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ABSTRACT 

Increasingly Internet of Things (IoT) devices are being woven into the 

fabric of our physical world. With this rapidly expanding pervasive 

deployment of IoT devices, and supporting infrastructure, we are fast 

approaching the point where the problem of IoT based cyber-security 

attacks is a serious threat to industrial operations, business activity and 

social interactions that leverage IoT technologies. The number of 

threats and successful attacks against connected systems using IoT 

devices and services are increasing. The Internet of Things has several 

characteristics that present technological challenges to traditional 

cyber-security techniques.  

The Internet of Things requires a novel and dynamic security 

paradigm. This paper describes the challenges of securing the Internet 

of Things. A discussion detailing the state-of-the-art of IoT security is 

presented. A novel approach to security detection using streaming data 

analytics to classify and detect security threats in their early stages is 

proposed. Implementation methodologies and results of ongoing work 

to realise this new IoT cyber-security technique for threat detection are 

presented.   

Keywords 

Internet of Things, Cyber Security, Streaming Analytics, Device 
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1 INTRODUCTION 

The recent emergence of the Internet of Things (IoT) as a novel and 

powerful platform for services and decision-making [1, 2], have made 

it one of the fastest growing technologies Today [3]. This new 

disruptive paradigm of a pervasive physically connected world, will 

have a huge impact on social interactions, business and industrial 

activities. It is predicted that the IoT will gradually permeate all aspects 

of modern human life [4]. In this new connected world, the fine-

grained monitoring of activity and processes involves the storage of 

vast amounts of sensitive data and information about citizens, 

organizations and their activities.  

Given the growing pervasiveness of connected sensing enabled 

devices, and consequently the increasing accessibility of highly 

sensitive data and information, the need for robust security has never 

been greater [5,6]. The security challenges presented by the 

deployment of connected resource-constrained devices is well 

understood, and has been the focus of research for many years [7]. 

However, off-the-shelf and deployment ready practical solutions to 

securing constrained and connected sensing devices are not readily 

available. Prior to the recent IoT revolution, there has not existed an 

urgency for the employment of robust security measures in similar type 

devices and systems. This lack of urgency has bred a culture of poor 

security practices within IoT predecessors such as wireless sensor 

networks (WSN) and SensorWebs, and consequently their descendant 

IoT systems. 

Already we are beginning to see the net result of poor security in 

already deployed IoT networks. The Dyn cyberattack on the 21st of 

October 2016 [8] saw a series of massive Distributed Denial of Service 

(DDoS) attacks. These attacks were performed using a Mirai-bot based 

botnet [9]. It is estimated that the attackers used more than 100,000 

infected IoT end-points to generate traffic rates of up to 1.2 Tbps to 

achieve the DDoS attack [10]. This attack highlighted a new urgency 

for more sophisticated protection systems to secure IoT networks and 

systems against threats and vulnerabilities. These attacks also 

highlighted the complacency the IoT community has employed when 

considering security during IoT deployments.  

The Mirai botnet attack has brought the issue of IoT security into 

the public domain. However, the number of threats had been rising 

daily [11] prior to the Mirai botnet attack. Also of note is the increase 

in sophistication of the methods and tools employed by an ever-

increasing number of would be attackers [12,13]. These threats now 
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raise serious questions as to the real dangers faced by individuals and 

organizations when using IoT technologies. Failure to act could see the 

vision of a connected world severely limited and represent a missed 

opportunity for new business models and revenue streams. 

In this paper, we present the initial results of ongoing work to 

address the security challenges presented by an IoT paradigm. 

Leveraging innovative streaming analytical techniques, we show how 

detecting events in traffic feature distributions can allow the 

classification of abnormal behaviour within an IoT network. 

This paper is organised as follows: Firstly, we present a discussion 

leading to a definition of an Internet of Things system (Section 2). 

Section 2.3 provides a brief overview of security considerations for 

IoT. Section 3 provides a review of the current techniques within the 

field of unsupervised network anomaly detection, with the state of the 

art presented in Section 3.1. A novel approach applying these broad 

techniques to contribute to IoT-appropriate security detection and 

resolution approaches is presented in Section 4. In Section 5 we draw 

conclusions based on the results of Section 4 and detail further work.  

