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FROM PERMUTAHEDRON TO ASSOCIAHEDRON

THOMAS BRADY AND COLUM WATT

Abstract. For each finite real reflection group W , we identify
a copy of the type-W simplicial generalised associahedron inside
the corresponding simplicial permutahedron. This defines a bi-
jection between the facets of the generalised associahedron and
the elements of the type W non-crossing partition lattice which is
more tractable than previous such bijections. We show that the
simplicial fan determined by this associahedron coincides with the
Cambrian fan for W .

1. Introduction

Let W be an irreducible finite real reflection group of rank n acting on
Rn. The type-W simplicial permutahedron is the simplicial complex
obtained by intersecting the unit sphere Sn−1 with the fan defined by
the reflecting hyperplanes of W . The type-W simplicial generalised as-
sociahedron is obtained by intersecting the unit sphere Sn−1 with the
cluster fan associated to a chosen Coxeter element c of W (see [3]).
Since its introduction, similarities have been noticed between the local
structures of the generalised associahedron and the corresponding per-
mutahedron. In the W = An case, this relationship was investigated
in [8]. In [5], a combinatorial isomorphism (which is linear for bipar-
tite factorisations of c) is constructed between the cluster fan and the
Cambrian fan, a certain coarsening of the fan defined by the reflecting
hyperplanes of W . In [4] it is shown that the Cambrian fan is the
normal fan of a simple polytope.

This paper constructs the c-Cambrian fan for a bipartite Coxeter el-
ement c, without using Coxeter-sortable elements. Our approach ex-
hibits the c-Cambrian fan as the fan determined by the image µ(AX(c))
of an isometric copy AX(c) of the simplicial generalised associahedron
under the linear isomorphism µ = 2(I − c)−1 from [2]. The vertex
set of the complex AX(c) consists of the positive roots and the first n
negative roots relative to the total ordering on roots defined in [2]. We
show that the codimension one simplices of µ(AX(c)) are pieces of the

Date: 11 April 2008.
2000 Mathematics Subject Classification. Primary 20F55; Secondary 05E15.

1



2 BRADY AND WATT

original reflecting hyperplanes and that each facet is a union of per-
mutahedron facets. Thus the fan defined by µ(AX(c)) is a coarsening
of the fan determined by the reflection hyperplanes and we show that
this fan coincides with the c-Cambrian fan.

The set of facets of µ(AX(c)) and the non-crossing partition lattice,
NCPc, are equinumerous (see, for example, [1]). In the current setting,
this can be shown with the following easily described bijection.

For each w ∈ NCPc, define a region F (w) in Rn as follows. Let
{δ1, . . . , δk} be the simple system for the parabolic subgroup deter-
mined by w (with reflection set consisting of those reflections in W
whose fixed hyperplanes contain the fixed subspace of w) and let
{θ1, . . . , θn−k} be the simple system for the parabolic subgroup deter-
mined by cw−1. Now set

F (w) = {x ∈ Rn | x · δi ≤ 0 and x · θj ≥ 0}.
Our main theorem is the following.

Theorem 1.1. The collection {F (w) | w ∈ NCPc} is the set of facets
of a complete simplicial fan. Moreover, this fan is linearly isomorphic
to the corresponding cluster fan.

Note: The recent paper [6] defines cones for a general (not necessarily
finite) W via Coxeter-sortable elements. We expect that these cones
should coincide with the facets F (w) for finite W and bipartite c, but
this has not been shown.

2. Preliminaries

Fix a fundamental chamber C for the action of W on Rn, denote
the inward unit normals by α1, . . . , αn and let R1, . . . , Rn be the cor-
responding reflections. Assume that S1 = {α1, . . . , αs} and S2 =
{αs+1, . . . , αn} are orthonormal sets. Let c = R1R2 . . . Rn be the cor-
responding bipartite Coxeter element. Letting T be the set of all re-
flections in W , the total reflection length function on W is defined
by

ℓ(w) = min{k > 0 | w = T1T2 . . . Tk, Ti ∈ T}.
We recall from [2] that ℓ(w) is the dimension of M(w), the orthogonal
complement of the fixed subspace of the orthogonal transformation w.
The total reflection order on W is defined by

u ≼ w if and only if ℓ(u) + ℓ(u−1w) = ℓ(w)

and the set of W -noncrossing partitions, NCPc, is defined to be the
subset ofW consisting of those elements w satisfying w ≼ c. Associated
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to each w ∈ NCPc is a parabolic subgroup Ww, which is the finite
reflection group with reflection set consisting of those T ∈ T with
T ≼ w. The W fundamental domain C lies in a unique chamber for
the action of Ww on Rn and hence determines a simple system Πw for
Ww.

