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Abstract 
 

Cervical cancer is the second most common cancer in women and is caused by a 

persistent infection of the cervical epithelium by the Human Papilloma Virus (HPV).  Adherens 

(AJ) and tight junctions (TJ) play a key role in maintaining the apical-basolateral polarity and 

cohesive structure of epithelial cells. These junctions are maintained by the interaction of 

several key proteins including, claudins, catenins, cadherins and SNAIL. This study aims to 

identify the expression profile of several AJ and TJ proteins and to identify and genotype HPV 

DNA in several cases of cervical neoplasia. This study also aims to investigate the pathogenesis 

of aberrant AJ and TJ expression using cell based models. 

 This study utilised a PCR based method to detect and genotype HPV DNA in 126 

formalin-fixed paraffin embedded tissue samples. In tandem, tissue microarrays were produced 

from cervical biopsy samples and utilised to immunohistochemically examine the expression of 

several AJ and TJ proteins. The HeLa cervical cancer cell line was transfected with plasmids 

containing claudin-1 and claudin-7 genes to generate cell lines stably expressing claudin-1 

claudin-7 respectively. Knockdown of SNAIL expression was performed in the SiHa cervical 

cancer cell line. 

An aberrant expression profile of AJ and TJ proteins was observed in cases of cervical 

neoplasia with increased expression of claudin-1, claudin-7, N-cadherin p120-catenin, SNAIL 

and decreased expression of E-cadherin compared to normal cervical epithelium. HPV DNA was 

detected and genotyped in 60 cervical tissue samples. HPV-16 was the most prevalent subtype, 
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and was the subtype most associated with aberrant AJ and TJ expression. Knockdown of SNAIL 

expression had no effect on E-cadherin expression in SiHa cells while overexpression of claudin-

1 and claudin-7 suppressed cellular motility in vitro, and decreased permeability in HeLa cells. 

 This study identified aberrant expression of several AJ and TJ proteins which may be of 

potential use as biomarkers in the identification of pre-invasive cervical lesions. This study also 

identified that claudin-1 and claudin-7 overexpression in HeLa cells reduced cell migration and 

increased TEER values. This indicates the acquisition of invasive and metastatic properties in 

malignant cells is likely reliant on the synergistic interaction of several AJ and TJ proteins. 

. 
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1. General Introduction 
 

1.1 Cervical cancer overview 
 

 Cervical cancer is a malignancy that develops in the epithelium lining the cervix. This 

epithelium consists of two major subtypes, a simple columnar type in the endocervix, and the 

stratified squamous epithelium in the ectocervix. Squamous cell carcinoma arising from the 

stratified squamous epithelium is the most common cervical malignancy, accounting for 

approximately 85% of cervical malignancies. Adenocarcinoma, derived from the simple 

columnar epithelium, constitutes around 10% of cervical malignancies with the remaining 5% 

consisting of adenosquamous and other rare tumour types [1]. Cervical cancer develops from 

precursor lesions called cervical intraepithelial neoplasia (CIN), also termed squamous 

intraepithelial lesions (SIL), which may progress to invasive carcinomas or may also regress to 

normal epithelium.  The introduction of cervical screening programmes, to detect these 

premalignant lesions before they develop into invasive carcinomas, has greatly reduced the 

incidence of cervical cancer. Indeed, it has been shown that in countries with established 

systematic screening programmes, the number of cervical cancer deaths has been reduced by 

around 70% [2] 

One of the most important discoveries in the aetiological investigation of cervical cancer 

over the last 25 years has been the demonstration that cervical cancer is caused by the 

persistent infection by certain genotypes of the Human Papillomavirus (HPV).  The important 

role of HPV in the development of cervical cancer is highlighted by the fact that HPV DNA is 
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present in 99% of cervical tumours [3]. Based on their association with cervical cancer and 

precursor lesions, HPVs can also be grouped to high-risk and low-risk HPV types. Low-risk HPV 

types include types 6, 11, 42, 43, and 44. High-risk HPV types include types 16, 18, 31, 33, 34, 

35, 39, 45, 51, 52, 56, 58, 59, 66, 68, and 70. Of these high risk types, four are most often found 

within the malignant cells of cervical cancers, with type 16 accounting for about half of the 

cases in the United States and Europe and types 18, 31, and 45 accounting for an additional 25 

to 30% of cases [4].  
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1.2 The Cervix 
 

 The cylindrical lower part of the uterus, the cervix, has a constricted opening at each end; the 

os. The internal os is located at the upper end of the cervix and is the opening of the cervix 

inside the uterine cavity (Figure 1.1). The external os is located at the lower end of the cervix 

and opens into the vagina [5] .The passageway linking the external and internal os is termed the 

endocervical canal. The lining of the endocervical canal differs completely from the rest of the 

uterine endometrium as it contains large branched glands. The endocervix is lined with a single 

layer of columnar, mucin-secreting simple columnar epithelium.  

 

Figure 1.1 Diagram of the uterus, including the location of the cervix, the internal and 

external os and the cervical canal [6]. 
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Towards the external os the columnar epithelium is gradually replaced by stratified squamous 

epithelium, in an area known as the transformation zone (TZ) or the squamo-columnar 

junction. The TZ is the area of the cervical epithelium most likely to be affected by disease [6]. 

The ectocervix is the portion of the cervix that projects into the vagina and has a convex surface 

with an epithelial lining. The epithelium of the ectocervix is non-keratinised stratified squamous 

epithelium which is continuous with the squamous epithelium lining the vagina [6]. The 

epithelium of the ectocervix consists of several distinct layers of cells (Figure 1.2).  Along the 

basement membrane are the basal cells which are immature, actively dividing cells with 

relatively large nuclei [7]. The layer of cells above this are termed the parabasal and 

intermediate layers; with cells in this part of the epithelium showing a recognisable chromatin 

pattern and often being vacuolated. In fully mature epithelium, a superficial layer lies above the 

intermediate layer, with superficial cells containing small pyknotic nuclei [7]. 

 

Figure 1.2 Outline of different cell layers found in the stratified squamous epithelium of the 

ectocervix. Arrows indicate the position of basal, parabasal, intermediate and superficial cell 

layers within the epithelium. 
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1.3 Cervical cancer epidemiology  
 

 Cervical cancer is the  second most common cancer in women worldwide, with 

an estimated 528,000 new cases annually, and being responsible for approximately 266,000 

deaths in 2012 (WHO 2012). A large majority, around 85%, of the global burden occurs in the 

less developed regions, where it accounts for almost 12% of all female cancers, most likely as a 

result of the lack of systemic cervical screening programmes in many developing countries [8] 

[2]. Eastern Africa has some of the highest incidences in the world, with an age standarised rate 

(ASR) of 42.7 per 100,000, meaning in these countries it is the most common cancer in women, 

overtaking even breast cancer (WHO 2012). Mortality rates are also highest in developing 

countries with 87% of world cervical deaths occurring in these countries. Mortality varies 18-

fold between the different regions of the world, with rates ranging from less than 2 per 100,000 

in Western Asia, Western Europe and Australia/New Zealand to more than 20 per 100,000 in 

Melanesia (20.6), Middle (22.2) and Eastern (27.6) Africa (WHO 2012). 

In Ireland, cervical cancer incidence has an ASR of 15.1 per 100,000 which is above the 

EU average of 11.3 and also above the UK (7.9) German (9.8) and Swedish (8.6) average. 

Cervical cancer incidences in are Ireland are similar to Poland (15.3), Denmark (12.1), and 

Croatia (12.1)   (WHO 2012) (Figure 1.3). The highest incidences in Europe are found mostly in 

eastern European countries such as Romania, Bulgaria and Serbia which all have an ASR above 

20.6 (Figure 1.3). The mortality rate in Ireland at an ASR of 4.3 per 100,000 people is above the 

EU average of 3.7 and the same as both the Czech Republic and Croatia (WHO 2012). In Europe 

the lowest mortality rates are found in the UK, Germany, Iceland and Finland, with rates in 
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these countries all below 2.5 per 100,000 (Figure 1.3). The highest mortality rates in Europe are 

found mostly in the east, with Russia, Ukraine and Romania all having mortality rates above 7.5 

per 100,000 (Figure 1.3).   

The recent introduction of vaccines against HPV should help significantly reduced the 

incidence of cervical cancer in countries with properly implemented vaccination programmes. 

Early studies show that HPV vaccination, recommended for both women and men between 9-

26 years old who have not previously been exposed to HPV, has the potential to significantly 

reduce the rate of cervical cancer worldwide [9]. Two main vaccines are currently available, 

Gardasil and Cervarix. The Gardasil vaccine is produced by Merck & Co., Inc. and protects 

against two low risk (6 and 11) and two high risk (16 and 18) HPV subtypes. The Cervarix 

vaccine is produced by GlaxoSmithKline and offers protection against high risk HPV types 16 

and 18. The vaccines have been shown to provide protection against persistent cervical HPV 

16/18 infections for up to 8 years, which is the maximum time of research follow-up thus far 

[10]. Both vaccines are based on virus like particles (VLPs) that are composed of the viral L1 

proteins, which is the main capsid protein of the virus, and elicits a strong immunogenic 

response in the host immune system [11].  
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Figure 1.3 Comparison of European estimated cervical cancer incidence and mortality for 

2012 (WHO 2012). 

The highest incidence and mortality rates in Europe are mostly found in eastern European 

countries such as Romania, Lithuania and Bulgaria. Ireland has higher rates of incidence and 

mortality than the EU average and of other western european countries such as the UK, France 

and Germany. 
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1.4 Papillomavirus background 
 

Papillomaviruses are members of the Papillomaviridae family, which consist of a vast 

group of DNA viruses that infect a wide array of animals, in a species specific manner [12]. 

