ is
balanced so we can find reflections R1, . . . , Rs in Cn−1 with

α′ = R1R2 . . . Rs, σ′ = R1R2 . . . Rt,

where l(α′) = s > t = l(σ′) and exactly one of Rt+1, . . . , Rs is of form
[k]. Since R[k] = [k]([k]R[k]), we can assume Rt+1 = [k]. Note also
that R1, . . . , Rt are each of the form ((i, j)) or ((i,−j)) for 2 ≤ i < j ≤ n
and hence commute with [1] in Cn. Thus we can write the following
identities in Cn.

α = [1]R1R2 . . . Rt[k]Rt+2 . . . Rs

= R1 . . . Rt[1][k]Rt+2 . . . Rs

= R1 . . . Rt((1, k))((1,−k))Rt+2 . . . Rs.
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This last expression only uses Dn reflections so that σ ≤ α in Dn.

Finally we show that Sα ∩ Sβ ⊂ Sσ. First suppose σ′ is balanced and
R ∈ Sα ∩ Sβ. Thus R is a reflection satisfying R ≤ α, β. If R is of the
form ((1, k)), then [1][k] ≤ α, β since k must belong to a balanced cycle of
both α and β. Thus [k] ≤ α′, β′ so that [k] ≤ σ′ and [1][k] ≤ σ, which
gives ((1, k)) ≤ σ as required. If R is not of form ((1, k)) then R ≤ α, β
implies R ≤ α′, β′ so that R ≤ σ′ and R ≤ σ.

In the case where σ′ is paired, R ≤ α, β implies R must be of form
((i, j)) or ((i,−j)) for 2 ≤ i < j ≤ n so that R ≤ α′, β′ giving R ≤ σ′ = σ.
q.e.d.

Since we have completed the case where both α and β are balanced we
will assume from now on that α is paired. We note some consequences
of this fact which will apply in the remaining cases. The fact that
α is paired means that α ≤ ((1, k))γ or α ≤ ((1,−k))γ for some k ∈
{2, 3, . . . , n}. Since conjugation by the Cn−1 element [2, . . . , n] is a
poset isomorphism of the interval [I, γ] in Dn, we may assume for
convenience of notation that k = −2 so that

α ≤ ((1,−2))[1][2, . . . , n] = ((1, 2, . . . , n)).

If we let δ = ((1, 2, . . . , n)) then a reflection R in Dn satisfies R ≤ δ
if and only if R ⊂ δ. Thus we can identify the interval [I, δ] in Dn

with the set of non-crossing partitions of {1, 2, . . . , n}. Recall that a
non-crossing partition of the ordered set {a1, a2, . . . , an} is a partition
with the property that whenever

1 ≤ i < j < k < l ≤ n

with ai, ak belonging to the same block B1 and aj, al belonging to the
same block B2 we have B1 = B2. If α ∧ β exists, it will satisfy

α ∧ β ≤ α ≤ ((1, 2, . . . , n))

and so will correspond to a noncrossing partition of {1, 2, . . . , n}. Ac-
cordingly, we define a reflexive, symmetric relation on {1, 2, . . . , n} by

i ∼ j ⇔ i = j or ((i, j)) ≤ α, β.

We need to show that ∼ is transitive and hence is an equivalence rela-
tion. We then show that the resulting partition of {1, 2, . . . , n} is non-
crossing and determines an element σ of Dn which satisfies σ ≤ α, β
and Sα ∩ Sβ ⊂ Sσ.

Suppose that α is paired and β is balanced. Recall that β has two
balanced cycles, one of which is [1]. For convenience of terminology we
will call the other balanced cycle the second balanced cycle of β. As



K(π, 1)’S FOR ARTIN GROUPS 15

above we will have occasion to use the balanced element β′ ≤ [2, . . . , n]
in Cn−1 defined by β = [1]β′.

Proposition 4.12. If α is paired and β is balanced then the relation ∼
above determines an element σ of Dn satisfying σ ≤ α, β and Sα∩Sβ ⊂
Sσ.

Proof. First we establish the transitivity of the ∼ relation. Suppose
i, j, k are distinct elements of {1, 2, . . . , n} with i ∼ j and j ∼ k. Since
((i, j)), ((j, k)) ≤ α we get ((i, k)) ≤ α since α corresponds to a partition of
{1, 2, . . . , n}. If 1 ̸∈ {i, j, k} then ((i, j)), ((j, k)) ⊂ β (s-containment cannot
arise) and it follows that ((i, k)) ≤ β. If i = 1, then ((i, j)) ≤ β means
that ((i, j)) @ β so that j belongs to the second balanced cycle of β.
Since j ∼ k ̸= 1, k also belongs to this second balanced cycle and
((i, k)) ≤ [1][j, k] ≤ β. If j = 1, then both i and k belong to the second
balanced cycle of β. Hence ((i, k)) ≤ β. The case k = 1 is analogous to
the case i = 1.

