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Abstract 

The overall aim of this study was to investigate the cellular and molecular mechanisms 

involved in radiation-induced bystander effects in HaCaT cells, predominantly at low-

doses of irradiation. They do not follow the original dose-response theory and exhibit a 

unique cascade of signalling events, which are under intense investigation for radiation 

risk purposes. An in vitro system was first used to observe the bystander effect, 

comparing two cell viability assays while measuring apoptotic cell death in these known 

reporter HaCaT cells and established the most sensitive assay for bystander responses 

Downstream bystander signalling events were then investigated through gene 

expression studies of apoptotic genes over a complex time-course with different low 

doses to reveal very specific changes in bystander responses. The expression pattern 

profile revealed novel unique bystander-induced apoptotic signalling pathways in 

different low doses of irradiation. Proteomic methods using 2D gel electrophoresis and 

mass spectroscopy further revealed novel proteins which were significantly over or 

under–expressed in the bystander reporter cells but using an ex-vivo fish model. These 

results revealed an induction of protection of the cells in response to oxidative stress and 

modulation of cell death processes.  

The data generated in this thesis has led to the proposal of two distinct and comparative 

signalling pathways of a cellular radiation induced bystander response for 0.05 Gy and 

0.5 Gy ionising radiation. These novel pathways have expanded our knowledge in the 

cellular and molecular mechanisms which occur when a cell receives a bystander signal 

and may have future clinical considerations and implications for patients undergoing 

radiotherapy treatment plans.  
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Chapter 1 

Introduction  

 

1.  Introduction 

1.1 History of Radiation 

The field of radiobiology began in 1895 with the discovery of X-rays by Wilhelm 

Conrad Roentgen, followed by the first clinical use of X-radiation for treatment of a 

hairy mole by Leopold Freund in 1896 (Beyzadeoglu 2011). In the same year, Henri 

Becquerel engaged in experiments utilising the radioactive element uranium to 

determine the associated effects of radiation. Becquerel demonstrated that radiation 

seemed to arise spontaneously from the uranium as opposed to an external energy 

source. The term radioactivity was later used by Marie Sklodowska Curie and Pierre 

Curie for their discoveries of the radioactive elements polonium and radium in 1898 

(Bernier et al. 2004). Marie Curie, whose work initially involved investigations into 

uranium rays, hypothesised that radiation came from the actual atom itself and not an 

interaction of molecules. Marie and Pierre attempted to isolate polonium and radium in 

their pure forms and published many papers (Feinendegen et al. 2008). At that time, the 

risks of radiation exposure were not well known but, in 1927, Hermann Joseph Muller 

revealed that humans exposed to radiation were at risk of developing physiological and 

genetic effects. Muller’s early work as a geneticist involved Drosophila, through which 

he discovered mechanisms of crossing-over of genes. He later formulated the chief 
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principles of gene mutation and discussed how most mutations are detrimental and 

recessive. Muller’s discovery that a quantitative relationship existed between radiation 

and lethal mutations sparked huge publicity, as it was the first time radiation risks had 

been recognised. Other researchers went on to repeat his experiments and expanded to 

other model organisms such as wasps (Whiting 1929). In 1930, Muller publicised the 

dangers of radiation exposure in humans, particularly for X-ray operators (Muller 

1930). At the time, the use of radium-containing medicinal products was widespread, 

but they were removed from the market in the 1930s due to the emerging reports of 

hazardous effects posed to humans.  By the 1940s, the growth of nuclear reactors and 

nuclear weapons was evolving, culminating in the devastating 1945 atomic bombings of 

Hiroshima and Nagasaki in Japan by the United States.  

 

Radiation is found in our natural environment. Sources of natural background radiation 

include cosmic rays from outer space, natural radioactive materials in the ground and 

radionuclides naturally occurring in the body or in food. Gamma-ray and X-ray 

equipment used in hospitals and industry are also sources of exposure. Exposure to 

natural and man-made sources has increased due to an increase in human activities such 

as air travel, mining and medical practice. In Ireland on average, a person receives an 

annual dose of 3950µSv from all sources of radiation. About 86% of radiation comes 

from the natural sources, mainly due to the accumulation of radon gas beneath houses. 

Man-made radiation contributes 14% (550µSv), which is greatly dominated by the use 

of radiation in medicine (540µSv). Other man-made sources make up about 1% (15µSv) 

of radiation exposures (Radiological Protection Institute of Ireland, RPII, 2012). The 
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contribution from all these sources of radiation expressed as the average annual dose to 

a person in Ireland is displayed in Figure 1.1.  

 

 

 

 

Figure 1.1 The average annual dose to a person in Ireland. The Radiological Protection 

Institute of Ireland (RPII)  Annual Report and Accounts in 2012, “ To ensure that 

people in Ireland are protected from the harmful effects of radiation''. The figure above 

displays a breakdown of the percentage radiation exposures that each person is Ireland 

is exposed to annually (RPII, 2012).  
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Radiation has become a very important tool in modern clinical practice for both 

diagnostic and therapeutic purposes, such as cancer therapy. The use of radiation in 

clinical tissues or cells is based on the concept that it will selectively kill tumour cells 

while minimising the detrimental effect to normal surrounding cells and tissues (Baskar 

et al. 2012). However, radiation is frequently described as a ‘double-edged sword’ as it 

is an important tool for treatment of malignant tumors but it can also be a potential 

genotoxic agent causing genome instability and carcinogenesis (Hall & Giaccia 2012). 

In 1896, Emil Grubbe treated a breast cancer patient with radiation therapy 

(radiotherapy) for 1 hr each day for a total of 18 days and discovered palliative effects 

(Vujosevic & Bokorov 2010). Although Grubbe was a medical student at the time and 

did not actually publish this work until 1946 and 1947 (Grubbe 1946, 1947), he was in 

fact responsible for the introduction of the term “radiotherapy” in the late 1800’s. While 

the evolution of radiotherapy has undoubtedly resulted in increased patient survival 

rates, it must be noted that radiation-treatment-related complications can also occur. 

Human radiation-mediated responses have been thoroughly investigated at the 

molecular, cellular and tissue levels to better understand these complications for 

subsequent patients undergoing radiotherapy. Furthermore, delayed responses to IR for 

months to years post treatment have also been the subject of intense investigations 

because of the clinical implications of this phenomenon. 
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1.2 Introduction to Clinical Radiation Types and Doses 

Radiation transmits energy in the form of either waves or particles and is classified as 

either ionising or non-ionising radiation types. IR is classified as electromagnetic 

radiation (X-rays and gamma-rays) and particulate radiation (electrons, protons, α-

particles, neutrons and heavy charged particles). Figure 1.2 shows the electromagnetic 

spectrum for both ionising and non-ionising radiation. Non-ionising radiations include 

ultraviolet (UV) radiation, microwave and infrared (Internal Atomic Energy Agency 

Publications, IAEA 2004).  Protons, neutrons and α-particles lose their energies over 

shorter distances than X-rays and gamma-rays with the same energy (Beyzadeoglu, 

2011). Ionising radiation (IR) has higher frequencies and shorter wavelengths, and 

while non-ionising radiations have a lower frequency with longer wavelengths. 
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Figure 1.2 The electromagnetic spectrum. The electromagnetic radiation is characterised 

by the wavelength, frequency and energy per photon. It has no mass and can pass 

through matter. Ionising and non-ionising radiations are described above.  

 

Ionising radiations that are commonly used in radiotherapy are described by the Internal 

Atomic Energy Agency in their 2004 publication “Radiation, People and the 

Environment” (IAEA, 2004). Alpha (α) radiation is a positively charged helium nucleus 

emitted by a large unstable nucleus. It has a short range of about 1-2cm and can be 

absorbed completely by paper or skin. If α-radiation enters the body it can be quite 

harmful, as high energy depositions can result in nearby tissues. Beta (β) radiation is 

composed of electron particles emitted by an unstable nucleus and are much smaller 

particles than α-particles. β-radiation can be absorbed completely by plastic, glass or 

metal and cannot usually penetrate further than the top layer of skin, but very large 

exposures can induce skin burns. Gamma (γ) radiation is a very high energy photon 
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emitted from an unstable nucleus that is usually emitting a β-particle at the same time.  

Gamma-radiation passes through materials, ionising the atoms as it is transmitted. It is 

very penetrating to skin and therefore only very dense materials such as lead can shield 

γ-radiations (see Figure 1.3). X-rays are very similar to gamma but are produced 

artificially by a rapid slowing down an electron beam. Likewise they are very 

penetrating and can transport high doses to internal organs in the body. Neutron (n) 

radiation is produced when nuclear fission causes neutrons to be ejected from the 

nucleus of an atom, these can be absorbed by a variety of materials, specifically with 

many Hydrogen atoms. They are usually produced artificially. If they interact with 

materials, they cause emissions of β and γ radiations. Exposures can be managed with 

the aid of heavy shielding.  

 

 

Figure 1.3 Various ionising radiation penetration ranges. Electrons have smaller ranges 

and travel shorter distances than gamma and X-rays, and they can be absorbed by 

plastics, glass and metal layers (Internal Atomic Energy Agency Publications, IAEA 

2004).   
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Living cells directly absorb IR (energy) which in turn disrupts atomic structures, 

generating chemical and biological changes in the cell, initiating a series of processes 

which can cause permanent physiological changes (Hall & Giaccia, 2012). Patterns of 

radiation tend to be localised along tracks of the charged particles. Different sources of 

radiation will determine the pattern of radiation. X-ray and gamma-radiation occur in 

well-separated tracks and α-particles and HZE-particles (high energy) occur in dense 

columns along the path (Jain et al., 2012). The amount of radiation delivered to a 

patient must be known in order to determine the ultimate damaging biological effects, 

referred to as biological effectiveness. The amount of energy absorbed is called dose, it 

is quantified as the ‘absorbed dose, ‘equivalent dose’ and ‘effective dose. Absorbed 

dose refers to the amount of radiation absorbed by tissue and the unit of measurement is 

Gray (Gy). 1 Gy represents one unit of energy (joule) in one kilogram (kg) of tissues. 

Radiation types differ in the way that they interact with biological material and 

therefore the absorbed doses do not always represent equal biological effects. So, 

another quantity takes into consideration the differences between the types of radiation 

administered. The unit for quantification of this dose unit is Sievert (Sv) and is referred 

to as the equivalent dose. Most often the unit is expressed as milli Sievert (mSv) and 

micro Sievert (µSv) (Seltzer, 2011). Each major tissue and organ in the body has their 

own unique equivalent dose, when this is multiplied by a weighting factor it relates the 

risk associated with the specific tissue or organ. These doses are referred to as effective 

doses. Dosimetry measures dose and dose rates for patients undergoing radiotherapy 

using equipment called dosimeters or detectors (Beyzadeoglu, 2011). 

Diagnostic and therapeutic radiation fields encouraged the development of radiation 

oncology, in which radiation types and energies have been established for the treatment 

of malignant tumors. There are three main divisions of radiotherapy that exist and 
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which differ based on the position of the radiation source, such as, external beam 

radiotherapy or teletherapy, brachytherapy (sealed source/internal radiotherapy) and 

systemic radioisotope (unsealed source) radiotherapy. External radiotherapy is in fact 

the most common type used. Kilovoltage X-rays are administered for the treatment of 

skin cancers and superficial tumors and include contact therapy machines, superficial 

therapy machines and supervoltage machines. Megavoltage X-rays are used for the 

treatment of more deeply seated tumours and are administered through Van Graaf 

generators, Cobalt-60 teletherapy units, Betatrons, Microtrons and Cyclotrons. The first 

Cobalt-60 teletherapy machine was developed in London, Ontario, in Canada in 1951 

(Hall & Giaccia, 2012) and is used specifically to treat tumors < 10cm in depth, through 

the production of gamma-rays from Co-60 radioisotopes. Gamma rays have well-

defined energies and are emitted during the decay of Co-60. The Linear Accelerator 

(Linac) was developed at Hammersmith Hospital in the United Kingdom and is used for 

more deeply placed tumors. The Linac involves the emission of free electrons and 

acceleration in an electromagnetic field, thereby increasing the energy (Beyzadeoglu 

2011). Both technologies have led the way for external beam radiotherapy today 

followed by the use of IR and radioactivity as internal therapeutic agents, for example, 

brachytherapy. It is common for radiotherapy to be administered in a combined therapy 

approach, in conjunction with surgery and chemotherapy to treat malignant tumors. 

Radiation can be used before surgical removal of a tumour in an attempt to shrink the 

size of the tumour, and this is referred to as neo-adjuvant therapy. Radiation 

administered post-surgery is referred to as adjuvant therapy and can destroy any 

remaining tumour cells not removed surgically (Baskar et al., 2012).  
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1.3 Biological Interaction of Radiation with Cells 

The effect of ionising radiation (IR) is due to the geometry of physical energy 

deposition events in cells and tissues known as track structure, and is referred to as 

linear energy transfer (LET) (Muroya et al., 2006). LET describes the energy 

transferred to the cell through IR per unit tract length. Biological effectiveness of 

radiation is influenced by the LET, total dose administered, fractionation rate and 

radiosensitivity of the targeted cells or tissues (Hall, 2007). The effect of radiation 

damage on biological material greatly depends on the characteristic of radiation 

administered and increases as LET increases (measured in KeV/µm). Low-LET 

radiations such as X-rays, γ-rays and β-particles deposit small quantities of energy on 

cells. High LET radiations, neutrons and α-particles deposits more energy on the 

targeted areas causing more biological effects (Baskar 2010). This is because high-LET 

is capable of transferring a larger amount of energy per unit length and is likely to 

instigate DNA damage over a short period of time. Consequently it is more damaging 

than the same dose of electromagnetic radiation (low-LET radiation) (Baskar et al., 

2007). Exposure to high (-LET) particles have been shown to induce cell killing for the 

removal of dangerous cells (Jain et al., 2012). Figure 1.4 shows the range of biological 

consequences of radiation. High doses can cause great physical damage to 

chromosomes and even low dose radiation can cause mutations and subsequent 

carcinogenesis.  
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Figure 1.4 Radiation exposures trigger a variety of complex responses at different levels 

of biological organisation. The responses are part of a complex signalling network.  

 

Radiation effects can occur either directly or indirectly in biological matter.  The direct 

action of radiation involves the absorption of radiation energy and the direct interaction 

with cellular targets such as DNA, ionising or exciting molecules within a cell, 

instigating a series of signalling events leading to specific biological changes (see 

Figure 1.5). If the radiation is from a high -LET source then direct effects occur. 

Otherwise, radiation can interact with molecules other than DNA within the cell, most 

often water. This is due to the fact that mammalian cells are composed mainly of water 

and the radiation damage is indirectly induced through radiolysis of water in the cells 

(Hall & Giaccia, 2012).  
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Figure 1.5 A schematic representation of how radiation can directly damage DNA in 

cells. If the damage is repaired then cells can survive, if the damage is not repaired that 

cell death is induced. Occasionally DNA double-strand breaks are misrepaired causing 

mutations and subsequent development of carcinogenesis (Prise & O’Sullivan 2009) 

 

The radiation absorbed by biological materials results in either excitation or ionisation 

of atoms in a cell. Excitation occurs when an electron in an atom is elevated to a higher 

energy level without being actually ejected. Ionisation describes when radiation has 

enough energy to eject one or more electrons, creating an imbalance of electrons and 

protons and thus making an atom positively charged. These atoms are then referred to as 

ions and radiation is capable of producing ions (Joiner & Kogel 2009). The generation 

of free radicals cause oxidising changes that can damage nucleic acids, proteins and 

lipids (Hall & Giaccia, 2012). A schematic representation is presented in Figure 1.6. 

The figure describes ionisation and excitation occurring in irradiated cells, and the 

generation of H2O
+
 and an electron (e

-
) from the ionisation of H2O, a hydrogen atom 
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(H∙) and a hydroxyl radical (∙OH) from the excited H2O. ∙OH is a cytotoxic oxygen 

radical responsible for the cellular damage. Free radicals are capable of moving 

throughout the cell damaging important cellular targets. About one quarter of radiation 

damage occurs directly therefore most radiation damage must be a result of indirect 

radiation. Although the IR tracks in cells can occur randomly, the responses to random 

IR can become coordinated by controlled cellular responses.  

 

 

 

Figure 1.6 Free radicals generated during radiolysis of water (Qian et al., 2013).  
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There are experimental methods to elicit a localised radiation exposure in cells enabling 

a more precise investigation of the associated cellular mechanisms. The use of 

radioactive elements has been successful for this purpose. Early studies show that 

subjecting DNA to a radioactive label such as 
125

Iodine results in DNA double strand 

breaks (DSB) and can stimulate mutagenic and cytotoxic damage (Martin & Haseltine 

1981).  DNA molecules were constructed to contain a single 
125

Iodine labelled 

deoxycytidine at a known position and sequence. Decay of 
125

I instigated DNA strand 

breaks. DNA damage can initiate cell death processes by means of apoptosis to remove 

damaged cells or DNA repair responses but occasionally the damage is incorrectly 

misrepaired resulting in chromosomal mutations, therefore increasing the possibility of 

survival and subsequent carcinogenesis, (reviewed by Prise & O’Sullivan 2009).  

Earlier reports targeting and analysing cells individually, showed that the effects of 

radiation damage were exclusively dependent on direct irradiation of the nucleus and 

that cytoplasmic radiation caused very little cytotoxic effect (Zirkle & Bloom, 1953; 

Alexander & Bacq, 1961). The technology for micro-irradiations became available 

years later, in the 1990’s, through the development of microbeams, which allow 

localised targeted radiation. They have become a very powerful radiobiological tool that 

facilitates targeting of single cells. They were originally designed to evaluate the 

biological effects of radiation specifically at very low doses. This enabled assessment of 

the environmental and occupational risks associated with low dose radiation exposure. 

In these circumstances, single cells are irradiated in occupational workers and the dose 

is spaced out over many years. Improved imaging, software and delivery of the beam 

have advanced the technology. Microbeams are capable of transferring charged 

particles, X-rays and electrons to the target cells. One of the major advantages of 
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targeting single cells is that key cell mechanisms signalled post exposure could be 

elucidated, thus revealing early radiation responses in cells.  

The traditional concept of radiobiology was based on the target theory assuming that the 

primary target is DNA and that biological effects of exposure to radiation occur in the 

irradiated cell as a result of direct damage to DNA in the nucleus (Crowther 1924). In 

the 1970’s DNA was uncovered as a sensitive target for radiation damage, (reviewed by 

Prise et al, 2003). Over the past two decades, the conventional radiobiology model has 

been challenged by the evolution of these biological consequences known as non-

targeted effects (NTE) meaning that all previous assumptions have since been 

reconsidered. NTE will be discussed in detail in the next section, with particular 

emphasis on bystander effects.  

 

1.4 Non-targeted Effects of Radiation 

The non-targeted effect (NTE) concept emerged because of unusual cellular damage 

discovered in cells that did not depend on direct DNA damage. Non-irradiated cells 

were receiving damage signals from directly irradiated cells. In actual fact, there is very 

early evidence of non-targeted radiation effects from experiments dating back to 1915 

(Murphy & Norton, 1915). Murphy and Norton performed partial body irradiations in 

mice (Mus), concluding that similar damaging effects could occur in distant non-

irradiated parts of the body. The data was not fully acknowledged until other data 

emerged in from the work of Seymour and colleagues (1986) and then later by 

Nagasawa and Little in 1992 (1992) indicating the specific biological changes in 

response in non-targeted irradiations. 
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Four major manifestations significantly challenged the original radiobiology paradigm 

and led to the discovery of two important classifications of NTE. Firstly, in 1986 de 

novo lethal mutations were found to occur in cells surviving radiation and these cells 

even successfully divided for several generations post exposure (Seymour et al. 1986). 

Therefore, even after radiation treatment the effects of the initial dose persisted 

throughout the lifetime and progeny of cells. Secondly, bone marrow stem cell lineages 

derived from irradiated stem cells were explored for similar damaging effects, and 

delayed appearances of de novo chromosome aberrations in cells were discovered 

(Kadhim et al. 1992). It is not possible that these lethal mutations or aberrations could 

have been present at the time of irradiation. Therefore, the effect must have been a 

result of a communicated damage signal from directly exposed cells. Thirdly, in 1992 

Nagasawa and Little (1992) discovered that very low dose α-particle radiation resulted 

in more cells showing chromosome damage than were originally hit by the original 

ionising particles. Finally, media transfer experiments in bystander studies were 

developed and enabled the exploration of how NTE was signalled. Filter sterilised 

media was transferred from directly irradiated cells (donor cells) onto non-irradiated 

cells (recipient cells). Media from the directly irradiated cells was capable of triggering 

similar levels of clonogenic cell death and genomic instability in non-irradiated cells 

(Mothersill & Seymour 1997). These innovative discoveries established that this effect 

can cause both delayed and non-targeted chromosomal aberrations and gene expression 

changes Aypar et al., 2011). The genetic changes induced in cells which are not 

irradiated but in receipt of signals from the irradiated cells are currently referred to as 

‘radiation-induced bystander effects’ (RIBE) and will be described as RIBE throughout 

the rest of this study. This term was first used by Nagasawa and Little based on their 

findings in 1992. Kadhim and colleagues (1992) showed that genetic changes can 
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manifest in the progeny of an irradiated cell after many generations of cell division, and 

is better understood today as radiation-induced genomic instability (RIGI) (Aypar et al. 

2011).  

Genomic instability is reviewed in detail by Morgan and colleagues (Morgan, 2003). It 

is best described as the ‘‘instability events’’ that can occur in the progeny of an 

irradiated cell. A cell that survives irradiation has the ability to clonally expand, 

meaning that the progeny of the irradiated cell may undergo cell death. Otherwise, the 

instability events will occur in the progeny of the irradiated cell, resulting in 

chromosomal aberrations, mutations, micronuclei formation (MN) and gene 

amplifications. Bystander effects can occur in distant ‘out of field’ bystander cells and 

their progeny. Although the route by which both genomic instability and bystander 

effects occur can be different, the mechanisms are similar in nature. It is believed that 

genomic instability is a direct consequence of bystander signalling induced in response 

to radiation (Coates et al. 2004). In addition to RIBE and RIGI, there are other types of 

NTE that exist such as low-dose radio-hypersensitivity and abscopal effects. Reports 

show that cell lines demonstrating a large bystander effect do not show hyper-

radiosensitivity (Joiner et al. 2001; Mothersill et al. 2002). Nevertheless, the molecular 

mechanisms are not very well understood and so the following study exclusively 

explores the molecular and biochemical effects of RIBE in a human skin model. The 

discovery of NTE has created greater uncertainty in radiation risk and health protection 

issues than previously predicted. It is clear that radiation not only poses a threat to 

exposed individuals but also to their progeny.  
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1.5 The Bystander Response – Overview 

Radiation induced bystander effects (RIBE) have been shown to occur when an 

irradiated cell communicates with non-irradiated cells via secreted factors and or via 

gap-junctional intercellular communication.   

These bystander effects have challenged the original target theory (that was mentioned 

earlier) as they do not follow the original concept. Figure 1.7 shows the linear 

relationship of total-dose responses to IR without bystander effects added in, as the 

figure just shows a general shape of the bystander effect. Bystander responses do not 

demonstrate a linear dose-response relationship as the classical target theory does 

(Belyakov, 2005).  

The non-irradiated cells exhibit biological responses that are normally characteristic of 

irradiated cells. Bystander effects seem to be primarily a low dose phenomenon and  

saturation of the bystander response is said to occur at a threshold dose (0.2 Gy), but 

bystander effects have been found at higher doses (0.5 Gy) (Nagasawa & Little, 1992; 

Prise et al. 2005). Increasing the dose does not increase the number of affected cells in a 

population (Liu et al., 2006) and the response is independent of dose in the range of 

0.5–5 Gy (Sowa et al., 2010). Reports show that exposure to very low doses (1 cGy-5 

Gy) of 
60

Co gamma radiation, initiates an increase in the development of cell death via 

apoptosis or necrosis as well as evidence of reduced cell cloning efficiency in the cells 

that were never exposed to radiation (Mothersill et al., 2000; Mothersill & Seymour, 

2002). 
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Figure 1.7 Linear relationship of total dose response to ionising radiation (Belyakov, 

2005). 

 

For these reason, the cellular communication of bystander responses has had to be re-

considered in order to estimate the associated health-risks and consequential radiation 

protection issues. Data derived from high-dose epidemiological risk data contributes to 

the linear-no-threshold (LNT) model. So according to LNT, cancer-risk associated with 

low-dose exposure is derived from these data by extrapolation. It does not take into 

consideration that the risks of low doses may be different (See Figure 1.8). Bystander 

responses are induced at low doses, this suggests that a specific cellular mechanism may 

be responsible for ‘switching’ to direct effects at higher doses. So, the risks may be 

greater or less than what was previously predicted in the LNT model.  
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Figure 1.8 The model demonstrates how low-dose bystander effects do not fit into the 

linear no-threshold (LNT) model. The data for this model is derived from high-dose 

epidemiological data. As there is not any reliable epidemiological information in low 

dose region, there are uncertainties of the associated radiation risks. However, the figure 

shows that at low doses, the dotted lines are indicative of both beneficial or detrimental 

effects (Belyakov 2005). 

 

1.5.1 History of Bystander Response 

Prior to the recent interest in non-targeted effects of IR, there were numerous reports 

that a clastogenic factor capable of inducing chromosomal breaks in unirradiated 

lymphocytes was present in blood plasma after radiotherapy (Parsons et al., 1954; 

Littlefield et al., 1969; Faguet et al., 1984). Clastogenic factors have been shown to be 

produced via superoxide and to induce the production of superoxide (Emerit, 1994).  
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Their clastogenic activity may be related to the formation of lipid peroxidation products 

(Emerit, Levy & Khan, 1991) and cytotoxic cytokines (Emerit et al., 1995), which are 

currently candidates for mediating RIBE and will be discussed further in more detail. 

There is also a body of clinical and experimental radiotherapy data concerning so -

called abscopal effects of radiation, whereby responses were observed in unrelated 

organs or tissues that were not irradiated (Nobler, 1969; Montour, 1971; Camphausen et 

al., 2003). Abscopal effects have been previously referred to as the distant effects seen 

after local radiation therapy, however more recently the term has been used to relate to 

distant bystander effect. There is controversy surrounding the abscopal effect as there is 

data both supporting and contesting the concept (Kaminski et al., 2005).  

There are many definitions of radiation-induced bystander effects and here we define it 

as the ability of cells exposed to radiation to transmit indirect effects from targeted 

irradiated cells to non-irradiated neighbouring cells. There are very early reports of 

RIBE dating back to 1954. The report described the presence of bystander damage in 

bone marrow in the sternum of children that had previously received radiotherapy to 

their spleen for chronic granulocytic leukaemia (Parsons et al., 1954). In the late 1960’s, 

Hollowell and Littlefield further investigated what kind of bystander damage was 

associated with this response. They revealed that plasma from X-irradiated patients 

could induce chromosomal damage in non-irradiated lymphocytes held in culture and 

similarly plasma from high dose radiotherapy patients could stimulate chromosomal 

aberrations in non-irradiated cells (Hollowell & Littlefield, 1967; Hollowell & 

Littlefield, 1968). Another study reported that double the amount of chromosomal 

aberrations were generated in lymphocyte cultures exposed to irradiated plasma 

compared to non-irradiated plasma, suggesting that there was something in the plasma 

initiating damage in non-irradiated cells (Demoise & Conard, 1972).  
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Reports have shown that non-irradiated rats in receipt of blood plasma from irradiated 

rats displayed non-targeted damaging effects (Souto, 1962). The rate of mammary 

tumour development was increased in the rats indirectly exposed to radiation and 

quantified as the extent of damage induced. Littlefield and colleagues further 

investigated this type of damage and found that a variation exists between directly 

irradiated and non-targeted indirect radiation effects with regard to the range of 

chromosomal aberrations produced (Littlefield et al., 1969). Their work was further 

validated by Scott (1969), however his data presented lower levels of aberrations 

consisting of the chromatid type only. In 1968 Goh & Sumner (1968) cultured normal 

leukocytes obtained from donor patients with irradiated patient plasma. They recorded 

that chromosome breaks were induced in the lymphocytes in receipt of the plasma.  

Remarkably, their study revealed that a transferable substance in the plasma was 

communicating the damage and so a specific signalling mechanism must be responsible, 

which had yet to be discovered. 

Different patterns of genes expression occurs after low and high doses of irradiation in 

cells, suggestion that the gene changes are dose-dependent (Amundson, 2008). 

Bystander responses could be a result of differential gene expression, cell signalling and 

epigenetic changes prevailing at low doses of radiation. The differences in gene 

expression between low and high doses of irradiation could also be a result of time or 

tissue-dependent differences (Amundson et al., 2000). An insight into the precise 

molecular mechanisms of RIBE in cells and tissues is essential to understanding the 

consequences of the bystander effect and any clinical implications. 

There is uncertainty as to whether bystander effects are beneficial or detrimental. It is 

known that they induce stress effects instigating DNA repair mechanisms, indicative of 
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stimulated cellular damage. On the contrary, induction of adaptive responses and 

hormesis has occurred in cells indicating possible protective mechanisms (Calabrese et 

al., 2011). It is believed that communication of a bystander factor may potentially act as 

a ‘warning’ to unirradiated cells, instructing or adapting the cells in case of subsequent 

exposures to damaging signals (Sawant et al., 2001). Further to that, bystander cells are 

capable of becoming more radio-resistant than cells that have not been exposed to 

bystander signals (Rashi Iyer & Lehnert 2002; Mitchell et al. 2004; F. Lyng et al. 2006) 

and may possibly recognise the mutagen (IR) or perhaps protect the cell from further 

damage through initiation of specific cellular mechanisms. Interestingly, a study in 2008 

demonstrated that ICCM harvested from radio-resistant cell lines (T98G, HT29 and 

SW480) transferred onto epithelial (HPV-G) cells did not show bystander effects (Ryan 

et al. 2008). Another study has shown that priming cells (U373, T98G, HGL21 and 

HT29) with 0.1 Gy irradiation 5 hr prior to exposure to 2 Gy and 5 Gy, demonstrates 

increased cloning efficiencies (Ryan et al. 2009).  