Papillomaviruses nomenclature divides the family into genus, species, types, subtypes and 

variants [12]. There are 16 genera in the Papillomavirus family, each genus is designated a letter 

from the Greek alphabet e.g alpha-papillomaviruses, beta-papillomviruses etc. [13]  The most 

clinically important HPV types are contained within the alpha-papillomavirus genera (Figure 

1.5). Different genera share less that 60% nucleotide homology in the Late gene 1 (L1) and less 

than 43% sequence homology in the full length genome [13]. Contained within the 16 genera 

there are 44 species. Species within genera have between 60 and 70% sequence homology in 

the L1 gene. Each species is identified by a number, with each genus containing a varying 

number of species.  Within a species there may be several types which not only have a large 

degree of genetic similarity, but also usually share biological and pathological properties. 

Specific types are usually named after the host species they infect, such as Bovine 

Papillomavirus or Canine Oral Papillomavirus [12]. When more than one distinct isolate of 

papillomavirus occurs in a single host, each isolate is assigned a number, e.g. Human 

Papillomavirus type 1, Human Papillomavirus type 2 etc. In order for a papillomavirus to be 

defined as a specific type, it must have less than 90% L1 sequence homology with any other 

papillomavirus type [13]. Subtypes are defined as being between 2-10% divergent in the L1 

gene from a known PV type. An example of this is HPV-55 genome which is 95% homogenous to 

the HPV-44 genome and therefore is classified as a sub-type of HPV-44. Lastly, variants differ in 

their genomic sequence by less than 2% from another papillomavirus type [13] [14]. 
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Figure 1.4 Phylogenic papillomaviridae tree outlining the 16 different papillomavirus genera 

[13] 
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1.5 Papillomavirus life cycle 
 

Initial infection requires access of the virion to cells in the basal layer of the cervical epithelium 

usually through a micro-abrasion in the epithelium (Figure 1.5). Following infection and 

uncoating, it is thought that the virus maintains its genome as a low copy number episome in 

the basal cells of the epithelium [15]. In uninfected epithelium, basal cells exit the cell cycle 

soon after migrating into the suprabasal cell layers and undergo a process of terminal 

differentiation. During papillomavirus infection the restraint on cell cycle progression is 

abolished and normal terminal differentiation is retarded [16]. For the production of infectious 

virions, HPV must amplify its viral genome and package them into infectious particles. For most 

HPV types this occurs in the mid or upper epithelial layers following an increase in activity of 

the late promoter [17]. The late promoter is tightly regulated so as to limit the exposure of the 

highly immunogenic viral capsids to the host immune system. After the viral genome is packed 

into the capsid protein the newly formed viruses are not released from the cell until it reaches 

the surface of the epithelium and the cells are sloughed off [15]. 
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Figure 1.5 HPV mediated progression from normal cervical epithelium to invasive cancer [18] 

The disease begins with infection of the basal cells of the epithelium by viral particles. Viral 

genes become expressed in infected cells which may lead to the proliferation of dysplastic cells 

within the epithelium. When dysplastic cells make up to one third of the depth of the 

epithelium the disease is classified as a low grade squamous epithelial lesion (LSIL). When 

dysplastic cells make up more than one third and up to the entire depth of the epithelium the 

disease is classified as a high grade squamous epithelial lesion (HSIL). Over time, with persistent 

expression of viral genes, dysplastic cells may penetrate the basement membrane leading to 

the development of an invasive cancer. 
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1.6 HPV induced cervical abnormalities 
 

Infection of cervix with HPV most commonly results in genital warts. These lesions occur as a 

result on non-oncogenic HPV-6 and HPV-11 infection [19]. Infection with a high-risk HPV type 

can lead to abnormalities in cells of cervical epithelium giving rise to initially non-invasive 

neoplastic lesions, termed cervical intraepithelial neoplasia (CIN), which can in turn lead to the 

development of invasive tumours [12] . Neoplastic cells are characterised by a number of 

features including hyperchromasia, increase in mitotic figures and a high nuclear to cytoplasmic 

ratio [20]. CIN is subdivided in three grades, with CIN 1 the lowest and CIN 3 the highest. In CIN 

1 lesions abnormal cells are confined to no more than a third of the basal side of the 

epithelium. In CIN 2 lesions abnormal cells are present in up to two thirds of the epithelium 

with maturation only occurring in the superficial third of the epithelium, while in CIN 3 lesions 

more than two thirds of the epithelium contains abnormal cells (Figure 1.5 & 1.6) [21]. More 

recently a two tier system, termed the Bethesda system, for grading neoplastic lesions of the 

cervix has been developed with CIN 1 now termed low grade squamous intraepithelial lesion 

(LSIL) and CIN 2 and 3 being combined to form a new classification termed high grade 

squamous intraepithelial lesion (HSIL) (Figure 1.5 & Figure 1.6) [22]. All grades of lesions may 

either progress to a higher grade or regress over time. CIN 1 or LSIL lesions have a 60% 

likelihood of regression, a 30% risk of becoming a persistent lesion, a 10% risk of progression to 

a CIN3 lesion and a 1% chance of becoming an invasive carcinoma [22].  CIN 2 has 40% 

likelihood of regression, 40% chance of persistence, 20% risk of progression to CIN3 and a 5 % 
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risk of becoming an invasive carcinoma. CIN 3 has a 33% likelihood of regressing, a 56% chance 

of persistence and a less than 12% risk of progressing to an invasive carcinoma  [21] [22]. 

 

1.7 CIN Treatment 
 

Several methods may be utilised to remove or destroy pre malignant lesions of the cervix, 

including laser ablation, cold coagulation, and long loop excision of the transformation zone 

(LLETZ), also referred to as loop electrosurgical excision procedure (LEEP) [23]. LLETZ is one of 

the most frequently used treatments for CIN as it can be performed without general anesthetic 

and generally has very few complications [24] [25].  After examination of the cervix during 

colposcopy, the transformation zone and any additional dysplasia is identified using a dilute 

acetic acidic solution that temporarily stains densely nucleated areas. CIN lesions contain a 

larger amount of immature, proliferating cells and therefore these areas stain stronger than 

normal fully mature epithelium that is more sparsely nucleated [23]. After identification of the 

lesion, a physician uses a wire loop with an electrical current passing through it to excise and 

caurterise the area identified [24]. One of the benefits of LEETZ compared to other techniques 

is that the lesion is not destroyed and can be subsequently histologically analysed to assess the 

severity and extent of dysplasia. The effect of LEETZ on fertility is still debated with previous 

studies finding that it had no effect on fertility [26], whereas a more recent study found that 

those with a time interval from LEEP to pregnancy of less than 12 months compared with 12 

months or more were at significantly increased risk for spontaneous abortion, with risk of 18% 

compared with 4.6%, respectively [27]. 
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Figure 1.6 Images from cervical samples used in this study showing different grades of 

squamous intra-epithelial lesion in the uterine cervix. N.E.M = No evidence of malignancy. LSIL 

= Low grade squamous intra-epitthelial lesion, with abnormal immature cells in the basal third 

of the epithelium. HSIL = High grade squamous intra-epitthelial lesion, with diffuse atypia and 

immature cells occupying the entire depth of the epithelium. SCC = Squamous cell carcinoma, 

malignant cells invaded though basement membrane with complete loss of epithelial structure 

and large number of proliferating cells. Stained with hematoxylin and eosin, x100 magnification 
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1.8 HPV Proteins 
 

The HPV genome is divided into early and late genes, depending on the stage the viral life cycle 

they are expressed, transcribed into 6 early proteins (E1, E2, E4, E5, E6, E7) and two late 

proteins (L1 and L2) (Figure 1.8) [28]. The transcription of the open reading frames (ORFs) into 

functional proteins is regulated by promoters within the viral genome. The HPV-16 genome 

contains two major promoters. The P97 promoter lies upstream of the E6 ORF and is 

responsible for almost all early gene expression (Figure 1.7). The P670 promoter lies within the 

E7 ORF region and is responsible for late gene expression [28] [29]. The HPV-16 P97 promoter, 

equivalent to P99 in HPV-31 and P105 in HPV-18, is very potent and tightly controlled, primarily 

by upstream cis-elements in the LCR [17]. Induction of the late P670 promoter in HPV-16, and 

equivalent promoters in other HPV types, only occurs in differentiated keratinocytes [30] 

 

Figure 1.7 Linear representation of the HPV-16 genome [28] 
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Figure 1.8 Diagram showing the HPV protein expression profile in the cervical epithelium, 

displaying the relative expression levels of the different HPV proteins at different stages of 

the viral life cycle. [28] 

 

1.8.1 E1 Protein 

 

The E1 ORF is the largest ORF in the HPV genome and encodes one the most conserved proteins 

in the HPV genome [12]. E1 proteins are approximately 68 kDa in size and are expressed at low 

levels in HPV-positive cells [29]. E1 is the only viral protein shown to have enzymatic activity; it 

can function as an ATPase and as an ATP dependent helicase. This enzymatic activity allows the 

E1 protein to play a key role in viral replication by catalysing the unwinding of the DNA at the 

origin of replication [31].  E1 has been shown to bind the alpha subunit of DNA polymerase, 

recruiting the replication machinery to the viral origin of replication. Replication is initiated by 
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the E1 protein through binding to AT-rich regions in the LCR. Binding is stabilised and 

strengthened through cobinding with E2 protein [29].  

