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A comparison of evidence fusion rules for situation 

recognition in sensor-based environments 

Susan McKeever
1
, Juan Ye

2 
 

Abstract. Dempster-Shafer (DS) theory, and its associated Dempster rule of 

combination, has been widely used to determine belief based on uncertain evi-

dence sources.  Variations to the original Dempster rule of combination have 

appeared in the literature to support particular scenarios where unreliable results 

may result from the use of original DS theory.  While theoretical explanations 

of the rule variations are explained, there is a lack of empirical comparisons of 

the DS theory and its variations against real data sets. In this work, we examine 

several variations to DS theory. Using two real-world sensor data sets, we com-

pare the performance of DS theory and several of its variations in recognising 

situations. The empirical results shed insight on how to select these fusion rules 

based on the nature of sensor data, the relationship of this data over time to the 

higher level hypotheses and the choice of frame of discernment. 

 

Key words Evidence theory, Dempster Shafer theory, situations, situation 

recognition, uncertainty, uncertain reasoning 

1 Introduction 

Situations are human understandable representations of the environment that are of 

interest to a pervasive application.  In the context of smart-homes, the term situation 

is often used interchangeably with activities, where the ambient system detects situa-

tion such as ‘taking a shower’ or ‘preparing breakfast’.   This task of situation recog-

nition is a critical, continuous process in ambient environments, such as those moni-

toring the health of elderly patients in their homes. 

 

Sensor data is inherently unreliable, noisy, prone to delay and imprecise. i.e. it suffers 

from uncertainty.  For pervasive systems which rely on sensor data, the input such as 

a location tag reading is ambiguous [1], so inference from sensor data cannot be treat-

ed as fact, but simply evidence of fact. Users’ actions can contribute to degradation of 

information quality, such as the failure of users to carry their locator tags [2]. Uncer-

tainty of sensor information should be tracked and preserved to determine uncertainty 

at higher levels of context.  Furthermore, the process of interpretation of sensed con-

text is also subject to ambiguity and approximation.  Some context concepts are 

fuzzy, so are subject to imprecision, such as the concepts of ‘near’ or ‘warm’. Infer-
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ence rules are not constant, such as a user ‘sometimes’ using a microwave when en-

gaged in  ‘preparing breakfast’. In our previous work [3], we have applied Dempster 

Shafer theory to quantify and accommodate this uncertainty in order to maximize our 

situation recognition results.  

 

Dempster-Shafer theory is a theory of uncertain reasoning that is widely used in do-

mains where information (evidence) is known to be imperfect and reasoning uncer-

tain, such as medical diagnosis, quality control and process engineering. DS theory, 

and its associated Dempter rule of combination, has been widely used to determine 

belief based on uncertain evidence sources.  In ambient environments, DS theory has 

been applied to situation recognition, based on sensors embedded in the environment 

[4] [5] [3].  The use of DS theory removes the reliance of training data required by 

learning approaches, such as Bayesian networks, Naive Bayes, Hidden Markhov 

models, and Decision Trees.    

 

The field of evidence theory has widened beyond the original Dempster-Shafer theo-

ry, with variations to the theory proposed by other practitioners. Variations to the the 

original Dempster rule of combination from [6]  [7] [8] [9]  have been proposed in 

order to support particular scenarios where unreliable results may result from the use 

of original DS theory.  While theoretical explanations of the rule variations appear in 

the literature, there is a lack of empirical comparisons of DS theory and its variations 

against real data sets. In this work, we examine several variations to DS theory. Using 

two sensor data sets, we compare the performance of DS theory and these variations 

in recognising situations from the sensor data. By comparing the results, we empha-

sise the nature of sensor data as a selection factor in the fusion rule, the impact of 

temporal spread of sensor data and the impact of multiple hypotheses in the frame of 

discernment.  

 

The rest of the paper is organised as follows. Section 2 overviews the research in 

activity recognition and focus on the application of Dempster-Shafter theory in the 

area. Section 3 introduces the background of Dempster-Shafter theory and its alterna-

tive fusion rules, which we evaluate and compare on two independent data sets (de-

scribed in Section 4) in Section 5. The paper concludes in Section 6.  

2 Related Work  

The ability to recognise higher level situations or context is an ongoing area of re-

search in the pervasive systems  field.   Various machine learning approaches, have 

been applied to issue of uncertain sensor data environments.  Naives Bayes classifiers 

have been used by Korpippa [10] and Tapia et al [11].  Ranganathan et al [12] , Gu 

[13] have applied Bayesian networks. Hidden Markov Models which considers the 

sequence of sensor data triggers have been applied by Clarkson et al [14], Choujaa et 

al [15] and van Kasteren [16].   The use of these approaches requires training data 

which can be problematic to collect and annotate in a sensored environment. 