 Low dose radiation-induced protective responses are actually mediated in a bystander 

manner in cell culture indicative of shared signalling components between the 

responses. The distant molecular interactions leading to proliferation of either damaging 

or protective effects is dependent on cell type and the characteristics of the radiation.  

Speculations have been made based on the specific biological endpoints associated with 

bystander effects. These appear to be common to both targeted and non-targeted 

radiation effects, including cell death, increased reactive oxygen species (ROS), 

enhanced cell growth, chromosome aberrations and mutations, altered gene expression 

and induction of genomic instability (Chaudhry 2006). Certain biological endpoints 
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such as the generation of free radicals acting on DNA depend on short-lived signals 

(Kashino et al. 2007).  

 

1.5.2 Bystander Response Signalling Mechanisms in Cells  

The entire biological mechanism of the bystander cellular response is still not fully 

understood, but reports have shown that there are two fundamental mechanisms that 

transmit bystander signals. A) Cell – cell communication through cellular gap junctions 

has been considered to play a role when there is a high degree of cell to cell contact. A 

connexin-mediated gap-junction transfer of the bystander signal was also thought to be 

responsible for communicating the bystander signal (Azzam et al. 1998; Azzam et al. 

2001). B) Other data revealed that production of the bystander factor does not always 

require cell to cell contact to transmit a signal to neighbouring cells (Mothersill & 

Seymour 1998). The main finding of this study was that the medium was taken from 

irradiated cells and put on cells in another flask caused bystander effects, so gap-

junction communication could not be communicating. This was confirmed by inhibiting 

gap-junction communication with tumour promoter phorbol myristate acid (PMA) in 

epithelial cells prior to irradiation and the, which resulted in increased bystander death 

effects. It is clear that there is another mechanism responsible other than gap-junction 

communication. The hypothesis that the bystander signal can be secreted from directly-

irradiated cells into the surrounding medium (Mothersill & Seymour 1997) was 

confirmed in other studies  (Narayanan et al. 1997; Przybyszewski et al. 2004; Lehnert 

& Goodwin 1997). This is the primary course of signal transduction, particularly when 

there is no direct cell -to -cell contact or cells are located far apart. 
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The magnitude of the bystander effect ultimately depends on the number of cells 

initially irradiated and the concentration of the signal that they produce (Mothersill & 

Seymour 1998; Vines et al. 2008). Bystander signal generation and response to the 

signal have been acknowledged as separate processes. Production of a bystander signal 

seems to be more important than the number of non-irradiated cells receiving the signal 

to respond (Ryan et al. 2008). Signal generation is known to involve electrochemical 

processes similar to the nervous system, such as a reduction in mitochondrial membrane 

potential and induction of ion-flux and will be discussed later on (Poon et al. 2007). 

Ca
2+

 has been suggested as a ‘death trigger’ because of the influx of intracellular Ca
2+ 

that lead to the cell demise (Fleckenstein et al. 1974) and for that reason it is said to be 

an intrinsic stress induced by cells as a result of an external stress such as IR (Cerella et 

al. 2010).  It is important to emphasise that the RIBE pathway appears to be divided 

into two separate but connected events. The first being a signalling event between cells 

(intercellular) to communicate the bystander factor and the second being the events 

which are triggered within the cell (intracellular) when the signal is received. 

 

1.5.3 Intercellular Signalling of Bystander Factor(s) 

Some of the key intercellular signalling mechanisms of bystander responses have been 

revealed but not fully elucidated. The initiating events in the bystander cascade in non-

irradiated cells are from signals produced from the irradiated cells. Intercellular 

signalling molecules originating from directly-irradiated cells could have a significant 

role in transferring damage to non-irradiated bystander cells.  Bystander responses have 

been compared to inflammatory type responses due to the activation of cytokines and 

activation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in 
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oxidative stress (Rastogi et al. 2013). Transcription factor NFKβ-dependent cytokines 

interleukin-6 and -8 (IL-6, IL-8), transforming growth factor-β (TGFβ) and tumour 

necrosis factor- α (TNFα) have all been implicated in bystander signalling (Gow et al, 

2010). TGFβ1 is, a cytokine that mediates growth and differentiation and the activation 

of immune activity in cells and it, has been suggested to be a mediator of bystander 

responses (Lorimore et al. 2008; Shao et al. 2008). There is evidence of increases in the 

expression of TNF-α (Lorimore et al. 2008) and IL-8 cytokines (Narayanan et al. 1999) 

on the cell surface post-irradiation.  A recent study measuring gene expression profiles 

and analysis of molecular signalling pathways, revealed that cytokine interleukin (IL)-

1α is released into serum of mice chronically exposed to high doses of gamma-radiation 

which is transferred to non-irradiated mice (Sugihara et al. 2013). Predominantly COX-

2 signalling has been shown to be significant in inflammatory responses and an 

overexpression of COX-2 has been discovered in bystander cells suggesting that it 

mediates bystander signalling. Transcription factor NFKβ is known to control 

cyclooxygenase-2 (COX-2) expression which may be responsible for transmitting the 

bystander signal (Zhou et al. 2005; Hei et al. 2008). COX-2 is also a downstream target 

of mitogen-activated protein kinase (MAPK) pathways involved in radiation responses 

and may be linked to bystander responses. The MAPK pathway is essential for the 

activation of COX-2 and subsequent activation of RO and has been strongly implicated 

in bystander signalling (Ivanov et al. 2010; Lyng et al. 2006). Inhibition of these 

significant signalling events results in disabled bystander responses, and so they must 

play a role in signalling. A study in 2006 (Kaup et al. 2006) demonstrated how IR 

causes long-term changes in the DNA methylation in HPV-G cells and proposed that 

global dysregulation of genomic methylation is a possible mechanism by which non-

targeted effects are transmitted. See Figure 1.9 for an illustrated description of some of 
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the signalling events that occur after irradiation and have been suggested as mediators 

of bystander signalling.  

 

 

 

 

Figure 1.9 Signalling pathways mediating bystander responses in cells. External signals 

on the surface of the cell initiate bystander signalling as a result of indirect-irradiation 

either through gap-junction intercellular communication or by secretion of bystander 

factor(s) transmitted to neighbouring cells. Cytokines have been implicated in 

intercellular bystander signalling events (Prise & O’Sullivan 2009). 
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Intercellular signalling pathways are an important integrator of multicellular damage 

responses, they are essential in prevention of carcinogenesis development through the 

removal of damaged cells and inhibition of neoplastic transformation. Direct radiation 

exposures induce an imbalance of oxidative stress in human keratinocyte cells which 

participates and mediates cell death processes, in particular apoptosis.  

 

1.5.4 Intracellular Signalling of the Bystander Effect  

Directly irradiated cells produce bystander factor(s) via cell-cell communication or 

through the release of cytokines into the extracellular matrix (ECM). Cells indirectly 

exposed to ionising radiation are triggered by a localised stimulus on the cell 

membrane. The stimulus can be an influx of calcium through the plasma membrane 

(Lyng et al. 2006). Figure 1.10 shows a Ca
2+

 influx into the mitochondrion, inducing a 

permeability transition pore in the membrane of an adjacent mitochondrion. 

Cytochrome c is released from the mitochondria, which can diffuse to the nearby 

endoplasmic reticulum (ER) and bind to receptors which will instigate a release of Ca
2+ 

from the ER. Cytoplasmic Ca
2+ 

concentrations are increased and so the mitochondria 

take up the excess Ca
2+

, again instigating the release of cytochrome c which then 

activates the formation of the apoptosome and caspases which are features of apoptosis 

(Mattson & Chan 2003). Lyng and colleagues (2002) demonstrated that transferring 

medium from irradiated human keratinocytes cells (0.5 or 5 Gy) to non-irradiated cells 

causes an increase in Ca
2+

 fluxes (within 30 s), loss of mitochondrial membrane 

potential (30 min – 2 hr) and an increase in reactive oxygen species (ROS) (after 6 hr of 

medium transfer). One study showed that a small number of cells in T98G and AG0 

populations had a Ca
2+ 

response to ICCM harvested from the same cells and that the 
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time responses were different. They were able to conclude from this data that bystander 

factor(s) in the ICCM depend on the genotype of the irradiated cells (Shao et al. 2006). 

 

 

 

Figure 1.10 An illustration of the role of calcium as a mediator of intracellular bystander 

signalling in cells. An influx of Ca
2+ 

triggers a series of biochemical processes up-

stream of apoptosis (Mattson & Chan 2003). 
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There is clear evidence advocating the extensive involvement of apoptotic mediated cell 

death in a bystander signalling cascade described in  studies by Lyng and colleagues 

(Lyng et al. 2000; Lyng et al. 2002). The 2002 studies showed that apoptosis is initiated 

in non-irradiated cells receiving medium from directly irradiated cells, according to key 

apoptotic signalling events instigated including loss of mitochondrial membrane 

potential, influx of Ca
2+

 and an increase in ROS.  Apoptosis is a tightly controlled and 

regulated process, necessary for the elimination of damaged cells that cannot be 

repaired. There are two important contributing factors to apoptosis; a loss of Ca
2+

 

homeostatic control or very subtle changes in Ca
2+

 distribution within cells. Ca
2+ 

overload can cause cytotoxicity and instigate apoptosis or necrotic cell death (Orrenius 

et al. 2003). Ca
2+

 induce changes in cell functions such as secretion, enzyme activation, 

and control of the cell cycle (Lyng et al. 2006). The slightest changes in Ca
2+ 

signalling 

can have undesirable effects such as changes in cell proliferation and differentiation and 

modulation of apoptosis. Some reports have revealed a role for NADPH metabolism in 

bystander responses, associated with the mitochondrion (Deshpande et al. 1996).  The 

increase in intracellular Ca
2+

  levels (Lyng et al. 2000; Lyng et al. 2002) and ROS 

(Lehnert et al. 1997; Shao et al. 2003; Azzam et al. 2002; Lyng et al. 2006; Lyng et al. 

2006) have been highlighted by other reviewers as critical messengers in RIBE (Lyng et 

al. 2011).  

The rise and decay of intracellular Ca
2+

 levels have been found to be similar to those of 

ROS indicating a close link between changes in Ca
2+

 and ROS production. Lyng and 

colleagues (Lyng et al. 2001) have demonstrated production of ROS and induction of 

apoptosis in human keratinocyte cells in response to radiation damage. Figure 1.11 

shows how calcium is released from the endoplasmic reticulum (ER), the concentrated 

levels of Ca
2+

 in the mitochondria and the production of reactive oxygen species (ROS).  
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Figure 1.11 An illustration of calcium released from the endoplasmic reticulum that is 

concentrated in the matrix of the mitochondria and causes depolarisation of the inner 

mitochondrial membrane, disrupting electron transport and increasing ROS production. 

ROS produced in the mitochondria can instigate further release of calcium from the ER 

resulting in toxic amounts of ROS in the cell (Zhang & Kaufman 2008).  
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Normal cellular oxidative metabolism generates ROS and RNS and is responsible for 

control of cell growth pathways, which are effectively dependent on oxidants in cells. 

Disturbances to the balance of oxidant production and antioxidant defence modify the 

cellular redox environment inducing oxidative stress. In turn this encourages 

progression of diseases such as cancer.  

Single energy deposition events from radiation instigate production of ROS in and 

around the radiation and in the intercellular matrix of the cell. ROS stimulate 

proliferation or cell death effects depending on their level of concentration. The 

contribution of free radicals such as ROS in bystander cells was first proposed by 

Clutton et al., (1996). It is now known that production of ROS and NOS are key 

signalling events in bystander responses and thus central to many bystander 

investigations (Azzam et al. 2012). ROS travel from the directly-irradiated cell to a 

neighbouring non-irradiated bystander cell via redox-modulated intercellular 

communication mechanisms and has been extensively reviewed (Azzam et al. 2003; 

Mothersill & Seymour 2004; Prise & O’Sullivan 2009; Hei et al. 2011). Alpha-particle 

radiation has been shown to induce generation of ROS in cells, specifically superoxide 

anions and hydrogen peroxide (H2O2), causing indirect damage to DNA because of their 

toxicity (Narayanan et al. 1997). Studies have shown that nitric oxide (NO) production 

(Shao et al. 2003) and the presence of antioxidants and superoxide inhibitors and NO 

generators eliminate bystander effects (Narayanan et al. 1997; Azzam et al. 2002). Shao 

et al (Shao et al. 2003) demonstrated that dimethyl sulfoxide (DMSO), a well-known 

ROS inhibitor, can decrease the number of MN produced in bystander cells thus 

reducing the bystander effect. The effectiveness of DMSO as a suppressor of the 

bystander signal in irradiated cells was furthered confirmed in a study that pre-treated 

cells to DMSO (Kashino et al. 2010) and showed reduced bystander effects.  
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Even though direct DNA damage is not required to induce RIBE, damage to DNA can 

be indirectly induced as a result of induction of these oxidative stress pathways such as 

ROS and NOS signalling in bystander responses previously described (Iyer et al. 2000; 

Shao et al. 2003). Exposure to IR causes a range of lesions in cellular DNA, including 

over 20 types of base damage, SSB’s, DSB’s and DNA–DNA and DNA–protein 

crosslinks (Prise et al. 2005). DNA DSB’s have long been thought to be the most 

important factor for cell killing, with about 40 DSB’s induced per 1 Gy in a typical cell 

(Olive 1998).  

Many studies have focused on the DNA damage and repair processes in order to fully 

understand the mechanism and further implications of bystander effects (Mothersill et 

al. 2004). Mothersill et al., studied mismatch repair (MMR) deficient cell lines exposed 

to ICCM to determine the bystander response from reduced clonogenicity. They 

demonstrated an increase in radiosensitivity in a panel of wild-type and mutant cells 

including DSB repair deficient cells and mismatch repair deficient cell lines. The 

overall bystander response is influenced by the repair phenotype of the cells receiving 

bystander signals as opposed to that of the cell producing the bystander signal (Kashino 

et al. 2010).  

Mammalian cells provoke an integrated network of events in response to IR-mediated 

DNA damage. Figure 1.12 shows the complex signalling of oxidative stress and 

induction of DNA lesions in bystander cells. The measures taken involve functioning at 

both the protein and RNA levels to maintain genomic stability of the cells and to ensure 

consistency of genetic information (Jen & Cheung 2005). Non-irradiated cells receiving 

signals from low dose irradiated cells can exhibit a DNA damage response similar to the 

directly irradiated cells. At very low doses the DNA damage processes are responding 



43 

 

to the bystander factor, which must be shared between actual radiation energy and 

bystander signals. The bystander signal may be indirectly damaging nuclear DNA and 

initiating a transcriptional response, such as microRNA and regulating gene expression 

of bystander response pathways.  

 

 

 

Figure 1.12 Intracellular oxidative stress and induction of DNA lesions. Intracellular 

communication in non-irradiated cells as well as oxidative metabolism, DNA repair 

mechanisms and cell death are the major mediators of responses to radiation (Kryston et 

al. 2011). 
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1.5.5 Potential Candidates for the Bystander Factor(s) 

Studies on the radiation induced bystander effect have hypothesised that a bystander 

factor is produced from cells directly irradiated and this factor is communicated to other 

cells causing the effects described previously. When medium is irradiated in the absence 

of cells, there is in fact no evidence of a bystander effect. In addition, bystander effects 

are dependent on the cell number present at the time of irradiation, suggestive of a cell 

derived factor involved in transmitting damaging signals (Mothersill & Seymour 1997).  

Initially the factors were termed ‘clastogenic factors’ and believed to contribute to the 

development of carcinogenesis (Emerit 1994). Since then studies from Emerit and 

colleagues have revealed the presence of clastogenic factors in the plasma of patients 

undergoing radiotherapy (Emerit 1981; Khan & Emerit 1985; Emerit 1994; Emerit et al. 

1995). Consequential biological and physiological changes can manifest shortly after or 

years after exposure signifying the persistence of the bystander response. Clastogenic 

factors have been found in plasma from atomic bomb survivors 31 years post-exposure 

(Pant & Kamada 1977). These clastogenic factors are now known to resemble the 

soluble bystander factors in media-transfer experiments. Cells in culture and tissue 

explants exposed to low doses of irradiation are capable of producing a bystander factor 

similar to clastogenic factors and have been explored by Mothersill, Seymour and 

colleagues (Seymour & Mothersill 2000; Lyng et al. 2000; Mothersill et al. 2001), 

including increased levels in cell death and reduced cloning efficiency. However, efforts 

to isolate the bystander factor(s) have been unsuccessful. Investigations have led to the 

discovery that the factor is small and transient and can travel over large distances 

through medium (600 – 700µm). The factor is also heat labile, denatures at 70°C and 

can survive freeze-thawing, suggestive that it is possibly a protein of some sort 
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(Mothersill & Seymour 1998). Candidate agents for the bystander factor include 

cytotoxic cytokines, mediators of ROS and/or RNS produced by low dose irradiated 

cells indirectly instigating DNA damage (Kashino et al. 2007; Chen et al. 2009; Lyng et 

al. 2011) and are implicated in the intercellular signalling of bystander responses 

(section 1.5.3). A recent study demonstrated an increase of apoptosis, TGF-β, TNF-α in 

addition to induction of a Ca
2+

 flux. This is comparable with the intercellular bystander 

signalling discussed (Irons et al. 2012). TGFβ, TNF-α, IL-8 and ROS are suggested 

intercellular signalling candidates reviewed by Blyth and Sykes (Blyth & Sykes 2011).  

 

1.5.6. Radiobiological Studies of Bystander Responses 

Studies of IR-induced non-targeted effect (NTE) responses in vitro and in vivo have 

been extensively investigated and reviewed (Matsumoto et al. 2007; Burdak-Rothkamm 

& Prise 2009; Wright 2010; Morgan 2012; Mothersill & Seymour 2012), with 

significant focus on the new challenges that have arisen in evaluating the potential 

hazards associated with low dose radiation exposures. Interestingly, both high and low 

LET radiations have been shown to induce a bystander effect in non-irradiated cells 

(Azzam et al. 2000). It has been suggested that low dose bystander effects may be the 

chief responses of low LET x-ray or gamma radiation (Seymour & Mothersill 2000) 

following α-particles irradiations  (Little et al. 2002). 
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1.5.6.1 Evidence In vivo 

It was suggested that in a tissue environment, differentiation responds to irradiation as a 

means of protection from subsequent damage (Belyakov et al. 2006). In a study by Xue 

et al., (2002) mice were injected with cells pre-labelled with the radioactive element 
125

I 

and distinct inhibition of growth was revealed. A bystander effect generated in vivo by 

the radio-labelled cells was most likely signalled to the non-targeted cells in the mice 

(Xue et al, 2002).  

Tissue models have unveiled bystander effects in distant tissues whole animals. For 

example, experiments employing partial body irradiations in mice revealed an induction 

of epigenetic changes (DNA methylation, histone modification and RNA-associated 

silencing) in unexposed bystander parts of mice (Koturbash et al. 2006). The same 

research group designed an in vivo model using the skin of rats and subjected  the rats to 

half-body exposure by protecting the rest of the body with a thick lead shield 

(Koturbash et al. 2007). Data from the study revealed bystander effects occurred in 

distant non-irradiated spleen tissue. The study not only uncovered the spleen as an 

important target organ for the bystander effect but indicated the persistence of bystander 

signals in distant tissues. A follow-up study confirmed their findings and reported that 

direct cranial exposure in mice results in altered levels of cellular proliferation and 

apoptosis, as well as increased expression of tumour suppressor p53 protein in the 

bystander spleen tissue (Koturbash et al. 2008). There were significant different levels 

of DNA damage and sensitivity in bystander spleen tissue of the male and female mice, 

highlighting that bystander effects can be sex-specific coupled with the various 

sensitivities found between different strains of mice (Coates et al. 2008). 
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Lorimore et al., (2008) investigated descendants of normal mouse hematopoietic 

clonogenic stem cells and exposed them to bone marrow-conditioned medium derived 

from gamma-irradiated mice. The normal stem cells exhibited chromosomal instability 

assessed by non-clonal cytogenetic aberrations in the clonal descendants of non-

irradiated stem cells distinctly different to the descendants of gamma-irradiated cells. In 

a recent report Ilnytskyy et al., (2009) demonstrated that acute and fractionated 

exposure to IR induces epigenetic bystander effects within the same organism and are 

very distinct in different bystander organs. The report showed an induction of distinct 

DNA methylation changes in bystander spleen and the skin of mice subjected to single-

dose (acute) or fractionated whole-body and cranial head X-ray exposure.  

Transmission of bystander signals between organisms was first identified by Surinov 

and colleagues using mice (Surinov et al., 2001). In their report they described the 

bystander phenomenon in which mice can produce bio-chemicals influential on the 

growth, survival and reproduction in the bystander mice. Since then, these effects have 

been discovered in other species such as rats, different species of fish (Mothersill et al. 

2006) and tadpoles (Audette-Stuart et al. 2011) (reviewed by Mothersill & Seymour in 

2012). Additionally, bystander effects have been found in different species of fish. 

There is clear evidence that bystander signals can be passed between species of 

freshwater rainbow trout (Oncorhychus mykiss) (Mothersill et al., 2006; Smith et al., 

2007). Transmission of the bystander signal occurs through the release of a messenger 

(bystander factor(s)) into the water. Studies have elucidated that bystander signals can 

be transmitted in vivo between freshwater rainbow trout gill but also the bystander 

signal has the ability to persist during the lifespan of the fish, further implicating issues 

surrounding whether or not bystander responses are protective (Mothersill et al, 2010). 

The interesting data generated from these studies could be of relevance for human 
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health radiation protection issues and it is anticipated that further investigations into the 

specific bystander response signalling mechanisms will clarify this. 

 

1.5.6.2 Evidence In vitro 

Both irradiated and non-irradiated cells can exhibit an up-regulation of stress inducible 

proteins, genetic changes, an induction of cell cycle checkpoints and cell death. John 

Little’s research group at Harvard University in Boston (USA) were one of the first to 

report genetic alterations, such as sister-chromatid exchanges (SCE- the exchange of 

segments between sister chromatids during mitosis) and mutations induced by IR in the 

neighbours of cells that had received direct radiation (Nagasawa & Little, 1992). They 

examined the effect in Chinese hamster ovary cells post exposure to low fluences of 

high LET radiations (α-particles)  and revealed that the IR only traversed about 1% of 

cells in vitro, followed by an increase in sister chromatid exchange (SCE’s) in 30% of 

the cells in culture. This was later confirmed in experiments using low LET radiation 

(Mothersill & Seymour, 1997). SCE’s are frequently increased by IR and other 

damaging mutagens. Inhibition of stress inducible proteins and SCE’s (Lehnert et al. 

1997) is possible with antioxidant superoxide dismutase (SOD) and catalase and can 

terminate the bystander response (Azzam et al., 2002). Antioxidant inhibitors such as 

SOD, catalase and N-acetylcysteine are particularly successful inhibitors of ICCM 

induced cell death (Lyng et al., 2006). 

The clonogenic technique developed by Puck & Marcus (Puck & Marcus 1956) has 

shown that cells are capable of responding to a bystander signal produced by the 

irradiated cell, and was the gold standard method in many bystander studies to report 
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bystander signalling in a variety of cell lines (Mothersill et al. 2000; R Iyer & Lehnert 

2002) . The medium transfer technique developed by Mothersill and Seymour 

(Mothersill & Seymour 1997) was used to show a bystander response in HaCaT cells 

which revealed reduced cloning efficiencies. Bystander effects depend on the type of 

radiation distributed to the cell and appear to be cell- and genotype-specific (Baskar et 

al. 2007). Therefore, bystander effects have been observed in some cell systems but not 

others (Fournier et al., 2009; Groesser et al, 2008). Studies show that there is no 

evidence for a bystander response in a normal human fibroblast cell line, demonstrating 

how biological variation exists and creates issues for determining the risks associated 

with RIBE (Sowa et al. 2010). In 1997 Mothersill and Seymour investigated four cell 

lines for bystander effects: MSU-1 fibroblasts, PC-3 prostate carcinoma cells, SW48 

colorectal cancer cells and HaCaT epithelial cells. Medium harvested from irradiated 

fibroblasts again showed no effect, with greater effects shown in the colorectal and 

epithelial cells. Therefore HaCaT’s have been regarded as one of the most sensitive of 

cell lines reporting bystander effects (Mothersill & Seymour 1998).  

A selection of fish cells and human keratinocyte HPV-G reporter cells receiving media 

from irradiated fish cells were used to assess which cells lines were good reporters of 

the bystander effects.  HPV-G have a well-established bystander response (Liu et al. 

2006) and showed increases in survival which was expected, whereas the fish cell lines 

did not respond. The study concluded that the fish cells may not be capable of 

producing a bystander factor and therefore signal production and response must be 

separate processes, which was described earlier in section 1.5.2 and 1.5.3 (O’Neill-

Mehlenbacher et al., 2007).  
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Bystander effects have been reported in partial-organ radiation exposure experiments 

(Khan et al., 1998) whereby induction of DNA damage both in and out of the direct 

radiation field showed an increase in MN formation in the lung fibroblasts. Formation 

of MN is indicative of DNA damage or mutations in cells exposed to IR and 

subsequently increasing the risk of carcinogenesis. Alpha particle microbeam exposures 

have been employed to 3D human skin models ( Belyakov et al., 2005) and show that 

the bystander effect can cause an induction of MN transmitting the effect for distances 

up to 1000µm from the original radiation site. The presentation of MN may represent a 

possible protective mechanism, removing damaged cells. Data from a ureter primary 

explant model study (Mothersill et al. 2001) revealed an induction of differentiation (the 

development of cells). Cells are not always killed in response to damage but can be 

removed from the clonogenic pool, so that the genetic stability of the system is 

maintained. The primary explant model developed by Mothersill et al, (2001) allows 

tissue to be dissected and cultured in vitro. It specifically combines an investigation of 

the ex vivo effects while maintained in vitro. It is therefore a successful method for the 

investigation of bystander effects compared to in vivo methods exposing a whole animal 

while alive.  

 

1.5.6.3 Immortal Human Keratinocyte Cell Line- Bystander Reporter Model 

HaCaT cells are spontaneously immortalized non-tumorigenic human keratinocytes 

composed of a heterogeneous cell population with different proliferative abilities and 

differentiation grades, and are similar to primary keratinocytes (Boukamp et al. 1988; 

Balduzzi et al. 2010). HaCaT cell lines are commonly used in bystander media transfer 

experiments since they are well-established as reporters of the bystander response and 
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that is why they were chosen for the following study.  A number of studies have 

successfully shown bystander effects in HaCaT cells and reported sensitivity of these 

cells to low doses of irradiation (Howe et al. 2009; Mothersill et al. 2009; Ryan et al. 

2009; Lyng et al. 2012). Not only are HaCaT cells good reporters but they have also 

shown dose dependent responses to various low doses of IR and furthermore variation 

in response from ICCM generated from lymphocyte cultures from a cohort of patient 

blood samples (Howe et al, 2009). These varied responses were either protective, due to 

a possible hormetic effect, or detrimental but patient variation in response to radiation is 

well known so HaCaT reporter cells were capable of showing this variation.  

 

1.6 Cell Death Mechanisms – Overview 

Radiation-induced apoptosis is believed to be one of the major mechanisms of 

radiation-induced cell death (Prise et al., 2005). Data has emerged describing evidence 

of changes in mitochondria, followed by caspase activation through either the intrinsic 

or extrinsic apoptotic pathway in response to radiation (Eriksson & Stigbrand, 2010; 

Prise et al., 2007). Remarkably, reports have shown a considerable role for apoptosis-

mediated  cell death in non-irradiated cells ( Belyakov et al, 2003; Belyakov et al, 2001; 

Lyng et al., 2000; Prise et al, 1998). An increase of apoptotic cell death in the non-

irradiated populations has been referred to now as one of the key hallmarks of radiation-

induced bystander signalling, both in vitro and in vivo (Koturbash et al. 2008; Hamada 

et al. 2008; Asur et al. 2010). 

Apoptosis is a well-defined cell death process and possibly the most frequent form of 

cell death. However there are other forms of cell death that can occur in response to 
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cellular damage depending on the stimuli. Other modes of cell death include mitotic 

catastrophe, necrosis and autophagic cell death and are collectively defined here as the 

non-apoptotic modes of cell death.  

 

1.6.1 Non-apoptotic Modes of Cell Death  

Although apoptosis has been implicated in RIBE, other forms of cell death have been 

studied for their relationship to RIBE and are discussed below. It is possible that cross-

talk between the different modes of cell death occurs in RIBE and so should be 

considered.  

 

1.6.1.1 Mitotic Catastrophe 

The relationship between radiation-induced apoptosis and clonogenic survival is 

complex because, after radiation, cells could die by apoptosis as a consequence of 

mitotic death as well as non-mitotic death, or by mitotic death without apoptosis. 

Mitotic catastrophe is thought to be a delayed form of cell death that is understood to 

occur during or as a result of irregular cell division, i.e. mitosis (Eriksson & Stigbrand 

2010). Such irregularity would occur following DNA damage and deficient cell cycle 

checkpoints and a result of possible mutation of tumour suppressor P53. It has been 

shown in chromosomal aberration studies that cells in the absence of wild-type P53,are 

capable of a further cycle of division with increased numbers of aberrations, ultimately 

leading to a delayed form of apoptosis (Nitta et al. 2004). In 2005, Howe et al., 

investigated whether there is a correlation between G2 chromosomal radiosensitivity 
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and specific aneuploid aberrations that are indicative of mitotic cell death in IR exposed 

patient prostate blood samples, and found a small and significant correlation (Howe et 

al. 2005). There is emerging evidence that mitotic catastrophe does not constitute a 

‘pure’ cell death executioner pathway, but an onco-suppressive mechanism that 

precedes and is distinct from, yet operates through, cell death or senescence 

(Vakifahmetoglu et al, 2008; Vitale et al, 2011). More recently, our research group 

demonstrated increased mitotic cell death in HaCaT cells exposed to low doses of IR 

(Jella et al, 2013).  