 

1.8.2 E2 Protein 

 

The E2 protein is required for both the replication of viral DNA and transcriptional 

regulation[32]. E2 proteins are approximately 50 kDa in size and function as dimers. The C 

terminus encodes a DNA binding domain that has been crystallized and shown to consist of a 

dimeric β-barrel structure that binds to LCR region of HPV DNA [29]. The LCR of high-risk HPV 

types contain 4 E2 binding sites, 3 of which are adjacent to the E1 binding sites and increase E1 

binding affinity [16]. E2 can have a dual function depending on its concentration. At low 

concentration it acts as a promoter of early gene expression, whereas while at high 

concentrations it represses early gene expression by interfering with the binding of 

transcription factors such as TFIID and Sp1 [33].   

 

1.8.3 E4 Protein 

 

The E4 ORF completely overlaps with the E2 ORF (Figure 1.8). However it is transcribed in a 

different reading frame. The E4 protein is heterogenous, forming a fusion product with a 5 

amino acid sequence from the N-terminus of E1. For this reason it is referred to as E1^E4 [29]. 

Despite its position in the genome and its ‘E’ name it is primarily expressed in the later stages of 

the viral life cycle.  E1^E4 proteins from high-risk types associate with keratin networks in cells 
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and, when overexpressed in transient-transfection assays, can induce their collapse [34]. This 

suggests a role for E1^E4 in facilitating the release of virions from the cell, but in natural 

infections of high-risk types only a limited amount of collapse has been observed [16] 

 

1.8.4 E5 Protein 

 

The HPV E5 proteins are small hydrophobic proteins whose exact functions remain unresolved. 

These proteins are localized to endosomal membranes and the Golgi but on occasion are found 

in the cellular membranes. E5 has weak oncogenic properties which occur through increasing 

epidermal growth factor receptor (EGFR) expression, and inhibiting the expression of major 

histocompatibility complex (MHC)-I and MHC-II on the plasma membrane [35].  E5 expression 

alone is not sufficient to initiate cell transformation, however it can act to increase the potency 

of E6 and E7 when co-expressed with them [36]. E5 has recently been shown to initiate cell 

fusion, producing genetically unstable tetraploid cells which may be more susceptible to 

oncogenic transformation [37] 

 

1.8.5 E6 Protein 

 

The E6 protein contains approximately 160 amino acids and is one of the earliest expressed 

proteins in the viral life cycle (Figure 1.8). In conjunction with other viral proteins, E6 serves to 

drive the cell into an actively dividing and undifferentiated state that is more favourable for the 

production and replication of new virions [31]. It is the promotion of a pro-replicative state 
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within the cell that leads to the malignant transformation of infected cells and ultimately, 

tumour development. The influence of E6 protein over the cell cycle is illustrated by the ability 

of E6 protein from highrisk HPV being sufficient for the induction and maintenance of cellular 

transformation in-vitro [38]. One of the primary methods by which E6 interferes with the cell 

cycle is through its interaction with the pro-apotosis protein p53 (Figure 1.9) [31]. The p53 

protein responds to DNA damage by transcriptionally activating a number of cell cycle 

regulatory pathways, including the p21 and GADD 45 pathways that can arrest the cell cycle or 

trigger apoptosis [29]. The degradation of p53 occurs through a trimeric complex containing E6, 

E6-associated protein (E6AP) and p53. E6AP recruits a complex of enzymes called the ubiquitin 

complex, which then target p53 for proteosomal degradation [39]. Low-risk HPV E6 proteins 

can also bind to p53, but with very low affinity and do not degrade p53 [31]. In addition to its 

effects on p53, HPV also targets a number of other pro-apoptosis proteins including Bak, Fas-

associated death domain containing protein (FADD) and procaspase 8, which is degraded by 

E6/E6AP furthering reducing the ability of the cell to enter apoptosis [40] 

E6 in conjunction with the transcription factor Myc, can up regulate the transcription of 

TERT (Telomerase reverse transcriptase) from its promoter, allowing the cell to repair the 

telomere after each division and maintain telomere length [41]. Human telomerase is a 

ribonucleoprotein complex composed of at least the reverse catalytic transcriptase (hTERT) and 

an RNA component (hTR) [42]. hTERT is expressed only in specific germ-line cells, proliferative 

stem cells of renewal tissues, and cancer cells. Because telomerase activity is hardly detected in 

most somatic tissues, telomeres shorten with each cell division, eventually leading to 

senescence [42] 
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1.8.6 E7 Protein 

 

E7 is a small nuclear phosphoprotein made up of approximately 100 amino acids. E7 is 

known to bind to the retinoblastoma tumor suppressor gene product, pRb, and its family 

members, p107 and p130 (Figure 1.10), via a binding motif conserved in its CR2 region [31]. In 

the hypophosphorylated state, pRb family proteins can bind to transcription factors such as E2F 

family members and repress the transcription of particular genes involved in DNA synthesis and 

cell-cycle progression [31]. Phosphorylation of pRb by G1 cyclin-dependent kinases releases E2F 

(Figure 1.10) leading to cell cycle progression into the S phase. As E7 is able to bind to 

unphosphorylated pRb, it may prematurely induce cells to enter the S phase by disrupting pRb–

E2F complex [43] 

 E7 interacts with inhibitors of cyclin-dependent kinases including p21 and p27 [44] [45]. 

p21 is an important mediator of cell cycle arrest via its inhibition of cyclin dependent kinases 

[46]. This process occurs during keratinocyte differentiation ultimately leading to cell 

senescence; therefore the sequestering of p21 by E7 may be critical in allowing continued 

replication of the viral genome in differentiated squamous cells where otherwise replication of 

DNA has ceased [31]. In addition to the inactivation of pRb family members, other oncogenic 

functions of E7 have been reported.  Histone deacetylases have been shown to play an 

important role in cell cycle regulation. HPV16-E7 targets chromatin remodelling histone 

deacetylase complexes through its C-terminal zinc finger. This interaction potentially enables E7 

to alter expression of cellular genes by modulating their chromatin structure  [47]. 
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E7 may play a role in helping the virus to evade the host immune system though it’s 

influence on E-cadherin expression. Langerhans cells are one of the major immune cells present 

in the cervical epithelium and play a role in activation of the adaptive immune response by 

detecting, processing and presenting foreign antigens to other leucocytes [48]. It has previously 

been observed that dysplastic cervical lesions contain fewer langerhans cells than normal 

cervical epithelium [49], likely creating an environment favorable for HPV persistence. The 

expression of E-cadherin on the cell membranes of keratinocytes is required for langerhans cell 

migration into the epithelium [50], thus any reduction in E-cadherin expression likely 

contributes to a concurrent reduction in the number of langerhans cells in the epithelium. The 

role of E7 in regulating E-cadherin expression is demonstrated by experiments showing 

silencing of E7 in HPV 16-transformed keratinocytes restores functional E-cadherin expression 

[51]. A study by Laurson et al., 2010 [52] observed that E7 mediated repression of E-cadherin 

expression occurs at the epigenetic level, through augmentation of cellular DNA 

methyltransferase I (Dnmt1) activity. Interestingly Laurson et al. 2010 observed that Dmnt1 

does not methylate the E-cadherin promoter directly, suggesting that E7-augmented Dnmt1 

activity is directed to a cellular gene/genes whose protein acts on the E-cadherin promoter. In 

this study the role of the SNAIL protein, which can bind to the E-cadherin promoter, in 

repressing E-cadherin expression is examined in cervical cell lines (Chapter 5). 
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Figure 1.9 Schematic presentation of the HPV viral oncoproteins E6/E7 and their interaction 

with cell-cycle regulatory proteins in cervical carcinogenesis [53] 

 

1.8.7 L1 Protein 

 

The L1 protein is the major capsid protein and is the principal viral protein responsible for 

generating an immunogenic response in the host. It is one of the most conserved proteins in 

the HPV genome and is expressed late in the viral life cycle (Figure 1.9). Due to its highly 

conserved structure, the L1 sequence is used as a basis for classifying Papillomaviridae into 

their separate genus, type and subtypes [13]. Papillomavirus capsids contain two virally 

encoded proteins L1 and L2, synthesised late in the infection cycle, which encapsulate the 

histone-associated, closed circular double-stranded DNA minichromosome [16]. The viral capsid 
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is primarily composed of 72 pentamers (capsomeres) of the L1 protein, in association with 12 or 

more copies of the L2 protein [12] .The major late protein L1 pentamers have the intrinsic 

property of self-assembly into empty capsids, referred to as virus like particles (VLPs) [54]. VLPs 

are structurally and immunologically similar to infectious viruses, as determined by electron 

microscopy and their ability to bind conformation-dependent monoclonal antibodies. L1 can 

bind to cell surface hepran sulphates, which are thought to be site of viral attachment to the 

host cell [55]. 

 

1.8.8 L2 Protein 

 

The L2 protein is the minor capsid protein and is approximately 50 kDa in size. As well as playing 

a structural role in the viral capsid it has also been suggested to play a number of other roles. 