To show that the partition of {1, . . . , n} defined by ∼ is non-crossing
suppose 1 ≤ i < j < k < l ≤ n with

((i, k)), ((j, l)) ≤ α, β.

Since α corresponds to a noncrossing partition we have ((i, j, k, l)) ≤ α.
If i = 1, then k belongs to the second balanced cycle and [k] ≤ β′ in
Cn−1. Since 1 < j < k < l, ((j, l)) ≤ β′ and β′ ≤ [2, . . . , n] in Cn−1,
the crossing pair consisting of (j, l) and (k,−k) must lie in the same
β′ cycle. Thus [j, k, l] ≤ β′ and ((1, j, k, l)) ≤ [1][j, k, l] ≤ β. If i ̸= 1,
then ((i, k)), ((j, l)) ≤ β′ and since β′ ≤ [2, . . . , n] in Cn−1, ((i, j, k, l)) ≤ β′ by
proposition 4.6, giving ((i, j, k, l)) ≤ β.

Thus the relation ∼ defines a noncrossing partition of {1, 2, . . . , n} and
hence determines an element σ of Dn. By the definition of ∼ the
element σ satisfies σ ≤ α, β and Sα ∩ Sβ ⊂ Sσ. q.e.d.

Finally we consider the case where both α and β are paired.

Proposition 4.13. If α and β are paired then the relation ∼ above
determines an element σ of Dn satisfying σ ≤ α, β and Sα ∩ Sβ ⊂ Sσ.

Proof. To establish the transitivity of ∼ in this case let i, j, k be distinct
elements of {1, 2, . . . , n} with i ∼ j and j ∼ k. As in the previous
proposition, ((i, k)) ≤ α follows immediately. Since β is paired, i ∼ j and
j ∼ k mean that i, j, k belong to the same cycle of β so that ((i, k)) ≤ β
also.
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To show that the partition of {1, . . . , n} defined by ∼ is noncrossing
suppose 1 ≤ i < j < k < l ≤ n with

((i, k)), ((j, l)) ≤ α, β.

Since α corresponds to a noncrossing partition we have ((i, j, k, l)) ≤ α.
The element β is paired so we can assume β ≤ τ = ((1,m))γ or β ≤ τ =
((1,−m))γ, for some m ∈ {2, 3, . . . , n}. Looking at the case τ = ((1,m))γ
first we get

τ = ((1,−m,−m− 1, . . . ,−n, 2, 3, . . . ,m− 1)).

Since β ≤ τ the element β corresponds to a noncrossing partition of
the ordered set {1,−m,−m − 1, . . . ,−n, 2, 3, . . . ,m − 1}. Since 1 ≤
i < j < k < l ≤ n, we deduce that either

1 ≤ i < j < k < l ≤ m− 1 or m ≤ i < j < k < l ≤ n.

Since β corresponds to a noncrossing partition of the ordered set

{1,−m,−m− 1, . . . ,−n, 2, 3, . . . ,m− 1}
and ((i, k)), ((j, l)) ≤ β it follows in either case that ((i, j, k, l)) ≤ β. The case
τ = ((1,−m))γ is similar. Here

τ = ((1,m,m+ 1, . . . , n,−2,−3, . . . ,−m+ 1)),

and again we can deduce ((i, j, k, l)) ≤ β.

Thus ∼ defines a noncrossing partition of {1, 2, . . . , n} and hence an
element σ in Dn satisfying σ ≤ α, β and Sα ∩ Sβ ⊂ Sσ as in previous
proposition. q.e.d.

Combining the results of this subsection we obtain the following theo-
rem.

Theorem 4.14. The interval [I, γ] in Dn is a lattice.

5. Poset groups and K(π, 1)’s.

Definition 5.1. If W is a finite Coxeter group and γ ∈ W we de-
fine the poset group Γ = Γ(W, γ) to be the group with the following
presentation. The generating set for Γ consists of a copy of the set of
non-identity elements in [I, γ]. We will denote by {w} the generator
of Γ corresponding the element w ∈ (I, γ]. The relations in Γ are all
identities of the form {w1}{w2} = {w3}, where w1, w2 and w3 lie in
(I, γ] with w1 ≤ w3 and w2 = w−1

1 w3.

Since none of the relations involve inverses of the generators, there is
a semigroup, which we will denote by Γ+ = Γ+(W, γ), with the same
presentation. As in section 5 of [3], we define a positive word in Γ to
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be a word in the generators that does not involve the inverses of the
generators. We say two positive words A and B are positively equal,
and we write A

.
= B, if A can be transformed to B through a sequence

of positive words, where each word in the sequence is obtained from
the previous one by replacing one side of a defining relator by the other
side. Since the interval (I, γ] inherits the reflection length from W we
use this to associate a length to each generator of Γ(W, γ) and hence
a length l(A) to each positive word A. It is immediate that positively
equal words have the same length.