In [2], a total order, ≤, on the roots (vectors of the form w(αi) for
w ∈ W and 1 ≤ i ≤ n) is defined, following [7], by

ρi = R1R2 . . . Ri−1(αi),

with Rj and αi defined cyclically modulo n. Furthermore a simplicial
complex EX(c) is constructed with vertex set

{ρ−n+s+1, . . . , ρ0, ρ1, . . . , ρnh/2, ρnh/2+1, . . . , ρnh/2+s}

(where ρ−k = ρnh−k) and a simplex on each subset {τ1, τ2, . . . , τk} of
the vertices satisfying

τ1 < τ2 < · · · < τk and ℓ(R(τ1) . . . R(τk)γ) = n− k.

It is shown in [2] that EX(c) coincides with the type-W generalised
associahedron. We will continue to use the notation from [2]. In par-
ticular, X(w) will denote the subcomplex of EX(c) consisting of those
simplices whose vertices are positive roots in the subspace M(w) for
w ∈ NCPc and µ will denote the linear operator 2(I − c)−1. We recall
that if τ is a root of unit length then µ(τ) is the unique vector in the
fixed subspace of the length n−1 element R(τ)c satisfying µ(τ) ·τ = 1.
Furthermore, {µ(ρ1), . . . , µ(ρn)} is the dual basis to {α1, . . . , αn} and
c[µ(ρi)] = µ(ρi+n).

3. The intermediate complex AX(c).

Since S1 and S2 are orthonormal sets, c factors as a product of two
involutions, c = c+c−, where

c+ = R(α1) . . . R(αs) and c− = R(αs+1) . . . R(αn).

It follows that c+(S1) = −S1 and that c+(S2) = c+c−c−(S2) = −c(S2).

Definition 3.1. We define the simplicial complex AX(c) to be the
result of applying the involution c+ to EX(c).

The vertices and simplices of AX(c) have the following characterisa-
tion.

Proposition 3.2. The simplicial complex AX(c) has vertex set

{ρ1, . . . , ρnh/2+n},
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and a simplex on {τ1, . . . , τk} provided

ρ1 ≤ τ1 < τ2 < · · · < τk ≤ ρnh/2+n and ℓ[R(τ1) . . . R(τk)c] = n− k.

Proof. It follows from Sections 3 and 8 of [2] that the ordered set of
roots

{ρ−n+s+1, . . . , ρ0, ρ1, . . . , ρnh/2, ρnh/2+1, . . . , ρnh/2+s, . . . , ρnh/2+n}

is partitioned into the ordered sequence of subsets

−S2, S1, c(−S2), c(S1), . . . , c
−1(−S1), S2,−S1, c(S2).

Since c+ and c− are involutions, it follows that c+cc+ = c−1 and hence
that

c+(c
k(S1)) = c+(c

k)c+c+(S1) = −c−k(S1),(1)

c+(c
k(S2)) = c+(c

k)c+c+(S2) = −c1−k(S2).(2)

Thus the action of c+ on the ordered sequence of subsets is

−S2 S1 −c(S2) c(S1) −c2(S2) c2(S1) . . .
↕ ↕ ↕ ↕ ↕ ↕

c(S2) −S1 S2 −c−1(S1) c−1(S2) −c−2(S1) . . .

As the vertex set of EX(c) is

−S2 ∪ S1 ∪ c(−S2) ∪ c(S1) ∪ · · · ∪ c−1(−S1) ∪ S2 ∪ −S1

the vertex set of AX(c) is

S1 ∪ c(−S2) ∪ c(S1) ∪ · · · ∪ c−1(−S1) ∪ S2 ∪ −S1 ∪ c(S2)

which is equal to {ρ1, ρ2, . . . , ρn+nh/2}.
Next suppose τ and σ are vertices of AX(c) with τ < σ. We will show
that an edge in AX(c) joins τ and σ if and only if

c = R(σ)R(τ)x for some x ∈ W with ℓ(x) = n− 2.