VLPs made up of L1 and L2 proteins combined show a different pattern of distribution once 

taken into a cell compared to VLPs made up of L1 alone [56]. L1 VLPs remain widely and 

diffusely distributed throughout the cytoplasm, whereas L1/L2 VLPs exhibit a radial distribution 

across the cytoplasm and accumulate in the perinuclear region, suggesting that L2 may be 

involved in the transport of the virions across the cytoplasm [57]. 
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1.9 Detection of HPV 
 

Nearly all HPV detection assays currently in use rely on the assessment of viral nucleic acids, 

mostly DNA. Originally, Southern blot and Northern blot hybridizations were the methods of 

choice for HPV DNA and RNA detection, respectively. These methods, however, require large 

amounts of input material are time consuming and in principle can only detect one HPV type at 

a time. In addition, they are not applicable to routine formalin-fixed tissue specimens that 

typically contain crosslinked, severely degraded nucleic acids. The HPV detection methods that 

are currently in use can broadly be subdivided into target amplification methods and signal 

amplification methods. Target amplification methods utilize nucleic acid polymerases, target-

specific oligonucleotides(‘primers’), and a mixture of deoxyribonucleotides to amplify a specific 

nucleic acid sequence up to a level at which it can be easily detected [58]. 

 Signal amplification methods are based on an initial hybridization step of nucleic acids in 

the specimen with target-specific probes in liquid phase or in situ on cells or tissue slides, after 

which the signal (i.e. the hybridization event) is amplified and ultimately visualized with one of 

the various available methodologies. The most common of these tests, and the one that has 

been approved by the Federal Drug Administration, is the Hybrid Capture 2 (HC2) test. This is a 

solution based hybridisation method that uses two RNA probe cocktails, one that contains 

probes for 5 low-risk HPV types, and one that contains probes for 13 high-risk types, to detect 

the presence of HPV [59]. The HPV DNA-RNA hybrid is immobilised on the wall of a microtiter 

plate before a luminescent product is generated through a series of reactions. As the intensity 
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of the signal is proportional to the amount of target that was present in the sample this is a 

semi-quantative method for HPV detection [59] 

 PCR is widely used tool capable of amplifying very limited amounts of DNA, generating 

thousands to millions of copies of a particular DNA sequence, to a level which is more easily 

detectable. Since its initial development 1980s by Kary Mullis [60] it has become a widely used 

tool in medical and biological labs in both research and diagnostic settings. Today PCR is one of 

the most widely used tools for the detection of HPV DNA due to its ability to test samples with 

low levels of tissue or cells or poor quality DNA. Given the fact that many different HPV types 

exist, two different primer designs were developed to identify both the broad presence of HPV 

and specific subtypes of the virus. Type-specific PCR uses a set of primers that is specific for 

only one distinct type of HPV, where as consensus primers can detect a broad-spectrum of HPV 

types with only one primer set. Most type-specific and consensus primers are directed against 

highly conserved sequences of the HPV genome, almost exclusively within the L1 or E1 open 

reading frames [61]. Some of the first consensus PCR assays designed were the MY09⁄ 11 and 

GP5⁄6-PCR systems. From the latter two, which target 450 base pair and 150 base pair regions 

within L1, respectively, second-generation, modified versions (i.e. PGMY from MY09⁄ 11 and 

GP5+⁄6+- PCR from GP5⁄ 6-PCR, respectively) were developed. Today, these assays still belong 

to the most commonly used HPV detection assays. By utilizing the conserved L1 sequences 

targeted by MY09 and GP5+ primers, a short-fragment PCR assay, the SPF10, was subsequently 

developed that amplifies a 65 base pair region [62]. Despite overall sequence conservation in 

the viral L1 and E1 regions, these assays still had to deal with some degree of inter-type 

heterogeneity at the nucleotide level, which precluded the selection of single primer pairs that 
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fully match corresponding sequences of a broad spectrum of HPVs. Therefore, to ensure broad-

spectrum HPV detection, consensus primer assays either use low-stringency PCR conditions to 

allow some degree of mismatch acceptance between primers and target sequence (as used in 

GP5⁄6-PCR and GP5+⁄6+-PCR), degenerate primers with nucleotide variations at ambiguous 

base positions (as used in MY09⁄ 11), or combinations of the two (as used in SPF10) [61] [63]. 
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1.10 Structure and function of adherens and tight junctions 
 

Adherens juctions and tight junctions comprise two modes of cell-cell adhesion that 

provide different but complimentary functions. The presence of adherens junctions is a defining 

feature of all epithelial sheets [64] with adherens junctions performing multiple vital functions 

including initiation and stabilization of cell-cell adhesion, regulation of the actin cytoskeleton, 

intracellular signaling and transcriptional regulation [65]. The core of the adherens junction 

includes interactions among transmembrane glycoproteins of the classical cadherin 

superfamily, such as E-cadherin, and the catenin family members including p120-catenin, β-

catenin, and α-catenin (Figure 1.10 & Figure 1.11) [65]. Together, these proteins control the 

formation, maintenance and function of adherens junctions [65]. Junctional E-cadherin–catenin 

complexes exhibit several important characteristics that are critical for the proper functioning 

of epithelia.  Homophilic interactions between the extracellular portions of E-cadherin 

molecules help to provide mechanically strong adhesive links between cells in the tissue (Figure 

1.10) [66]. In addition, AJs help to define an epithelial cell’s apical–basal axis in many systems 

and, in doing so, act as a reference point for the coordination of cell polarity across the 

epithelial sheet [66].  The process of AJ formation is dependent on the local activation of the 

Rho family GTPase Rac following contact between neighbouring cells [67] . Rac drives the 

formation of actin-based protrusions in the cell that carry E-cadherin to site of cell-cell contact 

and initiate junction formation [68] [69]. This collaboration between Rho GTPases and AJ 

components continues during AJ maturation, as tight junctions and apical–basal polarity are 

established through the action of both Rac and Cdc42. Interaction between these activated Rho 

family GTPases and Par6 leads to the activation of atypical PKC (aPKC), which has been shown 
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to be required for the maturation of AJs from simple cell–cell adhesions to junctional 

complexes [66] [70]. 

 

 

Figure 1.10 Structure and components of adherens and tight junctions [71] 

Adherens and tight junctions are maintained by the interaction of a number of key proteins. 

Claudins and occludin are the main intercellular proteins of the tight junction that form cell-cell 

contacts between neighbouring cells, with cadherins performing a similar role in adherens 

junctions. Intra-cellular domains of claudin and occludin bind to several additional proteins, 

such as ZO-1, that link the junctions to the actin cytoskeleton of the cell. 

 

Tight junctions have been proposed to have two mutually exclusive functions: a fence 

function which prevents the mixing of membrane proteins between the apical and basaolateral 

membanes; and a gate function which controls the paracellular passage of ions and solutes in-
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between cells [72]. Tight junctions contain two types of transmembrane proteins, occludins and 

claudins, which confer these functions, and associated cytoplasmic proteins that link tight 

junctions to the actin-cytoskeleton (Figure 1.11) [73]. In epithelial cells, tight junctions are the 

most apical component of the junctional complexes, whereas their localisation is more variable 

in endothelia [73]. The two major types of integral membrane proteins are classified according 

to the number of transmembrane domains they contain: four-pass transmembrane proteins 

such as claudins, occludin and tricellulin, and single-span transmembrane proteins including the 

junctional adhesion molecule (JAM) and the Coxsackie and adenovirus-associated receptor 

(CAR) [74]. Lateral association between claudin molecules within the plasma membrane, 

combined with homotypic adhesive interactions between claudin molecules on adjacent cells, is 

thought to underlie the characteristic structure of tight junction strands [75]. The association of 

other integral membrane proteins to the claudin-based strands provides additional complexity 

to tight junction structure. Occludin, the first transmembrane component of tight junctions to 

be identified also localises to the tight junction strands and has been implicated in regulating 

the permeability properties of tight junctions and, in particular, has been linked to the 

regulation of size-selective diffusion [76]. JAMs and related proteins function as adhesion 

proteins, homotypically as well as heterotypically, and regulate various processes such as 

leukocyte transmigration [77]. Underlying the membrane domain is the cytoplasmic plaque, a 

network of densely packed peripheral proteins that connect the integral membrane proteins to 

the underlying actin cytoskeleton as well as to different types of signaling proteins. Prominent 

examples are the zona occludens proteins ZO-1, -2 and -3: each contains multiple protein-

interaction domains, including three PDZ domains and an SH3 domain, through which they 
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demonstrate affinity for a number of cytoskeletal proteins, signalling molecules and membrane 

proteins [78]. 

Tight junctions are dynamic structures and thus a wide array of growth factors, 

cytokines, drugs, and hormones regulate tight junctions and barrier function. For example, the 

glucocorticoid hydrocortisone, prolactin, and unsaturated fatty acids all enhance the tight 

junction barrier partially by increasing the expression of occludin in endothelial and epithelial 

cells [79] [80] [81]. Cytokines and growth factors, such as tumor necrosis factor-α, interferon-γ, 

interleukin-1β, transforming growth factor-α also play a role in influencing TJ permeability and 

many cases lead to development of disease [81]. Cytokine mediated changes in paracellular 

permeability are linked to a multitude of pathologic conditions including inflammatory bowel 

disease (IBD), airway inflammation in asthma and cystic fibrosis, and diseases that perturb the 

blood-brain barrier (BBB) [82] [83] [84]. 
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1.10.1 Epithelial Cadherin (E-cadherin) 

 

E-cadherin is a transmembrane glycoprotein that is one of the primary constituents of 

adherens junctions in epithelial tissues with the protein being encoded in humans by the CDH1 

gene which maps to chromosome 16q22.1. [85]. It is a member of the cadherin superfamily of 

calcium dependent proteins, which each contain five extracellular repeat domains, termed 

extracelluar cadherin (EC) domains. These domains are the primary areas of trans-cadherin 

interactions between neighbouring cells and initiate cell-cell adhesion and formation of the 

adherens junction (Figure 1.11) [86]. The intracellular portion of E-cadherin binds to several 

additional proteins that play a diverse set of roles, from binding to the actin cytoskeleton of the 

cell to intracellular signaling and gene regulation. On the cytoplasmic side of the membrane, a 

bundle of actin filaments is linked to the E-cadherin molecules via a protein complex (Figure 

1.11). Alpha-catenin and either beta- or gamma-catenins are included in this complex [87]. 