From now on we only consider those pairs (W, γ) with the property
that the interval [I, γ] in W forms a lattice. It is clear that the results
stated for the braid group in sections 5 and 6 of [3] apply to poset groups
under this extra assumption. We will review them briefly below.

In [3] it is shown that this lattice condition is satisfied when W is a
Coxeter group of type An and γ is a Coxeter element. In section 4
above we have shown that the lattice condition is satisfied when W is
a Coxeter group of type Cn or Dn and γ is a Coxeter element. When
the Coxeter group is generated by two reflections the lattice condition
is automatic for any γ. When the Coxeter group is generated by three
reflections the lattice condition reduces to checking the only case where

α ∧ β ̸∈ {α, β, γ}.
This occurs when α and β are distinct reflections and have at least one
common upper bound of length 2. Any such length 2 element δ must
have F (δ) coinciding with the unique line of intersection of the two
reflection planes. Hence δ is unique. This is precisely the ingredient
which makes the metric constructed in [4] have non-positive curvature.
The following result is taken from [3]. Its proof is the same.

Lemma 5.2. Assume that the interval [I, γ] forms a lattice and suppose
a, b, c ≤ γ. We define nine elements d, e, f , g, h, k, l, m and n in
[I, γ] by the equations

a ∨ b = ad = be, b ∨ c = bf = cg, c ∨ a = ch = ak

and
a ∨ b ∨ c = (a ∨ b)l = (b ∨ c)m = (c ∨ a)n.

Then we can deduce

e ∨ f = el = fm, d ∨ k = dl = kn, h ∨ g = hn = gm.

The statements and proofs of the results of section 5 and section 6 of
[3] generalize in a straightforward manner to the current setting. In
particular, we have the following definitions and results.
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Lemma 5.3. The semigroup associated to Γ has right and left cancel-
lation properties.

Lemma 5.4. Suppose a1, a2, . . . , ak ≤ γ in W , P is positive and

P
.
= X1{a1}

.
= . . .

.
= Xk{ak}

with Xi all positive. Then there is a positive word Z satisfying

P
.
= Z{a1 ∨ · · · ∨ ak}.

Theorem 5.5. In Γ, if two positive words are equal they are positively
equal. In other words, the semigroup Γ+ embeds in Γ.

As in [3] we define an abstract simplicial complex X(W, γ) for each
Γ(W, γ).

Definition 5.6. We let X = X(W, γ) be the abstract simplicial com-
plex with vertex set Γ, which has a k-simplex on the subset {g0, g1, . . . , gk}
if and only if gi = g0{wi} for i = 1, 2, . . . , k where

I < w1 < · · · < wk ≤ γ in W.

There is an obvious simplicial action of Γ on X given by

g · {g0, g1, . . . , gk} = {gg0, gg1, . . . , ggk}.

The main result of section 6 of [3] also holds for these poset groups.

Theorem 5.7. X(W, γ) is contractible.

If we define K = K(W, γ) to be the quotient space K = Γ\X, then K
is a K(Γ, 1).

We finish this section with an example of a poset group Γ(W, γ), with
[I, γ] a lattice but γ not a Coxeter element in W .

Example 5.8. Let W = C2 and γ = [1][2]. The group Γ(C2, γ) has
presentation

⟨a, b, c, d, x | x = ab = ba = cd = dc⟩
where a = {[1]}, b = {[2]}, c = {((1, 2))}, d = {((1,−2))} and x = {[1][2]}.
From the presentation we see that Γ is an amalgamated free product of
a copy Z × Z generated by a and b with a copy Z × Z generated by c
and d over the infinite cyclic subgroup generated by x. The above con-
struction gives a two-dimensional contractible universal cover for the
presentation 2-complex which can be shown to be simplicially isomor-
phic to X(C2, [1, 2]).
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6. Group Presentations.

In this section we prove that the poset groups Γ(W, γ) of section 5 are
isomorphic to the Artin groups A(W ) for W of type Cn or Dn and γ
the appropriate Coxeter element. The proof is based on the following
surprising property that these Artin groups share with the braid group.
If X = x1x2 . . . xn is the product of the standard Artin generators
then there is a finite set of elements in A(W ) which is invariant under
conjugation byX. Moreover under the canonical surjection from A(W )
to W this set is taken bijectively to the set of reflections in W . The
following lemma is a straightforward generalisation of Lemma 4.5 of
[3].

Lemma 6.1. The poset group Γ(W, γ) is isomorphic to the abstract
group generated by the set of all {R}, for R a reflection in [I, γ], subject
to the relations

{R1}{R2} . . . {Rn} = {S1}{S2} . . . {Sn},
for Ri, Sj reflections satisfying

γ = R1R2 . . . Rn and γ = S1S2 . . . Sn,

where n = l(γ).