 

1.6.1.2 Necrosis 

For some time necrosis was thought to be an accidental cell death mechanism because it 

differs from apoptosis morphologically. An extensive amount of research has been 

invested into finding out exactly how this form of cell death is signalled and why it 

varies from other cell death modes. Studies conclude that necrosis is actually a highly 

controlled and regulated response pathway that is initiated in response to extreme 

physiological and pathological stress (Vandenabeele et al, 2010). Necrosis is thought to 

be induced by death receptors, such as NF-kappa B-activating complexes and mediated 

by RIP1 and its homolog RIP3 dependent activity, which fully engage in functional 

interactions, ultimately activating the execution of necrotic cell death (Muñoz-Pinedo 

2012). The presence of necrotic cells is frequently construed by the immune system as 

dangerous and therefore signals an immune response (Taylor et al, 2008). Increased 

levels of necrosis have been found in shielded mega-colonies of human melanoma 

Me45 (Przybyszewski et al. 2004), whereas other bystander experiments have shown 



54 

 

larger increases of mitotic cell death (Jella et al. 2013), it is possible that the response is 

varied for different radiation types and doses.  

 

1.6.1.3 Autophagic Cell Death 

The term ‘autophagic cell death’ has been widely used to indicate instances of cell death 

based on the specific morphological features, such as massive cytoplasmic vacuolisation 

(Galluzzi et al. 2012). Autophagy has been described as a survival mechanism, 

activated in cells subjected to nutrient or growth factor deprivation (Krysko et al. 2008). 

There is evidence to suggest that the mechanism of autophagy has similar features to 

necrosis, in that it can be mediated by RIP1. It can therefore be difficult to always 

distinguish between the two forms of cell death, although it is understood that there are 

clear morphological differences between autophagy and apoptotic cell death. The 

complex process of autophagic cell death has yet to be elucidated. Autophagy has been 

described as a form of cell death in cancer in response to radiation, and so could have 

implications in RIBE (Baskar et al. 2012). Negative regulation of autophagy has been 

shown to occur through the phosphatidylinositol 3-phosphate kinase (PI3K-Akt-mTOR) 

signalling pathway. The cascade is said to be the main signalling pathway in which 

autophagy is induced, and is activated in many types of cancer (Kondo et al. 2005).  
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1.7 Apoptosis  

Apoptosis is a regulated process vital for the normal development and maintenance in 

tissue homeostasis, through regulation of cell numbers within a population (Wilson et 

al, 2000). This form of apoptosis is well known as ‘programmed cell death’. Apoptosis 

can also be induced from uncontrolled cell cycle events and  has been implicated in the 

development of many forms of carcinogenesis (Wilson et al. 2000). The term 

‘apoptosis’ was first introduced in 1972 by Kerr et al., to describe a form of cell death 

that is morphologically different to other modes of cell death that exist (necrosis, 

mitotic catastrophe and autophagy). Characteristic morphological changes include cell 

shrinkage, membrane blebbing, nuclear and cytoplasmic condensation (Kerr et al, 

1972). However, it has been proposed that the presence of specific morphological 

features is not always sufficient to establish a causal link between a given process and 

cellular death.  

The Nomenclature Committee on Cell Death (NCCD) is an international organisation 

that was set up in 2005 in an attempt to define international standards for the definition 

and classification of cell death. Prior to this, cell death definitions were based purely on 

morphological criteria. The first meeting in 2005 (Kroemer et al. 2005) was to define 

different forms of cell death including apoptosis mostly focusing on how apoptosis can 

occur with and without caspase activation and that Autophagy represents a cell death 

mechanism but not necessarily via autophagic vacuolisation. Research progressed to 

next meeting in 2009 (Kroemer et al. 2009) and revealed a ‘quantitative’ method of 

describing the biochemical features associated with cell death. Their most recent 2012 

(Galluzzi et al. 2012) meeting reported the molecular progression with appropriate 
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classifications and clear reference to the biochemical mechanisms involved in cell 

death.  

In vertebrates, apoptosis typically proceeds through two central signalling cascades that 

lead to packaging the contents of dead cells into apoptotic bodies that can be recognised 

by neighbouring cells or macrophages and cleared by phagocytes (Elmore 2007). The 

pathways are tightly controlled processes maintaining a balance of pro-survival signals 

in the cell, but mutations of tumour suppressor P53 or overexpression of many anti-

apoptotic proteins can induce tumourgenesis (Jin & El-Deiry 2005). Mutations of 

tumour suppressor P53 is common in many tumour cells consequently disabling 

apoptosis.  

The first pathway of apoptosis is the extrinsic pathway, otherwise known as the death 

receptor pathway. The second is the intrinsic pathway also called the mitochondrial 

pathway. The two pathways converge at the apoptotic execution step where the 

executioner caspases, 3, 6 and 7 and other proteases and nucleases drive the final events 

to execute apoptosis. Therefore these two pathways are known as caspase-dependent 

signalling pathways. Caspase 3, 6 and 7 are more abundant and active than the upstream 

‘initiator’ caspases 8 and 9 (Jin & El-Deiry 2005). Pro-caspase 3 and 7 can be activated 

by caspase 6, 8, 9 and 10. Remarkably, studies have shown that caspase 6 and 7 can 

compensate for the loss of caspase 3 (Zheng et al. 2000). Studies have shown that 

caspase-6 can be processed by caspase-7 in a caspase-3 independent manner in cells 

undergoing apoptosis (Inoue et al, 2009). Radiation-induced apoptosis follows the 

intrinsic apoptotic route in particular as the bystander factor acts as the external stimulus 

entering the cell through membrane channels or gap junctions and initiating the intrinsic 

response via the mitochondria. Figure 1.13 describes three fundamental apoptotic events 
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initiated at the cellular membrane by different stimuli and the subsequent downstream 

events leading to the execution step where the three pathways converge using the same 

executioner caspase proteins. 

 

 

Figure 1.13 Schematic representations of apoptotic events. The two main pathways of 

apoptosis are illustrated, the extrinsic and intrinsic apoptotic pathways. Each pathway is 

independent from one another, and dependent on specific triggering signals to initiate 

activation. Each pathway activates their own specific initiator caspases and the two key 

pathways converge on the same executioner caspases for the final steps of apoptosis. 

However, the Granzyme/Perforin pathway is a caspase-independent process. The 

executioner caspases are responsible for the morphological features characteristic to 

apoptosis including membrane blebbing, chromatin condensation and the formation of 

apoptotic bodies that are then removed by nearby phagocytes (Elmore 2007).  
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Crosstalk at both the initiation and execution levels of the extrinsic and intrinsic 

pathway has been reviewed. The formation of multi-protein signalling complexes can 

either directly activate the caspase cascade or it can connect the extrinsic to intrinsic 

pathway through cleavage of BH3-only protein to Bid. This is directed through 

mitochondrial damage in the Fas pathway of apoptosis and mediated by caspase 8. 

caspase 8 can cleave and subsequently activate effector caspase 3 directly or it can 

activate the pro-apoptotic BH3-only protein Bid, triggering the release of cytochrome c 

from the mitochondria and activating effector caspases (Igney & Krammer 2002).  

Apoptosis can be induced through a third pathway known as the Perforin Granzyme 

pathway. Granzymes are serine proteases that are released by perforin-containing 

cytoplasmic granules within cytotoxic T cells and natural killer cells. Their purpose is to 

induce apoptosis within virus-infected cells, thus it is less likely to be a route of cell 

death in cells damaged by IR. Granzyme can activate apoptosis by directly activating 

caspases, similar to the approach that initiator caspases activate effector caspases 

(Logue & Martin 2008). However, Granzymes can also induce apoptosis through the 

mitochondrial pathway, by cleaving the BH3-only protein Bid (Muñoz-Pinedo 2012).   

 

1.7.1 Extrinsic Apoptosis 

The term extrinsic apoptosis has frequently been used to describe cell death that is 

induced by extracellular stresses, including anticancer chemotherapy inducing apoptotic 

stimuli (Fulda & Debatin 2006). Extrinsic signals are initiated at the plasma membrane 

through binding of death inducing ligands to cell surface receptors (Jin & El-Deiry 

2005) such as Fas/CD95, tumour necrosis factor receptor (TNF-R1) and TRAIL 
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receptor. Receptors have a cysteine-rich extracellular domain and a cytoplasmic domain 

of about 80 amino acids, known as the death domain (DD). The DD transmits 

extracellular signals to the intracellular signalling pathways.  

Stimulation of the death ligands leads to oligomerisation of the cell surface receptors, 

such as FasL to FasR1 and recruitment of the cytoplasmic adaptor protein Fas-

associated death domain (FADD), which exhibits its DD binding to receptors. The 

receptor TNF-α is bound to TNFR1 following the same sequence of events and recruits 

an  adaptor protein TRADD (Elmore 2007), which binds to another adaptor protein 

FADD. FADD can then associate with pro-caspase 8 through dimeristaion of the death 

receptor domain. At this stage, death-inducing signalling complex DISC has been 

formed (Cain et al, 2002), resulting in the activation of caspase 8, followed by 

activation of downstream effectors of the cell death program, caspase 3, 6 and 7, which 

effectively execute the final stages of apoptosis.   

Most cancer cells are sensitive to death-ligand TRAIL whereas most normal cells are 

resistant. The relationship between the intrinsic and extrinsic pathways suggest the 

possibility that irradiated cells could eventually become sensitised to specific death 

ligand-induced apoptosis such as TNF-related apoptosis-inducing ligand (TRAIL). In 

addition, the TRAIL death ligand signalling occurs independently of tumour suppressor 

p53 (Jin & El-Deiry 2005).  

Within white blood cells (lymphocytes) such as B cells, T cells and natural killer cells, 

caspase 8 activation is above the threshold and so can effectively activate the effector 

caspases, thus executing apoptosis. In hepatocytes, which are cells that make up most of 

the liver, the caspase 8 activation is below the threshold needed to fully execute 

apoptosis and so it requires contribution of the intrinsic pathway (Galluzzi et al. 2012). 
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Thus it is possible that the mitochondrial pathway is the most sensitive detector of 

apoptotic signals (Assefa et al, 2005). 

 

1.7.2 Intrinsic Apoptosis 

The intrinsic pathway also referred to as the mitochondrial pathway is promoted by a 

diverse range of intracellular stimuli including radiation, influx of Ca
2+

, growth factor 

deprivation and oxidative stress (Oberst et al, 2008). Radiation frequently prompts an 

intrinsic-apoptotic response. The process involves mitochondrial outer membrane 

permeabilisation (MOMP) and release of pro-apoptotic factors into the cytosol to 

initiate the cell death cascade. The signalling response stimulates release of cytochrome 

c from the mitochondria into the cytosol. Apaf-1 is a 130 kDa protein, and when in the 

presence of dATP and cytochrome c it forms a large apoptosome complex of around 

700 – 1400 kDa (Cain et al. 2002). This wheel like structure is said to contain eight 

Apaf-1 subunits which in turn recruit and process caspase 9 to form a holoenzyme 

complex, and subsequent activation of effector caspases 3, 6 and 7 (Brentnall et al,  

2013). There are factors responsible for the regulation in the formation and function of 

the apoptosome. These factors include intracellular levels of potassium (K
+
) inhibitors 

of apoptotic proteins (IAP), heatshock proteins (HSP) and Smac/Diablo which is a 

mitochondrial protein responsible for inhibition of IAP via mediation of caspases (Cain 

et al. 2002). The factors are responsible for correct assembly and functionality of the 

apoptosome as soon as the cell has reached the point in which it cannot recover from the 

fate of death.  
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Although the sources of apoptotic stimuli are heterogeneous, they are connected to a 

central mitochondrial control mechanism (Galluzzi et al. 2012). Other factors that can 

be released from the mitochondria are responsible for the morphological features of 

apoptosis. Both the mitochondria and the endoplasmic reticulum (ER) contribute to 

intrinsic apoptosis. Stress such as cellular radiation can burden the ER causing an 

increase of oxidative stress in the cell. Subsequent to the initial stress signal, the 

unfolded protein response (UPR) is instigated, a direct result of unfolded proteins in the 

ER. The UPR intends to restore normal cellular function and does so by resolving the 

unfolded protein issue via an increase of folded protein production and if this is not 

successful the response will persuade apoptotic cell death (Jimbo et al. 2003). The ER is 

known to be a major intracellular store of Ca
2+

 ions which are released into the cytosol 

in response to initiation of apoptosis. Remarkably, an influx of Ca
2+

 ions from the ER is 

often associated with uptake into the mitochondria. Pro-apoptotic Bax has been 

implicated in maintaining homeostatic concentrations of Ca
2+

 in the ER, and therefore 

possibly responsible for ER-induced intrinsic apoptosis (Jin & El-Deiry 2005). Figure 

1.14 describes the apoptotic intrinsic and extrinsic signalling pathways. The extrinsic 

pathway followed is decided at the cell membrane where ligands bind to their specific 

receptors but other external stimulus interrupts the mitochondria and ER to execute the 

intrinsic pathway. 
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Figure 1.14 A schematic description of the intrinsic and extrinsic pathways of apoptosis. 

Specific ligands bind to their receptors at the cell membrane activating the extrinsic 

apoptotic pathway. Whereas, external stimulus such as ionising radiation can stimulate 

the endoplasmic reticulum and initiate activation of mitochondrial proteins in the cell. 

(Tait & Green 2010) 
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1.7.3 Mitochondria and Bcl-2 Signalling 

Radiation-induced apoptosis appear to involve changes in mitochondria membrane 

permeability, followed by caspase activation (Prise et al. 2005). B cell lymphoma 2 

(Bcl-2) family of proteins maintain mitochondrial membrane status and the balance of 

interactions between the members of the Bcl-2 protein family which in turn maintains 

regulation of Ca
2+

 homeostasis of the cell (Jin & El-Deiry 2005).  

The Bcl-2 family of proteins are grouped into three sub-families centred on mutual BH 

(BCL-2 Homology) domains. The first are the anti-apoptotic proteins that include Bcl-2, 

Bcl-xL, Bcl-w, Mcl-1 and A1/Bfl-1. Then the Pro-apoptotic proteins are classified by 

BH (BH1-3) domains, Bcl-2 associated-X protein (Bax), Bcl-2 killer (Bak) and Bok and 

finally the BH3-only domain proteins (Lomonosova & Chinnadurai 2008). Damage to 

the cell will either antagonise anti-apoptotic proteins of the Bcl-2 family or activate 

multi-domain pro-apoptotic Bax and Bak. The events give rise to cell death through 

either the release of molecules involved in apoptosis or the loss of mitochondrial 

functions, essential for cell survival.  

Mitochondria are critical regulators of the intrinsic pathway and when they undergo a 

loss of mitochondrial membrane potential (∆Ψmito), the apoptotic pathway is activated. 

The process of MOMP is mediated and controlled through interactions of pro and anti-

apoptotic Bcl-2 family members (Lyng et al., 2000). Dominance by pro-apoptotic 

signalling instigates MOMP (Chipuk et al, 2006). Subsequent to initial apoptotic 

stimuli, pro and anti-apoptotic Bcl-2 family of proteins begin to migrate and assemble 

on the mitochondrial membranes, anti-apoptotic signals are accountable for allowing the 

cell to cope with a certain level of stress (Galluzzi et al. 2012).  
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Pro-apoptotic Bax is a 21 kDa monomeric cytosolic Bcl-2 family protein and 

translocates to the mitochondria in the early stages of intrinsic apoptosis. Bax is 

activated as a result of conformational changes in its structure, oligomerisation and is 

inserted into the outer mitochondrial membrane (OMM), leading to MOMP (see Figure 

1.15) which will be activated within the first five minutes of apoptosis (Oberst et al. 

2008). Structural similarities have been observed between BCL-2 proteins such as Bax 

and Bcl-xL (Bcl2-L1) and bacterial pore-forming toxins and so it is possible that BAX 

and BAK might be capable of directly forming pores in the mitochondrial outer 

membrane (Suzuki et al. 2000). Alternatively, mitochondrial permeability transition 

(MPT) can occur on the inner mitochondrial membrane as a result of opening of the 

multi-protein complex, permeability transition pore complex (PTPC) (Galluzzi et al. 

2012). Knockout studies have shown that cells lacking pro-apoptotic Bax or Bak will 

not undergo MOMP or subsequent apoptosis (Wei et al. 2001) 
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Figure 1.15 Mechanisms of release of intermembrane-space proteins from 

mitochondria. The two mechanisms for permeabilisation of the outer mitochondrial 

membrane (OMM) (Orrenius et al. 2003).  
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A cell death-associated biochemical process can develop in apoptosis and is deemed 

reversible until the irreversible phase the ‘point of no return’ is crossed, and until that 

point is reached, it may not lead to the cell demise. The permeabilisation of the 

mitochondrial outer membrane is implied as this irreversible point of no return stage of 

intrinsic apoptosis and it can trigger additional ROS production (Chipuk et al. 2006). A 

reduction in mitochondrial membrane potential (∆Ψmito) is followed when the external 

mitochondrial membrane becomes permeabilised. Lethal proteins are released from the 

mitochondrial intermembrane space (IMS) into the cytosol through the pores formed 

and regulated by Bcl-2 family proteins. Cytochrome c is released in addition to the 

simultaneous release of other molecules to antagonise the inhibitory functions of IAP’s 

on effector caspases. The release of cytochrome c in the presence of ATP triggers 

oligomerisation of apoptotic protease-activating factor 1 (APAF1). This instigates 

formation of the apoptosome, recruiting and activating initiator caspase 9 and possibly 

caspase 2, which in turn recruits effector caspases 3, 6 and 7 allowing for execution of 

apoptosis (Jin & El-Deiry 2005).  

Reports show that Bax is capable of forming a channel allowing protein 

permeabilisation or it can act with another pro-apoptotic protein called Bak to form the 

pathway. Bax acts directly on ceramide channels formed in phospholipid membranes 

causing them to disassemble (Ganesan & Colombini 2010).  Evidence has emerged for 

the association of ceramide with Bax activity. Cumulative mitochondrial ceramide 

provokes Bax translocation to mitochondria and subsequent activation. Thus it is 

possible that activated Bax and ceramide can synergistically induce MOMP (Ganesan & 

Colombini 2010) and that ceramide may be a secondary messenger that can activate 

apoptosis. A ceramide-mediated process is said to be generated by the activation of acid 

sphingomyelinase, leading to hydrolysis of sphingomyelin to ceramide. Ceramide might 
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also be released by direct activation of mitochondrial ceramide synthase through 

cellular exposure to radiation.  

Anti-apoptotic Bcl-2 is a 26kDa protein that can be located in the mitochondria, ER and 

perinuclear membranes (Kang & Reynolds 2009). The permeabilisation of the 

mitochondrial membrane releasing cytochrome c can be inhibited by the addition of 

anti-apoptotic Bcl-2. Early studies examining cell death initiated by cell damage, such 

as IR, found that overexpression of Bcl-2, prevents cell death. 

 

1.8 The Caspases – Overview 

Radiation-induced apoptosis has been described as a caspase-dependent process, 

although there are still uncertainties surrounding the sequence of caspase activation in 

response to non-targeted radiation. Caspases are a family of aspartic acid-specific 

proteases and the major effectors of intrinsic apoptosis (Chowdhury et al, 2008). Robert 

Horvitz first documented the importance of caspases in apoptosis through genetic 

studies of development of the nematode Caenorhabditis elegans, he discovered that C. 

elegans have at least four genes, ced-3, ced-4, ced-9 and egl-1 which are central to the 

execution of apoptotic cell death and caspases are homologous to the ced-3 gene 

(Graves et al. 1998).  

Since then, a total of 12 proteases have been discovered in mammals including caspase 

1 – 10 and caspase 12 and 14. Caspases are divided into two classes centred on their 

function, structure, length of their N-terminal prodomain, substrate specificity and 

abundance in cells. Caspases are expressed as single-chain pro-enzymes composed of 

three domains: an N-terminal pro-peptide, a large subunit and a small subunit (Logue & 
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Martin 2008) and are synthesised as inactive pro-caspases in cells (see Figure 1.16 a). 

The mechanism of caspase activation (see Figure 1.16 b) involves internal cleavage of 

the small and large subunits so that they separate and form a catalytic site (Markus G. 

Grütter 2000). It has been suggested that because caspase 3 and 7 are deficient of linker 

regions, the catalytic site cannot form in the absence of proteolytic cleavage between the 

subunits (Cain et al. 2002).  

Since a variety of stimuli including radiation can activate caspases, the order in which 

caspases are activated is central to understanding the signalling events unique to the 

stimulus involved. Radiation-induced apoptosis occurs via activation of caspases 

through cleavage of cytosolic proteins, leading to the phagocytic engulfment of an 

apoptotic cell, and thus removing damaged cells from the body (Tait & Green 2010). 

Activation of caspases is fundamental to apoptotic cell death and is controlled by a 

balance of pro- and anti-apoptotic Bcl-2 family proteins, HSP and IAP’s (Launay et al. 

2005).  
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Figure 1.16 (a) A schematic representation of the structural features of mammalian 

caspases. C, H and R are the active site residues. Caspases are synthesised as a 

catalytically dormant tripartite proenzyme, which is a single polypeptide chain of 32-55 

kDa in size representing three domains. The pro-caspases consists of a 17- 21 kDa large 

central internal domain (p20) containing a large catalytic subunit (active site), a 10-13 

kDa small C-terminal domain (p10) also called a small catalytic subunit and a 3-24 kDa 

NH2 terminus prodomain called a death domain (DD) (Chowdhury et al. 2008).  
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Figure 1.16 (b) Schematic diagram of caspase activation. Caspases exist as zymogens 

and are activated by proteolytic processing of the N-terminal fragment and by endo-

proteolytic processing creating two fragments of approximately 10 (p10) and 20 (p20) 

kDa as described in Figure 1.16 a (LeBlanc 2003).  

 

 

1.8.1 Initiator Caspase Signalling 

Initiator pro-caspases 2, 8, 9 and 10 have a long domain and they exist in their inactive 

zymogen forms as monomers in the cytoplasm of cells. Initiator caspases require 

dimeristaion or oligomerisation for activation and are responsible for the early initiating 

events of apoptosis (Launay et al. 2005). Activation of initiator caspases involves 

formation of protein complexes containing pro-caspase molecules. Inactive zymogen 

dimers within the cytoplasm are recruited to form complexes by specific adaptor 

proteins. 
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Caspase 2 has been classified as an initiator caspase due to the N-terminal caspase 

activation and recruitment domain (CARD) within its pro-domain (Logue & Martin 

2008). Even though it was one of the first caspases to be discovered, its precise role 

remains unclear and somewhat controversial. Studies have shown that initiator caspase 

2 is not capable of processing any other caspase member, but is able to cleave and 

process Bcl-3 family member Bid, assuming then that this initiates the release of 

cytochrome c from the mitochondria. Caspase 2 may be an initiator of apoptosis via the 

mitochondrial pathway (Guo et al, 2002). Other reports mention that activation could 

occur after induction of heat-shock cell death (Vakifahmetoglu-Norberg & Zhivotovsky 

2010). Even though caspase 2 and caspase 9 are both classified as initiators due to 

structure, there is no evidence of an overlap in functionality. However, knockout studies 

in mice null of caspase 2 exhibited a very similar phenotype to those that lack caspase 9 

(Logue & Martin 2008). Caspase 2 has been described as caspase 3-dependent, 

suggesting it is only activated after the formation of the apoptosome (Logue & Martin 

2008).  Pro-caspase 2 interacts with other proteins through CARD and can form part of 

a complex known as the ‘PIDDsosome’ which was first described in 2004 (Tinel & 

Tschopp 2004). It consists of a P53-inducible death domain-containing protein (PIDD), 

RIP-associated ICH-1 homologous protein with a death domain (RAID) and pro-

caspase 2. Interestingly an increase of PIDD promotes p53 induced apoptosis and 

inhibition of PIDD can reduce the p53 mediated signalling (Vakifahmetoglu-Norberg & 

Zhivotovsky 2010). This suggests a relationship between caspase 2 and P53 signalling.  

It is possible that caspase 2 has very specific circumstantial criteria for functionality and 

may even be cell specific.  

IR-induced apoptosis is mediated by the mitochondria, caspase 9 and is independent of 

caspase 8 activity (Hosokawa et al. 2005). Interestingly, the ability of caspase 9 is 
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increased in the presence of cytosolic APAF-1 and the formation of the apoptosome, 

suggesting that caspase 9 requires other cytosolic proteins to complete its 

conformational change and activity (Cain et al. 2002). It has been suggested that the 

active form of caspase 9 is actually the Apaf-1 complex (Rodriguez & Lazebnik 1999). 

caspase 8 is required for signalling of the death receptor (extrinsic) pathway. It is known 

for its mitochondrial remodelling ability through cleavage of Bcl-2 family member Bid 

into tBid. However, there is no evident role for caspase 8 in intrinsic apoptosis. Caspase 

9 can hinder cytochrome c from accessing the complex III in the mitochondria and 

therefore increasing the production of ROS (Brentnall et al. 2013). Interestingly ROS 

production is increased if highly specific caspase 9 cleaves Bid into tBid. Nevertheless 

if effector caspases are activated ROS production is inhibited. This has been suggested 

to be a feedback loop occurring on the mitochondria after it has released cytochrome c 

and activated caspase 9 and possibly the exact ‘point of no return’ of intrinsic apoptosis 

(Brentnall et al. 2013). Cells derived from animals that are null of caspase 9 have 

demonstrated resistance to external stress agents, such as cytotoxic drugs and radiation. 

Caspase 2 cannot process any other member of the caspase family, but can cleave the 

BH3-only protein Bid, presumably to instigate cytochrome c release. Caspase 2 may 

initiate apoptosis by harnessing the mitochondrial pathway. Radiation-induced 

cytochrome c release including the subsequent caspase activation can be inhibited by 

anti-apoptotic Bcl-2 proteins. Therefore it is apparent that radiation-induced caspase 

activation is dependent on mitochondrial signalling.  
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1.8.2 Effector Caspase Signalling 

Effector caspases of intrinsic apoptosis are often called executioner caspases and 

include pro-caspases 3, 6 and 7 which have a short pro-domain. The inactive effector 

caspases 6 and 7 zymogens exist in cells as dimers that require proteolytic cleavage at 

internal aspartate residues to generate two large and two small subunits and responsible 

for the final stages of apoptosis (Oliver & Vallette 2005). Heterodimeristaion of these 

subunits separate the large and small subunits from each other causing a conformational 

change and then resulting in an active effector caspase (Kaufmann et al. 2008). Binding 

of caspase 3 and 7 may require the assistance of other proteins (Cain et al. 2002). In 

turn these caspases can activate effector caspase 6.  

Activated effector caspase 3 cleaves substrates in the cytosol that are essential for 

structural functions of the cell associated with the characteristic features of apoptosis, 

including membrane blebbing, chromatin condensation and nuclear DNA fragmentation 

(Slee et al, 2001) These effector caspases are capable of cleaving downstream pro-

caspases and cellular proteins through dismantling of cellular machinery via destructive 

enzymes such as DNases, which are endonucleases that split nucleic acid chains at 

internal sites (Slee et al. 2001). Caspase 3 can also inhibit ROS production by inhibiting 

the transport of electrons and reducing the mitochondrial membrane potential, which 

therefore maintain the integrity of the cell undergoing apoptosis (Brentnall et al. 2013). 

Inhibition of caspases prevents the appearance of some morphological signs of 

apoptosis, including chromatin condensation and DNA fragmentation. In this case the 

cell death process will change from apoptosis to a combination of cell death 

morphology and may create a delay (Kroemer et al. 2009). Nevertheless, caspase-

independent cell death can occur despite the efficient inhibition of caspases and can 
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exhibit some of the morphological signs of apoptosis, autophagy or necrosis (Pradelli et 

al. 2010).  

Caspase activation is not always required for the execution of the cell death program but 

may be necessary for the development of characteristic apoptotic morphology, which 

can define the type of cell death occurring. Some studies suggest that cell death is a 

caspase-dependent process because the integration of caspase inhibitors will affect the 

process (Oberst et al. 2008). 

As mentioned earlier, initiator caspase 9 is directly responsible for the activation of 

downstream effector caspases 3 and 7. Caspase 3 creates a positive-feedback 

amplification loop to promote further processing of caspase 9 (Logue & Martin 2008). 

Studies have shown that caspase 7 does not appear to drive any further caspase 

activation event, whereas caspase 3 propagates the cascade further by proteolytic 

processing and activation of caspases 2 and 6 downstream. It is widely accepted that 

caspase 9 cleaves caspase 3 and caspase 7, and that caspase 3 cleaves caspase 6 and 

caspase 2. In the final stage of this caspase cascade, caspase 6 catalyses the activation of 

caspase 8 and caspase 10.  However, there are inconsistencies in some data involving 

knockout studies in mice, and so it is believed that caspase 7 is actually capable of 

cleaving caspase 6 and 2, assuming that caspase 2 is initiated further downstream. There 

is evidence that caspases can also exceed their apoptotic roles in responses such as 

inflammatory type responses and immune cell proliferation and differentiation (Launay 

et al. 2005). 