Indeed, by definition, an edge in AX(c) joins τ and σ if and only if an
edge in EX(c) joins c+(τ) and c+(σ) and this holds if and only if either

(i) c+(σ) < c+(τ) and c = R(c+(τ))R(c+(σ))y for some y ∈ W with
ℓ(y) = n− 2, or

(ii) c+(τ) < c+(σ) and c = R(c+(σ))R(c+(τ))y for some y ∈ W with
ℓ(y) = n− 2.

Since the c+ action inverts the order of the subsets ±ck(Si), the relation
c+(τ) < c+(σ) can only occur when τ and σ belong to the same subset
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±ck(Sj). Because these subsets are orthogonal, it follows that τ and σ
are joined by an edge in AX(c) if and only if

c = R(c+(τ))R(c+(σ))y for some y with ℓ(y) = n− 2.

However, using the fact that the set of reflections in W is closed under
conjugation we deduce that c = R(c+(τ))R(c+(σ))y is equivalent to

c−1 = c+cc+ = R(τ)R(σ)z = tR(τ)R(σ)

which in turn is equivalent to c = R(σ)R(τ)x, where y, z and t are
length n − 2 elements in W , z is conjugate to y, t is conjugate to
z and x = t−1. In particular, c = R(c+(τ))R(c+(σ))y for some y
with ℓ(y) = n − 2 if and only if c = R(σ)R(τ)x for some x with
ℓ(x) = n− 2. This establishes the characterisation of edges in AX(c).
As both EX(c) and AX(c) are determined by their 1-skeletons, the
proposition follows. �

4. Vertex type revisited.

In this section we construct a bijection between facets of AX(c) and
elements of NCPc by partitioning the vertices of each facet F of AX(c)
into forward and backward vertices in a manner similar to the way
vertices of facets are partitioned into right and left vertices in [1]. The
two notions of vertex type in a facet are different. We choose the one
below because we can give a uniform characterisation of both forward
vertices and backward vertices of facets. We recall that for w ∈ NCPc,
X(w) is the subcomplex of EX(c) (and hence also of AX(c)) consisting
of those simplices whose vertices are positive roots in the subspace
M(w). The total order on the vertices of EX(c) allows us to put a
lexicographic order on simplices. In particular, the lexicographically
first facets, which we will often refer to simply as the first facets, of the
subcomplexes X(w), for w ∈ NCPc, will be used to define the bijection.

In this section F will be a facet of AX(c) with ordered vertices τ1 <
τ2 < · · · < τn so that c = R(τn)R(τn−1) · · ·R(τ1) .

Definition 4.1. For 1 ≤ i ≤ n we define the noncrossing partitions

ui = ui(F ) = R(τn)R(τn−1) · · ·R(τi)
vi = vi(F ) = R(τi) · · ·R(τ2)R(τ1)

and say that τi is a forward vertex in F if τi is a vertex of the first
facet of X(vi). Otherwise, we say that τi is a backward vertex in F .

Lemma 4.2. (i) If τi ∈ {ρ1, . . . , ρn}, then τi must be a forward vertex
of F .
(ii) If τi ∈ {ρnh/2+1, . . . , ρnh/2+n}, then τi must be a backward vertex of
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F .

Proof. (i) Suppose τi = ρj is one of the first n roots. We claim that

M(vi) ∩ {ρ1, ρ2, . . . , ρj = τi} = {τ1, . . . , τi}.
Indeed the inclusion {τ1, . . . , τi} ⊆ M(vi)∩{ρ1, ρ2, . . . , ρj = τi} follows
from the definition of vi and the ordering of the τ ’s. If the reverse
inclusion did not hold we would have R(ρk) ≼ vi for some ρk satisfying

ρk < ρj = τi and ρk ̸∈ {τ1, . . . , τi}.
However, since the first n roots are linearly independent, {τ1, . . . , τi, ρk}
would be a set of i + 1 linearly independent vectors in M(vi) contra-
dicting ℓ(vi) = i. Thus the above equality of sets holds and the first
facet of vi is forced to have vertex set {τ1, . . . , τi}. In particular, τi is a
forward vertex of F .