We will refer to {w} ∈ Γ(W, γ) as the lift of w ∈ W whenever w ≤ γ.
In particular, we will refer to {w} as a reflection lift whenever w is a
reflection.

Since the Artin groups of type Cn and Dn both contain copies of the n-
strand braid group Bn we collect here some facts about the braid group
which will be useful. We recall that Bn is the group with generating
set x2, x3, . . . xn and defining relations

xixi+1xi = xi+1xixi+1 for 2 ≤ i ≤ n− 1,

xixj = xjxi for |j − i| ≥ 2.

We define xi,j and Yi,j, for 1 ≤ i < j ≤ n by

Yi,j = xi+1 . . . xj, and Yi,j = Yi+1,jxi,j.

Then Lemma 4.2 of [3] gives, for 1 ≤ i < j < k ≤ n,

xi,jxj,k = xj,kxi,k = xi,kxi,j.

Since xk = xk−1,k it follows that xi,jYi,j−1 = Yi,j and that

xkYi,j = Yi,jxk−1 for i+ 2 ≤ k ≤ j.

When k = i+ 1 we have xi+1Yi,j = xi+1Yi+1,jxi,j = Yi,jxi,j.
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6.1. The Cn case. The Artin group A(Cn) has a presentation with
generating set x1, x2, . . . xn, subject to the relations

x1x2x1x2 = x2x1x2x1

xixi+1xi = xi+1xixi+1

whenever 1 < i < n and

xixj = xjxi

whenever |j − i| ≥ 2.

Definition 6.2. We define a function ϕ from the generators of A(Cn)
to Γ(Cn, γ) by

x1 7→ {[1]}, x2 7→ {((1, 2))}, x3 7→ {((2, 3))}, . . . , xn 7→ {((n− 1, n))}

Lemma 6.3. The function ϕ determines a well-defined and surjective
homomorphism.

Proof: The relations involving ϕ(x1) hold in Γ(Cn, γ) by virtue of
the following identities in Γ(Cn, γ).

{[1]}{((1, 2))}{[1]}{((1, 2))} = {[1, 2]}{[1, 2]}
= {((1, 2))}{[2]}{((1,−2))}{[1]}
= {((1, 2))}{[1, 2]}{[1]}
= {((1, 2))}{[1]}{((1, 2))}{[1]}

{[1]}{((i, i+ 1))} = {((i, i+ 1))}{[1]}, for i ≥ 2.

The image of the subgroup generated by {x2, . . . , xn} lies in the copy
of the braid group corresponding to Σn < Cn so that the relations not
involving ϕ(x1) hold by Lemma 4.2 and Lemma 4.4 of [3]. Thus ϕ is
well-defined.
To establish surjectivity, first note that

{((i, i+ 1, . . . , j))} = ϕ(Yi,j) and {((i, j))} = ϕ(xi,j)

for 1 ≤ i < j ≤ n all lie in im(ϕ). Next {[j]} ∈ im(ϕ) since

ϕ(x1x1,j) = {[1]}{((1, j))} = {[1, j]} = {((1, j))}{[j]}.

Finally, {((i,−j))} ∈ im(ϕ) for 1 ≤ i < j ≤ n since

{((i, j))}{[j]} = {[i, j]} = {[j]}{((i,−j))}.

q.e.d.

To construct an inverse to ϕ we will use the presentation for Γ(Cn, γ)
given by lemma 6.1.
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Definition 6.4. We define a function θ from the generators of Γ(Cn, γ)
to A(Cn) by

{[1]} 7→ x1 , {((i, j))} 7→ xi,j for 1 ≤ i < j ≤ n,

{[j]} 7→ yj for 2 ≤ j ≤ n, {((i,−j))} 7→ zi,j for 1 ≤ i < j ≤ n,

where yj is the unique element of A(Cn) satisfying

x1x2 . . . xj = x2 . . . xjyj

and zi,j is the unique element of A(Cn) satisfying

zi,jyi = yixi,j.

The homomorphism determined by θ will be surjective since each xi

is the image of some reflection lift. We note that Yi,jyj = yiYi,j for
1 ≤ i < j ≤ n if we define y1 = x1. To show that θ determines a
well-defined homomorphism we first define the special element X =
x1x2 . . . xn in A(Cn) and establish the following result.

Proposition 6.5. For any reflection R in Cn,

Xθ({R})X−1 = θ({γRγ−1}).

Proof. Since X = x1Y1,n and x1 commutes with x3, . . . , xn, it follows
that Xxi = xi+1X for 2 ≤ i < n and Xxi,j = xi+1,j+1X for 1 ≤ i <
j < n. This establishes the proposition for R of the form ((i, j)) for
1 ≤ i < j < n.