 

 



75 

 

1.8.3 Tumour Suppressor p53 Signalling  

Radiation-induced DNA damage can trigger apoptosis via a p53-mediated pathway that 

can incorporate up-regulation of the pro-apoptotic protein Bax, cell-death ligands or 

receptors, or ceramide synthase. There is recent evidence to suggest that release of 

cytochrome c from the mitochondria may be a p53-dependent process in the bystander 

response and is cell line dependent (Hei et al, 2011), although p53-independent 

pathways have also been characterised. The tumour suppressor gene p53 that encodes 

TP53 has frequently been referred to as the ‘guardian of the genome’ (Efeyan & Serrano 

2007, p. 1006) as it manages a diverse set of pathways including DNA repair, cell cycle 

arrest, and apoptotic cell death (Jen & Cheung 2005). In particular TP53 is responsible 

for managing oncogenes. Oncogenes are altered versions of normal cellular genes 

responsible for controlled cell growth and differentiation. Over-expressed or mutated 

oncogenes are characteristic in cancer cells (Halazonetis et al. 2008).  TP53 determines 

whether a cell exposed to IR will survive DNA damage and proliferative arrest by 

promoting minor DNA repair, or it can make such an arrest irreversible by activating 

cell death (Coleman et al. 2005). Hence, it plays a major role in determining the cell’s 

fate (see Figure 1.17). If the radiation-mediated damage is too extensive for cell 

survival, the tumour suppressor p53 is activated as a crucial transcription factor 

signalling cell death. Failure of the TP53 activated process may result in the 

development of carcinogenesis or genomic instability post irradiation. There is evidence 

that mutated TP53 gene is implicated in a range of human tumours (Efeyan & Serrano 

2007). Studies involving epithelial cells from rat lungs revealed an increase of TP53 in a 

large number of cells, much more than was expected (Deshpande et al. 1996).  
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Figure 1.17 A schematic representation of the differential impact of p53 on cellular fate 

in response to DNA damage (A) of oncogenic signalling (B). Cells with active p53 will 

undergo apoptosis but cells deficient in p53 will undergo aberrant mitosis eventually 

leading to mitotic cell death (A) Oncogenic signalling in cells with p53 leads to an 

elimination of cells via apoptosis and cells lacking in p53 will continue to proliferate 

(B) (Efeyan & Serrano 2007).  

 

 

TP53 employs its transcription regulatory activity mostly through direct binding to the 

regulatory sequences of its target genes (Rashi-Elkeles et al. 2011). p53 is a 

transcriptional regulator of Bcl-2, Bax and Bid and can represent an apoptogenic factor 

on the mitochondrial membrane surface. There is a developing range of p53 targets 
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which currently exceeds 100 genes and the biological roles of the p53-mediated network 

has been extensively reviewed (Harris & Levine 2005).  

Cells directly exposed to IR have increased levels of TP53 and ROS. Bystander cells 

can exhibit decreased TP53 levels, higher levels of ROS and a DNA repair protein (Iyer 

& Lehnert, 2002b). HaCaT cell lines are non-transformed keratinocytes with mutant 

p53, however, the mutant p53 cells lines induce bystander responses. There is evidence 

that media transferred from p53-mutated tumour cells to bystander normal human cells 

induces NO signalling, and media transferred from normal cells to bystander p53-

mutated tumour cells occurs via ROS. Both signalling pathways are characteristic to the 

bystander response (Ryan et al. 2008) as described previously. In (2011) Mothersill et 

al, demonstrated that the p53 signalling pathway is involved in bystander responses and 

that signals can be produced by cells deficient in functional p53.  
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Thesis Overview 

The overall aim of this research study was to investigate the cellular and molecular 

mechanisms involved in radiation-induced bystander effects in cells. Bystander effects 

occur when directly irradiated cells communicate damaging signals to non-irradiated 

neighbouring (bystander) cells, predominantly at low-doses of irradiation. They do not 

follow the original dose-response theory and exhibit a unique cascade of signalling 

events, which are under intense investigation for radiation risk purposes.  

Investigations in vitro and in vivo have been successful in better understanding 

bystander responses. The bystander reporter HaCaT cell line is well established and 

report the bystander effect very well. Some of the intercellular and intracellular 

signalling pathways and potential candidates for the bystander factor have been revealed 

to date. Cytokines may be important for the initial signalling of the bystander response 

and pathways involving oxidative stress, calcium and mitochondrial-apoptosis have 

been implicated.   

However, the specific molecular signalling mechanisms that occur in a radiation 

induced bystander response are not well-understood. The first experiment conducted for 

research (described in chapter 2) was to demonstrate the classical radiation induced 

bystander effect in HaCaT reporter cells exposed to low doses of IR (0, 0.5 and 5 Gy). 

Different cells and viability assays were used to prove the hypothesis that HaCaT cells 

were sensitive and good reporters of the bystander effect compared to other cells in 

vitro.  The classical bystander media transfer protocol was followed with generation of 

ICCM at an early (1hr) and late (24hr) timepoint as it has emerged that time is critical in 

the response. Reduction in viability of the HaCaT reporter cells indicated that apoptosis 

was a key event in the cellular mechanism of RIBE. 
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In chapter 3 and 4, the intracellular downstream events of RIBE were investigated by 

focusing on genes specifically involved in the intrinsic pathway of apoptosis. HaCaT 

reporter cells exposed to a range of low doses of ICCM with early to late timepoints 

were used to measure gene expression levels. The genes investigated included tumour 

suppressor TP53, mitochondrial pro-apoptotic Bax and anti-apoptotic Bcl-2, Mitogen-

activated protein kinases (MAPK) genes ERK and JNK, initiator caspases 2 and 9 and 

effector (executioner) caspases 3, 6 and 7.  

To obtain further information about the molecular mechanisms of the RIBE another 

biological test model using was incorporated. This involved using fish irradiated in vivo 

with similar low doses of IR but cultured ex vivo to generate irradiated cell conditioned 

medium (ICCM). This ICCM was then used to measure protein expression in the 

reliable reporter HaCaT cells.  

The bystander reporter HaCaT cell model were used throughout all of the studies 

described in this thesis to ensure consistency throughout the investigation and obtain 

realistic and comparative data in an attempt to elucidate the RIBE pathways. Chapter 6 

details a summary of the data generated including two cellular and molecular signalling 

RIBE pathways that have been proposed for 0.05 Gy and 0.5 Gy irradiations in HaCaT 

cells. It is anticipated that these pathways may have clinical considerations and 

implications for radiotherapy patients in the future. 
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Chapter 2 

 

Evaluation of Two Viability Assays to Measure 

Radiation-Induced Bystander Effects in Reporter Cells 

 

 

 

 

 

 

 

 



81 

 

2.1 Introduction  

There has been a lot of interest in the effects of irradiation that do not require direct 

DNA damage, known as non-targeted effects (NTE). Nagasawa and Little first 

described the ‘clastogenic effects’, now known as bystander effects with experiments 

using alpha-particle radiation that induced indirect damage effects (Nagasawa & Little 

1992). The exact cellular and molecular responses are not very well known but are 

under intense investigation. There is data to support both concepts and are extensively 

discussed by Hei et al. (2011). The development of the media-transfer technique has 

enabled researchers to investigate radiation-induced bystander effects (RIBE) more 

specifically (Mothersill & Seymour 1997). The radiobiological effects observed in 

media transfer experiments include induced cell death mechanisms (Jella et al. 2013) or 

reduced cell viability (Seymour & Mothersill 2000) in the non-irradiated neighbouring 

cells. 

One of the common in vitro biological endpoints used to investigate RIBE in cells is 

measurement of cell death (i.e. measuring their viability). The clonogenic assay created 

by Puck and Marcus (1956) has been a gold standard radiobiological tool in measuring 

the clonogenicity in bystander cells for some time. The disadvantage of this assay is that 

the setup is very time-consuming taking approximately 12-14 days for the colonies to 

grow. Furthermore, very large volumes of irradiated cell-conditioned medium (ICCM) 

are required for the clonogenic assay. Alternatives to this assay to measure RIBE are 

cell viability cytotoxicological assays, MTT and Alamar Blue, which can be done on 96 

well microtitre plates for high throughput viability analysis. The advantages of these 

assays are that they require substantially less media than in a clonogenic assay (100µl 

compared to 5ml) and many test doses and timepoints can be tested with a high turn 
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over time. In the current study, both MTT and Alamar Blue assays were used to 

determine the RIBE in HaCaT cells compared to other potential ‘reporter’ cells of the 

bystander effect. Two parallel tests were used so that sensitivity of the test method for 

the three cell lines could also be confirmed and consolidate the data further. As 

mentioned in Chapter 1, bystander responses are induced at low doses and the risks may 

be greater or less than what was previously predicted in the linear non-threshold (LNT) 

model, and a reduction in viability is expected in HaCaT cells exposed to ICCM. 

Human HaCaT cells (see Appendix A2.1 for an image of the HaCaT cell line) were 

used for this study as they have previously been shown to be good reporters of the 

radiation induced bystander response and are well-established (Howe et al. 2009; Lyng 

et al. 2012) comparable to the response of the HPV- G cell line used previously by our 

group (Lyng et al. 2011; Jella et al. 2013).  HaCaT cells are an immortalised cell line 

derived from human keratinocytes that have either been infected with simian virus 40 

(SV40) or transfected (Boukamp et al. 1988). The cell line thrives in both in vitro and in 

vivo conditions and has a high differentiation potential comparable to normal human 

keratinocytes (Lehman et al. 1993). A report in 2001 revealed that media from 

irradiated HaCaTs has the ability to kill recipient cells (Lewis et al. 2001), therefore 

supporting the bystander phenomena. A recent study also shows evidence of bystander 

effects in HaCaTs cells (Jella et al. 2014), and primarily a possible role for exosomes in 

the response in addition to a reduction in viability at low doses between 0.005 Gy and 

0.5 Gy, which are pertinent doses to the current and proceeding chapters in this Thesis.  

There are limitations to using the HaCaT cell line model due to evidence of their growth 

and differentiation properties which is greatly dependent on the type of cell culture 

media used (Wilson, 2014) and these limitations are acknowledged by the author. 
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Increased levels of calcium have been shown to induce changes to morphology and the 

normal cellular processes thus resulting in decreased proliferation and increased 

differentiation of HaCaT cells (Micallef et al., 2009). The protein kinase C (PKC) 

system has been implicated in driving different cellular processes and is dependent on 

the roles of PKC sub-family isoforms that exist in HaCaT cells. The different isoforms, 

cPKC α and β ; novel nPKCδ and ε, are antagonistic in that they can regulate different 

processes such as proliferation, differentiation, cell death and tumourgenesis. It has been 

suggested that altered calcium levels could have a significant role in the overall PKC 

system (Papp et al., 2004). For that reason, cell culture media with known low levels of 

calcium are favoured for in vitro HaCaT cell models. The current study could be 

improved by introducing low calcium level cell culture media to maintain preferred cell 

culture conditions (Deyrieux & Wilson, 2007) and thus reducing inconsistency and 

variability between data generated. Further to that, an additional real-time q-PCR study 

investigating already identified genes (Lemaître et al., 2004) expressed in both 

proliferating and differentiating HaCaT cells, would establish the current state of the 

HaCaT cells used and could operate as an internal quality control method.  

In the current study HaCaT cells were used to ‘report’ RIBE in ICCM harvested from 

HaCaT cells compared to two different colorectal cell lines at low doses of irradiation 

(0.5 Gy and 5 Gy), harvested at two different time points (1 hr and 24 hr) determined by 

the Alamar Blue and MTT cell viability assays. The two human colorectal cancer cell 

lines were selected for this study are HT29 cells, a human colorectal adenocarcinoma 

cell line originally isolated from a primary grade I-II tumor from a 44-year-old 

Caucasian female, they are radioresistant and have mutant TP53 status (see Appendix 

A2.2 for an image of HT29 cells). Secondly,  SW480 cells were chosen, which are a 

human colorectal adenocarcinoma cell line isolated from a secondary grade III-IV 
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tumor, are  highly radiosensitive and have wild-type TP53 (see Appendix A2.3 for an 

image of SW480 cells). Both of these colorectal cells were chosen for this study 

because Ryan et al., (2009) showed bystander effects in SW480, HaCaT and HPV-G 

cells and HT29 cells which had increased cloning efficiency after the addition of ICCM 

(Ryan et al. 2009), An explanation for this is that SW480, HaCaT and HPV-G must be 

more sensitive to ICCM. Specifically for the HaCaT cells, they appear to reach a plateau 

at 5 Gy ICCM exposure and the SW480 cell line reach a plateau at 0.5 Gy. Reductions 

of viability have been shown in HaCaT cells exposed to 0.05 Gy and 0.5 Gy ICCM and 

very little differences were previously shown with 0.005 Gy doses (Lyng et al. 2011).  

In a study in 2000, Seymour and Mothersill (Seymour & Mothersill 2000) reported 

bystander effects in human keratinocytes immortalised by transfection with the HPV 16 

by a reduction in clonogenicity. HPV-G cells show on average a 40% reduction over a 

wide range of doses when exposed to ICCM  (Mothersill et al. 2004). The authors 

discussed how doses between 0.01–0.5 Gy show clonogenic death by the bystander 

effect only and that bystander effects appears to saturate at doses in the range of 0.03–

0.05 Gy. They suggest that for doses greater than 0.5 Gy clonogenic death is a result of 

a dose-dependent non-bystander effect. So, to summarise, bystander effects occur 

predominantly below 0.5 Gy and above 0.5 Gy a direct effect occurs. It is evident then 

that the cells have a specific mechanism in place for ‘switching’ from cell death to 

proliferation at the higher doses.   

The first cell viability method used in this study as mentioned earlier was the Alamar 

Blue assay. The assay was fully standardized according to the method of O’Brien et al. 

(2000). Alamar Blue is a chromogenic dye and works as a redox indicator and measures 

cell viability and proliferation. Chemical reactions occur within cells producing 
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products such as cellular dehydrogenases; FMNH2, FADH2, NAHD, NADPH and 

cytochromes. These products reduce the Alamar Blue generating a fluorescent signal as 

a response. Reduced cell viability in an oxidised environment will generate a pink 

colour and increased cell viability in a reduced environment will generate a blue colour. 

Spectrophotometric measurement of the colour change generate data signifying cell 

viability (Anoopkumar-Dukie et al. 2005). The Alamar Blue assay is highly sensitive, 

inexpensive and a robust quantitative method. It is safe to handle, as it does not include 

any toxins or radioactive reagents. In contrast the MTT assay was used in parallel. The 

MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is a 

colorimetric method that measures the metabolic activation of the cells (Berridge & Tan 

1993)  resulting in measurement of the cells viability and proliferation  (Jose et al., 

2011; Al- Rubeai, 1997). MTT is a yellow water-soluble substrate that is converted into 

a purple formazan crystal product by mitochondrial dehydrogenase enzymes. The 

enzymes reduce the tetrazolium salt are nicotinamide adenine dinucleotide 

dehydrogenase (NADH) and nicotinamide adenine dinucleotide phosphate 

dehydrogenase (NADPH). This chemical reaction shows the cell’s proliferation and its 

absorbance is measured with a spectrophotometer. A linear relationship is shown 

between the formazan crystal product and the viable cell number in a variety of cell 

types (Doyle & Griffiths 1997).  The assay is deemed to be highly reliable and sensitive 

and was incorporated into this study for this reason.  

Howe et al, (2009) described how over a three year period, collected, cultured and 

irradiated whole blood samples from colorectal cancer patients and the ICCM from 

these lymphocyte cultures was harvested and stored at -80ºC for subsequent use. 

Recipient HaCaT cells were exposed to the harvested ICCM and measured for a 

bystander effect using the Alamar Blue viability assay. RIBE shown by the individual 
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colorectal cancer patient’s samples varied using this assay. The patient samples revealed 

both decreased and increased viability, indicative of a radiation-induced bystander 

response. This also suggests that the RIBE responses were specific to each patient, 

perhaps some individuals respond and some do not.  For this reason this current study 

measured the sensitivity of both Alamar blue and MTT assay to report RIBE for three 

chosen cell lines. The harvested colorectal patient ICCM from Howe et al, (2009) were 

re-analysed to validate the sensitivity of the parallel assays for response to ICCM.  

 

2.2 Materials and Methods 

2.2.1 Routine Cell Culture Maintenance, Sub-culturing and Counting 

An immortal human keratinocyte cell line, HaCaT, was kindly received from Dr Petra 

Boukamp’s laboratory (Boukamp et al. 1990) and used for this study, in addition to two 

colorectal adenocarcinoma cell lines, HT29 and SW480, to compare the sensitivity of 

bystander responses, with both MTT and Alamar Blue cell viability assays. Both 

colorectal cell lines have previously shown to report bystander effects (Ryan et al. 

2009).  

The three cell lines were adapted to and routinely cultured in DMEM: F12 (Dulbeccos 

Modified Eagles Medium) medium (Sigma) supplemented with 10% fetal bovine serum 

(FBS, Gibco) and 2mM L-Glutamine (Gibco). Cells were maintained in an atmosphere 

of 37°C and 5% CO2 and grown to approximately 70-80% confluency to ensure they 

were in the logarithmic phase of growth. Cells were removed from stock flasks using a 

1:1 mix of EDTA:Trypsin, (EDTA: 0.1 g of EDTA in 500 ml PBS:Trypsin 2.5% 10X) 

and a 1:10 dilution of Trypsin then neutralised in EDTA.  2 x 10
5
 cells were counted 
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using a Coulter Counter and were plated into T25 flasks (see Appendix A1 and A12 for 

a list of materials and reagents and cell culture consumables used and for a full 

description of routine cell culture maintenance, counting and plating of cells see 

Appendix B1 and B2). 

For the direct donor cell irradiations 3 x 10
5
 cells (HaCaT, HT29 and SW480) were 

counted and plated into T25 flasks in replicates of 8 per time and dose. The growth of 

each cell line was monitored for 2-3 days so that the cells were allowed to reach 70-80% 

confluency, to ensure the phase of growth of the cells. 

 

2.2.2 Irradiations, Generation and Harvest of ICCM 

Once the cells reached 70-80% confluency they were transported to the Co
60

 teletherapy 

Unit at St. Luke’s Hospital (Rathgar, Dublin, Ireland) and irradiated at 0 Gy, 0.5 Gy and 

5 Gy. For the 0.5 Gy and 5 Gy dose points the source to sample distance was 80 cm. 

The dose rate delivered was approximately 1.5 Gy/min during these experiments as 

evaluated at the 80 cm source to sample distance. Thermoluminescent dosimeters (TLD) 

were used to confirm that the appropriate dose was delivered. Cells were transported 

back to the laboratory and re-incubated at 37°C for 1 hr. ICCM was harvested from the 

HaCaT, HT29 and SW480 cells and pooled per replicate flasks at 1 hr and 24 hr time 

points for each of the three dose points (0, 0.5 and 5 Gy) for each cell line. The 

irradiated flasks were replaced with 5ml of fresh DMEM F12 media and re-incubated. 

The ICCM was filter sterilised with a 0.2µm filter (Nalgene) and stored at – 80°C for 

the subsequent viability assays.  
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2.2.3 Preparation of Bystander Reporter Cells in Microtitre Plates for Viability 

Assays 

HaCaT, HT29 and SW480 cells were maintained, sub-cultured and counted as described 

in Section 2.2.1. 1 x 10
4
 cells were plated into each well of 96-well plates (Invitrogen, 

see Appendix A1) for the 24 hr exposure and 5 x 10
3
 were plated into each well of a 96-

well plate for the 48 hr exposure time, for each cell line. 

Each test plate for both the MTT and Alamar Blue assay were set up in parallel to 

measure 1 hr and 24 hr harvested ICCM for 24 hr and 48 hr assay exposure times in 

triplicate for each cell line (see Appendix C1.1 for exact layout of 96-well microplates 

in the raw data). The plates were clearly labelled with the cell line name (HaCaT, HT29 

and SW480), specific time points of 1 hr and 24 hr and doses 0, Gy, 0.5 Gy and 5 Gy. 

Fifteen replicate wells (n = 15) were prepared in total per treatment (1 hr 0 Gy, 1 hr 0.5 

Gy, 1 hr 5 Gy and 24 hr 0 Gy, 24 hr 0.5 Gy and 24 hr 5 Gy ICCM), 5 of the 15 replicate 

wells were set up on three plates separately. Plates were incubated for 24 hr at 37°C 

with an atmosphere of 5% CO2 to allow cells to attach. After the incubation period, 

medium was poured off the cells. 100µl of ICCM (0 Gy, 0.5 Gy and 5 Gy) was added 

onto the cells in the labelled 96-well plates and 100µl of fresh DMEM was added to the 

control cells on each plate. The plates were re-incubated at 37°C with an atmosphere of 

5% CO2 for the assay exposure time points of 24 hr and 48 hr.  
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2.2.4 Alamar Blue Cell Viability Assay 

The Alamar Blue cell viability assay was used to determine RIBE in un-irradiated 

HaCaT, HT29 and SW480 cell cultures exposed to ICCM from the irradiated cell 

cultures. 

After the exposure times of either 24 hr or 48 hr, the control media and ICCM was 

poured off the cells and they were washed three times in sterile phosphate buffered 

saline (PBS). Residual PBS was pipetted out of the wells and 100µl of fresh Alamar 

Blue medium (5% [v/v] solution of Alamar Blue) was prepared in fresh media (without 

FBS or supplements) was added to each test well. Plates were incubated for 3 hrs at 

37°C. Absorbance was read immediately after incubation on a GENios fluorescence 

microplate reader and fluorescence was quantified using excitation and emission 

wavelengths of 540 nm and 595 nm, respectively. Blank control wells contained 

medium and Alamar Blue dye only without cells. The data (in fluorescence units from 

the microplate reader) for the ICCM test wells were normalised to the assay control 

(DMEM medium only) and bystander effects were calculated as a change of viability in 

the irradiated group compared to the unirradiated group per sample. Refer to Appendix 

A3 for a list of reagents used for the Alamar Blue assay and Appendix B3, B4 and B5 

for the complete Alamar Blue assay. 

 

 

 

 



90 

 

2.2.5 MTT Cell Viability Assay  

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay 

measures cell viability and it was used to determine radiation-induced bystander effects 

of HaCaT, HT29 and SW480 cell lines exposed to ICCM from the  directly-irradiated 

cell cultures (Mosmann 1983). After the exposure time points (24 and 48 hr), control 

media (DMEM) and ICCM were poured off the cells in the 96-well plates and rinsed 

with PBS and 100µl of fresh DMEM medium (without FBS or supplements) was added 

to each well. 10µl of working MTT solution (5mg/ml) was prepared in PBS and added 

to each well and the plates were re-incubated for 3 hr at 37°C in an atmosphere of 5% 

CO2. After the incubation period, medium was discarded and cells were washed with 

100µl of PBS and 100µl of DMSO was added to each well to resolve the formazan 

crystals and extract the dye. Plates were shaken at 240 rpm for 10 min and the reduction 

of MTT to a blue formazan product was measured at an absorbance of 595nm on a 

GENios fluorescence microplate reader. The data (in fluorescence units from the 

microplate reader) for the ICCM test wells were normalised to the assay control 

(DMEM medium only) and bystander effects were calculated as a change of viability in 

the irradiated group compared to the unirradiated group per sample. Refer to Appendix 

A4 for a list of MTT reagents used and Appendix B3, B4 and B6 for full details of the 

MTT assay.  
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2.2.6 Colorectal Patient ICCM Samples 

The colorectal patient ICCM samples were generated by colleagues (Howe et al., 2009) 

at the Focas Institute, Dublin Institute of Technology, as part of another research study 

and were provided for this pilot study to assess sensitivity of the MTT assay compared 

to the Alamar blue assay previously reported in Howe et al, (2009) for the same patient 

ICCM samples. Blood samples from a number of colorectal patients (n=38) were 

cultured in vitro and irradiated with 0 Gy and 0.5 Gy of Co
60

 irradiation using the same 

radiation source and protocol described above in section 2.2.2. Thirty minutes post 

exposure the ICCM was harvested, filter sterilised and stored at -80°C.  Further 

information on the patients was not available. 

Complete details of culture conditions and translational bystander experiments for this 

work are provided in Howe et al, (2009). Briefly, the original lymphocyte cultures were 

routinely set up from fresh blood (stored at 4°C) within 24 hr of collection from the 

donor. The cultures were set up in four 25cm
2
 flasks (Corning) through the addition of 2 

ml of whole blood into 18 ml of pregassed (0.5% CO2) and prewarmed (37°C) RPMI 

1640 cell culture medium (Sigma) supplemented with 12.5% fetal calf serum (Gibco) 

and 2 mM L-glutamine (Gibco). Then 0.2 ml of phytohemagglutinin (PHA) (RemelHA 

15) was added to the cultures to stimulate the cells into mitosis. The cultures were 

grown in a mammalian cell culture environment at 37°C with 95% air/5%CO2. At 

exactly 48 hr of incubation, 15 ml of cell culture medium was replaced with fresh RPMI 

1640 culture medium containing 0.15 ml PHA. At 72 hr incubation, the cultures were 

transported to the 
60

Co irradiation facility in St. Luke’s Hospital, Dublin, and two of the 

flasks were irradiated with 0.5 Gy γ radiation while the remaining two control flasks 
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were sham-irradiated. The lymphocyte cultures were re-incubated at 37°C for 30 min 

after irradiation to allow recovery of the cells.   

Ten thousand HaCaT reporter cells were plated in 96-well microplates as described in 

Section 2.2.4 (preparation of bystander reporter cells) for a 24 hr exposure only. Cells 

were exposed to colorectal patient ICCM (0 Gy and 0.5 Gy) and the MTT assay (see 

Section 2.2.5 for full description of assay) was set up to measure RIBE in the samples. 

Radiation-induced bystander effects were measured with the GENios fluorescence 

microplate reader as described previously. Ethical approval for this part of the study was 

granted by the St. Vincent’s Hospital Ethics and Medical Research Committee, and 

patients gave written informed consent prior to participation in this study 

 

2.2.7 Statistical Analysis 

The GENios fluorescence microplate reader measures the fluorescence in each test well 

per plate and generates the final readings as fluorescent unit values. Once all of the 

plates for each Bioassay and exposure time (24 hr and 48 hr) had been measured, the 

fluorescent unit values were extrapolated for viability calculations and analysis 

Radiation-induced bystander effects were measured for both MTT and Alamar Blue 

assay by calculating the mean (average) of fluorescent unit value from each test well per 

plate and then averaging the results for each set of triplicate plates per assay (n = 15).  

Mean values were normalised to the non-treated assay controls, by subtracting the mean 

values from the non-treated internal assay controls to give a final result. Percentage 

viability was calculated relative to the assay control, which was set to 100%. Percentage 

viability of each bioassay (MTT and Alamar Blue) is graphically displayed as bar charts 
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with standard deviation error bars, and individual cell line responses are reported 

separately in the following Results section 2.3. Statistical analysis of the fluorescent 

values were carried out using GraphPad Prism statistical program, with a one-way 

Anova followed by Bonferroni's Multiple Comparison Tests, and are displayed in Table 

2.1. See C1.14 in the Appendices for a figure showing percentage viability differences 

in HaCaT cells determined by MTT.  

 

2.3 Results 

2.3.1 Radiation-Induced Bystander Effects in Cell Lines 

The results of Alamar Blue assay for HaCaT, HT29 and SW4980 are displayed in 

Figures 2.1 - 2.6 and the results of the MTT assay for the same cell lines respectively 

are displayed in Figures 2.7 - 2.12.  
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% Difference in Viability

Cell Line Assay Exposure (hr) ICCM sample  0 Gy - 0.5 Gy 0 Gy - 5 Gy 0.5 Gy - 5 Gy

HaCaT AB 24 1 hr -6.9 ns -1.3 ns 5.6 ns

24 hr -8.3 ns -1.4 ns 6.9 ns

HaCaT AB 48 1 hr -11.5 ns 5.4 ns 6.1 ns

24 hr 2.4 ns 4.5 ns 6.9 ns

HT29 AB 24 1 hr -3.2 ns -3.8 ns -0.6 ns

24 hr -2.8 ns -3.6 ns -0.8 ns

HT29 AB 48 1 hr -0.4 ns -1.6 ns -1.2 ns

24 hr -1.1 ns -1.6 ns -0.5 ns

SW480 AB 24 1 hr -0.8 ns -3.1 ns -2.2 ns

24 hr -1.9 ns -1.9 ns 0.0 ns

SW480 AB 48 1 hr -0.8 ns -0.6 ns 0.2 ns

24 hr -0.6 ns -1.3 ns -0.7 ns

HaCaT MTT 24 1 hr -15.1 *** -12.6 ** 2.5 ns

24 hr -18.2 *** -18.6 *** -0.4 ns

HaCaT MTT 48 1 hr 0.3 ns -0.4 ns -0.7 ns

24 hr -23.5 ** -18.2 ** 4.7 ns

HT29 MTT 24 1 hr -17.0 ns -46.5 ** -29.5 *

24 hr 15.1 ns 0.2 ns -14.8 ns

HT29 MTT 48 1 hr -30.3 ns -60.6 ns -30.4 **

24 hr -21.6 ns -38.1 ns -59.9 **

SW480 MTT 24 1 hr 35.0 * 3.6 ns -31.4 *

24 hr -18.0 ns -20.2 ns -2.2 ns

SW480 MTT 48 1 hr 0.3 ns 25.8 ns 25.5 ns

24 hr 3.7 ns -21.3 ns -24.9 ns  

Table 2.1: Percentage differences of viability between the 0 Gy and 0.5 Gy doses and 

between the 0 Gy and 5 Gy doses, for each cell line and cell viability assay. A positive 

value represents an increase of viability and a negative value represents a decrease of 

viability. Statistical analysis are represented as P > 0.05 (ns), P ≤ 0.001 (***), P ≤ 0.01 

(**) and P ≤ 0.05 (*) 
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2.3.2 Alamar Blue Cell Viability Assay  

HaCaT Cell line  

The results for the Alamar Blue assay in HaCaT cells after 24 hr exposure to 0 Gy, 0.5 

Gy and 5 Gy ICCM (1 and 24 hr ICCM harvests) are shown in Figure 2.1. For the 24 hr 

exposures, HaCaT cells exhibited a non-significant decrease in viability from 0 Gy to 

0.5 Gy, a non-significant decrease in viability from 0 Gy to 5 Gy and a non-significant 

increase in viability between 0.5 Gy and 5 Gy for both the 1 hr and 24 hr ICCM. 