Beta- and gamma-catenins share significant homology and bind to a specific domain at the E-

cadherin C-terminus. Alpha-catenin links the bound beta- or gamma-catenin to the actin 

cytoskeleton [87]. The structure of the extracellular domain of classical E-cadherin contains five 

tandem repeats of a 100-residue-amino-acid-motif, and the biggest part of the N-terminal of 

these repeats contains the sites with adhesive activity [86]. This part of the molecule also has 

binding sites for calcium ions situated in the pockets between the repeats. The amino acid 

sequences that form the Ca2+ binding pockets are highly conserved between different 

members of the cadherin family and between different species [86]. Cell-cell adhesion is 

mediated through homotypic interactions of E-cadherin extracellular domains in a process of 
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lateral dimerisation. Parallel dimers are able to interdigitate with dimers from neighbouring 

cells forming the points of adhesion [86]. 

 Malignant carcinoma cells are characterised in general by poor intercellular adhesion, 

loss of the differentiated epithelial morphology and increased cellular motility. Downregulation 

of E-cadherin expression, mutation of the E-cadherin gene, or other mechanisms that interfere 

with the integrity of the adherens junctions, are often observed in carcinoma cells [88]. In 

human tumours, the loss of E-cadherin mediated cell adhesion correlates with the loss of the 

epithelial morphology and with the acquisition of metastatic potential by the carcinoma cells 

[88]. Thus, a tumour invasion-suppressor role has been assigned to this gene [88]. 

 

 

Figure 1.11 Outline of the structure and components of an adherens junction between two 

neighbouring epithelial cells. [89] 

Adherens junctions are initiated by homotypic binding of E-cadherin between neighbouring 

cells. A number of intra-cellular components, such as p-120 catenin and β-catenin, bind to intra-

cellular domains of E-cadherin and link the junction to the actin cytoskeleton of the cell. 
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1.10.2 p120-Catenin 

 

p120 catenin (p120) is an armadillo (ARM) repeat-containing protein (Figure 1.12) that, along 

with the classical cadherins, β-catenin and α-catenin, plays a crucial role in the regulation of 

cell-cell adhesion at adherens junctions (AJs) [90]. p120 plays a pivotal role in both promoting E-

cadherin stability and a sessile cellular phenotype or inducing cell migration and invasiveness of 

E-cadherin–deficient cells through its effects on Rho GTPase activities [91]. p120 family 

members share a conserved central domain composed of 9 ARM repeats and flanking N- and C-

terminal regions. p120 plays a role in stabilising E-cadherin by interacting with the 

juxtamembrane domain of E-cadherin, which consists of 40 amino acids at the N-terminal end. 

It is believed that the binding of p120 to the juxtamembrane domain of cadherin blocks factors 

such as the ubiquitin ligase Hakai and components of the endocytic machinery, which tag and 

target cadherin for destruction and internalisation [92]. Both  loss of expression and 

mislocalised expression of p120 have been observed in tumours [93] [94] . The role of p120 in 

regulating tumours growth, likely occurs as a result of the protein’s interaction with E-cadherin 

[91]. In the mammary epithelial cell line MDA-MB-231, p120 induces the transformed growth of 

E-cadherin–deficient cells by activating a Rac1–MAPK signaling pathway normally activated by 

the adhesion of cells to the ECM. When E-cadherin is re-expressed in this cell line, it is stabilised 

by p120 association and selectively and potently inhibits the growth of epithelial cells [91].  
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Figure 1.12 Structure and functional elements of p120-catenin [90] 

p120 contains 10 central Armadillo repeat domains (orange) that are essential for cadherin 

binding. The carboxy-terminal tail contains at least two serine/threonine phosphorylation sites 

(open lollipops), and alternatively spliced exons A and B (red).  The amino-terminal end 

contains two distinct regions, the coiled-coil domain (blue), and the regulatory domain (green). 

The regulatory domain contains the vast majority of tyrosine (red lollipops) and 

serine/threonine (open lollipops). Exact amino-acid locations of the known sites are listed. Their 

individual roles are unknown, but collectively, they participate in the dynamic regulation of 

p120 adhesive function. 

 

1.10.3 Claudin family of proteins 

 

The tight junction is an intercellular junctional structure that mediates adhesion 

between epithelial cells and is required for proper epithelial cell function [95]. Tight junctions 

control paracellular permeability across epithelial cell sheets and also serve as a barrier to 

intramembrane diffusion of components between cells apical and basolateral membrane 

domains [96]. Claudins are tetraspan transmembrane proteins of tight junctions. They 

determine the barrier properties of this type of cell–cell contact existing between the plasma 

membranes of two neighbouring cells. Claudins can completely tighten the paracellular cleft for 
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solutes, and they can form paracellular ion pores [97]. The claudin family consists of at least 24 

members (Figure 1.13), with each showing a specific organ and tissue distribution [95]. A large 

degree of sequence homology is found between claudins 1–10, 14, 15, 17 and 19. Combined 

with functional findings, these claudins are therefore grouped together as the classical claudins 

(Figure 1.13) [98]. All other claudins are termed non-classical claudins (Figure 1.13). 

 

Figure 1.13 Phylogenic tree of the claudin family of proteins showing levels of similarity 
between different different proteins. In red are the classical claudins and in black are the non-
classic claudins. Highly similar claudins encoded by genes located in close proximity in the 
human genome are highlighted in green. [95] 
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Claudins are tetraspan proteins with relatively short cytoplasmic amino and carboxy 

termini flanking a first extracellular loop of approximately 53 amino acids and a second shorter 

loop of approximately 24 amino acids in length (Figure 1.14) [95]. The cytoplasmic C-terminus 

sequence varies considerably in length (from 21–63 residues) and sequence between isoforms 

[98]. All claudins have C-terminal PDZ binding motifs that enables direct interaction with tight 

junction cytoplasmic proteins such as ZO-1,-2, and -3, multi-PDZ domain protein (MUPP)-1 and 

PALS-1 associated TJ protein (PATJ) (Figure 1.14) [97]. In particular, interactions with the 

cytoplasmic scaffolding proteins ZO-1 and ZO-2 indirectly link claudins to the actin cytoskeleton 

which stabilises the tight junction and is required to maintain their permeability characteristics. 

The function of the short N-terminal domain is yet to be fully elucidated [99]. Just as different 

tissue types tend to have their own unique pattern of claudin expression; different tumours 

have been shown to have distinct patterns of abnormal claudin expression. Claudin 3 and 

claudin 4 have been shown to be overexpressed in certain types of ovarian cancer [100], 

whereas Claudin-1 is overexpressed in colon tumours [101] but loss of expression is observed in 

some breast tumours [102]. A small number of studies have also observed changes in claudin 

expression in both pre-invasive and invasive cervical lesions. Lee et al., 2005  observed a 

gradual increase in claudin-1 and claudin-7 expression in accordance with the progression from 

LSIL to HSIL and invasive cancer. Sobel et al., 2005 observed an increase in claudin-2 and 

claudin-4 expression as well as claudin-1 and -7, in pre-invasive and invasive cervical lesions.  
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Figure 1.14 Schematic representation of the claudin monomer. The model depicts the 
conserved structural features of claudins and some of the known interactions and 
modifications. EL1 and EL2 denote the extracellular loops 1 and 2, respectively. The 
transmembrane domains 1 to 4 (TM1 to TM4) and the regions important for hepatitis C virus 
(HCV) entry and Clostridium perfringens enterotoxin (CPE) binding are shown [95] 
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1.10.4 Claudin-1 

 

Claudin-1 protein is made up of 211 amino acids and has a molecular weight of 22,744 Da. The 

gene encoding the protein is located on chromosome 3q28-q29. Claudin-1 has quite a wide 

distribution in normal human tissue being found in the epidermis of skin [103], distal nephron 

[104] and ovarian epithelium [105], as well as several other tissues [106]. Experiments in 

claudin-1 knockout nude mice have shown that Claudin-1 plays a key role in maintaining the 

epidermal barrier, with claudin-1 deficient mice dying at 1 day post birth from transepidermal 

water loss [107]. Claudin-1 had been observed to bind homophillically with claudin-1 proteins 

on neighbouring cells and can also form heterotypic interactions with Claudin-3 proteins in co-

transfected fibroblast cells [75] [108]. The role of claudin-1 controlling paracellular permeability 

is further highlight by experiments that show Claudin-1 transfected epithlial cell lines display an 

increase in transepithilal electric resistance [109], most likely by decreasing cation permeability 

[110].   

In terms of pathology, Claudin-1 has been observed to have many roles. Claudin-1 is a 

co-receptor for HCV infection of human hepatoma cell lines and is the first factor to confer 

susceptibility to HCV when ectopically expressed in non-hepatic cells. Discrete residues within 

the first extracellular loop (EL1) of CLDN1, but not protein interaction motifs in intracellular 

domains, are critical for HCV entry [111]. Dysregulation of claudin-1 expression itself has been 

associated with pathogenesis in many different tumours. Studies have identified that Claudin-1 

overexpression is associated with an increased invasiveness in oral carcinoma cells through 

upregulation of several matrix metalloproteases [112] [113]. Claudin-1 expressing colon 
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carcinoma cells that underwent siRNA mediated knockdown of Claudin-1 displayed significantly 

decreased anchorage-independent growth and invasion with a significant decrease in MMP-9 

activity [114]. Conversely, claudin-1 overexpression suppresses metastasis and invasion in lung 

cancer cell lines [115]. 