The identity Xyj = yj+1X for 1 ≤ j < n is a consequence of the
following calculation.

Y2,j+1Xyj = x2Y3,j+1Xyj = x2XY2,jyj = x2Xx1Y2,j

= x2x1x2Y3,nx1Y2,j = x2x1x2x1Y3,nY2,j

= x1x2x1x2Y3,nY2,j = x1x2XY2,j = x1x2Y3,j+1X

= x1Y2,j+1X = Y2,j+1yj+1X

This establishes the proposition for R of the form [j] for 1 ≤ i < n.

Conjugating yn by X gives x1, since

Xyn = (x1x2 . . . xn)yn = x1(x2 . . . xnyn) = x1(x1 . . . xn).

This establishes the proposition for the reflection [n].

Next we show Xxi,n = z1,i+1X.

z1,i+1X = z1,i+1x1Y1,n = x1x1,i+1Y1,n = x1x1,i+1Y1,iYi,n

= x1Y1,ixi+1Yi,n + x1Y1,ixi+1Yi+1,nxi,n = x1Y1,nxi,n = Xxi,n

This establishes the proposition for R of the form ((i, n)) for 1 ≤ i < n.
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The identity Xzi,j = zi+1,j+1X for 1 ≤ i < j < n follows from the
definition of zi,j and the corresponding identities for xi,j and yi, which
establishes the proposition for R of the form ((i,−j)) for 1 ≤ i < j < n.

Next we observe that, for 3 ≤ j ≤ n, yjz1,j = x1,jyj because

Y1,jyjz1,jx1 = x1Y1,jz1,jx1 = x1Y1,jx1x1,j = x1x2Y2,jx1x1,j

= x1x2x1Y2,jx1,j = x1x2x1Y1,j = x1x2x1x2Y2,j

= x2x1x2x1Y2,j = x2x1x2Y2,jx1 = x2x1Y1,jx1

= x2Y1,jyjx1 = Y1,jx1,jyjx1.

Since Xzi,nyi = Xyixi,n = yi+1z1,i+1X = x1,i+1yi+1X = x1,i+1Xyi, it
follows that Xzi,n = x1,i+1X and hence the proposition is established
for the final case, R of the form ((i,−n)) for 1 ≤ i < n. q.e.d.

Definition 6.6. We define a lift of γ to A(Cn) to be an element of the
form

E = θ({R1})θ({R2}) . . . θ({Rn}),
where the Ri are reflections in Cn satisfying R1R2 . . . Rn = [1, 2, 3, . . . , n].

We note that one lift of γ to A(Cn) is

X = x1x2 . . . xn = θ({[1]})θ({((1, 2))}) . . . θ({((n− 1, n))}).

To show that θ is well-defined it suffices, by Lemma 6.1, to prove the
following.

Proposition 6.7. For any lift E of γ to A(Cn) we have E = X.

Proof. Given a lift E = θ({R1})θ({R2}) . . . θ({Rn}) of γ to A(Cn), we
know that R1R2 . . . Rn = [1, 2, . . . , n] and by Lemma 3.4 exactly one of
the Rk is of the form [j]. Since E = X if and only if X lEX−l = X for
any integer l, we may assume by the previous proposition that Rk = [1].
We will construct a new lift E ′ of γ satisfying E ′ = E and

E ′ = θ({R1}) . . . θ({Rk−2})θ({[1]})θ({R′})θ({Rk+1}) . . . θ({Rn}),

for some reflection R′.

To simplify notation we set Rk−1 = T so that Rk−1Rk = T [1]. Since
T [1] ≤ γ we know that T ≤ γ[1] or

T ≤ ((1,−2,−3, . . . ,−n))

so that T has the form ((1,−p)) for 2 ≤ p ≤ n or T has the form ((i, j)) with
2 ≤ i < j ≤ n. In the latter case θ({T}) lies in the subgroup of A(Cn)
generated by {x3, x4, . . . , xn} and so commutes with θ({[1]}) = x1.
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Thus we can use R′ = T . In the former case, θ({T}) = z1,p and E ′ can
be constructed using

θ({T})θ({[1]}) = z1,px1 = x1x1,p = θ({[1]})θ({((1, p))}).
After k − 1 such steps we get E = x1θ({S2}) . . . θ({Sn}), where the
product on the right is a lift of γ to A(Cn). However, this means
S2S3 . . . Sn = ((1, 2, . . . , n)) in Cn so that Si ∈ Σn < Cn and

θ({S2}) . . . θ({Sn}) = x2x3 . . . xn,

by Lemma 4.6 of [3]. q.e.d.

Combining the results in this subsection we get the following theorem.

Theorem 6.8. The poset group Γ(Cn, γ) is isomorphic to the Artin
group A(Cn) for γ a Coxeter element in Cn.