2 THE INTERNET OF THINGS 

2.1 Defining the Internet of Things 

The Internet Architecture Board (IAB) states in RFC 7452 the 

following: 

 

“The term Internet of Things (IoT) denotes a trend where a large 

number of embedded devices employ communication services offered 

by the Internet protocols. Many of these devices, often called smart 

objects, are not directly operated by humans, but exist as components 

in buildings of vehicles, or are spread out in the environment” [14]. 

 

The Internet Engineering Task Force (IETF) notes that a smart 

object will typically have significant constraints in terms of power 

supply, memory, communication bandwidth and on-board processing 

power [15]. References [15-17] all note that the interconnection of the 

physical world with the virtual world is the focus of IoT specification.  

Generally, in the literature what is found are non-contradictory 

definitions of IoT. However, definition attempts are somewhat high-

level and abstract to ensure applicability to diverse use-cases. This 

disparity among a definition for IoT can confuse any discourse 

amongst IoT interest groups.  Similar obstacles to meaningful 

discussions were apparent during the emergence of the concepts of net 

neutrality and cloud computing, which hindered community consensus 

on associated topics of interest [18]. In any case, the arrival of a global 

consensus on an IoT definition will follow the habitual path of 

standardization; this is beginning to emerge through the work of 

International standards organizations such as ISO [19].  

Here, when referring to the “Internet of Things” and “IoT” we adopt 

the following broad definition. IoT refers to: 

 

“the extension of network connectivity and computing capability to 

objects, devices, sensors and items not normally considered to be 

computers. These “smart objects” require minimal human intervention 

to generate, exchange and consume data; they often feature 

connectivity to remote data collection, analysis and management 

capabilities” [20]. 

 

While many models of IoT include non-IP data flows and thus do 

not route data via the Internet, the authors assume that any data 

generated or processed from IoT/smart nodes will pass through an IoT 

bridge and be hosted along an IP-based publicly accessible network. 

For example, we assume that a 6LoWPAN Border Router (6LBR) or 

equivalent would be an intrinsic part of any IoT system.  

2.2 IoT Security 

IoT network operators and cloud service providers host network flows, 

which exhibit a myriad of “unusual” behaviors and events. Within the 

bounds of these unusual events may lie furtive activities with malicious 

objectives. Eliciting the event patterns of a maligned activity is not a 

trivial task. The volatile nature of the IoT environment makes 

discovery difficult. Within an IoT system there may be a high degree 

of volatile behavior. This volatility merely represents the digital 

artifacts of a chaotic physical world augmented with sensing and 

communication technologies. Human-behaviour tends to exhibit 

volatile behavior, thus a resultant and continuous digital stream from 

consumers, smart-things and machines may capture a new and normal 

behaviour as a seemingly unusual event.  

While leveraging the ability to analyse IoT behaviour from network 

traffic, the challenge in an IoT environment is sorting the abnormal 

(but valid behavior) from that of a security threat. To ensure the correct 

response to behavioral changes, a sophisticated and dynamic behaviour 

classification regime must be employed to elicit the true nature of IoT 

data streams and resultant network flows.  

It is important to note that an IoT security environment is not that 

different from any other non-constrained network. Consequently, 

many good lessons can be learned from traditional approaches and 

used as the basis for an IoT relevant and appropriate solution.  

3 ANOMALY CLASSIFICATION AND DEVICE 

DISCOVERY 

Given the diversity of IoT sensors, devices and resulting data-streams, 

the principal challenge in automatically detecting and classifying 

anomalies is to un-restrict events and activities and rely on the ability 

to mine these events and identify anomalies that are considered a 

security threat. Such anomalies can span a vast range of events: from 

network abuse (examples include denial-of-service attacks, scans, 

worms) to equipment failures (such as outages) to unusual customer 

behaviour (e.g., sudden changes in demand, flash crowds, high volume 

flows), and even to new, previously unknown events.  