 

1.10.5 Claudin-7 

 

Claudin-7 is a member of the classical claudin family and is a protein made up of 211 amino 

acids with a molecular weight of 22,390 Da [116]. Like other claudins, claudin-7 expression is 

tissue specific with expression observed in the nephron, breast and corniel epithelium [106]. 

Claudin-7 is essential for NaCl homeostasis in distal nephrons, and the paracellular ion transport 

pathway plays an indispensable role in keeping ionic balance in kidneys.  In claudin-7 knockout 

mice severe salt wasting, chronic dehydration, and growth retardation was observed; with 

knockout mice surviving no longer than 12 days [117]. The role of claudin-7 in regulating 

cellular paracellular permeability is further highlighted by experiments showing that claudin-7 

transfected epithelial cells display increased TEER values [109] and also experiments in LLC-PK1 

cells that show claudin-7 overexpression decreases paracellular permeability to Cl- and 

increases paracellular permeability to Na+ [118].   

 The role of claudin-7 in disease and tumourigenesis is becoming clearer, with aberrant 

expression observed in several different tumour types. Increased expression of claudin-7 has 

been observed in gastric [119] and ovarian tumours [120]. In contrast, reduced expression has 

been observed in prostate [121] and oesophageal tumours [122]. In vitro studies using cell lines 
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have helped shed further light on how claudin-7 drives tumourigenesis.  Knockdown of claudin-

7 expression in oesophageal squamous cell carcinoma cells induces loss of E-cadherin, along 

with increased cell growth and enhanced cell invasion [123]. Similarly, claudin-7 inhibits the 

migration and invasion of lung cancer cells through a mechanism involving the ERK/MAPK 

signalling pathway [124]. In contrast claudin-7 may have tumour promoting properties in other 

cell lines, with overexpression of claudin-7 promoting invasion in ovarian cell lines [125] and 

also in colon carcinoma cell lines [126].  

 

1.10.6 Neural-cadherin (N-cadherin) 

 

N-cadherin is encoded in humans by the CDH2 gene and is similar to other members of the 

classical cadherin super-family in that it is a calcium dependent cell-cell adhesion glycoprotein 

comprising five extracellular cadherin repeats, a transmembrane region and a highly conserved 

cytoplasmic tail [127]. In embryogenesis, N-cadherin is a key molecule during gastrulation and 

neural crest development, where N-cadherin mediated contacts activate several pathways like 

Rho GTPases and function in tyrosine kinase signalling [128]. N-cadherin is expressed by a group 

of cells in the developing embryo known as the neural crest which are a pluripotent population 

of cells that arise from the dorsal part of the neural tube during or just before closure. After an 

epithelial-mesenchymal transition (EMT), they migrate over long distances along distinct 

pathways to many different regions of the embryo and contribute to a diverse array of tissues 

and cell types, such as the peripheral nervous system, melanocytes, some endocrine cells, 

craniofacial cartilage and bone [128]. In adult tissues N-cadherin expression is restricted to 
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neural tissue, retina, endothelial cells, fibroblasts, osteoblasts, mesothelium, myocytes [128]. In 

neural tissue it is involved in a number of key events that range from the control of axonal 

growth and guidance to synapse formation to synaptic plasticity [129].  

 N-cadherin has also been implicated in the tumorigenesis of several epithelial and other 

malignancies [130]. One of the methods by which this process is driven is through a 

downregulation of E-cadherin and upregulation of N-cadherin; termed a ‘cadherin switch’ 

[131]. The effect of E-cadherin downregulation is that cells can lose their cohesive structure and 

can more easily detach and disseminate from their original site. N-cadherin up-regulation is 

thought to promote tumourigenesis in a number of ways. Epithelial cell lines with 

overexpressed N-cadherin have been shown to have increased motility and have a greater 

invasive and metastatic potential [132] [133]. The increased invasiveness and metastatic 

behaviour of N-cadherin over-expressing cells may in part be due to N-cadherins ability to 

interact with the Fibroblast growth factor receptor and enhance its downstream signalling [132] 

[134]. In addition to modulating the invasive characteristics of tumour cells, expression of N-

cadherin might also promote metastasis by facilitating interactions with the endothelium. 

Endothelial cells express two cadherins: VE-cadherin, which is localised in junctions and serves 

to organise the junctional complex in these cells, and N-cadherin, which is extrajunctional and 

has an unclear role [131]. Endothelial cells may use N-cadherin to interact with other N-

cadherin-expressing cells such as vascular smooth muscle cells and/or pericytes [135]. It is 

equally likely that tumour cells that express N-cadherin have an increased ability to interact 

with endothelial cells and that this interaction may enable metastasis by allowing the tumour 

cells access to the vasculature [131]. 
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N-cadherin has now been identified as potential novel target for cancer therapy. A 

peptidic N-cadherin antagonist (ADH-1) has been developed and has entered clinical testing as 

a potential novel cancer therapy [136]. ADH-1 has been shown to inhibit cell growth and 

motility in vitro, and tumour growth and invasion in vivo [136]. In addition, Erez et al. 2004 

[137] have shown that treatment of endothelial cells, which express both N-cadherin and VE-

cadherin, with ADH-1 induces apoptosis in a cell-density-dependent manner and suggest that 

ADH-1 might be effective at preventing tumour angiogenesis. 

 
 

1.10.7 Snai1 (Snail) 

 

Snail is a part of a family of zinc fingered proteins that play an important role in the regulation 

of development via its ability to downregulate the expression of ectodermal genes within the 

mesoderm of the embryo [138]. The protein is encoded in humans by the SNAI1 gene localised 

on the chromosome 20q13.2, and encodes a protein with 264 amino acids and 29.1kDa [138] 

While the protein undoubtedly is necessary for successful embryonic development, highlighted 

by the fact that Snail null mice die during embryogenesis [139], the protein may promote 

tumourigenesis in a process termed epithelial to mesenchymal transition (EMT) [140]. EMT is a 

hypothesised process that describes how epithelial cells can lose their normal cohesive 

structure and adopt a more motile and invasive phenotype that is commonly observed in 

malignant cells. Snail can drive this process by repressing the expression of proteins normally 

associated with the epithelial phenotype such as E-cadherin and Claudin-1. Snail is able to 

repress the expression of E-cadherin by binding to certain E-box motifs in the proximal E-
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cadherin promoter and negatively regulating the expression of the gene [141]. Snail has been 

shown to repress Claudin-1 expression by a similar mechanism in MDCK (Madin–Darby canine 

kidney) cells, with cells overexpressing Snail showing a dramatic down-regulation of Claudin-1 

protein levels and a significant reduction of Claudin-1 mRNA [142]. Additionally Snail has been 

recently proposed to act as a cell survival factor and inhibitor of cellular senescence in some 

prostate carcinoma cells lines, with long-term siRNA mediated knockdown of Snail inducing a 

severe decline in cell numbers of transfected cells [143]. Currently there is very little known 

about the role SNAIL may play in cervical neoplasia, or about it’s expression in pre-invasive and 

invasive cervical lesions. An IHC based study of 144 cervical tissue samples, 28 normal tissue 

116 SCC, by Zhao et al 2013., found an increase in SNAIL expression in SCC samples compared 

to normal cervical tissue, but there are very few other studies published  to corroborate these 

findings. 
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1.11 Epithelial to Mesenchymal Transition (EMT) 
 

Epithelial tissues line the cavities and surfaces of structures throughout the body. The 

cells that make up the epithelium are typically closely packed together in continuous cohesive 

sheets that are attached to a basement membrane, which acts as a scaffold for the epithelial 

cells to grow [144]. Epithelial cells are normally polarised, or have distinct domains at apical and 

basolateral portions of their plasma membranes. Each plasma membrane domain has a distinct 

protein composition, giving them distinct properties and allowing directional transport of 

molecules across the epithelial sheet [144]. Mesenchymal tissue is a form of connective tissue 

usually found in the mesoderm germ layer of the developing embryo. It consists of 

undifferentiated, motile, non-polarised, loosely associated cells surrounded by a ground 

substance ECM (Extra Cellular Matrix), containing reticular fibers [145] 

Epithelial to mesenchymal transition (EMT) is a process by which an epithelial cell loses 

the cohesiveness and apical-basolateral polarity normally associated with it, and adopts 

characteristics usually associated with a mesenchymal phentotype, such as enhanced migratory 

capacity, invasiveness, and greatly increased production of ECM components [146]. EMT is a 

process that occurs normally during several phases of embryogenesis, including implantation 

and placenta formation [147] and neural crest formation [148]. EMT also occurs is tissues that 

have been damaged or injured and are undergoing fibrosis. In mouse models this type of EMT is 

mediated by inflammatory cells and fibroblasts through secretion of pro-inflammatory 

cytokines, growth factors and matrixmetaloproteases (MMPs) [149]. Epithelial cells come under 

the influence of these signalling molecules and, acting together with the inflammatory cells, 
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induce basement membrane damage and focal degradation of type IV collagen and laminin 

[149] [150]. Although the concept of EMT was originally devised to explain various processes 

that occur during embryogenesis, the concept has since been applied as a model for cancer 

progression and metastasis [151].  It was observed that a number of processes that occur 

during EMT in embryogenesis such as, loss of epithelial markers, loss of cell polarity, 

cytoskeleton reorganisation and activation of MMPs, closely resembled those that occurred 

during tumourigenesis in epithelial malignancies (Figure1.15) [151].  It is therefore possible that 

the understanding of comparisons of EMT signaling pathways in embryological development 

and cancer progression may make it possible to identify novel pathways specific to cancer 

progression and to suggest new therapeutic strategies in cancer therapy [152] [153]. 