6.2. The Dn case. In this case our approach will be exactly as in the
Cn case. However, the computations are more numerous and more com-
plicated. The Artin group A(Dn) has a presentation with generating
set x1, x2, . . . xn, subject to the relations

x1x2 = x2x1,

x1x3x1 = x3x1x3,

x1xi = xix1, for i ≥ 4

xixi+1xi = xi+1xixi+1, for 1 < i < n and

xixj = xjxi, for |j − i| ≥ 2 and i, j ̸= 1.

Definition 6.9. We define a function ϕ from the generators of A(Dn)
to Γ(Dn, γ) by

x1 7→ {((1,−2))}, x2 7→ {((1, 2))}, x3 7→ {((2, 3))}, . . . , xn 7→ {((n− 1, n))}

Lemma 6.10. The function ϕ determines a well-defined surjective ho-
momorphism.

Proof: The relations involving ϕ(x1) hold in Γ(Dn, γ) by virtue of
the following identities in Γ(Dn, γ).

{((1,−2))}{((1, 2))} = {[1][2]} = {((1, 2))}{((1,−2))}

{((1,−2))}{((2, 3))}{((1,−2))} = {((1,−2,−3))}{((1,−2))}
= {((2, 3))}{((1,−3))}{((1,−2))}
= {((2, 3))}{((1,−2,−3))}
= {((2, 3))}{((1,−2))}{((2, 3))}

{((1,−2))}{((i, i+ 1))} = {((i, i+ 1))}{((1,−2))}, for i ≥ 3.
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The image of the subgroup generated by {x2, . . . , xn} again lies in the
copy of the braid group corresponding to Σn < Dn so that the relations
not involving ϕ(x1) hold by Lemma 4.2 and Lemma 4.4 of [3]. Thus ϕ
is well-defined.
To establish surjectivity, note that both {((i, j))} and {((i, i + 1, . . . , j))}
lie in im(ϕ), for 1 ≤ i < j ≤ n as in the Cn case. To find the other
reflection lifts in im(ϕ) first note that

ϕ(x1x2 . . . xj) = {[1][2, 3 . . . , j]} = {((1,−2))}{((1, 2, . . . , j))} ∈ im(ϕ),

and {((1,−j))} ∈ im(ϕ) for j ≥ 3 since

{((1, 2, . . . , j))}{((1,−j))} = {[1][2, . . . , j]}.

Reflection lifts of the form {((2,−j))} for j ≥ 3 lie in im(ϕ) since

{((1,−2))}{((1, j))} = {((1, j,−2))} = {((2,−j))}{((1,−2))}

and reflection lifts of the form {((i,−j))} for 3 ≤ i < j ≤ n lie in im(ϕ)
since

{((i,−j))}{((1, i))}{((1,−i))} = {[1][i, j]} = {((1, i))}{((1,−i))}{((i, j))}.

q.e.d.

To construct an inverse to ϕ we will use the presentation for Γ(Dn, γ)
given by Lemma 6.1.

Definition 6.11. We define a function θ from the generators of Γ(Dn, γ)
to A(Dn) by

{((1,−2))} 7→ x1, {((i, j))} 7→ xi,j and {((i,−j))} 7→ zi,j,

for 1 ≤ i < j ≤ n, where zi,j is the unique element of A(Dn) satisfying

z1,jx1 = x1x2,j when j ≥ 3

z2,jx1 = x1x1,j when j ≥ 3

zi,jx1,iz1,i = x1,iz1,ixi,j when 3 ≤ i < j ≤ n

We note that z1,2 = x1. Since each xi,j lies in the copy of Bn generated
by {x2, . . . xn} the elements xi,j satisfy the same identities as in the Cn

case. The homomorphism determined by θ will be surjective since each
xi is the image of some reflection lift. To show that θ determines a well-
defined homomorphism we define the special element X = x1x2 . . . xn

in A(Dn) and establish the Dn analogue of Proposition 6.5 .

Proposition 6.12. For any reflection R in Dn,

Xθ({R})X−1 = θ({γRγ−1}).
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Proof. Since X = x1Y1,n and x1 commutes with x4, . . . , xn it follows
that Xxi = xi+1X for 3 ≤ i < n and Xxi,j = xi+1,j+1X for 3 ≤
i < j < n. This establishes the proposition in the case R = ((i, j)) for
3 ≤ i < j < n.