In the field of anomaly behaviour detection applied to the IoT 

space, two additional and considerable complications have to be 

considered. Firstly, IoT covers a huge range of different devices all 

forming an ecosystem where the line between normal and abnormal is 

usually blurred. Secondly, anomalies are a moving target. It is difficult 

to precisely and permanently define a set of anomalies within IoT 

network behavior, especially in the case of malicious anomalies. New 

network anomalies will continue to arise over time; so, an anomaly 

detection system should avoid being restricted to any predefined set of 

anomalies. 

The goal of this paper is to contribute towards a system that fulfills 

these criteria. We seek methods that can classify sensor traffic in the 

IoT space and detect a diverse and general set of network anomalies, 

and to do so with a high detection rate and a low false alarm rate. 

Furthermore, rather than classifying anomalies into a set of rigid and 



static classes (defined historically) we seek to evaluate the anomalies 

from the data following a fuzzy unsupervised approach that allows the 

discovery of a comparative similarity index between new and already 

identified abnormalities.  

We base our work on the observation that despite their diversity, 

most traffic anomalies share a common characteristic: they induce a 

change in the distribution of the generated network traffic fields. Our 

hypothesis is that examining distributions of network traffic features 

yields considerable diagnostic power in both the detection and 

classification of a large set of anomalies. 

Next, we present an overview and background to the state-of-art 

and current trends in the relevant areas that inform our methodologies.  

3.1 State of the Art and Related Work 

In recent times, the use of IP network flows based anomaly detection 

has been gaining considerable attention, and has been the focus of 

increased study. The explosion of data flows and speeds across 

networks has driven this increased interest. Where previously, 

individual packet inspection would occur in real-time to aid detection 

of anomalies, this becomes unwieldly at high data rates. A flow based 

approach has emerged as a scalable and timely approach. The flow 

based approach does not seek to replace packet inspection, but work as 

a complementary approach for anomaly detection. [21] proposes a 

denial-of-service attack detection architecture for IoT systems. In [21] 

a packet inspection methodology is employed. Our work can 

conceivably complement packet inspection approaches.  

Arising from recent work, successful implementations of anomaly 

detection, based on detecting deviations from what is considered a 

“normal-state” have emerged. Here we present an overview of the 

ongoing work in this field, referred to as unsupervised machine 

learning for network anomaly detection.  

3.2 Network Based Anomaly Detection 

The field of anomaly detection within IP networks can be broken down 

into two main categories: 

 

 Knowledge based detection systems or supervised detection 

systems. 

 Knowledge independent or unsupervised detection systems. 

 

The focus of this paper is the latter; unsupervised. Other approaches 

prevalent within the network anomaly detection community are not 

considered here; due to their reliance on previous or historical results 

of detection activities. We would argue historical data is of limited use, 

or is not readily available in an IoT context. The nature of IoT systems 

mandate the need to directly monitor and measure traffic, and react in 

a dynamic way. In [22] Raza et al. present a hybrid approach to 

intrusion detection within IoT systems. Their work attempts to balance 

a signature approach with an anomaly approach. We seek to focus 

solely on an unsupervised anomaly approach as the need to store 

historical data for signature analysis is not practical in constrained IoT 

networks. 

Zang et al. [23] present a unified anomaly detection framework for 

network anomography. They propose to separate anomaly detection 

into two categories; systems using temporal correlation methods, and 

systems using spatial correlation methods to identify normal traffic. In 

this paper, we adopt Zang et al.’s category definitions within an 

unsupervised approach; where unknown anomalous behaviour rather 

than particular signatures is our focus.  

3.2.1 Temporal correlation methods describe those techniques 

where time is the main driver in the analytics process. In this technique, 

a point-in-time represents a reference point for all analysis operations. 

Anomalous traffic can be separated by performing time-series based 

temporal analysis on the traffic source. Four types of temporal analysis 

are identified in [23], which can be split into two groupings: time-series 

analysis and continuous data observations. 