 

Dempster-Shafer theory has recently received greater attention in the domain of con-

text-aware systems due to its lack of reliance on training data and its ability to cater 

for uncertainty in the reasoning process. The first use of the theory for context-aware 

systems was Wu’s approach [17] [18] to fuse sensor data into higher level contexts. 

Wu’s main contribution is the definition of a dynamic discount factor for sensors that 

changes over time.   

 

Hong et al. [19] [20]  apply Dempster-Shafer theory to define an evidence based ac-

tivity (situation) model that uses sensor data for activity recognition in a smart home. 

Hong expands on Wu’s work by using evidence propagation to  bring evidence up 

through a hierarchy, so that activities can be recognised, as opposed to just abstracted 

contexts. Zhang et al. [5] use Dempster-Shafer theory for reasoning about activities. 

Their work focuses on resolving computation intensiveness of evidence fusion and 

addressing Zadeh’s paradox  [21], whereby conflicting evidence sources can give 

paradoxical results by granting majority belief to a minority opinion.   In our previous 

work, we extended DS theory to allow for temporal knowledge to be incorporated 

into the evidential reasoning process [3]. 

 

DS theory has been extended by [7] [6] [8] [20] to allow for modifications to rules, in 

order to address particular limitations in the original DS rule of combination.  In this 

paper, we examine variations to DS theory, and compare their performance for situa-

tion recognition on two sensor data sets.  The purpose is to do an empirical compari-

son of DS theory and its variations, thus highlighting the subtleties of evidential rules 

when applied to real world sensor data.  This will bolster existing theoretical work 

already done in this field with real examples.  

 

3 Dempster Shafer theory and alternative fusion rules 

3.1 Dempster Shafer theory 

DS theory [9] is a theory of uncertain reasoning that is widely used in domains 

where information (evidence) is known to be imperfect and  uncertain.  In a DS theo-

ry reasoning scheme, the set of possible hypotheses are collectively called the frame 

of discernment. This frame Ώ  represents the set of choices {h1, h2, ...hn} available to 

the reasoning scheme, where sources (such as sensors) assign belief or evidence 

across the hypotheses in the frame. Hypotheses can be any subsets of the frame, rang-

ing from singletons in the frame to combinations of elements in the frame. For exam-

ple, a calendar sensor that monitors whether a user is scheduled to be in a meeting or 

not assigns belief across a frame of discernment that includes hypotheses {meeting, 

coffee break, busy at desk}. When the calendar indicates that the user does not have a 

meeting, belief is assigned by the calendar sensor to ’not meeting’ situations i.e. the 

combination of {coffee break, busy at desk}. It assigns zero belief to {meeting}. For-



mally,     denote the set of all subsets of 𝞨  to which a source of evidence can apply  

its belief. The function m : 2
Ώ
     [0; 1] is called a mass function that defines how 

belief is distributed across the frame, if the function satisfies the following conditions, 

for hypotheses A: 

 

 m(Φ)=0  (1) 

 ∑           (2) 

 

Based on these conditions, belief from an evidence source cannot be assigned to an 

empty or null hypothesis, and belief from the evidence source across the possible 

hypotheses (including combinations of hypotheses) must sum to 1, similar to proba-

bility theory. The least informative evidence (uncertainty) is the assignment of mass 

to a hypothesis containing all the elements {h1, h2, ...hn}, because this evidence does 

not commit to any particular hypothesis. This uncertainty is denoted by the symbol   

 

A crucial part of the process of assessing evidence is the ability to fuse evidence from 

multiple sources. In Dempster-Shafer theory, the combination of evidence from two 

different independent sources is accomplished by Dempster’s combination rule: 

 

        
∑                    

  ∑                 

                     

  

where        is the combined belief for a given hypothesis A, and X and Y represent 

all possible subsets of the frame. The numerator in equation (3) represents evidence 

for hypotheses whose intersection is the exact hypothesis of interest, A. i.e. the 

agreement across the two sources about the hypothesis A. This denominator,      is 

a normalisation factor, where K is a conflict factor representing all combined evidence 

that does not match the hypothesis of interest, A. The value of conflict, K, when com-

bining evidence is indicative of the level of disagreement amongst the sources of their 

belief in hypothesis A. Dempster’s rule can be considered as a strict AND operation 

of the evidence sources [22]. 