The results for HaCaT cells after 48 hr exposure to 0 Gy, 0.5 Gy and 5 Gy (1 and 24 hr 

ICCM) are shown in Figure 2.2. For the 1 hr ICCM samples there was a non-significant 

decrease in viability from 0 Gy to 0.5 Gy, followed by a non-significant increase of 

viability from 0 Gy to 5 Gy and a non-significant increase in viability between 0.5 Gy 

and 5 Gy. For the 24 hr ICCM samples, there was a non-significant increase of viability 

from 0 Gy to 0.5 Gy, a non-significant increase from 0 Gy to 5 Gy and a non-significant 

increase in viability between 0.5 Gy and 5 Gy. 
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Figure 2.1 Viability of HaCaT cells after 24 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the Alamar Blue assay. Data are expressed as mean 

percentage of control plus standard deviation (n = 15). Statistical analysis are 

represented as P > 0.05 (ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*).See 

Appendix C1.1 for raw data. 
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Figure 2.2 Viability of HaCaT cells after 48 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the Alamar Blue assay. Data are expressed as mean 

percentage of control plus standard deviation (n = 15). Statistical analysis are 

represented as P > 0.05 (ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See 

Appendix C1.2 for raw data 
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HT29 Cell line 

The results of the Alamar Blue assay for HT29 cells after 24 hr exposure to 0 Gy, 0.5 

Gy and 5 Gy ICCM (1 and 24 hr ICCM harvests) are shown in Figure 2.3. There was a 

non-significant decrease in viability for 1 hr ICCM exposures from 0 Gy to 0.5 Gy, 

from 0 Gy to 5 Gy and between 0.5 Gy and 5 Gy. In the 24 hr ICCM samples, cell 

viability was non-significantly reduced from 0 Gy to 0.5 Gy, from 0 Gy to 5 Gy and 

between 0.5 Gy and 5 Gy.  

For the 48 hr exposures there was a non-significant reduction of viability from the 0 Gy 

to 0.5 Gy, from 0 Gy to 5 Gy and between 0.5 Gy and 5 Gy for the 1 hr ICCM samples 

and this is shown in Figure 2.4. For the 24 hr ICCM samples, there was a non-

significant reduction in cell viability between 0 Gy and 0.5 Gy, from 0 Gy to 5 Gy and 

between 0.5 Gy and 5 Gy.  
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Figure 2.3 Viability of HT29 cells after 24 hr exposure to 0, 0.5 and 5 Gy ICCM (1 and 

24 hr) determined by the Alamar Blue assay. Data are expressed as mean percentage of 

control plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 

(ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C1.3 for raw data. 
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Figure 2.4 Viability of HT29 cells after 48 hr exposure to 0, 0.5 and 5 Gy ICCM (1 and 

24 hr) determined by the Alamar Blue assay. Data are expressed as mean percentage of 

control plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 

(ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C1.4 for raw data.  
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SW480 Cell line 

The results of the Alamar Blue assay for SW480 cells after 24 hr exposure to 0 Gy, 0.5 

Gy and 5 Gy (1 and 24 hr ICCM) is shown in Figure 2.5. For the 1 hr and 24 hr ICCM 

samples, there was a non-significant reduction of viability between the 0 Gy and the 0.5 

Gy, from 0 Gy to 5 Gy and between 0.5 Gy and 5 Gy. 

The results of the SW480 48 hr exposures are shown in Figure 2.6. For the 1 hr ICCM 

samples, there was a non-significant decrease from 0 Gy to 0.5 Gy, from 0 Gy to 5 Gy 

and a non-significant increase between 0.5 Gy and 5 Gy.   For the 24 hr ICCM samples, 

there was a non-significant decrease in viability from 0 Gy to 0.5 Gy, from 0 Gy to 5 

Gy and between 0.5 Gy and 5 Gy.  
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Figure 2.5 Viability of SW480 cells after 24 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the Alamar Blue assay. Data are expressed as mean 

percentage of control plus standard deviation (n = 15). Statistical analysis are 

represented as P > 0.05 (ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See 

Appendix C1.5 for raw data. 
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Figure 2.6 Viability of SW480 cells after 48 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the Alamar Blue assay. Data are expressed as mean 

percentage of control plus standard deviation (n = 15). Statistical analysis are 

represented as P > 0.05 (ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See 

Appendix C1.6 for raw data.   

 

2.3.3 MTT Cell Viability Assay 

HaCaT Cell line 

Cell viability was measured with the MTT assay, and the results of the assay for HaCaT 

cells after 24 hr exposure to 0 Gy, 0.5 Gy and 5 Gy ICCM (1 and 24 hr ICCM harvests) 

are shown in Figure 2.7. For the 24 exposures with 1 hr ICCM, there was a significant 

decrease in viability from 0 Gy to 0.5 Gy, a significant decrease of viability from 0 Gy 

to 5 Gy and a non-significant between from 0.5 Gy to 5 Gy.  For the 24 exposures with 

24 hr ICCM there was a significant decrease in viability from 0 Gy to 0.5 Gy, a 

significant decrease from 0 Gy to 5 Gy and a non-significant increase between 0.5 Gy 

and 5 Gy.  

The results for HaCaTs exposed for 48 hr are shown in Figure 2.8. For the 1 hr ICCM, 

there was a non-significant increase of viability from 0 Gy to 0.5 Gy, a non-significant 

decrease in viability from 0 Gy to 5 Gy and a non-significant decrease between 0.5 Gy 

and 5 Gy. For the 24 hr ICCM, there was a significant decrease in viability between 0 

Gy and 0.5 Gy, a significant decrease in viability from 0 Gy to 5 Gy and a non-

significant increase in viability between 0.5 Gy and 5 Gy. 
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Figure 2.7 Viability of HaCaT cells after 24 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the MTT assay. Data are expressed as mean percentage of 

control plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 

(ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C1.7 for raw data. 
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Figure 2.8 Viability of HaCaT cells after 48 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the MTT assay. Data are expressed as mean percentage of 

control plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 

(ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C1.8 for raw data.  
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HT29 Cell line  

The MTT assay results for HT29 24 hr exposures are shown in Figure 2.9. There was a 

non-significant decrease in cell viability for the 1 hr ICCM, from 0 Gy to 0.5 Gy, a 

significant decrease from 0 Gy to 5 Gy and a significant decrease between 0.5 Gy and 5 

Gy. For the 24 hr ICCM, there was a non-significant increase of viability from 0 Gy to 

0.5 Gy, a non-significant increase from 0 Gy to 5 Gy and a non-significant decrease 

between 0.5 Gy and 5 Gy.  

The MTT assay results for HT29 48 hr exposures are shown in Figure 2.10. There was a 

non-significant decrease of cell viability for the 1 hr ICCM from 0 Gy to 0.5 Gy, a 

significant decrease in viability from 0 Gy to 5 Gy and a non-significant decrease 

between 0.5 Gy and 5 Gy. For the 24 hr ICCM, viability was non-significantly 

decreased from 0 Gy to 0.5 Gy, non-significantly decreased from 0 Gy to 5 Gy and 

significantly decreased between 0.5 Gy and 5 Gy.  
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Figure 2.9 Viability of HT29 cells after 24 hr exposure to 0, 0.5 and 5 Gy ICCM (1 and 

24 hr) determined by the MTT assay. Data are expressed as mean percentage of control 

plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 (ns), P ≤ 

0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C1.9 for raw data. 

 

 



108 

 

MTT 48hr HT29

C
on

tro
l

0G
y 

1h
r

0.
5G

y 
1h

r

5G
y 

1h
r

0G
y 

24
hr

0.
5G

y 
24

hr

5G
y 

24
hr

0

100

200

300

400
ns

ns

ns

ns**

**

V
ia

b
il

it
y
 (

p
er

ce
n
ta

g
es

 o
f 

co
n

tr
o

l)

 

Figure 2.10 Viability of HT29 cells after 48 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the MTT assay. Data are expressed as mean percentage of 

control plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 

(ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C1.10 for raw data. 
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SW480 Cell line 

The MTT assay results for SW480 24 hr exposures are shown in Figure 2.11. Viability 

was significantly increased from 0 Gy to 0.5 Gy, non-significantly increased from 0 Gy 

to 5 Gy and significantly decreased between 0.5 Gy and 5 Gy, for the 1 hr ICCM 

samples. For the 24 ICCM samples, viability was non-significantly decreased from 0 

Gy to 0.5 Gy, from 0 Gy to 5 Gy and between 0.5 Gy and 5 Gy.  

The MTT assay results for SW480 48 hr exposures are shown in Figure 2.12. There was 

a non-significant increase of viability from 0 Gy to 0.5 Gy, from 0 Gy to 5 Gy and 

between 0.5 Gy and 5 Gy, for the 1 hr ICCM samples. For the 24 hr ICCM samples, 

there was a non-significant increase of viability between 0 Gy and 0.5 Gy and a non-

significant decrease in viability from 0 Gy to 5 Gy and between 0.5 Gy and 5 Gy. 
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Figure 2.11 Viability of SW480 cells after 24 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the MTT assay. Data are expressed as mean percentage of 

control plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 

(ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C1.11 for raw data.  
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Figure 2.12 Viability of SW480 cells after 48 hr exposure to 0, 0.5 and 5 Gy ICCM (1 

and 24 hr) determined by the MTT assay. Data are expressed as mean percentage of 

control plus standard deviation (n = 15). Statistical analysis are represented as P > 0.05 

(ns), P ≤ 0.001 (***), P ≤ 0.01 (**) and P ≤ 0.05 (*). See Appendix C.12 for raw data. 
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2.3.4 Radiation-Induced Bystander Effects in Individual Colorectal Patient 

ICCM Samples 

The colorectal patient ICCM samples were generated by a colleague at our Institute and 

details are described above in Section 2.2.2.  The MTT assays were set up with HaCaT 

reporter cells and incubated with the 0 Gy and 0.5 Gy ICCM samples per colorectal 

patient ICCM at a 24 hr exposure time point, details of the MTT assay were described 

in section 2.2.5. Figure 2.13 displays the 38 different donor samples coded CR1 - CR19 

and CRC-20 – CRC38.  

Variation of viability between the non-irradiated 0 Gy control and the irradiated 0.5 Gy 

sample (per patient) was indicative of a RIBE. Significant variation of viability response 

was evident between the non-irradiated samples and the irradiated samples at 0.5 Gy per 

patient. Figure 2.14 show RIBE and differences between the non-irradiated (0 Gy) 

samples and the irradiated (0.5 Gy) samples from each patient donor.  
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Figure 2.13 Radiation-induced bystander effects of 19 different colorectal cancer patient 

samples, CRC-1- CRC-19 and CRC-20- CRC-38, determined by the MTT cell viability 

assay. (See Appendix C1.13 for raw data) Experiment was carried out once, therefore 

n=1 
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Figure 2.14 Radiation-induced bystander effects expressed in percentage difference of 

determined by the MTT cell viability assay. The results displayed are the colorectal 

cancer patient samples coded CRC -1 to CRC - 38. (See Appendix C1.13 for raw data) 
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2.4 Discussion  

Mothersill and Seymour developed an in vitro medium transfer experiment to measure 

RIBE that is widely used in bystander studies today (1997). In the study, media from 

directly irradiated cells was harvested and transferred to cells that had not been 

irradiated and bystander effects were discovered such as decreased clonogenicity 

(reduced clonogenic survival in cells). The same study revealed that bystander 

responses are apparent in both epithelial cells and in fibroblasts; however, fibroblasts 

are not capable of producing a bystander effect themselves. A reason for this could be 

that cell and tissue architecture and cell-to-cell communication, play a role in the 

generation and signalling of the bystander response. The media transfer technique 

indicates that a signal transduction mechanism is responsible for the release of a 

bystander signal (bystander factor) from directly irradiated cells into their surrounding 

medium upon exposure.  

The hypothesis of this study was to investigate RIBE in epithelial HaCaT cells and two 

colorectal cell lines, HT29 and SW480, in response to low doses of indirect irradiation 

(0.5 Gy and 5 Gy) by the addition of ICCM. Two fundamental viability assays (MTT 

and Alamar Blue assay) were chosen for the study, as they have been used for many 

research studies at our Institute and were deemed to be the most sensitive and reliable. 

It was initially hypothesised that there would not be a significant difference between the 

HaCaT cells versus the colorectal cancer cell lines regarding the pattern of bystander 

effect. Surprisingly, the results of the two viability assays showed a consistent decrease 

of viability for the HaCaT cells compared to the assay control. The colorectal cell lines 

HT29 and SW480 showed a contrary increase of viability compared to the control. The 

results indicate that RIBE can vary depending on the cell line and possibly vary 
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between different tissues and tumor types which has been shown in other studies 

investigating different cell lines (Vines et al. 2008).  

The Alamar Blue assay was also previously used at our Institute by Howe et al, (2009) 

for a bystander translational study comparing intrinsic radiosensitivity and bystander 

responses in individual patients. Variation of response was observed between patients 

for both endpoints but no correlation between the two. It was suggested that the 

sensitivity of the Alamar blue assay may have played a role in the bystander data 

generated. Two ICCM exposure time points of 24 hr and 96 hr were compared and 

contrasted. RIBE was more pronounced in samples exposed for 24 hr in comparison to 

96 hr. It is believed after 96 hr exposure, cells condition diminish due to a lack of 

nutrients, particularly in ICCM and the reduced survival is reflected in decreased 

viability. For that reason, time points of 24 and 48 hr were chosen for the current 

comparative study.  

For the HaCaT, HT29 and SW480 cells, there were substantial differences of viability 

between ICCM harvest time points of 1hr and 24 hr, and between the incubation times, 

24 hr and 48 hr determined by the MTT assay, which were not pronounced in the 

Alamar Blue assay. Furthermore, statistical analysis revealed more statistically 

significant differences in viability for the cell lines tested with MTT. This is suggestive 

that the MTT assay is more sensitive than the Alamar Blue assay. It was expected that 

the bystander signal would be higher in HaCaT cell cultures exposed to 24 hr ICCM 

compared to the 1hr exposures, generating a distinct change of viability and evident of 

the bystander response. Furthermore, for the individual colorectal carcinoma patient 

ICCM samples an expected variation in RIBE between individual patients was 

observed. However, a more pronounced RIBE was obtained compared to the Alamar 
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blue RIBE data generated for Howe et al., (2009). Therefore, the data generated from 

both the MTT assay and Alamar Blue assay conclude that the MTT assay is more 

sensitive and consistent in reporting RIBE.  

With regards to dose response, in both the viability assays, a reduction of viability (i.e. 

the bystander effect) was observed from 0 to 0.5 Gy followed by an increase of viability 

at 5 Gy in the HaCaT cells. A proposed bystander ‘dose-response’ curve from the 

calculated percentage difference of viability compared to the control in HaCaT cells for 

the most sensitive MTT assay is shown in Appendix C1.14. An increase of viability at 5 

Gy could be due to the fact that a threshold exists in a linear dose response to radiation 

which is consistent with other low-dose bystander studies (Seymour & Mothersill 

2000). The most sensitive dose appears to be 0.5 Gy for direct irradiation and ICCM 

and at higher doses the cells had a hard time to adapt due to possible cellular and 

molecular mechanisms triggered. At the lowest dose, 0.5 Gy the cells were capable of 

resisting apoptosis through adjustment of the cellular mechanisms of repair or 

carcinogenesis from the ICCM before they eventually became unhealthy and unable to 

proliferate encouraging apoptotic cell death. The radiation induced bystander response 

showed an interesting result, that varied, showing either a decrease or an increase of 

viability which also was found of Howe et al., (2009) using the Alamar blue assay. The 

more sensitive assay (MTT assay) used for measuring RIBE in vitro represents either an 

increase or decrease of viability in bystander cells in different patient samples. Why this 

‘change’ of viability in patient samples occurs is still unknown. One suggestion is that 

patients who undergo radiotherapy treatment may respond to the same doses differently, 

so are there harmful effects associated with the variability? Additional research to 

consider the associated molecular mechanisms is essential before any conclusions can 

be made.    
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Chapter 3 

 

Apoptosis is signalled early by low doses of ionising 

radiation in a radiation-induced bystander effect 
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Abstract   

It is known that ionising radiation (IR) induces a complex signalling apoptotic cascade 

post-exposure to low doses ultimately to remove damaged cells from a population, 

specifically via the intrinsic pathway. Therefore, it was hypothesised that bystander 

reporter cells may initiate a similar apoptotic response if exposed to low doses of IR 

(0.05 Gy and 0.5 Gy) and compared to directly irradiated cells. Key apoptotic genes 

were selected according to their role in the apoptotic cascade; tumour suppressor gene 

TP53, pro-apoptotic Bax and anti-apoptotic Bcl2, pro-apoptotic JNK and anti-apoptotic 

ERK, initiator caspase 2 and 9 and effector caspase 3, 6 and 7. The data generated 

consolidated the role of apoptosis following direct IR exposure for all doses and time 

points as pro-apoptotic genes such as Bax and JNK as well as initiator caspase 7 and 

mailto:hayley.furlong@dit.ie
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effector caspase 3 and 9 were up-regulated. However, the gene expression profile for 

the bystander response was quite different and more complex in comparison to the 

direct response. The 0.05 Gy dose point had a more significant apoptosis gene 

expression profile compared to the 0.5 Gy dose point and genes were not always 

expressed within 1 h but were sometimes expressed 24 h later. The bystander data 

clearly demonstrates initiation of the apoptotic cascade by the up-regulation of TP53, 

Bax, Bcl-2, initiator caspase 2 and effector caspase 6. The effector caspases 3 and 7 of 

the bystander samples demonstrated down-regulation in their gene expression levels at 

0.05 Gy and 0.5 Gy at both time points therefore not fully executing the apoptotic 

pathway. Extensive analysis of the mean-fold gene expression changes of bystander 

data demonstrated that the apoptosis is initiated in the up-regulation of pro-apoptotic 

and initiator genes but may not very well be executed to final stages of cell death due to 

down-regulation of effector genes.  

 

1.  Introduction 

A ‘bystander factor’ can be produced in cells exposed to ionising radiation (IR) and can 

subsequently affect the function and survival of surrounding un-irradiated cells due to 

cellular communication of the bystander signals. This communication is either through 

gap junctions or by secreted factors in the surrounding medium that transmits a signal 

[1]. The importance of understanding altered gene expression in radiation induced 

bystander effects (RIBE) is apparent in the literature but has yet to be fully 

characterised. This study investigates gene expression changes in both directly 

irradiated and bystander human keratinocyte HaCaT cells. 
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A broad range of information regarding gene expression changes in directly irradiated 

cells is available, but less so for bystander cells. Human epithelial keratinocytes 

exposed to direct and indirect irradiation has been shown to induce initiating apoptotic 

events specifically on the mitochondrial related intrinsic pathway, with the increase of 

expression of anti-apoptotic Bcl-2 [2–5]. Mothersill et al. found that a threshold of 

approximately 1Gy exists to induce Bcl-2 in directly irradiated cells [6] but it is thought 

that there may be a different threshold for bystander irradiated cells [7]. It is important 

therefore to understand the signalling mechanisms involved on a molecular level. 

Expression levels of bystander factor induced-apoptosis related genes, in particular Bcl-

2 and cytochrome c have been determined using fluorescent probes [5].  

An attempt to establish cellular regulatory mechanisms in bystander cells was made in 

2008, with measurement of global gene expression of alpha particle direct irradiated 

normal human lung fibroblasts 4 h after exposure compared to parallel bystander 

effects. Both direct and bystander effects were compared with the discovery that two 

major transcriptional centres, P53 and NfkB which regulate the direct response also 

have a role in the bystander cells but to a different extent [8]. P53 functions as a 

transcription factor in response to the stress of ionising radiation. Kuang et al 

investigated the genes that are targeted directly by P53 and this paper examined its role 

more thoroughly in response to indirect (bystander) radiation at very low doses [9]. The 

application of genome wide microarrays has been beneficial to determine changes in 

transcript profiles in human melanoma cells grown in conditioned medium from 

irradiated cells where they made the observation that factors transmitted from IR cells 

can affect transcript levels in non-IR cells [10].  The effect and involvement of 

chemicals in specific pathways in bystander responses has also been investigated with 

measurement of gene expression changes, in particular the MAPK downstream targets. 
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These results showed bystander induced changes in MAPK proteins and downstream 

targets [11].  

Elmore [12] describes two distinct pathways of apoptosis in detail in her review of 

programmed cell death. These pathways  are the extrinsic pathway which is associated 

with transmembrane receptor-mediated interactions involving death receptors which 

form multiprotein complexes. The second, intrinsic pathway involves a diverse array of 

non-receptor mediated stimuli which produce intracellular signals involving the 

mitochondria. The two described pathways have unique events initiating the pathway 

and unique signalling events, but there is evidence that the two pathways are linked due 

to molecules in one pathway influencing the other [13]. However, studies have shown 

that the intrinsic pathway is a more sensitive indicator of apoptotic signals when 

exposed to IR [14]. Subsequently only the intrinsic apoptotic cascade was considered 

for this bystander study to compare the gene expression response with directly 

irradiated cells at the same doses and time points. A group of ‘intrinsic pathway’ 

apoptotic genes were chosen for this study, dependent on their function, location and 

role in apoptosis.  

It is known that ionising radiation in cells initiate changes in the intrinsic apoptotic 

pathway directly involving the mitochondria and the activation of a group of proteases 

known as caspases. Two groups exist according to function, initiator caspases (caspase 

2, 8, 9, 10) and effector caspases (caspase 3, 6, 7). Initiator caspases cleave inactive pro-

forms of effector caspases, thereby activating them. Effector caspases in turn cleave 

other protein substrates within the cell, to trigger the apoptotic process [15]. Caspases 

are the main effectors of apoptosis through cleavage of cellular substrates. Pro-caspases 

8, 9 and 10 are the main initiators although the main function of some do not relate to 
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apoptosis. In this study, only selected initiator caspases related to the intrinsic pathway 

were studied (caspases 2 and 9) to capture their role in the cascade.  The role of caspase 

2 was included in the study because its precise role in apoptosis is still unclear, however 

it is thought to induce apoptosis in response to intrinsic and extrinsic signals [16]. All of 

the known effector caspases (caspase 3, 6 and 7) were selected to capture all 

mechanisms which result in the execution of apoptosis. 

Different modes of cell killing such as apoptosis, necrosis, mitotic catastrophe, 

senescence and autophagy do exist. Cells that are exposed to IR may experience rapid 

or delayed cell death, such as mitotic cell death which has been investigated by Howe et 

al, [17]. Oncosis is the term more commonly used to describe the process of necrosis, as 

it is a mode of cell death that refers to the degradative processes that occur after cell 

death [12]. One particular paper showed a significant increase of necrosis in indirectly 

irradiated cells (bystander cells) in comparison to directly irradiated cells and also 

suppressed proliferation activity [18, 19]. Autophagy is thought to arise in damaged 

cells that cannot be removed by engulfment cells and is thought to lead to cell death 

through the process of cytoplasm destruction [20]. There may very well be other 

significant mechanisms responsible for the response of the bystander cells such as 

cross-talk to other cell death pathways. In a recent publication [19] our laboratory 

compared cell death pathways (apoptosis, necrosis and mitotic cell death) in directly 

irradiated and bystander HaCaT cells. 

The bystander effect may be also be mediated by signalling pathways responsive to 

oxidative stress thus activating stress related kinases and their down-stream 

transcription factors, such as JNK and ERK. JNK is a member of the Mitogen-activated 

protein kinases (MAPK’s), in which their pathways play an important role in 
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transportation of stress signals such as ionising radiation from the surface of the cell to 

the nucleus and responses are dependent on stimulus type [21]. Zhou et al, [22] showed 

that inhibition of ERK can lead to an increase in number of bystander cells.  

Gene expression levels of these selected apoptotic genes were measured in directly 

irradiated and bystander HaCaT cells exposed to low doses of IR or ICCM respectively 

1 h and 24 h after exposure. To our knowledge, this is the first report demonstrating the 

apoptotic gene expression levels in the intrinsic apoptotic pathway related to a radiation-

induced bystander response and compared in parallel to the direct IR response in vitro.  

 

2. Materials and methods 

2.1 Direct and bystander irradiation experiments in vitro 

An immortal human keratinocyte cell line, HaCaT, which was kindly received from Dr 

Petra Boukamp’s laboratory [23] were used in these studies as they have previously 

been shown to be good reporters of the radiation induced bystander response [22, 23]. 

They were routinely cultured in DMEM: F12 Dulbeccos Modified Eagles Medium) 

medium (Sigma) supplemented with 10% fetal bovine serum (FBS, Gibco) and 2mM L-

Glutamine (Gibco) in DMEM medium. Cells were maintained in an atmosphere of 37°C 

and 5% CO2 and grown to approximately 70-80% confluency to ensure they were in the 

logarithmic phase of growth. Cells were removed from stock flasks using a 1:1 mix of 

EDTA:Trypsin, EDTA: 0.1 g of EDTA in 500 ml PBS:Trypsin 2.5% 10X) and a 1:10 

dilution of Trypsin then neutralised in EDTA.  200,000 cells were counted using a 

Coulter Counter and were plated into T25 flasks. A set of flasks were set up at 1 h and 

24 h direct irradiation experiment and for harvesting of bystander media for each of the 
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dose points (0 Gy, 0.05 Gy 0.5 Gy) in triplicate. Another set of flasks were set up as 

bystander recipients at 1 h and 24 h for bystander irradiations for each of the dose points 

(0 Gy, 0.05 Gy 0.5 Gy) in triplicate. All flasks were incubated with a fresh media 

change after 1 day. The growth was monitored for 2-3 days so that the cells were 

allowed to reach 70-80% confluency, to ensure the phase of growth of the cells and to 

grow as many cells as possible per dose and time point. After 72 hours of culturing, 

cells (direct irradiation flasks only) were irradiated at room temperature using the cobalt 

60 teletherapy unit in St. Luke’s hospital (Rathgar, Dublin) with a distance from 

radiation source to flask of 80cm, and a field size of 25 x 25cm. All irradiated flasks 

were placed back into the incubator directly after irradiation until 1 h post exposure. 

Our group has shown that the bystander factor is produced from 30 seconds onwards 

from the rapid formation of calcium fluxes in similar HPV-G keratinocyte cells exposed 

to low doses of irradiated cell conditioned media (ICCM) [2]. The Media (ICCM) was 

harvested and pooled per triplicate flask for the directly irradiated flasks at 1 h and 24 h 

time points and each of the three dose points (0, 0.05 and 0.5 Gy). This was labelled 

ICCM. 5ml of fresh DMEM F12 media was replaced on the 24 h direct irradiation 

flasks and they were re-incubated for 24 h while an RNA extraction was conducted 

immediately on the 1 h direct irradiation flasks. The ICCM was filtered through a 

0.22µm filter (Nalgene) to remove any dead cells or debris. The ICCM was then 

immediately transferred to the bystander parallel cultures of 1 h and 24 h time points at 

the three dose points (0, 0.05 and 0.5 Gy). For both the direct and bystander cell 

cultures, RNA was extracted at the relevant time points of 1 h and 24 h of each dose 

point. The Tri-Reagent (Sigma Aldrich) extraction technique [26] was used which 

briefly involves cell lysis, phase separation (with chloroform), Isopropanol precipitation 

and ethanol washing of the extracted RNA. The re-dissolved RNA in DEPC water 
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(Sigma-Aldrich 1 x ) was stored at -80°C for subsequent studies. The bystander ICCM 

experiment was set up according to the medium transfer technique developed by 

Mothersill and Seymour [1]. 

 

2.2 Gene expression studies 

2.2.1 Optimisation of apoptosis gene primers 

Apoptosis gene primers were first synthesised using the PRIMER3 programme. Caspase 

3 and caspase 7 primer sequences were sourced from (Jooyeon Hwang) [27]. Bax and 

Bcl-2 primer sequences were sourced from (Hans-Peter Gerber) [28]. See Table 1 for 

individual gene primer sequences. All primer sets were obtained from Sigma Genosys, 

UK and were of Homosapien in origin, desalted and scaled to 0.05µmol. They were sent 

lyophilised and re-suspended to a concentration of 100µM, and further diluted 

depending on individual primer performances. Each primer set was optimised before 

experimentation for gene expression by assessing different primer annealing 

temperatures. A conventional PCR protocol using the enzyme TAQ Polymerase (Red 

TAQ, Sigma) was used. Each individual reaction consisted of 1µl H2O, 2µl template 

DNA (HaCaT), 10µl Red Taq polymerase (Sigma), and 2µl of each primer (Forward 

and Reverse) to a total volume of 20µl. The PCR program incorporated the following 

conditions; PCR initiation activation step for 2 minutes @ 94ºC, Denaturation for 

40seconds @ 94ºC, Annealing for 1 minute @ 63ºC, Extension for 40 seconds @ 72ºC, 

Final extension for 2 minutes @ 72ºC and then holding the samples at 8ºC. The 

denaturing/melting temperatures (Tm) and annealing temperature (Ta) were calculated. 

The Tm of the primers is calculated by the following equation  
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Tm = 2 [A+T] + 4 [G+C]  

Ranges of annealing temperatures (Ta) were tried for each primer set until a pure PCR 

product/band was obtained with 1% agarose gel electrophoresis. The clearest largest 

band on the gel image indicated the optimum temperature for that specific primer set.  

2.2.2 Expression of apoptosis genes in direct and bystander irradiation samples using 

real-time PCR and SYBR green technology 

RNA samples were quantified on a Helios γ spectrophotometer which measured the 

absorbance of the extracted RNA at 260nm and protein concentration at 280nm. A ratio 

of absorbance at different wavelengths (Absorbance 260:280) was calculated and 

samples were selected based on whether they fell in between the permitted ratio range 

of 1.8 – 2.0 which indicated high purity samples. All RNA samples were then reverse 

transcribed into a complementary DNA copy (cDNA) using the Quantitect reverse 

transcription kit (Qiagen, UK). According to the manufacturer’s instructions,  1µg/µl of 

pure RNA was used in a final volume of 20µl. gDNA wipeout buffer was added to RNA 

template and RNase-free water, and incubated for 2 minutes on ice. In a separate tube 

Quantiscript Reverse Transcriptase, Quantiscript RT Buffer and RT primer Mix were 

mixed and placed on ice. The Reverse transcription mix was added to the Genomic 

DNA elimination mix and incubated for 15-30 min at 42ºC, and then incubated for 3 

minutes at 95ºC to inactivate Quantiscript Reverse Transcriptase. The newly 

synthesised cDNA was stored at -20ºC until subsequent gene expression studies were 

carried out by real time PCR.  