(ii) The first facet of X(w) is necessarily a set of positive roots for any
w ∈ NCPc. Thus any vertex of a facet F which is also a negative root
must be a backward vertex of F . �
The characterisation of forward vertices of a facet uses Lemma 3.3 of
[1], which we now recall. Here δ1, . . . , δk is the ordered simple system
for Ww.

Lemma 4.3 (Lemma 3.3 of [1]). Let τ be a positive root in M(w) and
fix 1 ≤ i ≤ k. Then τ ∈ {ϵ1, . . . , ϵi} if and only if R(δi)R(δi−1) · · ·R(δ1) τ
is a negative root. In particular, τ ∈ {ϵ1, . . . , ϵk} if and only if w−1(τ)
is a negative root.

Lemma 4.4. The root τi is a forward vertex of F if and only v−1
i (τi)

is a negative root.

Proof. (⇒) By definition, if τi is a forward vertex of F , then τi is
a vertex of the first facet of X(vi) and by Lemma 4.3, v−1

i (τi) is a
negative root.

(⇐) Conversely, assume that v−1
i (τi) is a negative root. We deal sep-

arately with the two cases where τi is positive or negative. If τi is a
positive root then τi is a vertex of the first facet of X(vi) by Lemma 4.3.

On the other hand, if τi is negative then

τi ∈ {ρnh/2+1, . . . ρnh/2+n} = (−S1) ∪ c(S2).

Hence −τi belongs to S1 ∪ c(−S2) and is one of the first n roots. Since
the first n roots form a linearly independent set, the vectors in

{ρ1, . . . , ρn} ∩M(vi)
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must all lie in the first facet of X(vi). In particular, −τi lies in the
first facet of X(vi). Thus v−1

i (−τi) is a negative root by Lemma 4.3.
However, this gives a contradiction since v−1

i (τi) is assumed to be neg-
ative. �
The following is an immediate consequence.

Corollary 4.5. The root τi is a backward vertex of F if and only v−1
i (τi)

is a positive root.

We now turn to the characterisation of backward vertices of facets in
AX(c). We begin with an elementary observation.

Lemma 4.6. If θi is the root defined by θi = c−1(τi) then

v−1
i (τi) = −c−1uic(θi).

Proof. For convenience, let r denote the reflection R(τi) and note that
c = uirvi. Thus v

−1
i = c−1uir and hence

v−1
i (τi) = c−1uir(τi) = c−1ui(−τi) = −c−1uic(θi).

�
The characterisation of backward vertices also uses a result of [1], which
we now recall.

Lemma 4.7 (Corollary 3.15 of [1]). Let τ be a positive root in M(w).
Then w(τ) is a negative root if and only if τ is a vertex of the last facet
of X(w).

Lemma 4.8. The root τi is a backward vertex of F if and only if
τi = c(θi) for some vertex θi in the last facet of X(c−1uic).

Proof. (⇐) Suppose that τi = c(θi) for some vertex θi in the last facet
of X(c−1uic). Then Lemma 4.6 gives v−1

i (τi) = −c−1uic(θi). However
the fact that θi is in the last facet of X(c−1uic) means that c−1uic(θi) is
negative by Lemma 4.7. Thus v−1

i (τi) is positive and τi is a backward
vertex of F by Corollary 4.5.

(⇒) Conversely, suppose that τi is a backward vertex of F . Then, by
part (i) of Lemma 4.2, τi is not one of the first n roots. However, since
c(ρi) = ρi+n, this means that c−1τi is a positive root. Let θi be this
positive root. By Lemma 4.7, it remains to show that c−1uic(θi) is a
negative root. However, by Lemma 4.6, c−1uic(θi) = −v−1

i (τi) and this
root is negative, by Corollary 4.5, since we are assuming τi is backward.
Thus θi is a vertex of the last facet of X(c−1uic). �
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As in Lemma 5.3 of [1], forward and backward vertices of a facet F
of AX(c) are orthogonal if they appear in the wrong order in the fac-
torisation of c determined by F . The induction proof of Lemma 5.3 of
[1] could be adapted here but it is possible to give a more conceptual
proof.

Lemma 4.9. If τi is a backward vertex of F and τj is a forward vertex
of F with τi < τj then τi · τj = 0.

Proof. Let {ϵ1, . . . , ϵj} be the ordered vertex set of the first facet of
X(vj), where vj is the noncrossing partition

vj = R(τj) . . . R(τ1) = R(ϵj) . . . R(ϵ1).