Time-series analysis associates anomalies with a deviation from a 

predicted behaviours classifier, and is calculated using a distance 

metric from that classifier. Two models are usually employed: Auto-

Regressive Integrated Moving Average (ARIMA) and deltoids [24]. 

ARIMA models include Exponentially Weighted Moving Average 

(EWMA) and linear exponential smoothing.  

3.2.2 Spatial Correlation Methods. In spatial correlation methods, 

data elements in high dimensional data sets such as the network load 

observations usually have dependencies. The intrinsic dependency 

structure among the data elements can thus be exploited for filtering 

anomalous behaviour by discovering data points that violate the 

normal dependency structure [23]. Here the use of entropy to sum up 

the feature distribution of networks is employed. By using 

unsupervised learning, it is shown that anomalies can be clustered to 

form anomaly classes or cluster vector definitions. The metrics or 

features successively used in these papers are: byte counts in [25], 

packets counts, byte counts and IP flow counts in [26] and entropy 

values for distributions of several features (source IP address, 

destination IP address, source port, and destination port) in [27]. In [28] 

it is shown that entropy based approaches are suitable and effective at 

detecting modern-botnet attacks such as the Mirai-botnet.  

What is clear from the literature is that a multi-detector approach is 

the main conclusion of many of the experiments documented in the 

literature. Major advancements in supervised approaches using a 

combination approach have been reported. However, the more 

complex challenge of unsupervised detection systems using machine 

learning remains an open question [29].  

This work seeks to further the complex field of unsupervised 

learning to allow for the enabling of appropriate feature distribution 

clustering and analysis approaches for an IoT eco-systems. 

Unsupervised advocates work on the assumption that abnormal traffic 

is fundamentally different to the normal traffic structures. However, 

the volatile nature of IoT means that this is not necessarily the case. 

The diagnostic approach described here is intended to ultimately 

overcome this inherent challenge of using unsupervised approaches 

within IoT ecosystems. 

4 EXPERIMENT 

The problem of defining and analysing anomalies purely with data 

observations (unsupervised learning) and the absence of previously 

characterized knowledge, is the focus of much attention within the 

scientific community. The unsupervised school, (the one this work 

belongs to) works on the assumption that abnormal traffic is 

fundamentally different to the normal traffic structures. It is assumed 

that by studying these differences, abnormalities and new knowledge 

can be discovered. However, the reality of the world surrounding us is 

rarely pure and never simple. The consideration of abnormality is tied 

to many circumstances, as the time or the season, that put captivating 

challenges to those in the search of creating a knowledge acquisition 



devices. In the IoT ecosystem, the volatility of the reality push those 

challenges to the next level. The diagnostic system proposed here is 

developed to identify abrupt changes in the individual features and in 

the dependencies of those variables.   

The experiment described here uses a spatio-temporal 

methodology to characterise network behaviours. Once characterised, 

anomalous behaviours can be identified by calculating a 

similarity/distance metric to previously identified behaviours (e.g. 

attacks, intrusions or malfunctioning machinery). The thesis under 

investigation is: through the monitoring of the entropy of variables 

associated with certain network traffic features, combined with a 

modified dispersion coefficient for numerical variables, it is possible 

to generate rich 2D models that capture the nature of the network 

behaviour, referred to as behavioural shapes. These behavioural shapes 

contain verbose visual descriptors of individual feature’s behaviour 

and the dependencies that exist between them. We propose that any 

connected sensor, smart-thing or community of things network flow 

behaviour can be represented using 2D models/behavioural shapes. 

A sliding-window approach is employed to analyse the temporal 

aspect of our methodology. At each time unit (Ti), a behavioural shape 

is produced, calculated using the network data within the last n time 

units. 

 In this experiment, we configured our system to run in intervals of 

30 seconds, however, our system is flexible enough to work with 

different time horizons. Next, the measurements of each window time 

are scaled to unit norm to focus on the dependencies of its dispersions 

rather than its infinite value.  The problem is then restricted to find the 

windows time describing shapes with an abnormal figure compared to 

the rest. The shape form, area and position in the 2d plane will be 

defined by the dispersion values and the dependency between the 

values.  