Real time PCR experiments were carried out using Lightcycler® 480 (Roche 

Diagnostiscs) and SYBR Green technology (Roche). The formation of PCR products 
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was detected by measurement of SYBR Green fluorescence signals from each 

experiment. SYBR Green intercalates into the dsDNA helix and the increase in SYBR 

Green fluorescence is directly proportional to the amount of dsDNA generated.  

The real-time PCR protocol used to calculate gene efficiency involved the addition of 

2µl of cDNA product, 10µl SYBR Green (Roche), 6µl H20 and 2µl of each primer 

(forward and reverse) to a total volume of 20µl. This protocol was used to calculate the 

efficiency of each gene in the study, with an expected gene efficiency value of 2. The 

PCR programme consisted of the following steps; PCR initial activation step for 10 

minutes @ 95ºC, Denaturation for 10 seconds @ 95 ºC, Annealing for 1 minute at 57, 

60, 64 ºC (depending on optimised temperature of primer involved) and extension for 1 

minute @72ºC. Each sample analysed were set up in triplicate, n = 3. And mean values 

were calculated.  

 

2.2.3 Analysis of gene expression data 

Relative quantification analysis directly from the LC480 program (from the real-time 

PCR experiments using SYBR green fluorescence) was used to determine the apoptosis 

gene expression levels in target and reference genes. The reference gene (Tubulin) 

normalises sample to sample differences and was important to determine the changes in 

expression of different genes, according to dose and time. Two ratios were compared in 

each experiment, the ratio of target (gene of interest) to a reference (housekeeping gene) 

sequence, and the ratio of sequences within a calibrator (positive sample) sample. The 

result was expressed as a normalised ratio which is (conc.target):(conc.target) / 

(conc.reference):(conc.reference) 
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The quantitative endpoint for real-time PCR is the threshold cycle (CT). Schmittgen and 

Livak best define this value as ‘’The PCR cycle at which the fluorescent signal of the 

reporter dye crosses an arbitrarily placed threshold’’[29]. A mathematical model 

widely used in the analysis of Real-time PCR data, the delta delta CT method [30] was 

subsequently applied to the raw CT data to give a ratio of target gene: reference genes to 

show the gene expression changes.  

Mean-fold changes are calculated from mean normalised values of raw CT data between 

samples, dose/time. The deltadelta CT mathematical model normalises sample to 

sample differences. The aim was to determine the effect of both direct and indirect 

irradiation on the expression of the chosen target genes. This method enabled the 

measurement of gene expression changes of target genes normalised to Tubulin 

(housekeeper gene) monitored at 0.05 Gy and 0.5 Gy at 1 h and 24 h exposures and 

relative to the expression at 0 Gy (control). The value of the mean-fold change at 0 Gy 

(control) was 1. The mean-fold changes in gene expression of each target gene were 

plotted by Microsoft Excel, and the graphs present either up-regulation or down-

regulation of samples (target genes) determined whether they reach above or below the 

control sample value of 1.  

 

2.2.4 Statistical data analysis 

Significance of variances between doses and time points were determined, for each 

specific gene targeted, by the statistical one-way ANOVA test with the aid of Microsoft 

excel and variances were considered significant if p<0.05. The overall outcome on the 

statistical analysis recorded was a ‘NO’ for significance in table 2 compared to those 
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deemed significant with a ‘YES’. Samples not considered statistically significant were 

still plotted.  

 

3. Results 

3.1 Optimised annealing temperatures for primers  

The set of primers which were designed with a PCR primer design tool programme 

online, PRIMER3, were analysed by conventional PCR to optimise the melting 

temperature prior to the gene expression experiments. Agarose gel electrophoresis 

provided strong bands which correlated to a temperature gradient used in the PCR 

programme, from this the best suited temperature was chosen for further RT-PCR 

experiments. Primer sequences for Bax, Bcl-2 and caspase 3, 7 were sourced from 

literature [23,24]. A list of forward and reverse sequences is shown in Table 1 and the 

optimum temperatures (Tm ºC) for each primer set are also shown. 

 

3.2 RT-PCR gene expression study  

The expression levels of each gene will be discussed separately to unveil any emerging 

expression patterns of apoptosis in these HaCaT cells. Figures 1 to 5 display the direct 

in comparison to the bystander data of each target gene and highlight emerging changes 

in gene expression levels, be they up-regulated or down-regulated with respect to the 

control samples that have been set to one for each gene investigated.  
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3.2.1 TP53 

Figure 1A-B displays a comparison of relative mean-fold changes in gene expression 

levels of tumour suppressor gene TP53 in HaCaT cells, following 1 h and 24 h 

exposures to 0.05 Gy and 0.5 Gy in direct and indirectly irradiated cells. TP53 is up-

regulated in direct cells after 1 hr exposure to 0.5 Gy and down-regulated in all other 

direct samples. The bystander data shows thatTP53 is up-regulated after 1 h in the lower 

dose of 0.05 Gy and down-regulated at other doses/time points. All TP53 data is 

statistically significant, direct p<0.05 and bystander p<0.05 and presented in Table 2.  

The tumour suppressor gene responds to a range of stresses by inducing cell cycle arrest 

and/or apoptosis in damaged cells from IR. TP53 is a well described transcription factor 

that can induce the expression of multiple pro-apoptotic gene products such as caspase 

activators and pro-apoptotic members of the Bcl2- family such as Bax. It is known that 

TP53 has a critical role in regulating the bcl-2 family of proteins but the exact 

mechanisms have not yet been determined [31]. The direct and bystander data shows a 

role in the early initiation steps of apoptosis. As it is an initiator of further downstream 

apoptotic genes, the low dose may have implicated a response for the activation of 

TP53. The data illustrates a possible functional role for the initiation of the apoptotic 

process, at very low doses. 

 

3.2.2 Bax and Bcl2 

Pro-apoptotic Bax mean-fold gene expression changes are displayed in figure 2A-B. In 

the direct cells Bax is up-regulated in both doses which increases after 24 h and more so 
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in the higher dose of 0.5 Gy. In the bystander samples, Bax is up-regulated at the lower 

dose of 0.05 Gy after 24 h. This instigated a somewhat delayed response. 

Figure 2C-D shows that anti-apoptotic Bcl-2 in direct cells is down-regulated with 0.05 

Gy after 1 h and 24 h. It is then up-regulated with 0.5 Gy after 1 h and down-regulated 

after a further 24 h. The bystander cells displayed up-regulation after 1 h and then 

down-regulation after 24 h exposure to 0.5 Gy. However, one striking difference in Bcl-

2 expression levels was for the 0.05 Gy bystander cells, where up-regulation was seen 

compared to direct cells. Table 2 revealed all gene expression changes of Bax and Bcl-2 

to be statistically significant. Bax direct p<0.05 and Bax bystander p<0.05 and Bcl-2 

direct p<0.05 and Bcl-2 bystander p<0.05 

Bax and Bcl-2 are antagonistic to one another, in that pro-apoptotic Bax promotes the 

release of cytochrome c and other apoptotic factors whereas anti-apoptotic Bcl2 blocks 

the release of these factors [32]. The up-regulation of Bax shows that mitochondria have 

a role to play in the intrinsic apoptotic cascade of both direct and bystander cells at low 

doses. Comparing the Bax and Bcl-2 direct and bystander data it is clear that Bax up-

regulation is greater so it possibly overrides the anti-apoptotic effects of Bcl-2, allowing 

apoptosis to continue. This is expected as it is usually in favour of inducing the 

apoptotic pathway.   

 

3.3 JNK and ERK 

Pro-apoptotic JNK expression is displayed in figure 3A-B and is up-regulated in direct 

samples with 0.05 Gy after 24 h. JNK is up-regulated but not much greater than the 

control sample with 0.5 Gy after 1 h. All other samples are down-regulated. The 
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bystander samples showed very little expression of JNK with only down-regulation 

observed. All changes were statistically significant as seen in Table 2. Direct p<0.05and 

bystander p<0.05 

Anti-apoptotic ERK expression changes can be seen in figure 3C-D ERK is up-

regulated in direct samples at 0.05 Gy at both time points but to a much greater extent 

after 1 h. The 0.5 Gy samples showed minor up-regulation of ERK after 1 h and down-

regulation after 24 h. The bystander samples displayed down-regulation, so slight that 

expression cannot visually be observed in the graphical display of data. The bystander 

data showed no statistically significant changes in gene expression across the ERK 

samples displayed in Table 2, direct p<0.05and bystander p>0.05 

Multiple stress-inducible molecules such as c-jun N-terminal kinase (JNK) and 

mitogen-activated protein kinase MAPK/extracellular signal-regulated protein kinase 

(ERK) have been implied in transmitting the apoptotic signal [33–35]. JNK and ERK 

direct data had expected up-regulation, this is expected as JNK is pro-apoptotic and 

should respond to damaging signals. An unexpected response was detected in bystander 

samples, in that JNK and ERK were down-regulated in bystander conditions. This was 

remarkable as both genes were anticipated to have roles in the initiation process. This 

could possibly be due to the low doses administered, suggesting that the signal from 

direct cells is not strong enough to induce the pro-apoptotic function of JNK in 

bystander cells. Consequently there could be a threshold in existence for a response of 

both genes under these low dose circumstances  
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3.4 Initiator caspases (2, 9) 

Initiator caspase 2 data is presented in figure 4A-B. The direct samples demonstrated 

down-regulation of caspase 2 with 0.05 Gy after 24 h and 0.5 Gy after 1 h. The 

bystander data varied to the direct in that caspase 2 was up-regulated with 0.05 Gy after 

1 h and other bystander samples were down-regulated. Table 2 reveals clear statistical 

significance in both the direct and bystander data, direct p<0.05and bystander p<0.05 

Caspase 9 (Figure 4C-D) expression in direct samples was comparable to the bystander, 

in that caspase 9 was up-regulated with a low dose of 0.05 Gy after 1 h in both types of 

exposure, more so in the direct samples. Caspase 9 was down-regulated in all other 

direct and bystander samples. Statistical analysis as seen in Table 2 determined that 

caspase 9 direct data is statistically significant p<0.05 whereas bystander data is not 

statistically significant p>0.05 so may not be applicable to the overall response.   

Caspase 9 seems to be switched on and up-regulated in response to direct irradiation 

which is expected as it is the key protein recruited in the intrinsic apoptotic pathway 

after cytochrome c has been released from the mitochondria. They bind along with apaf-

1 to generate the apoptosome or otherwise called ‘the wheel of death’ which ultimately 

leads to downstream apoptotic events its established role associated with the formation 

of the apoptosome (wheel of death) in the apoptotic process. It was unusual therefore to 

see that both initiator caspases 2 and 9 up-regulated in response to indirect irradiation, 

suggesting a dual-role in both genes in a low dose bystander response and validates 

their role as initiators in this bystander response.  
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3.5 Effector caspases (3, 6, 7) 

Figure 5A-F displays changes in gene expression of the effector caspases. Caspase 3 

direct data was not statistically significant (p = 0.194) specified in Table 2, but 

inspection of the data shows expression of the gene across all samples with an increase 

in up-regulation with 0.05 Gy and an increase of up-regulation in the 0.5 Gy samples. 

Caspase 3 was down-regulated in the bystander samples and statistically significant as 

p<0.05 for all doses and times and is presented in Table 2.  

Caspase 6 is down-regulated in direct samples but the bystander data had a very 

different response in that caspase 6 was up-regulated after 1 h exposure to 0.05 Gy, and 

all other expression of the gene was down-regulated in the other doses and time points. 

Caspase 6 data was statistically significant in both direct and bystander data in Table 2, 

direct p<0.05 and bystander p<0.05.  

In the direct samples caspase 7 is up-regulated at 0.05 Gy after 1 h which decreased 

over the 24 h exposure. The 0.5 Gy dose induced up-regulation and a very slight 

increase after 24 h. The bystander data showed only down-regulation of the gene, and 

both direct and bystander data is statistically significant in Table 2, direct p<0.05 and 

bystander p<0.05. 

Caspase 3 is considered to be the most important of the effector caspases and is 

activated by any of the initiator caspases. Caspase 3 specifically activates the 

endonuclease CAD which subsequently degrades chromosomal DNA within the nuclei 

and causes chromatin condensation, one of the prominent cellular features of apoptosis 

that is detected microscopically [36] . In comparison to that, caspase 6 does not present 

up-regulation in direct data, so it has no role to play in this direct response. Although, 



137 

 

caspase 7 displays up-regulation in the direct samples across all doses/time points. This 

is quite interesting when in comparison to the bystander data. Uncharacteristically, 

caspase 3 and caspase 7 were not expressed in bystander data as up-regulators, but 

caspase 6 was. The expression of caspase 3 was expected to be up-regulated in the 

samples for all doses and time points since pro-apoptotic Bax and initiator caspase 2 

and 9 were all consistently expressed. It’s likely that caspase 6 has dual function (not 

yet elucidated) and it also may not be compelled to execute the final stages of the 

apoptotic pathway in the bystander cells, and so cell death be completed 

 

4. Discussion 

This study consolidates the role of apoptosis in directly irradiated cells in vitro with low 

doses of ionising radiation at 1 h and 24 h after exposure and also provides evidence for 

the role of the apoptotic cascade in a radiation induced bystander response at low doses 

of ionising radiation. As previously mentioned our laboratory [19] has compared cell 

death pathways (apoptosis, necrosis and mitotic cell death) in directly irradiated and 

bystander HaCaT cells and has been documented. Apoptosis, necrosis and mitotic cell 

death was observed at 24, 48 and 72 hours with higher levels in the directly irradiated 

cells.  The induction of apoptosis in bystander cells has been shown previously by our 

laboratory [2, 3, 5].  

Although the gene expression data was consistent and consolidated the role of apoptosis 

in the direct and bystander IR response, the picture for the role of apoptosis in the 

bystander response that emerged was more complex. It implies a different role for TP53 

for the direct compared to the bystander response, which may be due to the multiple 
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functions of TP53 and perhaps even beyond cell cycle arrest and apoptosis. It was 

selected in this study because of its key importance in apoptosis and for interacting with 

several of the specific apoptosis inducers of the intrinsic pathway. Our data indicates a 

definite role for mitochondria in the bystander response. This is suggested from an 

immediate and prolonged role of Bax in the apoptotic response for both direct and 

bystander samples. So evidently the pathway has been initiated in the bystander cells. 

Possibly Bax is working in tandem with P53 in the bystander response. 

JNK has pro-apoptotic properties and due to the high expression levels consistent with 

Bax in these samples consolidates the hypothesis that apoptosis is a key event in the 

direct IR response but perhaps not in the bystander response.  

The role of caspase 2 is still under much investigation but it has been suggested to be an 

initiator caspase of both the intrinsic and extrinsic apoptotic pathways. For this reason, 

both caspase 2 and 9 were included in this study (and extrinsic pathway associated 

initiators excluded).  The direct samples demonstrated that caspase 9 permitted the 

progression of the apoptotic initiation events. Bystander data reported caspase 2 and as 

the leading initiator of further down-stream caspases in the bystander response.  

The role of effector caspase 3 and 7 are still unclear but their expression levels in this 

study was consistent for directly irradiated cells (at the same doses and time points) 

indicating a possible dual role in the execution of apoptosis. It is known that caspase 3 

causes chromatin condensation in the execution of apoptosis, but considering that other 

processes such as cell shrinkage, membrane blebbing and apoptotic body formation, 

perhaps caspase 6 has a role to play in these apoptotic execution processes. For the 

bystander cells, it appeared that caspase 6 was the only one to be up-regulated as 

opposed to effector caspase 3 and 7 displaying down-regulation signifying a late 
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response. Maybe caspase 7 does not have a huge role to play in the overall apoptotic 

bystander response.  

The data clearly indicated differences between the apoptotic events in the direct versus 

the bystander response for dose and time. The direct samples demonstrated up-

regulation in gene expression in both doses and time points. However bystander data 

displayed a common trend in that evidence for up-regulation was more notably apparent 

at the lower dose of 0.05 Gy. It was suggested that perhaps this was due to the extent of 

the damage by the low doses analysed (0.05 Gy and 0.5 Gy) or the exposure time 

analysed in the study 1 and 24 h. Perhaps the full apoptotic cascade needs more than 24 

hours to complete the process. To obtain a clearer pattern of the apoptotic gene 

expression profile bystander response, lower doses (0.005 Gy) would be required and 

additional time points at intervals between 1 to 24 h (6 h, 12 h ) would also be useful to 

indicate the changes in expression levels at specific times.  The consideration of 

apoptosis genes from the other two known apoptosis pathways (extrinsic and Granzyme 

perforin pathway) would be beneficial to detect if the bystander response is a unique 

pathway with cross talk between genes of the apoptosis pathways. It is well known that 

there is cross-talk between all of the three types of apoptosis pathways and it is possible 

that the bystander response may be involved in this cross-talk.  

Further to this study our group are currently analysing the post-translational effects of 

these genes, because protein expression doesn’t always go hand in hand with gene up-

regulation. It is possible to get post-translational modification of existing proteins, 

hence in their active form. Thus an RNA result showing no change does not necessarily 

mean no change in activity. It could suggest an alternative cell death mechanisms are in 

operation. From this study we can delineate that human keratinocyte bystander cells 
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exposed to low doses of ionising radiation have a different role of cell death than 

directly irradiated cells. 

 

 

 

 

  

 

 

 

 

 

Figure 1 A-B: Comparison of relative fold-changes in gene expression levels of tumour 

suppressor gene TP53 in HaCaT cells, following 1 hr and 24 hrs exposures to 0.05 Gy 

and 0.5 Gy direct and indirect gamma irradiation. 
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Figure 2 A-D: Comparison of relative fold-changes in gene expression levels of Pro-

apoptotic Bax and anti-apoptotic Bcl-2 in HaCaT cells following 1 hr and 24 hrs 

exposures to 0.05 Gy and 0.5 Gy direct and indirect gamma irradiation.  
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Figure 3 A-D: Comparison of relative fold-changes in gene expression levels of 

synergistic JNK and ERK in HaCaT cells following 1 hr and 24 hrs exposures to 0.05 

Gy and 0.5 Gy direct and indirect gamma irradiation.  
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Figure 4 A-D: Comparison of relative fold-changes in gene expression levels of initiator 

caspases 2 and 9 in HaCaT cells following 1 hr and 24 hrs exposures to 0.05 Gy and 0.5 

Gy direct and indirect gamma irradiation.  
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Figure 5 A-F: Comparison of relative fold-changes in gene expression levels of 

executioner caspases 3, 6 and 7 HaCaT cells following 1 hr and 24 hrs exposures to 

direct and indirect 0.05 Gy and 0.5 Gy gamma irradiation.  
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  Gene Forward oligo sequence Reverse oligo Sequence

TP53 5'GTCTTTGAACCCTTGCTTGC'3 3'CCACAACAAAACACCAGTGC'5

Bax 5'AGGATGCGTCCACCAAGAAG'3 3'CCAGTTGAAGTTGCCGTCAGA'5

Bcl-2 5'AAGCGGTCCCGTGGATAGA'3 3'TCCGGTATTCGCAGAAGTCC'5

ERK 5'TTAGGGCTGTGAGCTGTTCC'3 3'TCAGGAGGATGAGGACATGG'5

JNK 5'TTAAAGCCAGTCAGGCAAGG'3 3'CATTGATGTACGGGTGTTGG'5

Caspase 2 5'CTACCTGTTCCCAGGACACC'3 3'AGAACAGAAACCGTGCATCC'5

Caspase 9 5'TCCAGATTGACGACAAGTGC'3 3'AGGGACAGTGCTGAACATCC'5

Caspase 3 5'TTTGTTTGTGTGCTTCTGAG'3 3'TGAATTTCGCCAAGAATAT'5

Caspase 6 5'CCTGACCAACATGGAGAAGC'3 3'AGTGATTCTCCTGCCTCAGC'5

Caspase 7 5'AAGATCCCAGTGGAAGCTGA'3 3'TCTCATGGAAGTGTGGGTCA'5

Tubulin 5'GCTTCTTGGTTTTCCACAGC'3 3'CTCCAGCTTGGACTTCTTGC'5  

Table 1 List of Forward and reverse oligo sequences of genes used in this study  
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Table 2 Statistical values for Real-Time PCR gene expression analysis data presented 

in Figures 1 to 5. Significant differences in gene expression changes were determined 

with One-Way Anova, whereby the mean values of target genes were compared for 

significant variability in data. A gene expression change was deemed statistically 

significant (denoted by a ‘YES’ in the table below) only if p <0.05 and values are 

displayed below. 
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Chapter 4 

 

Radiation-Induced Bystander Mediated Apoptosis via 

the Intrinsic Pathway in HaCaT Cells Exposed to Low 

Doses 

 

 

 

 

 

 

 

 

 

 

 

 



149 

 

4.1 Introduction 

The biochemical and genetic changes that occur in a radiation induced bystander 

response are central to understanding the implications of the response on a cellular and 

potential clinical level. There is a lot of debate as to whether the bystander response is 

protective (Barcellos-Hoff & Brooks 2001; Portess et al. 2007) or detrimental 

(Chaudhry 2006; Belyakov et al. 2006; Lyng et al. 2005). Either way the signal 

produced by the directly targeted cell will determine the magnitude of the bystander 

effect and this is apparent in studies which demonstrated the difference between 

bystander signal generation and response to signals (Vines et al. 2008). Low dose 

bystander responses instigate enhanced radioresistance (Iyer & Lehnert 2002). 

Biological endpoints of bystander responses have been explored including activation of 

calcium signalling, intracellular reactive oxygen species activation and apoptosis/cell 

death mechanisms and have been reviewed by Blyth and Sykes in 2011 (2011).  

Apoptosis, originally termed ‘’interphase death’’ by Bacq & Alexander in 1961 (1961) 

was re-named apoptosis by Kerr et al, (1972). In vitro studies have confirmed that cells 

of epithelial origin tend to undergo reproductive cell death and secondary apoptosis 

following IR (Aldridge et al. 1995). Induction of apoptosis is linked to a series of 

molecular events, including an induction of calcium flux, loss of mitochondrial 

membrane potential and a consequent increase of the number of apoptotic cells (Lyng et 

al. 2000).  Increased cell death in cells exposed to low doses of IR can be analysed 

using either the clonogenic assay (Puck & Marcus 1956) or cytotoxicological cell 

viability assays as discussed in Chapter 2. In particular human keratinocyte cells are 

known to be good reporters of the bystander response, specifically HaCaT cells and 

which have been exploited in a number of in vitro experiments whereby the number of 
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apoptotic cells increases in response to indirect-irradiation (Mothersill et al. 2000; 

Mothersill & Seymour 2002).  

Consequently, a comprehensive study of the role of apoptotic gene expression changes 

in directly irradiated versus bystander  HaCaT cells was completed in Chapter 3 

(Furlong et al. 2013). A selection of pro and anti-apoptotic genes from the intrinsic 

apoptotic pathway were chosen and analysed for significant changes in gene expression. 

Mitochondrial associated genes and caspases play a role in the apoptotic intrinsic 

pathway and have been considered as sensitive detectors of apoptotic signalling (Assefa 

et al. 2000; Sitailo et al. 2002; Assefa et al. 2003). Apoptosis is initiated through 

radiation exposure and activates caspases in human keratinocytes commonly through 

the intrinsic pathway which is regulated by mitochondrial genes Bax and Bcl-2 

(Lindsay et al. 2011). The Bcl-2 family of genes located at the mitochondria promote 

release of cytochrome c which is required for activation of the caspases. In particular 

the initiator caspases drive the latter part of the response recruiting effector caspases to 

complete the cell death pathway. The bystander factor is produced from 30 seconds 

onwards from the rapid formation of calcium fluxes in human keratinocyte cells 

exposed to low doses of ICCM (Lyng et al. 2000) and may be occurring up-stream of 

apoptotic events. Chapter 3 (Furlong et al. 2013) revealed that the role of apoptosis in 

bystander cells takes a more complex course of action. The data revealed that initiator 

caspases responded immediately suggesting that the pathway was not fully executed by 

the effector caspases and the low-dose bystander responses varied from each other. 

For that reason, the aim of the current study was to demonstrate more extensive effect of 

a radiation induced bystander response with gene expression changes of TP53, Bax, 

Bcl-2, ERK, caspase 2, caspase 9, caspase 6 and caspase 7, including a lower dose range 

of IR (0.005Gy, 0.05 Gy and 0.5Gy) because it was clear in Chapter 3 that something 
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interesting was occurring at the low doses in bystander cells. The genes were 

investigated over intervals within a broad timeframe (1, 6, 12, 24, 48 and 72 hr). This 

study did in fact deliver a more defined molecular insight into the mechanisms of 

bystander responses at very specific times and doses and an apoptotic signalling 

pathway is proposed in Chapter 6.  

 

4.2 Materials and Methods 

4.2.1 Direct and Bystander Irradiation Experiments in vitro 

HaCaT cells were routinely cultured, maintained and counted as described in Chapter 2 

(section 2.2.1). 2 x 10
5
 HaCaT cells were plated into T25 flasks as follows; a set of 

flasks were set up for direct irradiation and for harvesting of bystander media for each 

of the dose points (0 Gy, 0.005 Gy, 0.05 Gy, and 0.5 Gy) in triplicate. Another set of 

flasks were set up as bystander recipients also in triplicate. Full experimental details of 

the direct irradiation exposure, the irradiated cell conditioned media (ICCM) harvest 

and exposure for bystander HaCaT cells are provided in detail in Chapter 3 (section 

2.1). For the 0.5 Gy dose point the source to sample distance was 80 cm, for the 0.05 Gy 

and 0.005 Gy dose points, the source to sample distance was 191.5 cm. The dose rate 

delivered was approximately 1.5 Gy/min during these experiments as evaluated at the 

80 cm source to sample distance. Thermoluminescent dosimeters (TLD) were used to 

confirm that the appropriate dose was delivered. The media (ICCM) was harvested and 

pooled per triplicate flask for the directly irradiated flasks at each of the time points (1, 

6, 12, 24, 48 and 72 hr) and each of the dose points (0, 0.005, 0.05 and 0.5 Gy). Flasks 

were re-incubated until time for RNA harvest while an RNA extraction was conducted 

immediately on the 1 hr direct irradiation flasks (See Appendix A5, A6 and A7 for a list 
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of reagents used). RNA was extracted following the same method as described in 

Chapter 3 (section 2.1) and details of the RNA extraction, quantification and cDNA 

synthesis can be found in Appendix B7, Appendix B8 and Appendix B9.  

 

4.2.2 Gene Expression Study 

Apoptosis gene primers TP53, Bax, Bcl-2, ERK, caspase 2, caspase 9, caspase 6 and 

caspase 7 were designed and optimised following the same procedure as described in 

Chapter 3 (section 2.2.1) and a list of forward and reverse sequences for each gene are 

displayed in Table 4.1 (refer to Appendix B10 and Appendix B11 for primer design and 

optimisation details). Relative quantification analysis directly from the LC480 program 

(from the real-time PCR experiments using SYBR green fluorescence) was used to 

determine the apoptosis gene expression levels in target and reference genes (see 

Appendix B12 for full RT-PCR protocol and conditions) just as in Chapter 3. Mean-fold 

changes were calculated from mean normalised values of raw CT data between samples, 

dose/time (Schmittgen & Livak 2008) as described in Chapter 3 (section 2.2.3). Gene 

expression changes of target genes were normalised to Tubulin (housekeeper gene) 

exposed to 0.005 Gy, 0.05 Gy and 0.5 Gy at 1, 6, 12, 24, 48 and 72 hr and measured 

relative to the expression at 0 Gy (control). The value of the mean-fold change at 0 Gy 

(control) was fixed to zero by logging the gene expression values and mean-fold 

changes in gene expression of each target gene were plotted in GraphPad Prism.  
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Statistical data analysis 

Significance of variances was determined for each specific gene targeted with Two-way 

analysis of variance (ANOVA) tests using GraphPad Prism statistical program. For each 

target gene the control (0 Gy) samples were compared to each dose to determine overall 

significant changes. Variances were considered significant if p ≤ 0.05. Statistical 

significance between time-points of each gene is marked on Figures 4.1 – 4.3 with, P > 

0.05 (ns), P ≤ 0.01 (**) and P ≤ 0.05 (*).  
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Table 4.1: List of Forward and reverse oligo sequences of genes used in this study  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Gene Forward oligo sequence Reverse oligo Sequence 

TP53 5’GTCTTTGAACCCTTGCTTGC’ 3 

3 

3’CCACAACAAAACACCAGTGC’5 

Bax 5’AGGATGCGTCCACCAAGAAG’3 3’CCAGTTGAAGTTGCCGTCAGA’5 

Bcl-2 5’AAGCGGTCCCGTGGATAGA’3 3’TCCGGTATTCGCAGAAGTCC’5 

ERK 5’TTAGGGCTGTGAGCTGTTCC’3 3’TCAGGAGGATGAGGACATGG’5 

Caspase 2 5’CTACCTGTTCCCAGGACACC’3 3’AGAACAGAAACCGTGCATCC’5 

Caspase 9 5’TCCAGATTGACGACAAGTGC’3 3’AGGGACAGTGCTGAACATCC’5 

Caspase 6 5’CCTGACCAACATGGAGAAGC’3 3’AGTGATTCTCCTGCCTCAGC’5 

Caspase 7 5’AAGATCCCAGTGGAAGCTGA’3 3’TCTCATGGAAGTGTGGGTCA’5 

Tubulin 5’GCTTCTTGGTTTTCCACAGC’3 3’CTCCAGCTTGGACTTCTTGC’5 
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4.3 Results 

RT-PCR Gene expression study  

The bystander dose-specific responses are discussed separately to unveil any emerging 

apoptotic gene expression patterns in HaCaT cells that may be dose-specific. Figures 

4.1 – 4.3 display the changes in expression of TP53, Bax, Bcl-2, ERK, caspase 2, 

caspase 9, caspase 6 and caspase 7 in response to indirect irradiations (0.005, 0.05 and 

0.5 Gy). The results are presented in bar charts as the fold-change (Log10) of gene 

expression for each gene selected over a period of time (1, 6, 12, 24, 48 and 72 hr) per 

dose. The results are discussed as either significant or non-significant which relates to 

how significantly the expression of the target gene was altered with respect to the non-

irradiated control samples, which have been set to zero. Refer to Appendix C.3.1 and 

C.3.2 for raw direct and bystander data for this chapter. Tubulin was chosen for this 

study as it was deemed the most suitable based on a similar radiobiological study 

showing that β-tubulin is a reliable reference gene (Li et al., 2011). Although the study 

argued that α-tubulin was not a suitable reference gene for radiation studies. Likewise, 

others have shown that β-tubulin is the more suitable reference gene for studies with 

HaCaT cells (Campos et al., 2009; Kim et al., 2010), mostly for Western Blot analysis, 

as there are very few real-time q-PCR studies that employ tubulin as the reference gene. 