 

Figure 1.15 Alterations of the apical–basal and planar cell polarity pathways in epithelial–
mesenchymal transitions. The EMT signature is characterised by the convergent loss and 
relocalisation of epithelial markers (e.g. E-cadherin, β-catenin), and gain of mesenchymal 
markers (e.g. N-cadherin, α-SMA, vimentin and fibronectin) [154]. 
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Multiple complex signaling systems are required for induction of EMT because epithelial 

cells undergoing EMT must undergo both functional and morphologic changes. In the case of 

many carcinomas, EMT-inducing signals emanating from the tumour-associated stroma, notably 

HGF, EGF, PDGF, and TGF-β, appear to be responsible for the induction or functional activation 

in cancer cells of a series of EMT-inducing transcription factors [150]. Transforming growth 

factor beta (TGF-β) in particular is thought to play a key role in EMT promotion [150] and was 

first identified as an inducer of EMT in experiments on mammary epithelial cells by Miettinen et 

al. 1994 [155].  TGF- β induces EMT through multiple signalling pathways including direct 

phosphorylation of Smad 2 and Smad 3 (Figure 1.16) [153].  SMAD are small signal transduction 

proteins that activate several signaling pathways in the nucleus. TGF-β also activates other 

EMT-related signal pathways including the Wnt, Integrin and Notch pathways (Figure 1.16) 

[153] . TGF-β and other growth factors also serve to activate a number of transcription factors 

such as Snail, Slug, zinc finger E-box binding homeobox 1 (ZEB1), Twist,  and FOXC2 [153]. Loss 

of E-cadherin expression is a considered a key step in EMT and several of these transcriptional 

factors are able suppress expression of E-cadherin. Snail and Zeb bind directly to E-box motifs in 

the E-cadherin promoter [156], whereas Twist and Goosecoid, repress E-cadherin expression 

indirectly [152] [157].  

 Loss of cell polarity is also a crucial step in EMT. In epithelial cells, three protein 

complexes partake in establishing and maintaining apicobasal polarity Par, Crumbs and Scribble 

[158]. SNAIL alters epithelial cell polarity by repressing the transcription of Crumbs3 and 

abolishing the localisation of both Par and Crumbs complexes at  tight junctions [159]. Similarly, 

Zeb1 directly represses the transcription of cell polarity genes, including Crumbs3, Pals1-
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associated tight junction proteins (PATJ), and the member of the Scribble complex Lethal giant 

larvae (Lgl2) [160]. TGF-β contributes to the loss of cell polarity during EMT in two ways, 

through the canonical pathway by inducing Snail and Zeb genes expression and through a 

noncanonical pathway that involves the downregulation of Par3 expression and the Par6-

mediated degradation of RhoA and local alteration of the actin cytoskeleton [157] [161] [162].   

An additional component to the regulation of EMT is the effect of small micro RNAs 

(miRNAs) that can play a role in inhibition or promotion of EMT inducers (Figure 1.16). Micro 

RNAs are small non-coding RNA molecules which primarily influence post-transcriptional 

regulation of gene expression. For example, microRNA 200 (miR200) and miR205 inhibit the 

repressors of E-cadherin expression, ZEB1 and ZEB2, and thereby help in maintaining the 

epithelial cell phenotype (Figure 1.16) [163]. Another miRNA, miR-148a, promotes the 

expression of  E-cadherin and reduces the levels of mesenchymal markers (N-cadherin, 

fibronectin or vimentin) in hepatoma cells by inhibiting SNAIL expression [164]. In contrast, 

miR-9, a MYC/MYCN-induced miRNA, directly targets the E-cadherin-encoding mRNA  leading 

to increased cell motility/invasiveness in breast tumour cells [165]. 
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Figure 1.16 Depiction of signal pathways regulating the epithelial–mesenchymal transition 

(EMT) [153] 

Transforming growth factor (TGF)-β signals toward the SMAD pathway or the PI3K/AKT axis. 

Wnt ligands block β-catenin degradation leading to excess β-catenin entering the nucleus and 

upregulating SLUG and SNAIL transcription. In integrin signaling, overexpression of ILK leads to 

nuclear translocation of β-catenin. Signals via RTK lead to EMT through the Ras-Raf-MAPK 

pathway or the PI3K/AKT pathway. 
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1.12 Hypothesis and aims of this study 
 

 The hypothesis of this study is that the expression of a number of tight and adherens 

junction proteins are altered in HPV induced cervical lesions.  Altered protein expression within 

adherens and tight junctions leads to disruption of their normal structure and function leading 

to a loss of cell polarity and cohesion. Loss of cell cohesion and polarity allows dysplastic cells to 

adopt invasive and motile characteristics that may allow dissemination of cells from their site of 

origin. 

 

 Overarching aim 

o To elucidate mechanisms by which HPV induced neoplastic cervical cells invade 

surrounding tissue and form distant metastases 

 Discover novel biomarkers indicative of disease progression 

 Discover novel tumourigenic pathways that may be of use as targets for 

new cervical cancer treatments. 

 

 Specific aims 

o To construct tissue microarrays containing normal and neoplastic cervical tissue 

and examine the expression profile of several integral tight and adherens 

junction proteins 

 

o To detect and genotype HPV DNA in cervical samples and to look for an 

association between specific HPV genotypes and aberrant expression of 

adherens and tight junction proteins 

 

o To analyse the pathogenesis of aberrant  tight and adherens junctions protein 

expression in cervical cancer cell models 
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2 Materials and Methods 
 

2.1 Introduction 
 

2.1.1 Tissue Microarrays (TMAs) 

 

Tissue microarrays are conventional paraffin blocks containing several different tissue samples 

that have been transferred from other donor tissue blocks. They are produced by using a 

needle to biopsy a standard histological section and placing the core into an array on a recipient 

paraffin block (Figure 2.1) [166]. The idea of studying a large number of formalin fixed and 

paraffin wax embedded tissues simultaneously in a single histological section was proposed as 

far back a 1986 by Battifora et al.,  [167], although this so called ‘sausage’ technique described 

could only include a limited number of samples. The microarray technique, described by 

Kononen et al. 1998 [168], elegantly eliminated this drawback by the introduction of a high 

precision punching instrument, which enabled the exact and reproducible placement and 

relocalisation of distinct tissue samples. Tissue microarray cores are typically between 0.6 and 

2.0mm in diameter while arrays may consist of anywhere from 40 to 1000 cores, depending on 

core size. Arrays can be utilised for a wide range of techniques including histochemical stains, 

immunologic stains with either chromogenic or fluorescent visualisation, in situ hybridisation 

(including both mRNA ISH and FISH), and even tissue micro-dissection techniques [166]. 

 There are a number of advantages to using TMAs as compared to normal histological 

tissue blocks. The technique allows a large number of samples to be examined on one slide and 

a result of this it greatly reduces the amount of reagents and other materials that need to be 
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used in any assay. It also reduces the variability that may be associated with an assay examining 

a large number of samples, as all samples are treated in an identical manner and processed in a 

single batch. This method also preserves the original tissue block should any further 

examination of the tissue be necessary in the future. 

 

 

Figure 2.1  Schematic diagram of tissue microarray construction [169]. 

A large number of individual samples from either frozen tissue, formalin fixed paraffin 

embedded tissue or cell line are embedded into a single recipient tissue block. The recipient 

tissue block can then be sectioned and examined using standard histological techniques. 
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2.1.2 Immunohistochemistry 

 

The publication of a paper by Coons et al. 1941 [170] describing a technique for detecting 

cellular antigens in tissue sections using fluorescently labeled antibodies marked the beginning 

of immunohistochemistry (IHC). Since then, IHC has become a valuable tool in both diagnosis 

and research of infectious and neoplastic diseases. The basis of IHC is very simple and bridges 

three scientific disciplines: immunology, histology, and chemistry. The fundamental concept 

behind IHC is the demonstration of antigens (Ag) within tissue sections by means of specific 

antibodies (Abs). Once antigen–antibody (Ag-Ab) binding occurs, it is demonstrated with a 

coloured histochemical reaction visible by light microscopy or using fluorochromes visualised 

under  fluorescence microscopy [171]. There are a number of conditions that are essential for 

the detection of an antigen using immunohistochemistry, the antigen must be preserved in the 

tissue in the same context as it was during sampling, antibody-antigen binding must be specific 

and sensitive and there must be efficient labelling and detection of the antibody [172]. Various 

processes that occur during tissue processing, such as fixation and embedding can cause 

antigen to be masked, depleted or lost entirely. One of the most common forms of fixation, 

formalin fixation, causes inter and intra molecular protein cross linking, which can mask the 

antigen present in the tissue [172]. In order to overcome this, methods of antigen-retrieval 

were developed. Protease-induced epitope retrieval (PIER) was introduced by Huang et al., 

1976 [173].  Many enzymes have been used for this purpose, including trypsin, proteinase K, 

and pepsin. Heat induced epitope retrieval (HIER) was introduced by Shi et al. In 1991 [174], 

their method involved heating the sections in a boiling solution of a heavy metal salt. Buffer 
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using heavy metals were gradually phased out in favour of less toxic alternatives such as citrate 

and EDTA buffers. 