3.2 DS evidence fusion  issues 

During our work on situation recognition [23] [3], we have noted three particular 

problems for when we apply Dempster’s rule of combination to infer situations from 

sensor data: 

 

1. Zadeh’s paradox: Zadeh’s paradox is a well-documented problem with 

Dempster’s rule of combination [21]. Zadeh highlighted the fact that when sources in 



high conflict are combined using Dempster-Shafer rule, the results can be completely 

counter intuitive.    

 

2. Single Sensor Dominance: A second problem that has gained far less atten-

tion in the literature is the potential dominance of a single sensor. Murphy [8] de-

scribed how a single disagreeing sensor can overrule multiple other agreeing sensors 

in the fusion process. A categorical belief function is where all belief is assigned to 

one hypothesis in a frame [24]. For example, if five sensors are used to determine the 

location of a user in the house, a single categorical sensor that assigns all of its belief 

to a contradictory option will negate the evidence from the other four sensors. We 

suggest that this is particularly problematic for binary sensors which are increasingly 

being used in smart home deployments. Binary sensors typically have small frames of 

discernment, with just three hypotheses: {on, off,  }. Unless discounted, they will 

categorically assign all of their belief to the ‘on’ or ‘off’ states. A single malfunction-

ing binary sensor can in theory therefore overrule evidence from other correct binary 

sensors during the fusion process, unless its off state is assigned as evidence of uncer-

tainty. A more intuitive result would be to allow the agreeing sensors to ‘win’ but to 

represent the disagreeing sensors’ evidence as conflict. 

 

3. Evidence Spread Over Time: A third problem that we have observed [3] oc-

curs when sensors‘ evidence of a higher-level state is spread over time. For example, 

the detection of a breakfast activity is the sequence of the triggering of a fridge sen-

sor, then a kettle sensor, then the toaster sensor and so forth. At any point in time, 

only one of the sensors may be ‘on’, so fusion of all the sensor values at any point in 

time may result in the ‘on’ sensor evidence being lost. The fusion rule should capture 

that some evidence of the situation was observed even though it has been greatly con-

tradicted by sensors that are off. It should not be wiped out by the overruling of the 

contradictory sensors, as will occur with Dempster’s rule of combination.  

 

3.3 Alternative evidence fusions approaches 

Dempster’s rule of combination was the core fusion mechanism provided as part of 

the original Dempster-Shafer theory.  The rule has been enhanced or changed by re-

searchers in order to cater for specific applications of Dempster-Shafer theory because 

it is not suitable in all fusion scenarios, such as the work of Yager [6], Hong et al [20], 

Dubois and Prade [7], Smets [25] and Murphy [8]. To narrow down our focus, we 

examine the variations that address the particular fusion issues we have discussed in 

Section 3.2 

Murphy’s combination rule 

 Murphy’s [8] alternative rule of combination eliminates the dominance of a single 

sensor and allows contradictory evidence to be preserved to some degree. Evidence is 

averaged prior to combining it using Dempster’s rule of combination. Formally, if 



there are n sources of evidence, we use equation (3) to combine the weighted averages 

of the masses     times. Evidence for each hypothesis, h, from n sources is 

summed, and averaged across all evidence sources. This eliminates the dominance of 

a single sensor by reducing its contribution according to the number of sources. Use 

of Murphy’s combination rule will also eliminate Zadeh’s paradox because the evi-

dence is averaged prior to combination.  

Averaging rule 

Shafer [9] combined belief functions by averaging all the evidence for each hypothe-

sis (instead of the combination rule), as follows: 

 

      
 

 
                 (4) 

 

Averaging can be used to eliminate the influence of any strongly conflicting single 

belief [22] so would cater for both single sensor dominance and Zadeh’s paradox. The 

use of averaging provides an accurate record of contributing beliefs because no belief 

is lost, but it lacks convergence. Both Dempster’s and Murphy’s rule allows evidence 

from sources that are in agreement to reinforce each other, and disagreeing evidence 

to be dropped. In contrast, averaging does not increase the measure of belief in the 

dominant subset but provides a less conclusive picture because conflict is not normal-

ised out. However, it is simpler to compute with fewer calculations. We anticipate 

that averaging will be useful to counteract the expected problem of conflicting sensors 

in binary sensors. 