It is clear from current data that there are changes in tubulin expression with treatment 

of ICCM. Therefore, due to the variability in expression, future studies should 

incorporate a thorough analysis of several potential housekeeper genes to validate the 

data. 
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Figure 4.1 shows that between 1 hr and 12 hr, TP53 was significantly up-regulated. 

Between 12 hr and 24 hr, 48 hr and 72 hr exposure TP53 was significantly down-

regulated. Bax was significantly down-regulated between 6 hr and 24 hr, 48 hr and 72 

hr. Bcl-2 was significantly down-regulated between 1 hr and 6 hr, 12 hr and 24 hr, and 

significantly up-regulated between 12 hr and 48 hr. ERK was significantly up-regulated 

between 1 hr and 12 hr, 1 hr and 72 hr and 6 hr and 72 hr exposure. ERK was 

significantly down-regulated between 12 hr and 48 hr exposure. Between 24 hr, 48 hr 

and 72 hr, ERK was significantly up-regulated. Caspase 2 was significantly up-

regulated between 1 hr and 72 hr, 12 hr and 72 hr, 24 hr and 72 hr and between 48 hr 

and 72 hr exposure. Caspase 6 was significantly down-regulated between 12 hr and 48 

hr exposure. Caspase 7 was significantly up-regulated between 1 hr and 6 hr exposure 

and significantly down-regulated between 6 hr and 12 hr exposure. All other changes in 

gene expression were deemed not statistically significant. Figure 4.2 shows the 0.05 Gy 

bystander response. TP53 was significantly down-regulated between 24 hr and 72 hr 

exposure. Bcl-2 was significantly down-regulated between 1 hr and 6 hr, 1 hr and 12 hr 

and between 1 hr and 24 hr exposure. ERK was significantly up-regulated between 1 hr 

and 12 hr exposure. Figure 4.3 shows the 0.5 Gy response, whereby all of the gene 

expression changes were not statistically significant. 
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Table 4.2: Overview of the individual fold-changes of expression for each apoptotic 

gene analysed over 72 hr time-course for 0.005, 0.05 and 0.5 Gy doses. Values over 

zero are said to be ‘up-regulated’ and values below zero are ‘down-regulated’.  

Tumor Suppressor

TP53 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy 0.37 4.17 5.62 0.06 0.08 0.09

0.05 Gy 0.16 0.08 0.12 3.17 -0.01 -4.43

0.5 Gy 0.04 0.06 0.04 5.46 0.08 4.44

Bcl-2 Family Pro and Anti-apoptotic

Bax 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy 1.49 2.02 0.88 -0.44 0.37 -0.29

0.05 Gy 1.69 1.19 -0.89 0.3 0.29 -0.12

0.5 Gy 1.47 0.67 -1.56 0.06 -0.44 -0.78

Bcl-2 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy 3.75 -2 -3.95 -1.73 1.02 0.27

0.05 Gy 4.54 -1.18 -3.4 -0.65 0.34 0.12

0.5 Gy 2.9 -1.6 -0.65 -3.05 -0.39 -1.45

Stress Activated Protein Kinases

ERK 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy -2.7 0.84 3.77 1.35 -1.42 4.8

0.05 Gy -2.96 0.11 3.43 0.86 -0.36 -0.22

0.5 Gy -1.11 0.73 2.33 1.54 -0.18 1.24

Initiator Caspases

Caspase 2 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy -3.75 3.96 0.81 0.79 0.06 5.67

0.05 Gy 2.96 1.63 2.17 0.56 0.07 0.05

0.5 Gy -1.52 1.3 1.26 1.29 0.08 0.74

Caspase 9 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy -3.98 3.62 2.15 0.018 -0.13 1.44

0.05 Gy 3.74 1.61 2.09 0.97 0.97 0.05

0.5 Gy -1.46 0.3 0.4 -0.36 -0.16 2.34

Effector Caspases

Caspase 6 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy -0.16 2.03 4.1 1.41 -1.9 -0.03

0.05 Gy 2.32 0.86 0.1 1.17 -0.78 0.3

0.5 Gy -0.3 1.07 0.61 1.98 -0.59 1.32

Caspase 7 1 hr 6 hr 12 hr 24 hr 48 hr 72 hr

0.005 Gy -3.85 5.43 -1.14 1.21 -0.19 -0.12

0.05 Gy -2.92 -2.89 -2.01 -0.04 -0.01 -0.03

0.5 Gy -1.16 2.43 -0.69 0.04 0.4 1.11  
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Table 4.3: Statistical values for Real-Time PCR gene expression analysis data are 

presented below. Statistically significant differences in gene expression changes were 

determined with Two-way Anova analysis of variance, whereby the mean values of 

target genes (for each dose and time-point) were compared for significant variability in 

data. Statistical analysis are represented as P > 0.05 (ns), P ≤ 0.01 (**) and P ≤ 0.05 (*). 

Two-way Anova

TP53 Bax Bcl-2 ERK Casp 2 Casp 9 Casp 6 Casp 7

0.005 Gy

1 hr vs 6 hr ns ns * ns ns ns ns *

1 hr vs 12 hr ** ns ** * ns ns ns ns

1 hr vs 24 hr ns ns * ns ns ns ns ns

1 hr vs 48 hr ns ns ns ns ns ns ns ns

1 hr vs 72 hr ns ns ns ** * ns ns

6 hr vs 12 hr ns ns ns ns ns ns ns *

6 hr vs 24 hr ns * ns ns ns ns ns ns

6 hr vs 48 hr ns * ns ns ns ns ns ns

6 hr vs 72 hr ns * ns * ns ns ns ns

12 hr vs 24 hr ** ns ns ns ns ns ns ns

12 hr vs 48 hr ** ns * * ns ns * ns

12 hr vs 72 hr ** ns ns ns * ns ns ns

24 hr vs 48 hr ns ns ns ns ns ns ns ns

24 hr vs 72 hr ns ns ns * * ns ns ns

48 hr vs 72 hr ns ns ns * * ns ns ns

TP53 Bax Bcl-2 ERK Casp 2 Casp 9 Casp 6 Casp 7

0.05 Gy

1 hr vs 6 hr ns ns * ns ns ns ns ns

1 hr vs 12 hr ns ns ** * ns ns ns ns

1 hr vs 24 hr ns ns * ns ns ns ns ns

1 hr vs 48 hr ns ns ns ns ns ns ns ns

1 hr vs 72 hr ns ns ns ns ns ns ns ns

6 hr vs 12 hr ns ns ns ns ns ns ns ns

6 hr vs 24 hr ns ns ns ns ns ns ns ns

6 hr vs 48 hr ns ns ns ns ns ns ns ns

6 hr vs 72 hr ns ns ns ns ns ns ns ns

12 hr vs 24 hr ns ns ns ns ns ns ns ns

12 hr vs 48 hr ns ns * ns ns ns ns ns

12 hr vs 72 hr ns ns ns ns ns ns ns ns

24 hr vs 48 hr ns ns ns ns ns ns ns ns

24 hr vs 72 hr * ns ns ns ns ns ns ns

48 hr vs 72 hr ns ns ns ns ns ns ns ns

TP53 Bax Bcl-2 ERK Casp 2 Casp 9 Casp 6 Casp 7

0.5 Gy

1 hr vs 6 hr ns ns ns ns ns ns ns ns

1 hr vs 12 hr ns ns ns ns ns ns ns ns

1 hr vs 24 hr ns ns ns ns ns ns ns ns

1 hr vs 48 hr ns ns ns ns ns ns ns ns

1 hr vs 72 hr ns ns ns ns ns ns ns ns

6 hr vs 12 hr ns ns ns ns ns ns ns ns

6 hr vs 24 hr ns ns ns ns ns ns ns ns

6 hr vs 48 hr ns ns ns ns ns ns ns ns

6 hr vs 72 hr ns ns ns ns ns ns ns ns

12 hr vs 24 hr ns ns ns ns ns ns ns ns

12 hr vs 48 hr ns ns ns ns ns ns ns ns

12 hr vs 72 hr ns ns ns ns ns ns ns ns

24 hr vs 48 hr ns ns ns ns ns ns ns ns

24 hr vs 72 hr ns ns ns ns ns ns ns ns

48 hr vs 72 hr ns ns ns ns ns ns ns ns  
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Figure 4.1: Comparison of gene expression patterns of TP53, Bax, Bcl-2, ERK, caspase 

2, caspase 9, caspase 6 and caspase 7 in HaCaT cells, following 1 hr, 6 hr, 12 hr, 24 hr, 

48 hr and 72 hr exposures to 0.005 Gy indirect (bystander) gamma irradiation, presented 

as fold-changes of gene expression (n = 3). Statistical analysis are represented as P ≤ 

0.01 (**) and P ≤ 0.05 (*).  
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Figure 4.2: Comparison of gene expression patterns of TP53, Bax, Bcl-2, ERK, caspase 

2, caspase 9, caspase 6 and caspase 7 in HaCaT cells, following 1 hr, 6 hr, 12 hr, 24 hr, 

48 hr and 72 hr exposures to 0.05 Gy indirect (bystander) gamma irradiation, presented 

as fold-changes of gene expression (n = 3). Statistical analysis are represented as P ≤ 

0.01 (**) and P ≤ 0.05 (*). 
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Figure 4.3: Comparison of gene expression patterns of TP53, Bax, Bcl-2, ERK, caspase 

2, caspase 9, caspase 6 and caspase 7 in HaCaT cells, following 1 hr, 6 hr, 12 hr, 24 hr, 

48 hr and 72 hr exposures to 0.5 Gy indirect (bystander) gamma irradiation, presented 

as fold-changes of gene expression (n = 3). Statistical analysis are represented as P ≤ 

0.01 (**) and P ≤ 0.05 (*). 
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4.4 Discussion  

The current study further investigated the role for apoptosis in directly (See Appendix 

C3.3 for the direct-irradiation gene expression figures) and indirectly irradiated HaCaT 

cells in vitro with additional low doses of IR and additional time points reflecting early 

and much later RIBE responses. The study specifically focused on the bystander gene 

responses of the apoptotic intrinsic pathway including mitochondrial genes and 

caspases, at a range of low doses, 0.005 Gy, 0.05 Gy and 0.5 Gy and very specific time 

points 1, 6, 12, 24, 48 and 72 hr. Gene expression changes were monitored over the 

extensive timescale and revealed approximate times of expression for each gene, 

justifying that a substantial timescale is essential for fine tuning specific gene 

expression responses. While the doses were all low, they did elucidate unique gene 

expression patterns that can be compared and contrasted to one another. As expected the 

role for apoptosis was complex for bystander cells and this time the apoptotic gene 

expression changes in bystander cells were isolated to specific times allowing 

construction of distinctive apoptotic gene expression patterns in bystander cells.  

Overall the cells exposed to indirect doses of 0.005 Gy instigated a greater level of 

statistically significant changes in gene expression and appeared more sensitive. It 

appears from the data that Bax was attempting to instigate permeability of the 

mitochondrial membrane as seen from early up-regulation but did not persist over time. 

In fact it appears that both anti-apoptotic Bcl-2 and ERK, known for modulation of 

apoptosis via MAPK pathways and is anti-apoptotic was expressed and up-regulated 

early in the response, possibly attempting to compete with pro-apoptotic properties of 

Bax. Something that was common to all caspases was the pattern of up-regulation after 

6 hr exposure. Maybe this is a key signalling time point of the intrinsic pathway and is 
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suggestive of cross-talk signalling with other modes of cell death such as necrosis and 

mitotic catastrophe.  

Interestingly, there were common expression patterns between caspase 2, 9, 6 and 7 

with respect to time and up-regulation/down-regulation of genes in 0.005 and 0.5 Gy 

exposed cells. The data suggests similar gene response signalling between the two low 

doses and possible cross-talk with other modes of cell death. Mitotic death has been 

suggested in studies as a signalling response of RIBE and may be potentially cross-

signalling in the final execution stages of apoptotic cell death that are unclear in the data 

0.005 Gy and 0.5 Gy data (Jella et al. 2013). For the 0.05 Gy dose-responses, apoptosis 

is clearly proceeding to final stages of cell death. The data revealed an initiation of 

apoptosis, through Bax signalling but also an induction of anti-apoptotic signalling of 

Bcl-2 and ERK, the caspases were initiated but later on (6 hr) and there were very small 

up-regulations of the caspases to drive the process. It must be noted that there were 

differences in gene expression changes between the current study and in Chapter 3 

which is probably due to the fact that experiments were carried out at different times, 

and naturally introduces sample-to-sample variation. Also, the data was calculated 

following the deltadelta CT method, but in the current study the data was presented as 

Log values, which clearly represents fold-changes in a different manner, so the two 

studies cannot be direct comparisons of each other by just looking at the figures.  

For the 0.5 Gy dose-responses, bystander signalling was instigated in HaCaT cells, most 

likely resulting in inflow of calcium ions into the cells from the outside (Lyng et al. 

2002; Lyng et al. 2006) followed by recruitment of mitochondrial associated genes Bax 

and Bcl-2. Bax is responsible for triggering the release of cytochrome c from the 

mitochondria and recruitment of caspase 2 followed by activation of caspase 9. 

Significant changes in gene expression were noted around 6 hr exposure for the 0.005 
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Gy and 0.5 Gy doses and remarkably, production of reactive oxygen species has been 

recognised by our research group in radiation-induced bystander effects at 6 hr (Lyng et 

al. 2002) which may be significant time-point for the cell in deciding its fate.  

The requirement for more complex time course gene expression analysis was 

established by the exact points of expression elucidated. Extremely specific differences 

in gene expression changes between low doses of bystander radiation were uncovered 

which implies that there may be long term consequences of low dose RIBE if the cell 

cannot carry out final stages of apoptosis, particularly 0.5 Gy doses or perhaps the cells 

are inducing a protective mechanism at 0.5 Gy and higher doses.   
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Chapter 5 

 

Identification of Key Proteins Signalled in Response to 

Radiation-Induced Bystander Effects in Human Skin Cells 

and a Gene Expression Investigation 
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5.1 Introduction  

There are fundamental cellular events central to the overall process of RIBE including 

chromosomal rearrangements, gene mutations, apoptosis and genomic instability 

(Morgan & Sowa 2007). The experimental evidence for RIBE has been well 

documented and associated responses include generation of reactive oxygen species 

(ROS), reactive nitrogen species (RNS) and Ca
2+

 signalling in bystander cells after 

exposure to radiation-induced bystander medium (Narayanan et al. 1997; Lyng et al. 

2000; Azzam et al. 2012). However, the specific molecular events and signalling 

entities are still not completely understood and must be investigated further.  

To date a lot of work investigating RIBE has been carried out in vitro. The design and 

development of tissue explant techniques specifically for radiobiological experiments 

(Mothersill et al. 1990; Mothersill 1998; Mothersill et al. 2001) has progressed the in 

vivo bystander research. Tissue can be irradiated in vivo or ex vivo, followed by harvest 

of the media and transfer to either un-irradiated tissue or to a reporter cell line 

(Mothersill et al. 2001; Mothersill et al. 2005).  Measurement of specific endpoints such 

as cell survival, cell death or various biochemical parameters allows identification of the 

key cellular mechanisms.  

An extensive amount of studies to determine whether irradiation induced bystander 

signalling can occur between fish and mammals have been achieved. Bystander signals 

can be passed from irradiated rainbow trout (Oncorhynchus mykiss) to neighbouring 

fish, possibly through release of a chemical component into the water surrounding the 

fish, representative of bystander factor(s). Studies involving zebrafish (Danio rerio) 

(Mothersill et al. 2007) revealed that they are also capable of producing bystander 

signals, which are not held in the water for long periods of time. The same study 



167 

 

demonstrated that various sensitivity levels exist among the individual fish and between 

different cell lines. Experiments involving Japanese Medaka (Oryzias latipes) 

recognised that bystander signals are stronger when emitted or received by repair 

deficient cell, as these are more sensitive (Mothersill et al. 2009). Additionally a role for 

serotonin in the bystander signaling response has been investigated, and may be a 

potential contender in bystander signalling (Mothersill et al. 2010; Lyng et al. 2012; 

Fazzari et al. 2012) particularly in zebrafish (Danio rerio) (Saroya et al. 2009). Further 

examinations have established fish cell lines for bystander studies (O’Neill-

Mehlenbacher et al. 2007). The same study revealed that bystander signal production 

and cellular response varied depending on the cell line, and that the production of a 

signal and the response are actually independent from one another.  

Consequently, the current study developed a Fish model to study human cell responses, 

which was a novel and somewhat controversial approach.  The reasoning behind this 

was that the previous Fish studies (discussed above) showed that RIBE can be passed 

between fish and different species of fish, and this was further confirmed with extensive 

clonogenic assays with human cells. So, if the bystander factor was being transmitted 

into the media and then inducing reduced clonogenicity, then how so? If investigated 

this could reveal some major inducers of key bystander molecular mechanism.  

Proteomic tools have been very successful in radiobiological research examining RIBE 

and their sensitivity has been reported by Smith and colleagues (Smith et al. 2007). 

Analysis of bystander signals emitted by rainbow trout (Oncorhynchus mykiss) with 

proteomic techniques demonstrated a novel functional protein profile in fish. In 

particular Annexin II (ANXA2) expression has been found to be increased in directly 

irradiated fish and hemopexin-like protein, RhoGDI2 and PDH expression have been 
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increased in bystander fish. Increased expression of ANXA2 is associated with radiation 

induced cancers, it is associated with reduced levels of apoptosis (Singh 2007). 

RhoGDI2 expression is associated with normal cell functions although aberrant 

signaling of these molecules can facilitate the development of tumours (Zhang 2006). 

The multifunctional gill proteome of medaka (Oryzias latipes) has also been examined 

following exposure to both direct and indirect X-irradiations (Smith et al. 2011).  In the 

directly irradiated fish there was an increase in expression of Annexin max 3, creatine 3 

kinase (CK) and lactate dehydrogenase (LDH) and a decrease in expression of annexin 

4 (A4). Indirectly irradiated (bystander) fish revealed an increase in expression of 

proteins CK and LDH, annexin max 3 and A4. The proteins expressed were an 

implication of an immediate protective function and suggestive of long-term adaption to 

any consequent radiation exposures.  

Using the same reliable reporter cell line (HaCaT) (Mothersill & Seymour 1997; 

Furlong et al. 2013), the objective of the study was to see if they induced a similar 

proteome in response to fish signals as that induced in the live fish.  Therefore, HaCaT 

cells were exposed to ICCM harvested from explants taken from irradiated fish and 

investigated using 2-D difference gel electrophoresis (2-D DIGE) coupled with Mass 

Spectroscopy (MS) for emerging novel proteins. This is the first study to investigate 

whether common proteins are induced in both fish and human reporter cells through 

proteomic analysis.  
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5.2 Materials and Methods 

5.2.1 X- Irradiations, Tissue Collection and Tissue Explant Technique 

All rainbow trout (Oncorhynchus mykiss) fish were sourced from Humber Springs Trout 

Farm (Orangeville, ON) and housed at McMaster University, Hamilton, ON, Canada. 

Conditions and details of animal husbandry are specified by Mothersill et al., (2006). 

Briefly, the rainbow trout were acclimated to laboratory conditions at McMaster for a 

minimum of 21 days before exposure to radiation. The fish were housed at a density of 

1g mass 10L
-1

and supplied with flow-through dechlorinated, temperature-controlled 

water from the city (Hamilton, Ontario Canada) which consisted of; [Na
+ 

= 0.6; Cl
-
 = 

0.7;K
+
 = 0.05; Ca2

+
 = 0.5; Mg2

+
 = 0.1; titration alkalinity (to pH 4.0) = 1.9 meq L

-1
; 

total hardness =140mgL
-1

 as CaCO3; pH8.0]. In addition, the fish were supplied with 

commercial fish food (Martin Mills, ON, Canada) at a 2% of body mass ration on a 

daily basis. 

A portable X-ray unit (Faxitron X-ray Corporation cabinet X-ray system, Wheeling, IL. 

USA) was used to deliver a mean dose of 0.1 Gy and 0.5 Gy to the fish, and was 

previously calibrated using thermoluminescence discs (TLDs). The fish weighed 

approximately 20 – 25 g. It was not possible to aerate the water or control temperature 

during irradiation time. Therefore, for irradiation the fish were placed in groups of two 

in 2L water in covered containers and the irradiation process took 5 min. Following 

irradiations, the fish were placed in containers that were aerated during the entire 

experiment and maintained at 19 °C (different containers for different doses). The fish 

were left for a 4 hr period to allow for signals to accumulate, after which they were 

killed humanely by a blow to the head and dissected. Skin epidermis was excised and 

collected immediately after death for subsequent tissue explant culture. Additional 
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controls of untreated fish (i.e., un-irradiated rainbow fish from same facility) were also 

included. All control fish skin excision (non-irradiated) and collection was carried out 

exactly as described above. 

The fish tissue explants were set up using the technique as described and improved by 

Mothersill and colleagues (Mothersill et al. 1988). The excised tissue was transported 

immediately in RPMI-1640 medium supplemented with 10% FBS, 5ml of 200mM L-

glutamine, 0.5µg/ml hydrocortisone and 12.2 ml of Hepes buffer (See appendix A8 for 

tissue explant culture medium recipe). The supplemented RPMI-1640 medium was used 

throughout the experiments. Each piece of skin was carefully poured into a petri dish 

and cut into smaller pieces of approximately 2-3 mm
2
. Tissue culture flasks (T25) were 

prepared with 2ml RPMI and each one labelled accordingly. The prepared explants 

were placed into flasks containing 2 ml RPMI complete medium. Flasks were stacked in 

an incubator at 19°C for 2 days to allow explants to attach and start to grow. Tissue 

culture flasks were set up as follows; 6 untreated control fish (0 Gy, n = 6), 6 fish 

treated with 0.1 Gy (n = 6) and 6 fish treated with 0.5 Gy (n = 6).  Nine explants were 

prepared per fish, so a total of 162 explants/flasks were prepared in total for this 

experiment. Tissue explants were closely monitored for 2 days. All tissue was obtained 

and handled according to guidelines at McMaster University and the procedures were 

also covered by AUP 06-21-01. Refer to Appendix B13.1 for complete tissue explant 

culturing details.  
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5.2.2 Cell Culture, Medium Transfer and Protein Extraction 

Prior to irradiations 5 x 10
4
 HaCaT cells were seeded in each well of a sterile 6-well 

plate (BD, Oakville, ON) covered with 3ml of RPMI-1640 supplemented media and 

allowed to grow for 2 - 3days and incubated at 37°C with 5% CO2 air. The plates were 

set up in triplicate, one plate per dose (0 Gy, 0.1 Gy and 0.5 Gy) and one well per dose 

administered. Cells were monitored on a daily basis and allowed to reach approximately 

70 – 80% confluency, so that enough protein could be extracted post-exposure.   

Media from tissue explants (ICCM) was carefully harvested from tissue explant flasks 

after 2 days incubation, making sure not to disrupt intact tissue explant, and the ICCM 

was filter sterilised through 0.22µm
2
 filters. The explants from which the media was 

harvested were replaced with fresh RPMI-1640 and tissue explants were re-incubated at 

19°C and after 10 days incubation fixed in 10% formalin (See Appendix A9 for the 10% 

Formalin recipe). Throughout the 10 day incubation period, flasks were observed under 

a microscope to ensure explant outgrowth. Refer to Appendix B13.2 for details of the 

media (ICCM) harvest. 

Once the HaCaT cells had reached 70 – 80% confluency, media was poured off the cells 

and cells were washed with PBS (Gibco, Burlington, ON). The filter sterilised ICCM 

harvested from tissue explants was poured onto the ‘recipient’ HaCaT cells grown in 6 

well plates (0 Gy, 0.1 Gy and 0.5 Gy) and re-incubated at 37°C for 4 hrs to allow for 

bystander signal transmission from media to cells. After the exposure period, ICCM 

was poured off the cells and the cells were washed in ice cold PBS. Protein lysis buffer 

(recorded in Appendix A10) described by Smith et al, (Smith et al. 2005) containing 8 

M urea containing 10% (v/v) 0.5 M Tris–HCl (pH 7.4), 0.02 EDTA, 0.05M 

dithiothreitol (DTT), 10% (v/v) glycerol, 6% (v/v) ampholytes (Resolyte, pH 3.5–10; 
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Merck-BDH), 2% (v/v) 3-[(3-cholamidopropyl) dimethy-lammonio]-1-

propanesulfonate (CHAPS), 0.2 mg ml
-1

 RNase and 0.2 mg ml
-1

 DNase, was added to 

the cells and cells were scraped from the wells and the remaining cell lysates were 

stored in tubes on ice. Cell lysates were refined by centrifugation (10,000 x g for 5 min 

at 4°C) and desalted using a commercially available kit (see Appendix B14) to produce 

a better recovery of high quality protein for 2D electrophoresis. Total protein content 

was measured with a standard Bradford Assay kit (Bio rad, Mississauga, ON) and it was 

calculated that 45µg from each sample was sufficient for subsequent 2D gel 

electrophoresis (see Appendix B15 for the protein assay method and A10 for a full list 

of protein assay reagents).  

 

5.2.3 2-D electrophoresis  

The HaCaT cell preparations were analysed by 2D gel electrophoresis. All 

electrophoresis was carried out using Protean® IEF system (Biorad), following the 

manufacturer’s instructions and using rehydration/solubilisation, equilibration and 

running buffers supplied by Biorad.  

The soluble protein extracts from cell lysates were mixed with re-swelling buffer: 7M 

urea, 2M thiourea, 4% (w/v) CHAPS, 0.3% (w/v) DTT to give a final volume of 140 µl. 

125 µl of this mixture was then used to re-hydrate a pH 4–7 immobilised pH gradient 

(IPG) strip (Biorad).  IPG strips were rehydrated overnight, at room temperature, with 

rehydration/solubilisation buffer (10 ml or 8 M urea, 2% CHAPS, 50 mM dithiothreitol-

DTT, 0.2 % (w/v) Biolyte® and bromophenol blue). Isoelectric focusing (IEF) was then 

carried out using the Biorad IEF instrument. A ramped voltage change, was delivered 
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over three steps, up to a maximum of 20,000 V. Specifically, rapid ramping was applied 

first, a conditioning voltage of 4,000 V and final focusing of 4,000 V (max current 

limit=50 µA/IPG strip). After IPG strip equilibration (2 x 10 min equilibration in buffer 

I, followed by 1 x 10 min equilibration in buffer II), Each IPG strip was then laid onto a 

10–15% gradient polyacrylamide slab gel (8 x 7 cm) for the second dimension 

electrophoresis. The second dimension was resolved on a 1x Tris/glycine gel (Biorad) 

and separated by size (molecular weight) in a direction perpendicular to the first 

dimension run on the Protean 2-D casting and running apparatus, using 25 mM Tris, 

192 mM glycine, 0.1% SDS buffers in the upper and lower tank, respectively; max 

voltage = 200 V, running time = 45 min. After electrophoresis the gels were fixed with 

10 % methanol, 7 % acetic acid and water (in accordance with the instructions provided 

with the gel stain) and then stained with SYPRO-ruby stain (Biorad) and de-stained in 

10 % ethanol. Images of the stained gels were captured using the Biorad 4.2.1 Fluor-

S™ MultiImager system using top illumination fluorescence. Prior to image capture the 

charged coupled device (CCD) camera was calibrated, with a single frame image of the 

flat field emission filter (400–550 nm). Gel image analysis was achieved using Phoretix 

2D™ analytical software version v2004 (Nonlinear Dynamics), as a “blind” study, with 

each gel image being assigned a random number prior to analysis. Therefore, to fully 

accommodate any background variation across the 2-D gels, all images were 

background corrected by the “average on boundary” background subtraction option. 

This calculates the background for each spot separately from the grey scale intensity 

immediately adjacent to that spot. Protein expression was then quantified as normalised 

spot volume, a parameter offered by the Phoretix software which combines spot area 

and peak height to give an overall expression index, and which has been used 

previously in fish proteomics (Smith et al. 2007 & 2011). Normalised spot volumes 
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were expressed as mean +/- SD (Figure 5.2 A - H) and compared by one-way ANOVA 

followed by least square difference using the StatistiX statistical analysis programme; a 

p≤0.05 was considered statistically significant and individual p values are displayed on 

graphs. Each individual HaCaT cell lysate was resolved on a separate 2D gel. The data 

presented here are from the gels of HaCaT cells exposed to ICCM of 0 Gy, 0.1 Gy and 

0.5 Gy X-ray generated in vivo. Selected protein spots (refer to reference gel Figure 5.1) 

were cut from the gel and the gel plugs containing these spots were preserved in 2% 

glycerol at 4°C ready for Mass Spectroscopy (MS) analysis. The spot chosen had to be 

consistently expressed or consistently absent on all gels within HaCaT 

genotype/treatment combination. 