4.1 Behavioral Shape Calculation 

The central idea of our work is the characterization of any network 

behaviour in 2D shapes. Fig 1 shows how a behavioural shape is 

constructed. A normalisation process is employed to focus on 

dispersion dependencies. 

 

 

Figure 1: Behavioral Shape. The behavioral shape shown is 

constructed through a mix of entropy and dispersion 

measurements. For example, the IP Source entropy in this case is 

0.51, the total_bytes_received dispersion coefficient is 0.29. In the 

example T0 = 30seconds and normal operation is being observed. 

The shape form’s area and position in the 2D plane is defined by 

the dispersion values and the dependency between the values.  

4.1.1 Variable distribution study. In this study, the data from a 

telecom mobile operator (4G network) with IoT devices connected to 

the network is used. Data was read from the SGi interface at the core 

network (EPC). All traffic coming or going to non-IoT devices were 

filtered and removed. IoT traffic is not the only traffic flowing on the 

network therefore, It is safe to assume that changes in the network 

circumstances (e.g. Equipment malfunctioning, or attacks coming 

from non IoT-devices) can impact on the behaviour and performance 

of IoT devices. The following fields, each representing a traffic feature 

were monitored: International Mobile Subscriber Identity (IMSI), IP 

Source, IP destination, source TCP port, destination TCP port, 

tcp_retrnsmt_bytes, total_bytes_received, total_bytes_send and 

total_latency. 

These fields are only a sample of the fields that could be monitored. 

Also, data acquired is only a sample of the total data. For this 

experiment, we measured traffic for 4 hours per day over a 7-day 

period. It should be noted that it was not possible to generate security 

attacks as a real live network was used. We therefore conjecture that 

real security attacks could be detected using the proposed method. 

However, real anomalies were found. Those anomalies could be the 

result of sensors malfunctioning, sensors software updates or simply, 

IoT device attacks on a small scale. Lakhina et al. note that:  

 

“The distribution of traffic features is a high-dimensional object 

and so can be difficult to work with directly. However, we can observe 

that in most cases, one can extract very useful information from the 

degree of dispersal or concentration of the distribution the specific 

variables changing its distribution at the same time, compared with 

those which remain stable” [27].  

 

Lakhina et al. found in [27] that in some cases, the fact that a group of 

features were dispersed while others were concentrated is a strong 

indicator, which should be useful both for detecting an anomaly and 

identifying it once it has been detected. 

4.1.2 Entropy. The formula for Entropy is defined in (1) below. 

 

𝐻(𝑥) =  ∑ (
𝑛𝑖

𝑆

𝑁
𝑖=1 )  ∗  log(

𝑛𝑖

𝑆
)   (1) 

 

Where  𝑆 =  ∑ 𝑛𝑖𝑁
𝑖=1  , and is the total number of observations. The 

value of sample entropy lies in range [0, log(𝑁)]. The rate of entropy 

is lesser when the class distribution is pure (poor diversity). The rate 

of entropy is larger when the class distribution is impure (large 

diversity). The entropy shows its minimum value 0 when all the items 

of a feature (e.g IP address or port address) are the same; and its 

maximum value log(𝑁), when all the items are different. 

Here entropy is used as a convenient summarily statistic for a 

distribution’s tendency in categorical variables to be concentrated or 

dispersed. We use this metric to build our behavioural shapes. It is 

important to note that entropy is not the only metric that captures a 

distribution’s concentration or dispersal on categorical variables. 

However, we have explored other metrics and find that entropy works 

well for our objectives. 

In this work, we used the entropy of feature distributions 

calculated from network traces counts. However, the temporal 

approach presented in this paper has some implications on the 

usage of the entropy calculations. As we propose a fixed 

temporal length for our sliding window and because the 



network will experience network traffic volume fluctuations 

throughout the day, the value of N (the total number of distinct 

values seen in a window time) will change accordingly. As the 

entropy lies in range [0, log(𝑁)], the value of N will impact the 

entropy value.  