 

OR Combination rule 

Hong et al [20] selected belief from two evidence sources by selecting the maximum 

belief.   From our own work, we can see that this may apply well where a set of sepa-

rate binary sensors are used for evidence of a situation. For example, the situation of 

‘preparing breakfast’ may be detected by the kettle sensor firing or the toaster sensor.  

Mathematically, the highest mass associated with hypothesis A is selected from the 

evidence sources: 

 

                       (5) 

 

This may be useful for task-driven situations where the sensors are triggering over a 

period of time. In theory, only a single piece of evidence needs to be triggered in or-

der to detect the situation using the OR fusion scenario. 

 

Temporal knowledge in fusion rules 

Temporal knowledge is a natural human way to reason about current activities or 

situations. For example, when assessing the current activity of a person at home, the 



time of day may determine whether they are preparing breakfast or dinner; the length 

of time they spent in the kitchen may help us decide whether they were preparing a 

meal or just getting a drink, and so on. Time durations of situations, sequential pat-

terns in which situations occur and discernible patterns over time are examples of 

temporal knowledge that can improve our ability to recognise which situation(s) is 

occurring.  

 

In [3], we set out an approach to incorporating time into situation recognition, us-

ing evidence theory.  To recap, we extended transitory evidence to increase the 

knowledge of our sensor datasets as follows. 

We define transitory evidence [3] as evidence that does not last for the full duration 

of a situation. For example, during the situation of ‘preparing breaking’, the kettle 

sensor may fire briefly just one, even though the situation may be in progress over a 

number of minutes.   During the inference process, when evidence for that situation is 

detected, the duration for that situation is triggered to start. 

 Looking at the situation of ‘preparing dinner’ in figure Fig. 1, when any of the gro-

ceries cupboard, fridge, freezer, pans cupboard or plates cupboard sensors are fired, 

the reasoning system will ‘start’ the dinner activity. The lifetime of the triggered sen-

sor evidence for that activity will be extended to last for the remaining duration stored 

for that situation. As inference continues over time, the lifetime of any further evi-

dence for the situation will be extended for the duration that is left of the situation (i.e. 

situation duration elapsed time). Once the full duration of the situation is reached, the 

evidence will expire. By extending the lifetime of the evidence, at any point in time, 

the evidence sources can be fused as if they are co-occurring.   

 

 

Fig. 1. Time extension of evidence for ’preparing dinner’ situation 



4 Sensor Datasets 

In our work, we have used two annotated data sets containing data from sensors, 

allowing us to apply our various evidence approaches to situation recognition using 

the sensor data.  Using the data sets, we will measure situation recognition success 

using Dempster’s original rule of combination, Murphy’s rule, Averaging rule and 

OR combination rule. In addition, we will do each of these using transitory and time 

extended evidence. 

4.1 Van Kasteren DataSet 

This data set originates from the intelligent autonomous systems group in University 

of Amsterdam [16]. The data is over a 28 day period using 14 digital sensors were 

installed in the house. The sensors are installed on the hall-toilet door, hall-bathroom 

door, hall-bedroom door, front door, microwave, fridge, freezer, washing machine 

and each of the cups/plates/pans cupboards. When a sensor is fired, it outputs a value 

1 as its reading in the sensor output file. 

 

 

Fig. 2. Layout of sensors in van Kasteren house floor plan [109] 

Seven situations (termed ‘activities’) are annotated by the occupant of the house: 1) 

leave house; 2) use toilet; 3) take shower; 4) go to bed; 5) prepare breakfast; 6) pre-

pare dinner; 7) get drink as shown in Fig. 2. 

 

We timesliced the data to 1 minute timeslices, so that the sensor values are known at 

minute variations. The full data preparation, and domain knowledge attached to sen-

sor readings is described in our previous work on temporal evidence theory in [3]. For 

the purposes of this work, it is worth emphasising that the sensor readings in Van 

Kasteren are from binary sensors, and generate transitory evidence – evidence which 

does not last for the full duration of the situation. 



4.2 CASL data set 

Our second data set, termed CASL, was generated in the Complex and Adaptive Sys-

tems (CASL) research laboratory of University College Dublin. We built our own 

infrastructure to capture the following data about a person in our research lab envi-

ronment: their computer activity, their calendar entries, and their physical location in 

the building. Describing each sensor in turn: 

 

 The computer activity sensor runs on the participant’s desktop PC and monitors the 

rate of key presses and mouse clicks, along with the length of time since the last 

activity. The data from this sensor is used to indicate whether the user is ‘active’ or 

‘inactive’ at their desktop. This data set is described and used in [2]. It is available 

to download at www.comp.dit.ie/smckeever/research.html 

 The calendar sensor collects information about the user’s scheduled Google calen-

dar events, including meeting schedule state, start time and end time. The data 

from this sensor indicates whether the user has a meeting or not for the current 

time. The context values used are ‘meeting’ and ‘no meeting’. The sensor mass 

function assigns its belief to ‘meeting’ if there is a meeting scheduled in the diary 

for the time in question, and assigns belief to ‘no meeting’ if the diary is empty. 