For some of the later cases we will require the identities x2,jz1,j = x1x2,j

and x1,jz2,j = x1x1,j for 3 ≤ j ≤ n. The first follows from

Y3,jx2,jz1,jx1 = x3Y3,jz1,jx1 = x3Y3,jx1x2,j = x3x1Y3,jx2,j

= x3x1x3Y3,j = x1x3x1Y3,j = x1x3Y3,jx1 = x1Y3,jx2,jx1

= Y3,jx1x2,jx1,

while the second follows from

x1Y2,jx1,jz2,jx1 = x1x2Y2,jz2,jx1 = x1x2Y2,jx1x1,j = x1x2x3Y3,jx1x1,j

= x1x2x3x1Y3,jx1,j = x2x1x3x1Y3,jx1,j = x2x3x1x3Y3,jx1,j

= x2x3x1Y2,jx1,j = x2x3x1x2Y2,j = x2x3x1x2Y2,j

= x2x3x2x1Y2,j = x3x2x3x1Y2,j = x3x2x3x1x3Y3,j

= x3x2x1x3x1Y3,j = x3x2x1x3Y3,jx1 = x3x2x1Y2,jx1

= x3x1x2Y2,jx1 = x3x1Y2,jx1,jx1 = x3x1x3Y3,jx1,jx1

= x1x3x1Y3,jx1,jx1 = x1x3Y3,jx1x1,jx1.

The conjugation action of X on x1 is given by Xx1 = x1,3X since

x3Xx1 = x3x1x2x3Y3,nx1 = x3x1x2x3x1Y3,n = x3x2x1x3x1Y3,n

= x3x2x3x1x3Y3,n = x2x3x2x1x3Y3,n = x2x3x1x2x3Y3,n

= Y1,3X = x3x1,3X.

A similar calculation gives x3Xx2 = x1x3X. Since

x1x3X = x1x2,3X = x2,3z1,3X

we get Xx2 = z1,3X. This establishes the proposition in the cases
R = ((1,−2)) and R = ((1, 2)).

Next we establish Xxn = z2,nX.

Xxn = x1Y1,nxn = x1x1,nY1,n−1xn = z2,nx1Y1,n = z2,nX

which takes care of the case R = ((n − 1, n)). To obtain the identity
Xx1,j = z1,j+1X we note that

Y1,nx1,jY1,j−1 = Y1,nY1,j = Y2,j+1Y1,n = x2,j+1Y2,jY1,n = x2,j+1Y1,nY1,j−1

giving Y1,nx1,j = x2,j+1Y1,n so that

Xx1,j = x1Y1,nx1,j = x1x2,j+1Y1,n = z1,j+1x1Y1,n = z1,j+1X.

This completes the case R = ((1, j)) for 2 ≤ j < n.
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For the identity Xx1,n = x2X we compute

Xx1,n = x1x2(x3 . . . xn)x1,n = x1x2(x2x3 . . . xn) = x2X,

which establishes the case R = ((1, n)).

For 2 ≤ i < n we have

Xxi,n = x1Y1,i+1Yi+1,nxi,n = x1Y1,i+1xi+1Yi+1,n

= x1x1,i+1Y1,ixi+1Yi+1,n = z2,i+1x1Y1,n = z2,i+1X

and hence the proposition is true for R = ((i, n)) with 2 ≤ i < n.

The identity Xz1,j = x1,j+1X for 3 ≤ j < n follows from

Xz1,jx1 = Xx1x2,j = x1,3x3,j+1X = x1,j+1x1,3X = x1,j+1Xx1,

while the identity Xz1,n = z1,2X = x1X follows from

Xz1,nx1 = Xx1x2,n = x1,3z2,3X = x1x1,3X = x1Xx1.

This establishes the proposition for R = ((1,−j)) with 2 ≤ j ≤ n.

The identity Xzi,n = x2,i+1X for 2 ≤ i < n follows from

Xzi,nx1,iz1,i = Xx1,iz1,ixi,n = z1,i+1x1,i+1z2,i+1X

= z1,i+1x1x1,i+1X = x1x2,i+1x1,i+1X

= x2,i+1z1,i+1x1,i+1X = x2,i+1Xx1,iz1,i.

This establishes the proposition for R = ((i,−n)) with 2 ≤ i < n.

Finally we note that x1,iz1,i = z1,ix1,i since

x2,ix1,iz1,i = x2x2,iz1,i = x2x1x2,i = x1x2x2,i

= x1x2,ix1,i = x2,iz1,ix1,i.

From this we deduce that Xzi,j = zi+1,j+1X for 2 ≤ i < j < n since

Xzi,jx1,iz1,i = Xx1,iz1,ixi,j = z1,i+1x1,i+1xi+1,j+1X

= zi+1,j+1z1,i+1x1,i+1X = zi+1,j+1Xx1,iz1,i.

This establishes the proposition for the remaining cases R = ((i,−j))
with 2 ≤ i < j < n. q.e.d.

Definition 6.13. We define a lift of γ to A(Dn) to be an element of
the form

E = θ({R1})θ({R2}) . . . θ({Rn}),
where the Ri are reflections in Dn satisfying R1R2 . . . Rn = [1][2, 3, . . . , n].