The implications of this effect on our approach are minimal. As we 

scale each value to the unit norm, our approach focuses on the 

relationship between entropies rather than their absolute values. We 

can thus guarantee that similar behaviours will appear to be near to 

each other in this entropy space regardless of the volume of the traffic.  

4.1.3 Dispersion coefficient. In this experiment, we proposed a 

modified dispersion metric applied to numerical variables. The metric 

proposed has been modified to the range [0, 1] and is shown in (2) 

below. 

 

     𝐷(𝑥) = 0.01 ∗  sin−1 (
𝐴𝑣𝑔

√𝑆𝑡𝑑2+𝐴𝑣𝑔2
)             (2) 

 
Where Std is the standard deviation of the sample, Avg is the 

average of the sample the metric proposed here calculates the angle 

created by the standard deviation and the average of the sample. The 

bigger the angle, the smaller the standard deviation in respect to the 

average, and therefore, less disperse the sample. On the contrary, a big 

standard deviation will generate a small angle and consequently a small 

D. 

4.2 Shapes Similarity Concept 

The Euclidean distance between 2 shapes seems to be the most obvious 

resource to measure the distances between shapes and use the resulting 

metric to determinate a normality/ abnormality score for each new 

shape. Euclidean distance is a simple method that can measure the 

distance between 2 individual shapes, however it results in 

inconsistencies for the purpose of this work. For example, in Fig 2, 

shape 1 and shape 2 represent two very different behaviours in a 31-

dimensional window time. Each axis plots the entropy and the 

dispersion for each feature. The Euclidean distance between both 

shapes is 2.6833 (Table 1, 4th column). As can be seen in Fig 2, both 

shapes have same area and describe the same form but they are placed 

in different positions. When both are compared with a 3rd static 

reference 31-dimensional shape, the distance remains the same for both 

(Table 1, columns 1-3).  

 

 

  
Shape 1 Shape 2 

Figure 2: Shown are two different shapes each with 31-dimensions 

representing different behaviours. 

 

Table 1: Euclidean distances study results 

  Ref Point 1 Ref Point 2 Ref Point 3 Point  1 

Point 1 2.03 2.54 1.83 0.00 

Point 2 2.03 2.54 1.83 2.68 

Table 2 Distance obtained by comparing the previously presented 

2 shapes with the 3 reference shapes using the angle based 

projection procedure 

  Ref Point 1 Ref Point 2 Ref Point 3 

Point 1 9.34 9.69 7.85 

Point 2 8.67 10.91 9.19 

 

4.2.1 The angle based projection procedure. To measure the 

changes produced at the feature and feature dependencies level, we 

need a method to capture the following aspects of the shapes: Area, 

Form and Position. We propose a procedure that measures the 

distances of the angles generated by the projection of each feature to 

an origin point 0,0.  Where the Y axis represents the position of the 

variable and the X axis represents the dispersion value. Once the n 

length of sequences of angles are generated, the Euclidian distance is 

calculated with the projected angles generated by the 3 static pre-

defined behavioural shapes Fig 3 & Fig 4. Two reference shapes 

represent antagonistic behaviours with a correlation coefficient of -1; 

covering all of the behavioural spectrum. In practice, this implies that 

any behavioural shape scored far from reference point 1 has a good 

possibility to be similar to reference point 2. Behavioural shapes scored 

equally distant to reference point 1 & 2 have to describe a behaviour 

close to reference 3. This procedure can be considered as a part of the 

family of “projection based dimensionality reduction” procedures, 

with the peculiarity of using 3 references to measure the distances 

(Table 2).  

In theory, this system could reduce any dimensionality space to 3. 

As any other projection based dimensionality reduction system, the 

bigger the dimensionality space, the poorer the accuracy of the 

resulting space. The projected angle is calculated using (3) below.  

 

                        𝐷(𝑥) = sin−1 (
𝑓

√𝑓2+𝑒2
)                   (3) 

 

Where 𝑓  represents the position of the feature and 𝑒  the 

entropy/dispersion.   