 For Location sensing, we have a Ubisense system deployment on the third and 

fourth floor of our research lab. Ubisense is a tag-based 3-D location tracking sys-

tem. It provides an X, Y and Z coordinate, based on the number of metres from an 

origin point – in our case the bottom corner of the third floor in CASL. Ubisense 

covers areas on the third and fourth floors in the CASL building, using 30 wall-

mounted sensors. Ubisense tracks a location tag belonging to the user, providing 

co-ordinate readings for the location tag when the tag is moved. The participant 

gathered a data set over a 5-day period. For situation detection, as previously stat-

ed, we are interested in four particular locations: desk, cafe, meeting room and all 

other locations. Therefore, the context values are user desk, cafe, meeting room, 

other. The frame for the sensor mass functions contains the singleton elements: 

{desk, cafe, meetingRoom, other} and all possible combinations of the single-

tons:{desk ^ cafe; desk ^ cafe ^ meeting,...  : In practice, most of the combined el-

ements are never used. 

Six situations were annotated: (1) busy at computer, (2) busy reading at desk, (3) 

coffee break, (4) lunch break, (5) informal break, and (6) meeting. Each of these is   

detectable from the combination of the three sensor systems in our infrastructure. At 

any point in time, the participant can only be engaged in one of these situations, but is 

always engaged in one of the situations.    

5 Empirical Comparison of Fusion Rules 

The purpose of our experiment is to compare the situation recognition rates of var-

ious evidential fusion rules when used against our two data sets.  We use the standard 

http://www.comp.dit.ie/smckeever/research


f-Measure metric, the weighted mean of precision and recall as our measure of com-

parison as also used in [3]. The full evidential reasoning for the van Kasteren dataset 

is described in [3] and for the CASL dataset in [23]. 

  

5.1 Results from van Kasteren Data set 

Table 1. shows a comparison of situation recognition accuracies when each of the 

four rules is used with van Kasteren’s data set. Dempster’s rule is least accurate when 

transitory sensor evidence is used. We can anticipate this because Dempster’s rule 

will allow a single sensor to overrule other sensors. Therefore, unless all sensors are 

fired at the same time in one time slice, the evidence from any firing sensors will be 

lost or allocated to uncertainty.  When evidence from the sensors is extended for the 

duration of the situation, Dempster’s rule improves greatly, as the problem of the 

single sensor dominance no longer exists. 

 

Table 1. Recognition accuracies (f-measure) for four fusion rules on van Kastersen’s data set.  

Fusion Rule: OR Averaging Dempster Murphy 

Situation recognition with 

transitory evidence 
0.57 0.54 0.48 0.55 

Situation recognition with 

time extended evidence 
0.66 0.65 0.60 0.68 

 

 

Murphy’s rule performs better than Dempster’s in both cases. The agreeing sensors 

reinforce each other.  In the case of transitory evidence, the categorical off sensors do 

not negate the evidence of the on sensors.  

 

The averaging rule produces results that are almost as good as Murphy’s rule. The 

averaging rule uses less computation but it does not provide any measure of conflict. 

At present, we do not use the conflict metric in our inference process so averaging 

may provide a faster alternative to evidence fusion, if the capture of a conflict meas-

ure is not an issue. 

 

Interestingly, the ‘OR’ fusion rule performs best when used with transitory evidence.  

Only the ‘OR’ rule disregards co-occurrence of evidence, because it only relies on 

single pieces of evidence. The ‘OR’ approach also has issues distinguishing situations 

if they share sensors. For example, if a cup is used, and this is equally evidential of 

breakfast and drink, the system cannot distinguish which situation is occurring.  When 

evidence is time-extended, all approaches, including the ‘OR’ fusion approach, bene-

fit from longer durations of evidence, as previously discuss in [3]. 

 



5.2 Results from CASL dataset 

 

We run a similar analysis on the CASL data set, comparing results for fusion using 

averaging, Dempster’s rule and Murphy’s rule. We excluded the ‘OR’ combination 

rule because all evidence is co-occurring in the CASL situations so there is no theo-

retical benefit in using ‘OR’ fusion.   