Since τj is forward, τj must, by definition, be one of ϵ1, . . . , ϵj. More-
over, since the set {τ1, τ2, . . . , τj} is linearly independent we must have
τj = ϵj. If τi ̸∈ {ϵ1, . . . , ϵj−1} then Lemma 3.4 of [1] gives τj · τi = 0.
Thus it remains to show that τi is not one of ϵ1, . . . , ϵj−1.

In order to show this, let {ϵ′1, . . . , ϵ′i} be the ordered vertex set of the
first facet of X(vi), where vi is the noncrossing partition

vi = R(τi) . . . R(τ1) = R(ϵ′i) . . . R(ϵ′1).

Since τi is backward, τi ̸∈ {ϵ′1, . . . , ϵ′i} by definition. However, since
{ϵ′1, . . . , ϵ′i} is a basis for M(vi) and τi > ϵ′i, it follows that the root τi
lies in the linear span of the set

{ρ ∈ M(vi) ∩ {ρ1, . . . , ρnh/2} | ρ < τi}.
Since vi ≼ vj, we deduce that τi lies in the linear span of

{ρ ∈ M(vj) ∩ {ρ1, . . . , ρnh/2} | ρ < τi}.
However, the linear span of {ρ ∈ M(vj)∩{ρ1, . . . , ρnh/2} | ρ < ϵk} does
not contain ϵk for any 1 ≤ k ≤ j − 1 by Corollary 6.12 of [2]. Thus,
τi ̸= ϵk for 1 ≤ k ≤ j − 1. �
Theorem 4.10. The function ϕ from facets of AX(c) to NCPc taking
a facet F with forward vertices τi1 < τi2 < · · · < τik to the product
R(τik)R(τik−1

) . . . R(τi1) is a bijection.

Proof. Suppose F is a facet with ϕ(F ) = v. By Lemma 4.9 appropriate
pairs of factors of

c = R(τn)R(τn−1) . . . R(τ1)

can be commuted until the product R(τik)R(τik−1
) . . . R(τi1) appears

on the right. By Lemma 4.4 the forward vertices of F are precisely the
vertices of the first facet of X(v). Since c = (cv−1)v and c−1(cv−1)c =
v−1c, Lemma 4.8 implies that the backward vertices of F are the images
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under c of the vertices of the last facet of X(v−1c). Thus the vertex
set of F is completely determined by v and hence ϕ is injective. On
the other hand, we know from Theorem 6.4 of [1] that the number of
facets of EX(c) is the same as the number of elements of NCPc. Since
AX(c) is the image of EX(c) under the isometry c+ it follows that ϕ
is a bijection. �

The following result is immediate from Theorem 4.10 and its proof.

Corollary 4.11. For each v ∈ NCPc there is a facet of AX(c) whose
vertex set consists of the vertices of the first facet of X(v) and the
images under c of the vertices of the last facet of X(v−1c). Moreover,
every facet of AX(c) arises in this way.

5. Applying the µ operator.

Definition 5.1. We define the simplicial complex µ(AX(c)) to be the
result of applying the operator µ = 2(I − c)−1 to AX(c).

The vertices and simplices of µ(AX(c)) have a simple characterisation
which follows immediately from Proposition 3.2.

Proposition 5.2. The simplicial complex µ(AX(c)) has vertex set

{µ(ρ1), . . . , µ(ρnh/2+n)},

and a simplex on {µ(τ1), . . . , µ(τk)} provided

ρ1 ≤ τ1 < τ2 < · · · < τk ≤ ρnh/2+n and ℓ[R(τ1) . . . R(τk)c] = n− k.

Now we are in a position to show that the cones on the facets of
µ(AX(c)) are precisely the cones F (w) defined in the introduction.
Recall that

F (w) = {x ∈ Rn | x · δi ≤ 0 and x · θj ≥ 0},

where {δ1, . . . , δk} is the simple system for the parabolic subgroup de-
termined by w and {θ1, . . . , θn−k} is the simple system for the parabolic
subgroup determined by w′ = cw−1. We note that F (w) is a simplicial
cone of dimension n since

c = w′w = R(θ1) . . . R(θn−k)R(δ1) . . . R(δk)

means that {δ1, . . . , δk, θ1, . . . , θn−k} is a linearly independent set. We
first determine the rays of each F (w).
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Proposition 5.3. Suppose w ∈ NCPc and F (w) is the simplicial cone
defined above. Then the rays of F (w) are generated by

{µ(ϵ1), . . . , µ(ϵn−k), µ[c(ηn−k+1)], . . . , µ[c(ηn)]},
where {ηn−k+1, . . . , ηn} is the vertex set of the last facet of X(w) and
{ϵ1, . . . , ϵn−k} is the vertex set of the first facet of X(cw−1).