Spot volumes were expressed as mean +/- SD (Figure 5.2 A - H) and compared by one-

way ANOVA followed by least square difference using GraphPad Prism statistical 

analysis software; a p<0.05 was considered statistically significant and individual p 

values are displayed on graphs. Statistical analysis is represented as P ≤ 0.05 (*).Each 

individual HaCaT cell lysate was resolved on a separate 2D gel. The data presented here 

are from the gels of HaCaT cells exposed to ICCM of 0 Gy, 0.1 Gy and 0.5 Gy X-ray 

generated in vivo. Selected protein spots (refer to reference gel Figure 5.1) were cut 

from the gel (see Appendix B17) and the gel plugs containing these spots were 

preserved in 2% glycerol at 4°C ready for Mass Spectroscopy (MS) analysis. The spot 

chosen had to be consistently expressed or consistently absent on all gels within HaCaT 

genotype/treatment combination.  
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5.2.4 Mass Spectroscopy Analysis and Protein Identification 

This analysis was carried out as previously described by Smith et al, (Smith et al. 2007 

& 2011) at Queen's Mass Spectrometry and Proteomics Unit, Ontario, Canada. About 

331 protein spot-features per sample gel were detected. Eight proteins exhibiting 

significant expression changes at any time of the irradiation time-course were then 

identified using MS and database searches (refer to Appendix B18 for the full mass 

spectroscopy analysis and protein identification method). Selected protein spots (refer to 

reference gel Figure 5.1) were cut from the gel with a scalpel and the gel plugs 

containing these spots were preserved in 2% glycerol at 4°C. The proteins cut out from 

the gel were first treated with ammonium bicarbonate, dehydrated with acetonitrile 

(ACN), and subjected to in-gel trypsin digestion. The digested proteins were 

concentrated in formic acid, using Millipore C18 ZipTips and analysed using a 

quadrupole time of flight (Q-TOF) Global Ultima (Waters, Micromass) with nanoES 

source; capillary voltage of 1.2–1.6 kV, cone voltage of 50–100 V. Mass spectra in TOF 

mass spectrometry (MS) and mass spectrometry/mass spectrometry (MS/MS) mode 

were in a mass range of 50–1800 m/e with a resolution of 8000 full width at half 

maximum height. Argon was used as the collision gas. MS/MS data were searched 

using online MASCOT (Matrix Science, UK) against the National Centre for 

Biotechnology and Information (NCBI) and the MS protein sequence database 

(MSDB). Search criteria were as follows: monoisotopic masses, one missed cleavage, 

tolerances set for 0.3 kDa for peptides matches, and 0.2 kDa for MS/MS fragment 

matches. All peptide fragments that were obtained for each digest were submitted to 

online protein database UniProt for searching. 
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5.2.5 Gene Expression Study 

5.2.5.1 Direct and Bystander Irradiation Experiments in vitro 

HaCaT were routinely cultured in DMEM cell culture media and a full description of 

routine cell culture, maintenance and cell counting is described in Chapter 2 (section 

2.2.1). 2 x 10
5
 cells were plated into T25 flasks. A set of flasks was set up for direct 

irradiation and for harvesting of bystander media for each of the dose points (0 Gy, 0.05 

Gy and 0.5 Gy) in triplicate. Another set of flasks was set up as bystander recipients in 

triplicate. Full experimental details of the direct irradiation exposure, the irradiated cell 

conditioned media (ICCM) harvest and exposure for bystander HaCaT cells are 

provided in Chapter 2 (section 2.2.2). The media (ICCM) was harvested and pooled per 

triplicate flask for the directly irradiated flasks at each of the time points (1, 4, 8 and 24 

hr) and each of the dose points (0, 0.05 and 0.5 Gy). RNA was extracted following the 

technique described in Chapter 3 (section 2.1) and Chapter 4 (section 4.2.1) 

 

5.2.5.2 Real-Time PCR with SYBR Green Technology 

ANXA2 was designed and optimised following the same procedure as described in 

Chapter 3 (section 2.2) and Chapter 4 (section 4.2.2) and a list of forward and reverse 

sequences for ANXA2 and housekeeper gene (Actin) are displayed in Table 5.2. Actin 

was chosen as it was deemed to be a more reliable endogenous control for the extent of 

the study involved and this was confirmed with careful analysis of raw data. Relative 

quantification analysis was used to determine the ANXA2 gene expression levels, 

previously discussed in Chapter 3 (Section 2.2.3) and Chapter 4 (section 4.2.2). Gene 

expression changes were measured for ANXA2 normalised to Actin (housekeeper gene) 
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monitored at 0.05 Gy and 0.5 Gy for 1, 4, 8 and 24 hr and relative to the expression at 0 

Gy (control). The value of the mean-fold change at 0 Gy (control) was fixed to zero and 

mean-fold changes in gene expression of each target gene were plotted in Microsoft 

Excel. The figures illustrate up-regulation (above zero) and down-regulation (below 

zero) of target genes. 

 

5.2.5.3 Statistical Data Analysis 

Significance of variances were determined, for each specific gene targeted, applying the 

statistical one-way analysis of variance (ANOVA) test with the aid of GraphPad Prism 

software. For ANXA2 the control (0 Gy) samples were compared to each dose to 

determine overall significant changes. Significance is marked on Figure 5.3 with *p < 

0.05.   

 

5.3. Results  

5.3.1 Mass Spectroscopy Analysis and Protein Identifications 

Rainbow trout (Oncorhynchus mykiss) were exposed to low doses (0.1 Gy and 0.5 Gy) 

of X-ray radiation in vivo and in vitro explant cultures were generated from the skin. 

The ICCM was harvested from all explant cultures and placed on recipient HaCaT 

bystander reporter cells. Two-dimensional gel electrophoresis and mass spectroscopy 

(MS) were employed to screen for novel proteins which were significantly over or 

under–expressed in the recipient HaCaT cells exposed to the ICCM. It was also of 

particular interest of this study to see if common proteins were induced in the fish and 
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human reporter cells. Table 5.1 illustrates the protein identifications marked with an 

arrow on the reference gel. The most statistically significant induced proteins were 

analysed with and identified with MS. The protein identifications along with sequence 

numbers are listed in Table 5.1.  

ANXA2 (Figure 5.2-A) was significantly up-regulated (p = 0.0161) after exposure to 

0.1 Gy and 0.5 Gy ICCM, the change of expression between ANXA2 was much greater 

with exposure to 0.5 Gy, almost twice of protein expression as in the control samples. 

Rho-GDI2 (Figure 5.2-B) was significantly reduced in expression (p = 0.0497) when 

exposed to 0.1 Gy and 0.5 Gy ICCM. There was a similar reduction of expression of the 

protein in the HaCaT cells in exposure to both 0.1 and 0.5 Gy doses. MMS19 nucleotide 

excision repair protein (MMS19-like protein) displayed in Figure 5.2-C was 

significantly reduced in expression (p = 0.0343) in HaCaT cells exposed to 0.1 Gy. The 

protein was reduced to less than half the amount of expression as in the control, and 

there was a very slight reduction in expression as a result of 0.5 Gy exposures. F-actin 

capping protein (Figure 5.2-D) was significantly reduced in expression (p = 0.0366), 

almost half of the expression levels of the control sample in cells exposed to 0.1 Gy, 

and the protein was further reduced in expression in cells exposed to 0.5 Gy. 

Microtubule-associated protein RP/EB family member 1 (EB1) displayed in Figure 5.2E 

was significantly reduced in expression (p = 0.0021) very slightly in the 0.1 Gy 

samples. The protein was reduced to a greater extent in the 0.5 Gy samples, less than 

half of the expression levels of the protein in the control. 14-3-3 expression is displayed 

in Figure 5.2-F and significantly increased in expression (p = 0.0269) in the 0.1 Gy 

samples whereas exposure to 0.5 Gy induced a significant reduction in expression of the 

protein to half of the expression amount in control samples. Cingulin (Figure 5.2-G) 

was significantly increased (p = 0.0001) in expression to exposure of both 0.1 and 0.5 



179 

 

Gy ICCM. Although the 0.5 Gy dose induced a greater increase in expression to almost 

five times higher than the control samples. Figure 5.2-H displays the expression 

differences of APC 1. There was a reduced expression of the protein in both 0.1 and 0.5 

Gy doses, but consequently it was not statistically significant (p = 0.114).  
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Table 5.1: Peptide ion identification information for proteins indicated in spot volumes  
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Figure 5.1 Representative 2D gel from HaCaT cells: Protein ID’s are identified with an 

arrow on the gel. 
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Figure 5.2: (A - H) Increased and decreased expression of proteins (revealed through 

MS) by HaCaT cells exposed to media bourne signals from directly irradiated fish skin. 

Refer to Appendix C4.1 for the raw data.  
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5.3.2 RT-PCR Gene expression Study 

Figure 5.3 displays the mean-fold changes in gene expression of ANXA2 in both 

directly and indirectly irradiated (0 Gy, 0.05 Gy and 0.5 Gy) HaCaT cells exposed for 1, 

4, 8 and 24 hr.  

The 0.05 Gy direct exposures revealed an up-regulation of ANXA2 that increased 

between 1 and 4 hr exposure, and up-regulated almost 6-fold after 24 hr exposure. In 

comparison, the 0.05 Gy indirect exposure revealed minor changes in ANXA2 

expression. The gene was only slightly up-regulated after 4 hr exposure.  

The 0.5 Gy direct exposure revealed an up-regulation of ANXA2, similar to the 0.05 Gy 

direct pattern of expression, but to a lesser extent. After 24 hr exposure to direct 0.5 Gy 

exposure, ANXA2 was up-regulated almost 5-fold more  than the control. In the indirect 

0.5 Gy HaCaT cells, ANXA2 expression displayed a similar pattern of expression to the 

0.5 Gy direct response. It was up-regulated after 8 hr exposure and possibly earlier. 

Interestingly, ANXA2 was reduced after 24 hr exposure to indirect 0.5 Gy. 

Unfortunately, the changes in ANXA2 expression were not statistically significant.  
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Figure 5.3 The mean-fold changes of ANXA2 expression in HaCaT cells directly and 

indirectly exposed to 0.05 Gy and 0.5 Gy irradiation for 1, 4, 8 and 24 hr. The dotted 

line represents the control samples. See Appendix C4.2 for raw data.  

 

Gene Forward Oligo Sequence Reverse Oligo Sequence  

ANAXA2 5'ACAGCCATCAAGACCAAAGG'3 5'CAAAATCACCGTCTCCAGGT'3 

Actin  5'ACTCTTCCAGCCTTCCTTCC'3 5'GTTGGCGTACAGGTCTTTGC'3 

Table 5.2 List of forward and reverse oligo sequences of ANXA2 and Actin.  
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5.4 Discussion 

The aim of this study was to further investigate the key molecular signalling events in 

RIBE and contribute to an improved modelling of bystander signalling. HaCaT cells 

were exposed to indirect low doses of X-irradiation using the well-established medium 

transfer technique. Four hours exposure to ICCM induced very interesting biological 

changes to specific proteins in the cells. These proteins were identified and analysed 

according to the changes in their expression. The proteins were chosen based on 

statistically significant changes discovered between control (0 Gy) and exposed cells 

(0.1 Gy and 0.5 Gy). 

This study required the HaCaT reporter system to determine the quantitative strength of 

the bystander signal and because the experimental assay involved the transfer of 

irradiated fish explant media to a human HaCaT cell cultures, it was of interest to see if 

there were significant common proteins induced in both the fish and human reporter 

cells. The reasoning for this model was the complex molecular mechanisms associated 

with bystander HaCaT cells could be compared previous studies thus creating a better 

understanding of RIBE. Previous studies have demonstrated that this irradiation 

procedure is capable of instigating both direct and bystander radiation effects through 

reporter cell survival experiments in rainbow trout (Onchorhynchus mykiss) (O’Dowd et 

al. 2006), zebrafish (Danio rerio) (Mothersill et al. 2007) and medaka (Oryzias latipes) 

(Mothersill et al. 2009). It has also been shown to induce direct and bystander 

proteomic changes in rainbow trout (Oncorhynchus mykiss) gills (Mothersill et al. 

2006) therefore the present study can be compared. 

A similar protein expression pattern in HaCaT cells was discovered between the low 

doses of ICCM (0.1 Gy and 0.5 Gy). Overall, there was a greater increase in protein 
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expression in HaCaT cells exposed to 0.5 Gy ICCM. So although the mechanism of 

signalling may have revealed a similar pattern, the 0.5 Gy dose seems to induce greater 

quantitative changes to the proteins expressed, and quite possibly more sensitive. The 

only exception was that the 14-3-3 protein increased more with a dose of 0.1 Gy ICCM. 

Cingulin is important for the formation and regulation of tight junctions (TJ’s) in cells 

and the protein is found at the surfaces of TJ’s (He et al. 2007). It is recruited to cell–

cell junctions and responsible for gene expression regulation, cell proliferation and cell 

density via a RhoA activator GDP/GTP-exchange factor signalling pathway (Guillemot 

& Citi 2006). Cingulin protein expression was increased in exposure to 0.1 Gy ICMM 

and increased twice that in exposure to 0.5 Gy ICCM, possibly marking epithelial 

differentiation (Figure 5.2-G). In vitro studies have revealed that cingulin interacts with 

various components of TJ’s including F-actin suggesting a role for cingulin as a linker 

between the tight junction membrane and F-actin cytoskeleton re-organisation (Bazzoni 

et al. 2000; Ohnishi et al. 2004). The presence of Cingulin in epithelia tissues was 

previously measured and the level of cingulin present in four adenocarcinomas was 

higher than that of the normal tissue and was not detected in non-epithelial tissues and 

tumors. Cingulin is absent from non-epithelial human tissues and neoplasias but is 

expressed in metastatic colon neoplasms and in inflammatory bowel disease and so 

suggests that cingulin may be a useful ‘marker’ in the characterisation of epithelial 

neoplasias (Citi et al. 1991).  

Furthermore, MMS19 protein expression decreased 2.5-fold in exposure to 0.1 Gy 

ICCM (Figure 5.2-C). MMS19-like protein usually functions as a platform to facilitate 

other proteins responsible for repair and replication (Seroz 2000).  The protein interacts 

with a mitotic spindle-associated complex that is important in chromosome segregation 
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(Ito et al. 2010). Perhaps the ability of MMS19 to repair the damage to the cell or be 

responsible for DNA replication was hindered. EB1 proteins bind to the plus end of 

microtubules and regulate the dynamics of the microtubule cytoskeleton. EB1 

specifically promotes cytoplasmic microtubule nucleation and elongation. It may be 

involved in spindle function by stabilising microtubules and anchoring them at 

centrosomes and is responsible for cell migration (Askham et al. 2002; Hayashi et al. 

2005; Honnappa et al. 2009; van der Vaart et al. 2011). Reduced protein expression of 

EB1 was observed in HaCaT’s exposed to 0.1 Gy ICCM almost 2-fold and reduced 

almost 4-fold in exposure to 0.5 Gy ICCM (Figure 5.2-E). Interestingly, EB1 interacts 

with tumour suppressor Adenomatous polyposis coli protein (APC) and maybe the 

reduced expression of EB1 exerts an effect on the actin cytoskeletal network. APC1 is 

known for its role in the movement of chromosomes to opposite poles of the cell during 

cell division. There was a 2-fold decrease in expression of the protein in 0.1 Gy and 0.5 

Gy doses (Figure 5.2-H). Component of the anaphase promoting complex/cyclosome 

(APC/C), a cell cycle-regulated E3 ubiquitin ligase that controls progression through 

mitosis and the G1 phase of the cell cycle (Jin et al. 2008). It is possible that cell cycle 

progression was affected by the reduced expression of APC1, but the changes were not 

statistically significant.    

Rho- GDP dissociation inhibitor 2 (GDI’s) protein expression was decreased 2-fold in 

HaCaT cells exposed to 0.1 Gy ICCM and similarly to 0.5 Gy ICCM (Figure 5.2-B). 

Rho-GDI’s are the regulators of Rho-GTPases. The Rho GTPases are involved in the 

regulation of a diverse array of cellular processes including actin dynamics, gene 

transcription, and motility (Bishop & Hall 2000) they escort GTPases to specific 

membrane signalling complexes, also protecting them from degradation (Zhang 2006). 

The role of RhoGDI as a regulator of epithelial apical/basolateral polarity via the 
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regulation of GTPase activity is well established (Fukata et al. 2003). They are 

responsible for normal cell growth and malignant transformation. One of the regulators 

in particular, Rho GDP dissociation inhibitor 2 (RhoGDI2), has been shown to act as a 

metastasis suppressor gene in cancer and reduced levels of RhoGDI2 have been shown 

to be associated with reduced survival rate for patients with human bladder cancer 

(Theodorescu et al. 2004). Thus not protecting the GTPases from degradation by 

caspases (apoptotic associated proteins). RhoGDI2 expression is deregulated in various 

cancers (Dovas & Couchman 2005; DerMardirossian & Bokoch 2005; Ellenbroek & 

Collard 2007). And the pattern of expression in this present study suggests an overall 

damaging effect of low dose bystander signal exposure in the HaCaT cells. GDP 

dissociation inhibitors (GDI’s) are central to the fundamental processes of intercellular 

signalling and transport (Seabra & Wasmeier 2004). A decrease in expression of Rho-

GDI observed in our samples contrasts with the fish study in which Rho-GDI was 

increased in response to bystander x-radiation (Smith et al. 2007). Decreased expression 

of their activity may potentially impact a large number of processes, including cell 

migration. Perhaps the HaCaT cells are more tolerant of the damaging signal. Some of 

the 14-3-3 binding proteins are involved in the regulation of the GTPase function (Jin et 

al. 2004). 14-3-3 binding antagonises the pro-apoptotic activity of Bad (Bcl-2 family) 

and possibly competes with pro-apoptotic proteins important for cell death signalling 

processes. Our research group recently documented some of the pro- and anti-apoptotic 

radiation-induced bystander gene expression changes in HaCaT cells in Chapter 3 and 

Chapter 4 (Furlong et al. 2013).  Remarkably the isoform, 14-3-3σ is directly linked to 

cancer and becomes induced in association with p21 by p53 (apoptotic-associated 

proteins) after irradiation. It has been documented that a loss of 14-3-3σ expression 

lowers the controlled regulation of multiple pathways and is an early event in neoplastic 
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transformation, carcinogenesis (Nakajima et al. 2003; Mhawech 2005) and is also 

present in many carcinomas increasing their radiosensitivity . Inhibition of this protein 

could be a positive marker is sensitising human cancers to radiation. 14-3-3σ expression 

has been observed in the keratinocytes of skin (Nakajima et al. 2003). In the current 

study increased expression of 14-3-3 was observed in HaCaT exposed to 0.1 Gy ICCM 

and protein expression decreased when exposed to 0.5 Gy ICCM (Figure 5.2-F). 14-3-3 

may be responsible for modulating the cell death pathway and may work differently 

with different dose-exposures. Finally, there was reduced expression pattern of F-actin 

capping protein, which is responsible for cell morphology and cytoskeletal organisation 

(Maruyama et al. 1990). It is a type of cytoskeletal protein that binds in a Ca
2+

 -

independent manner to the ends of actin filaments (barbed end) therefore, blocking the 

exchange of subunits at these ends. F-actin capping protein expression was decreased 

approximately 2-fold in response to 0.1 Gy doses and about 3-fold in response to 0.5 Gy 

(Figure 5.2-D) and possibly characteristic of apoptotic morphological changes? 

There is evidence that a protective mechanism may be induced reflective in the 

increased protein expression of ANXA2 which is intriguing as reports have shown that 

it may be tumour-related and participate in several types of cancer (Olwill et al. 2005).  

The annexins are a group of cytosolic proteins that bind to phospholipids in a calcium-

dependent manner.  ANXA2 is composed of two domains, the first is the NH2-termianl 

head and secondly the COOH- terminal protein core, which harbours the Ca2
+
 and 

membrane binding sites (Gerke & Moss 2002; Debret et al. 2003). Annexins may 

therefore have roles as effectors, regulators, and mediators of Ca2
+
 signals (Gerke & 

Moss 2002). Although the full biological functions of annexins are not well defined, 

previous studies have established ANXA2 as a radioresponsive protein associated with 

anchorage independent growth (Waters et al. 2013; Weber et al. 2005). ANXA2 
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accumulates in the nucleus in response to DNA damaging agents (X-ray) suggesting 

that ANXA2 may play a role in protecting DNA from oxidation by ROS (Waters et al. 

2013). Interestingly ANXA2 can bind RNA impacting on RNA stability and subsequent 

protein expression in cells, which may impact on the overall fate of the cells (mRNA 

stability) (Filipenko et al. 2004). A recent study showed that ANXA2 can contribute to 

radiation-dependent regulation of transcription and cell fate, whereby ‘silencing’ A2 can 

lead to an increase in cell death, perhaps suggesting a possible role for protection of the 

cell from damage such as radiation as discussed by Waters and colleagues in 2013 

(Waters et al. 2013). The same research group revealed that cells depleted of annexin 

ANXA2 have more oxidative DNA damage than control cells in response to IR. It has 

been demonstrated that ANXA2 is secreted into the medium by irradiated cells and can 

bind to non-irradiated neighbouring cells in the vicinity, inducing anchorage-

independent growth (Weber et al. 2005; Weber et al. 2009). As previously mentioned, 

direct DNA damage may not be necessary to cause a bystander effect, as Smith et al 

showed in 2007 (Smith et al. 2007). The proteomics study by Smith et al 2007  showed 

increased levels of ANXA2 in directly X-radiated fish but not in bystander fish, 

regardless of the source of bystander signalling, and confirming the ‘stability’ of the 

bystander ‘molecule’ in a 4 hr time frame. Additional studies with bystanders to 

irradiated medaka (Oryzias latipes) illustrated increased proteins of the Annexin family 

also (Smith et al. 2011). Previous studies consolidating the role of apoptosis in both a 

direct and bystander response revealed that bystander irradiation instigated an apoptotic 

pathway in HaCaT cells exposed to low doses (0.05 and 0.5 Gy) (Mothersill & Seymour 

1997) and there as evidence to suggest that the apoptotic pathway was modulated in the 

bystander response, and that it is unique in comparison to directly irradiated cells. It 

appeared that the apoptotic cell death pathway was not fully executed by the caspases 
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but that it had indeed been initiated and possibly reached a point of no return. This was 

evident form the involvement of pro-apoptotic Bax (Bcl-2 family). It is therefore 

interesting to see that in the HaCaT cells in this study instigated increased expression of 

ANXA2 which is associated with reduced amounts of apoptosis through modulating the 

Bcl-2 family of proteins.  

There was an increase in protein expression of ANXA2 in exposure to 0.1 and 0.5 Gy 

ICCM (Figure 5.2-A), possibly a protective mechanism stimulated by the cell from 

oxidation caused by ROS. ANXA2 is capable of reducing the level of apoptosis through 

control of pro-apoptotic proteins. It is apparent that ANXA2 has a role to play in 

radiation-induced bystander effects, protecting DNA from genotoxic damage/stress, 

specifically at low doses. The ex vivo generated ICCM was analysed using the MTT 

assay (Appendix B19) and the data demonstrated that there was individual variation in 

the RIBE in HaCaT cell cultures receiving this ICCM. See Appendix C4.3 for the raw 

data and Appendix C4.4 for the figure showing the surviving fractions of HaCaT cells 

exposed to ICCM harvested from irradiated fish explants (0 Gy, 0.1 Gy and 0.5 Gy).  

The assay illustrated a substantial increase in the surviving fraction of ICCM (0.1 and 

0.5 Gy) exposed HaCaT cell cultures in comparison to HaCaT cell cultures exposed to 0 

Gy ICCM. This is suggestive of a proliferative effect in turn triggered by RIBE. This 

unusual response could be attributed to a well-known cellular response, hormesis which 

has been defined as “the stimulation of a system by low doses of substances that are 

toxic at high doses” (Ryan et al. 2008). 

A further investigation was carried out to discover how ANXA2 gene expression 

changed in HaCaT cells both directly and indirectly (ICCM) exposed to 0.05 and 0.5 Gy 

IR for 1, 4, 8 and 24 hr. and compare with the protein expression levels obtained using 
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the ex vivo fish model The gene expression study revealed that exposure to both direct 

and indirect (ICCM) 0.05 Gy and 0.5 Gy, stimulated increased expression of ANXA2. 

ANXA2 was up-regulated more so in the direct samples. Remarkably, the data 

uncovered an up-regulation in an increasing fashion of ANXA2 in HaCaT cell cultures 

between 4 – 8 hr exposures to 0.5 Gy ICCM. This correlates with the current protein 

study, whereby 4 hr exposure to ICCM also instigated an increase in ANXA2 in the 

HaCaT cells exposed to 0.5 Gy ICCM from irradiated Fish. Nonetheless, the changes 

were not statistically significant. 

Overall the bystander signalling initiated a ‘protective’ mechanism to the DNA from 

oxidation by ROS in bystander cells through expression of ANXA2 but the reduction of 

RhoGDI2 expression may have permitted the recruitment action of apoptotic caspases 

in the cells. Remarkably, the increase in 14-3-3 expression under 0.1 Gy conditions may 

be responsible for regulation of cell proliferation and differentiation, and modulate the 

cell death pathways.  

The remaining identified proteins were decreased in expression levels in response to 

signalling of bystander factors in the cells. Many of the identified proteins were 

associated with cell cycle control and so it is anticipated from the data that the normal 

functioning of the cell cycle in HaCaT cells was deregulated by the response to 

bystander signalling. The proteins identified were novel and also common to proteins 

induced RIBE in previous proteomic fish studies. This has contributed to a better 

understanding of RIBE studies that investigate key molecular signalling pathways and 

could even be considered as biological ‘markers’ in cells/tissues undergoing indirect 

low-dose radiation exposures. Currently a lot of on-going research is dedicated to 

proteomics and is continually evolving and developing. Advances in the field of 



195 

 

proteomics for radiobiological studies have and will further improve our understanding 

and regard of the remarkable bystander phenomena. It is important to appreciate the 

signalling events both transcriptionally and post-transnationally as some genes are not 

always translated into a functional protein complex.  
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6. Discussion 

Over recent years unusual data has emerged from radiobiological studies suggesting that 

irradiated cellular damage does not always depend on direct DNA damage and these 

occurrences are due to radiation-induced non-targeted effects (NTE). Further 

investigations into this phenomenon have revealed that complex responses exist for 

what are now known as bystander effects. The radiation-induced bystander effects 

(RIBE) occur as a result of transmission of damage signals from directly irradiated cells 

to non-irradiated neighbouring cells, either via cell-to-cell communication or by gap-

junction intercellular communication. To date the bystander ‘factor’ responsible for 

transmission of the signal has not yet been identified but some characteristics has been 

discovered. The ‘factor’ is believed to be a protein of some sort as it can freeze thaw 

once and stored at -80°C, it is denatured at 70°C and is a small and transient molecule.  

It is evident that in vitro, in vivo, and ex vivo experimental models produce a high 

variability in RIBE responses. Genetic factors can influence this variability in responses 

which poses difficulties as there is no degree of consistency. However, the molecular 

mechanisms of RIBE are slowly being unveiled with the use of radiobiological 

molecular techniques in vivo and in vitro. There has created a lot of controversy 

surrounding the potential clinical implications for RIBE and further translational 

research studies are essential to address this question for patients undergoing 

radiotherapy in the future. The aim of the current study was to further elucidate the 

cellular and molecular signalling mechanisms associated with RIBE, which will 

hopefully contribute to the development of non-targeted human radiation risk 

assessments and thus improve radiotherapy methods.  
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The first part of this study consolidated a HaCaT cell test model and proved it to be a 

good reporter for RIBE and therefore it was used for the subsequent studies. This was 

followed by investigations of the unique pathways involved in RIBE to discover 

significant targets for the intercellular and intracellular signalling events. One of the 

initial intercellular signalling events discovered Annexin II signalling on the surface of 

the cell membrane. A unique role of intrinsic apoptosis events part of the intracellular 

signalling was elucidated. As a result of the data generated, two pathways dependent on 

dose are proposed and are illustrated in Figure 6.1 and Figure 6.2. For the 0.05 Gy dose 

gene expression data unveiled an induction of pro-apoptotic genes and an induction of 

initiator caspases, to drive the cell death process forward in HaCaT cells exposed to 

ICCM. The Annexin II gene was shown to be down-regulated which is suggestive of 

increased apoptosis, and thus at this dose the HaCaT cells are experiencing intrinsic-

apoptosis leading to cell death. 

With respect to the 0.5 Gy dose, the MTT cell viability assay suggested a reduction in 

cell viability in HaCaT cells in response to ICCM, indicative of increased cell death. 

However, apoptotic gene expression changes were minor and occurred at later times of 

6 hr as well as increased anti-apoptotic signalling. The proteomic data demonstrated an 

increase of Annexin II at this dose (4 hr), and the gene expression data showed an up-

regulation of the Annexin II gene 8 hr post-exposure, both suggestive of reduced 

apoptosis. Together with the apoptotic gene data generated, it is clear that either the cell 

death process is delayed or other modes of cell death are involved in the bystander 

process for the 0.5 Gy dose. Overall, the proposed pathways demonstrate clearly that 

bystander responses in HaCaT cells can be dose-specific, causing unique bystander 

effects in response to different low-doses of non-targeted irradiation which is a key 

discovery of this project. 
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Figure 6.1: The proposed radiation-induced bystander apoptotic signalling pathway 

response for HaCaT cells exposed to irradiated cell-conditioned medium at a dose of 

0.05 Gy.  
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Figure 6.2: The proposed radiation-induced bystander apoptotic signalling pathway 

response for HaCaT cells exposed to irradiated cell-conditioned medium at a dose of 0.5 

Gy.  
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