 

Looking at Table 2, in the CASL data set, Demptser’s rule of combination performs 

slightly better than Murphy’s rule.  Unlike van Kastersen’s data set, all evidence is 

continuous so the problem of single sensors being ‘off’ and overruling other firing 

sensors is not an issue. The averaging rule performs relatively poorly. In the CASL 

data set, evidence is frequently applied to combinations of situations (as opposed to 

the van Kasteren data set where evidence was applied to single situations). For exam-

ple, if the computer activity sensor is ‘inactive’, this is indicative of any of the situa-

tions ‘busy at desk’, ‘coffee break’, ‘lunch break’, ‘informal break’ or ‘meeting’. 

When averaging is used, the evidence is simply divided up amongst the elements 

prior to averaging. In Dempster’s rule and Murphy’s rule, agreeing evidence is 

merged so combined evidence converges more distinctly towards situations that have 

further evidence. As a result, the averaging rule results are more successful in van 

Kastersen’s data set than in the CASL data set. 

Table 2. Situation recognition (f-measure) for three fusion rules on the CASL data set. 

Fusion Rule Averaging Dempster Murphy 

Situation recognition  0.5 0.62 0.60 

 

5.3 Discussion  

The results confirm that the choice of evidential fusion rule has an impact on the suc-

cess of inferring the correct situations on our data sets.  From our analysis, we empha-

sise the following points for practitioners using evidence theory for analysing sensor 

data. 

 

1. If the environment is generating sensors readings that are occurring over 

time, Dempster’s rule of combination is useful for evidence that is co-

occurring.  In a monitored environment, multiple sensors may be used to de-

tect a particular activity.  If these sensors do not fire concurrently, Demp-

ster’s rule should be used with care.  At any time, if most sensors associated 

with a situation are off, they will be evidential of the activity not occurring or 

uncertainty and may therefore give a misleading result.     

 

2. In an environment where multiple sensors are used to detect a situation, and 

these sensors give short burst readings, consider the use of the OR fusion 



rule as a simple way to determine that if any sensor for a situation is on, the 

situation may be occurring. 

 

3. The frame of discernment and allocation of evidence towards each element 

in the frame are a key consideration when choosing the evidence fusion in 

rule. We saw that for the CASL data set, a sensor may be evidential of more 

than one situation – in which case, the use of the averaging rule is weakened 

for reasons previously stated.  

 

4. Finally, we note that computational complexity of the fusion rules is another 

consideration.  For both Murphy’s and Dempster Rule of Combination, evi-

dence can be applied for any combination of hypotheses in a frame, so the 

number of permutations for n hypotheses in a frame can be as high as the 

power set,   . But in reality, all combinations of hypotheses may never be 

used and there is no need to always build all the possible values of belief. 

There are many cases where the knowledge is very simple and where there 

are very few non-null masses - making the belief function computation light-

er than its competitors [32]. In addition, we noted that the simple averaging 

rule achieved comparable results with Murphy’s decision rule on van 

Kastersen’s data set. The averaging rule works well if applied to evidence 

that support single hypotheses only in a frame. Another way to reduce com-

putational effort is to limit calculations to active parts of the environment. 

For example, using an example from Hong et al.’s [23] smart home, a mo-

tion sensor may detect motion in the kitchen. At that point in time, situation 

beliefs will only be calculated for kitchen-based situations.  

6 Conclusions 

In this work, we have compared a number of variations to the Dempster rule of com-

bination, based on resolving specific issues encountered during previous work: 

Zaheh’s paradox, single sensor dominance and transitory evidence.  Our results for 

our first data set show that Murphy’s rule produces the highest situation recognition 

rate when used with time extended evidence. When using binary trigger sensors, the 

simple OR rule produces the best results. In our second data set, where all sensors are 

continuously generating evidence, Murphy’s rule is no longer needed to negate a sin-

gle sensor dominating, and Dempster’s rule performs best. Most importantly, to un-

derstand these results, a deep knowledge of the sensor data values and their use for 

inference over time is required in order to select the most suitable fusion rule. For 

example, Murphy’s alternative fusion rule [8] negates the effect of a single dominant 

sensor overruling the evidence-based decision.  While our work supports this observa-

tion, we note that this is applicable if all evidence is co-occurring. It is either less or 

not applicable if sensor readings for a situation are triggering over time and not occur-

ring simultaneously The selection of suitable frames of discernments, either single-

tons or combined will also influence the outcomes. 
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