Proof. Suppose {τ1, . . . , τn} is an arbitrary set of positive roots satis-
fying c = R(τ1) . . . R(τn). We are interested in the case

τi =

{
θi for 1 ≤ i ≤ n− k,
δi−n+k for n− k + 1 ≤ i ≤ n,

so that the τi are positive but may not be in increasing order even
though the subsets {δ1, . . . δk} and {θ1, . . . θn−k} are in increasing order.
We define

ϵi = R(τ1) . . . R(τi−1)τi and ηi = R(τn) . . . R(τi+1)τi.

As in Section 4 we can define the non-crossing partitions

ai = R(τ1) . . . R(τi) and bi = R(τi) . . . R(τn).

Thus ϵi = −ai(τi) and ηi = −b−1
i (τi). Moreover, since c = aiR(τi)bi,

we have c(ηi) = −aiR(τi)[τi] = ai[τi] = −ϵi. We deduce from

R(ϵi) = R(τ1) . . . R(τi−1)R(τi)R(τi−1) . . . R(τ1)

thatR(ϵi)c = R(τ1) . . . R(τi−1)R(τi+1) . . . R(τn) and hence, by Lemma 2.2
of [1] that µ(ϵi) is orthogonal to τj for j ̸= i. Also, by Lemmas 2.3 and
2.4 of [1],

τi · µ(ϵi) = τi · µ[−ai(τi)]

= −τi · ai(µ[τi])
= −τi · (µ[τi]− 2τi)

= −1 + 2

= 1.

Thus µ(ϵi) lies on each of the hyperplanes τ⊥j for j ̸= i and on the

positive side of τ⊥i . Since c(ηi) = −ϵi, it follows that µ(c[ηi]) lies on
each of the hyperplanes τ⊥j for j ̸= i but on the negative side of τ⊥i .

Now, suppose

τi =

{
θi for 1 ≤ i ≤ n− k,
δi−n+k for n− k + 1 ≤ i ≤ n,

corresponding to the factorisation

c = (cw−1)c = R(θ1) . . . R(θn−k)R(δ1) . . . R(δk),
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where {δ1, . . . , δk} is the simple system for the parabolic subgroup Ww

and {θ1, . . . , θn−k} is the simple system for the parabolic Wcw−1 . The
ray of F (w) which is opposite the θ⊥i wall and on its positive side is
generated by µ(ϵi), while the ray of F (w) which is opposite the δ⊥i wall
and on its negative side is generated by µ(c(ηn−k+i)). We deduce that
the rays of F (w) are generated by

{µ(ϵ1), . . . , µ(ϵn−k), µ[c(ηn−k+1)], . . . , µ[c(ηn)]}.
To conclude, we note that the roots ϵ1, . . . , ϵn−k are the vertices of the
lexicographically first facet of X(cw−1) and the roots ηn−k+1, . . . , ηn
are the vertices of the lexicographically last facet of X(w), by proposi-
tions 3.6 and 3.14 of [1]. �
Corollary 5.4. For each w ∈ NCPc the rays of F (w) are generated
by a subset of the set of vertices of µ(AX(c)).

Proof. By Proposition 5.3 the rays of F (w) are generated by

{µ(ϵ1), . . . , µ(ϵn−k), µ[c(ηn−k+1)], . . . , µ[c(ηn)]},
where {ηn−k+1, . . . , ηn} is the vertex set of the last facet of X(w) and
{ϵ1, . . . , ϵn−k} is the vertex set of the first facet of X(cw−1). Since
cρi = ρi+n, the rays of F (w) are generated by a subset of the set
{µ(ρ1), . . . , µ(ρnh/2+n)}. �

Proof of Theorem 1.1. We wish to show that the set of simplicial
cones {F (w)}, where w ranges over the elements of NCPc is precisely
the set of cones on simplices of µ(AX(c)). If w ∈ NCPc, then by
Proposition 5.3, the rays of F (w) are generated by