K(π, 1)’S FOR ARTIN GROUPS 27

We note that one lift of γ to A(Dn) is

X = x1x2 . . . xn = θ({((1,−2))})θ({((1, 2))}) . . . θ({((n− 1, n))}).
To show that θ determines a well-defined homomorphism it suffices, by
Lemma 6.1, to prove the following.

Proposition 6.14. For any lift E of γ to A(Dn) we have E = X.

Proof: Given a lift E of γ to A(Dn), where

E = θ({R1})θ({R2}) . . . θ({Rn}),
we know that R1R2 . . . Rn = [1][2, . . . , n]. It follows for the proof of
proposition 4.2 that one of the Rk is of the form ((1,±j)). Since E = X if
and only ifX lEX−l = X for any integer l, we may assume Rk = ((1,±2)).
We treat these two cases separately.

Suppose that Rk = ((1,−2)). We will construct a new lift E ′ of γ satis-
fying E ′ = E and

E ′ = θ({R1}) . . . θ({Rk−2})θ({((1,−2))})θ({R′})θ({Rk+1}) . . . θ({Rn}),
for some reflection R′.

To simplify notation we set Rk−1 = T so that Rk−1Rk = T ((1,−2)). Since
T ((1,−2)) ≤ [1][2, . . . , n] we know that

T ≤ ((1,−3,−4, . . . ,−n, 2))

so that T has one of the forms

(1) ((1, 2)),
(2) ((i, j)) for 3 ≤ i < j ≤ n,
(3) ((1,−p)) for 3 ≤ p ≤ n or
(4) ((2,−p)) for 3 ≤ p ≤ n.

In the first case θ({T}) = x2, which commutes with θ({((1,−2))}) = x1.
In the second case, θ({T}) = xi,j lies in the subgroup generated by
{x4, . . . xn} and hence also commutes with x1. In the third case E ′ can
be constructed using

θ({T})θ({((1,−2))}) = z1,px1 = x1x2,p = θ({((1,−2))})θ({((2, p))})
and in the fourth case using

θ({T})θ({((1,−2))}) = z2,px1 = x1x1,p = θ({((1,−2))})θ({((1, p))}).
After k − 1 such steps we get E = x1θ({S2}) . . . θ({Sn}), where the
product on the right is a lift of γ to A(Dn). However, this means
S2S3 . . . Sn = ((1, 2, . . . , n)) in Cn so that Si ∈ Σn < Cn and

θ({S2}) . . . θ({Sn}) = x2x3 . . . xn,
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by Lemma 4.6 of [3].

Next suppose Rk = ((1, 2)). As in the previous case, we will construct a
new lift E ′ of γ satisfying E ′ = E and

E ′ = θ({R1}) . . . θ({Rk−2})θ({((1, 2))})θ({R′})θ({Rk+1}) . . . θ({Rn}),

for some reflection R′. To simplify notation we again set Rk−1 = T so
that Rk−1Rk = T ((1, 2)). Since T ((1, 2)) ≤ [1][2, . . . , n] we know that

T ≤ ((1, 3, 4, . . . , n,−2))

so that T has one of the forms

(1) ((1,−2)),
(2) ((i, j)) for 3 ≤ i < j ≤ n,
(3) ((1, p)) for 3 ≤ p ≤ n or
(4) ((2,−p)) for 3 ≤ p ≤ n.

In the first case θ({T}) = x1, which commutes with θ({((1, 2))}) = x2.
In the second case, θ({T}) = xi,j lies in the subgroup generated by
{x4, . . . xn} and hence also commutes with x2. In the third case E ′ can
be constructed using

θ({T})θ({((1, 2))}) = x1,px1,2 = x1,2x2,p = θ({((1, 2))})θ({((2, p))}).

In the fourth case E ′ is constructed using

θ({T})θ({((1, 2))}) = z2,px2 = x2z1,p = θ({((1, 2))})θ({((1,−p))}).

The middle equality holds since

z2,px2x1 = z2,px1x2 = x1x1,px2 = x1x2x2,p = x2x1x2,p = x2z1,px1.

After k − 1 such steps we get E = x2θ({S2}) . . . θ({Sn}), where the
product on the right is a lift of γ to A(Dn). However, this means
S2S3 . . . Sn = ((1,−2, . . . ,−n)) in Cn so that Si lie in the copy of Σn

generated {((1,−2)), ((2, 3)), . . . , ((n− 1, n))} and

θ({S2}) . . . θ({Sn}) = x1x3 . . . xn,

by Lemma 4.6 of [3]. Finally

E = x2x1x3 . . . xn = x1x2x3 . . . xn.

q.e.d.

Combining the results in this subsection we get the following theorem.

Theorem 6.15. The poset group Γ(Dn, γ) is isomorphic to the Artin
group A(Dn) for γ a Coxeter element in Dn.
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