 

 

Figure 3: Reference point 1 and 2 describe an antagonistic 

behaviour having a Pearson correlation coefficient of -1.



 

Figure 4: 

4.2.2 Detection of anomalies. In addition to the sliding window 

time previously defined, the system manages a second, and larger, 

sliding window time (Macro-Window Time) to measure the sustained 

level of similarity to the 3 predefined behaviours. We tested using two 

different length configurations for the second window time of 2 and 3 

hours respectively. This means that the system will keep a hard copy 

of the behavioural shapes for the last 2 or 3 hours; kept in a FIFO (First 

in First out) manner. The purpose of this is to detect changes in the 

behaviours of variables that could indicate an anomalous behavioural 

change.  

To do so, once we manage a reduced space dataset to 3 dimensions, 

the outlier detection becomes simpler and less computational 

expensive. In our experiments, we used the Chauvenet criterion and 

Euclidian distance to discover outliers in our behaviours. Chauvenet 

measures the probability of any point of being spurious given the 

average and standard deviation values of a data distribution.  

Chauvenet has main limitation that could origin bias, it assumes an 

underlying normal distribution of the data. Future work works 

exploring alternatives should be conducted. 2 main areas are proposed. 

The first is the application of clustering techniques (e.g. Streaming K 

means) to discover outliers. This technique presents the challenges of 

selecting the right number of clusters in an unbounded data set and, the 

right selection of the distance function (e.g. Eucledian, Mahalanobis). 

Nevertheless, any distance based procedure as clustering will face the 

fundamental challenge of deciding what are the acceptable boundaries 

for the clusters. 

The second alternative is the application of autoregressive models 

(e.g. ARMA, ARIMA) to predict the next behaviour and detect the 

anomaly based on the discrepancy of the prediction with the reality. 

The main limitation of this approach is that fundamentally they are not 

unsupervised and required a training phase before they can predict 

results. A very promising area is proposed in 2 where the parameter 

required by ARIMA is automatically discovered from the data. 

Regardless, the method used to qualify anomalies, our work 

demonstrates that by studding the distances to 3 antagonist static 

behaviours, changes in the traffic topology can be captured and 

categorized based on the shape similarity to previously identified 

behaviours.   

5 CONCLUSIONS & FUTURE WORK 

Network anomaly classification, in the context of IoT systems presents 

many challenges, and is difficult to achieve in practice. The IoT 

paradigm means a lack of historical information coupled with a diverse 

range of deployment scenarios, sensing and connectivity technologies. 

This leads to the need to employ an unsupervised approach to anomaly 

detection. Current unsupervised approaches assume that abnormal 

traffic is fundamentally different to normal traffic structures, this is not 

always the case in an IoT environment. 

This paper demonstrates how treating anomalies as events that alter 

traffic feature distributions yields considerable diagnostic power in 

detecting and classifying these new anomalies. The effectiveness of 

using entropy and dispersion metrics for capturing unusual changes 

resulting from these events has also been shown. This paper 

contributes the ability to visualise anomaly structures using the 

procedures presented by measuring distances to previously defined 

classes and pre-defined reference classes in a normalised hyperplane.  

Chauvenet has the limitation that it assumes an underlying normal 

distribution of the data. Future work will explore two main alternatives. 

The first is the application of clustering techniques (e.g. Streaming K 

means) to discover outliers. This technique presents the challenges of 

selecting the right number of clusters in an unbounded data set and, the 

right selection of the distance function (e.g. Eucledian, Mahalanobis). 

The second alternative is the application of autoregressive models (e.g. 

ARMA, ARIMA) to predict the next behaviour and detect the anomaly 

based on the discrepancy of the prediction with the reality.  

The methods presented in this paper are not restricted to the 

monitoring of traffic feature distributions. Currently the authors are 



investigating the application of this behavioural profiling procedure to 

the payload data of the producing IoT node. By focusing on sensed and 

reported data streams of an IoT node, we aim to classify supra-

communities of things based on a model of data-stream/content or 

topic-of-interest, for building on-the-fly communities.     
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