V = {µ(ϵ1), . . . , µ(ϵn−k), µ[c(ηn−k+1)], . . . , µ[c(ηn)]},
where {ηn−k+1, . . . , ηn} is the vertex set of the last facet of X(w) and
{ϵ1, . . . , ϵn−k} is the vertex set of the first facet of X(cw−1). On the
other hand, by Corollary 4.11 with v = cw−1, there is a facet of AX(c)
whose vertex set is the union of the vertices of the first facet ofX(cw−1)
and the images under c of the vertices of the last facet of X(w). Since
µ(AX(c)) is the image of AX(c) under the action of µ, the complex
µ(AX(c)) has a facet with vertex set V . Since every facet of µ(AX(c))
arises in this way by the bijectivity of ϕ and the invertibility of the
linear transformation µ, the set of F (w)’s coincides with the set of
cones on simplices of µ(AX(c)). �
Theorem 5.5. The fan determined by the cones F (w) for w ∈ NCP c

coincides with the c-Cambrian fan.
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Proof. The authors of [5] exhibit a linear isomorphism L from the c-
cluster fan of a bipartite Coxeter element c to the c-Cambrian fan. We
show that, up to scalar multiple, this map L coincides with µ ◦ c+.
Indeed the map L is defined on the basis {α1, . . . , αn} by

αi 7→
{

−ωi for i = 1, . . . , s
ωi for i = s+ 1, . . . , n.

Here {ω1, . . . , ωn} is the dual basis to the basis of coroots {α∨
i } where

α∨
i = 2αi/(⟨αi, αi⟩).

Since we have chosen our simple roots to have unit length, the coroot
α∨ is simply 2αi and the ‘weight’ ωi is simply (1/2)µ(ρi) by section 3
of [2]. However, by (1) and (2) of Section 3 above

c+(αi) =

{
−αi for i = 1, . . . , s

−c(αi) for i = s+ 1, . . . , n.

Recalling from [2] that

ρi =

{
αi for i = 1, . . . , s

−c(αi) for i = s+ 1, . . . , n.

we see that L coincides with (1/2)(µ ◦ c+). �

Example 5.6. Let W be the group C3 (or B3) of symmetries of the
cube in R3. The type Cn generalised associahedron is known as the
cyclohedron. We can choose a simple system

α1 = (1, 0, 0), α2 = (
√
2/2)(0, 1,−1), α3 = (

√
2/2)(−1, 0, 1)

so that the dual basis is

µ(ρ1) = (1, 1, 1), µ(ρ2) =
√
2(0, 1, 0), µ(ρ3) =

√
2(0, 1, 1).

Here the Coxeter element is the orthogonal transformation defined by
c(x, y, z) = (−z, x, y), so that h = 6, nh/2 = 9 and nh/2 + n =
12. The complex µ(AX(c)) is shown in Figure 1, where the 2-sphere
has been stereographically projected onto the plane from the point
(−1, 0, 1). Only the vertices µ(ρ1) and µ(ρ12) are labelled in the figure,
but the other vertices occur consecutively on the dotted polygonal path
between the labelled pair. The reflecting hyperplanes intersect the
sphere in circles and segments of these circles form the edges of facets
of µ(AX(c)). The position of a particular hyperplane can be deduced
from the fact that ρ⊥i passes through µ(ρi+1) and µ(ρi+2) since

c = R(ρi+2)R(ρi+1)R(ρi), for 1 ≤ i ≤ 9.

The figure also incorporates the map ϕ′ = ϕ ◦ µ−1 defined by the
bijection ϕ from section 4. Each µ(AX(c)) region F ′ is labelled by
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a set of integers, the corresponding positive roots forming the simple
system for c[ϕ′(F ′)]−1. Thus the set of integers labelling a region F ′

corresponds to a subset of the walls of F ′ with a wall contributing to
the subset if and only if F ′ lies on the negative side of the wall.

u
u

µ(ρ1)
�
�
��

µ(ρ12)

�
�

�	u
uu

u
u

uu

u
u

u
∅
1

2

1,2
3 4

5 2,5 4,5
6

7 2,7

8

1,8

5,8

7,8

9

2,9

1,9

1,2,9

Figure 1. The cyclohedron inside the C3 permutahedron.
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