 

2.1.3 Avidin-Biotin Conjugate Method (ABC) Method 

 

This immunhistochemical method was developed by Hsu et al. 1981 [175] to give much greater 

sensitivity than the standard avidin-biotin method. This method can be direct or indirect 

depending on whether biotin is bound to the primary antibody (direct) or to a secondary 

antibody (indirect). With the indirect method the primary antibody first binds to the antigen, 

secondly the biotinylated secondary antibody binds to the primary. Then complexs of avidin 

and biotin horseradish peroxidase conjugate bind to the biotinylated secondary. As the avidin 

contains more than one biotin-horse radish peroxidase it serves to bring multiple labels to the 

site of the antigen [176]. Once the enzyme label has been localised to site of the antigen the 

substrate of the enzyme is added. This results in a product being formed that can be visualised 

using light microscopy. An example of this process is the reaction between the enzyme horse-

radish peroxidase, it substrate hydrogen peroxidase and the chromogen diaminobenzadine 

(Figure 2.2). 
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Figure 2.2 Detection of antigen using the Avidin-biotin complex method in conjuction with 

DAB 

Primary antibody binds to antigen followed by a biotinylated secondary binding to the primary 

antibody. Avidin-biotin-HRP complex then binds to the biotinylated antibody localising the label 

to the site of the antigen. DAB and H2O2 are added leading to the development of an insoluble 

brown product. 
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2.1.4 Stable and transient transfection 

 

 Transfection is a procedure that involves the introduction of foreign nucleic acids into 

cells to produce genetically modified cells. The process was first described in 1965 by Vaheri 

and Pagano and has since become a widely used and valuable tool in biomedical research. By 

selectively enhancing or inhibiting the expression of a certain gene in cells, the technique allows 

the study of gene function and offers insights into the role of certain genes in many different 

biological processes and diseases. 

 Transfection methods are broadly classified into three groups based on the nature of 

the technique used to deliver foreign nucleic acids into the target cell, with the ideal method 

having high transfection efficiency, low cell toxicity, minimal effects on normal physiology, and 

being easy to use and reproducible [177].  Biological methods typically use a viral vector, most 

commonly based on adenoviruses, to deliver nucleic acid into a target cell. Biological methods 

usually have high transfection efficiency but can suffer from high cytotoxicity [178]. Chemical 

methods allow entry of foreign DNA into the target cell by forming positively charged 

complexes with the foreign DNA that is attracted to the negatively charged cell membrane. 

Various different chemical transfection techniques are utilised including calcium phosphate 

[179] and cationic lipid [180] and newer methods such as Genejuice, which uses a novel 

polyamine based  on a non-toxic cellular protein. Chemical methods are generally cheap and 

easy to use but can suffer variable transfection efficiency based on cell type and condition and 

some of the chemicals used can be cytotoxic [177]. Physical transfection methods offer several 

different approaches to transfecting DNA including electroporation, biolistic particle delivery 
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and direct injection [181]. Electroporation is one of the most commonly used methods of 

physical transfection. First described by Neumann et al. 1982 [182] this method uses an electric 

field to create small temporary destabilisations in the cell membrane that causes it to become 

highly permeable to exogenous molecules, such as DNA, in the surrounding medium [181]. 

Optimisation of electroporation can be laborious and the equipment is expensive compared to 

some chemical methods, however once optimised it offers fast and efficient method of 

transfection. 

 Transfected nucleic acids can be expressed stably or transiently. In a transient 

transfection the introduced nucleic acids are not integrated into the chromosomal DNA and 

thus persist only for a limited time, usually up to 72 hrs, as the transfected nucleic acid is not 

copied during cell division and becomes diluted after repeated cell division. To achieve a stable 

transfection, cells which integrate the exogenous nucleic acid into the chromosomal DNA are 

selected, using a selection marker present in the expression vector, ensuring long term gene 

expression and inheritance in cell progeny (Figure 2.3). Foreign DNA integrates in the 

chromosomal DNA randomly at one or very few sites [183] and site integration influences the 

transcription rate of the gene of interest [184]. Cellular DNA in the nucleus is combined with 

proteins to help protect the DNA from damage, to control gene expression and DNA replication 

and to ensure its fits properly within the nucleus.  This compact structure is called chromatin 

and is found in two varieties: euchromatin and heterochromatin [185]. Euchromatin consists of 

DNA complexed to several nucleosomes which in turn are made up of proteins called histones. 

Histones have small sequences of DNA wrapped around them loosely allowing RNA polymerase 

and gene regulatory proteins to bind to DNA sequences and allow gene transcription [185]. In 
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heterochromatin the DNA is tightly wound and packed thus preventing any transcription of 

genes present in the chromatin.  The site at which transfected DNA becomes integrated is thus 

of critical importance. If the transfected DNA becomes integrated into the heterochromatin, it 

is unlikely that any expression of the target gene will occur, whereas if it becomes integrated 

into cellular euchromatin, expression of the target gene is much more likely. If transfected DNA 

successfully integrates into to cellular euchromatin, a number of factors can still influence 

whether the gene becomes properly expressed. Integration of the DNA can cause a deleterious 

rearrangement of the endogenous DNA at the site of integration potentially leading to 

deletions, duplications and translocations which can interfere with coding sequences [186] 

[187] [188] [189]. The endogenous genome does seem to have specific areas however, in which 

DNA integration is likely to occur termed “integrational hotspots”[189].   

 The development of genome manipulation and the establishment of stable cell lines is a 

pivotal achievement in molecular biology, allowing large scale recombinant protein production, 

analysis of gene function and regulation and giving rise to potential new treatment for several 

diseases.  
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Figure 2.3 Outline of stable and transient transfection principals 

Diagram showing a stable transfection (A) with foreign DNA (red wave) passing through the cell 

membrane and into the cell nucleus where it becomes integrated into the host genomic DNA 

(black wave) and expressed sustainably. In a transient transfection foreign DNA in introduced to 

the nucleus and translated, but not integrated into the host genome. Foreign mRNA may also 

be transfected and transcribed in a transient transfection. Hexagons represent expressed 

proteins from transfected nucleic acids. [177] 
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2.1.5 RNA interference (RNAi) 

 

RNA-mediated interference (RNAi), also referred to as post transcriptional gene silencing 

(PTGS), is a simple and rapid method of silencing gene expression. The silencing of a gene is a 

consequence of degradation of RNA into short RNAs that activate ribonucleases to target 

homologous mRNA. The first observations of the RNAi pathway was in the 1980s by Ecker et al 

1986, who observed the transcription of antisense RNA was found to effectively block the 

expression of target genes in transgenic plants. Fire and Mello were the first to identify the 

process by which gene silencing occurred and to identify double stranded RNA as being the 

causative agent in gene silencing [190]. The experiments of Baulcombe and Hamilton [191] 

offered further understanding of the process by identifying that small 21-25 nueclotide RNA 

fragments cleaved from the larger double stranded RNA, later named siRNA, were responsible 

for gene silencing. While initial studies utilised introduction of exogenous dsRNA, it is now clear 

that higher eukaryotes contain a large number of genes that encode small RNAs referred to as 

micro-RNAs (miRNAs) [192]. Both miRNAs and exogenous dsRNAs mediate their effects at the 

RNA level, miRNAs by inhibiting translation and exogenous dsRNAs through degradation of 

target RNAs [192] [193]. Today RNAi is a commonly used tool in many areas of molecular 

biology, medical research and biotechnology. 

 The process of RNAi begins with activation of a ribonuclease called Dicer that initiates 

the cleavage of dsRNA to siRNA (Figure 2.4) [194]. These si-RNA molecules are double-stranded 

fragments of 20–25 base pairs with a 2-nucleotide overhang at the 3' end [195]. After 

processing by Dicer, mature siRNAs  associate with argonaut and other proteins to create an 
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RNA-induced silencing complex (RISC) [196]. RISC possess endonuclease activity that degrade 

mRNA complementary to the attached siRNA, with argonaut proteins being  primarily 

responsible for the endonuclease activity of RISC [196].  RNA molecules produced by the dicer 

are double stranded and thus the RISC must bind preferentially to only one of the strands to 

prevent degradation of two separate mRNA targets. To prevent this occurring argonaut protein 

unwinds the siRNA and binds preferentially to only one strand of the RNA, termed the guide 

strand, and the other strand is degraded during RISC activation [197]. The guide strand is 

thought to be selected based on the differences on the thermodynamic stability of the 5' end, 

with the more stable 5' end forming the guide strand and the strand with the less stable 5' end 

being degraded [198]. 

Because of its specificity and efficiency, RNAi is considered as an important tool not only 

for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs 

of disease-related genes [199]. 
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Figure 2.4 Schematic diagram of RNAi pathway, detailing siRNA cleavage by Dicer, RISC 
recruitment and site-specific cleavage of target mRNA. [200] 

The process of RNA interference begins with cleavage of long double stranded RNA into small 
siRNA strands by Dicer.  A number of enzymes then associate with the siRNAs to form RNA-
induced silencing complex (RISC). RISC unwinds the siRNA into a single stranded RNA molecule 
and guides it to its specific mRNA target, resulting in cleavage of the target mRNA. 
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2.2 Sample collection and evaluation, selection of cohort 
 

2.2.1 Sample collection 

 

Ethical approval was received from the Rotunda Hospital to collect patient information and 

formalin fixed paraffin embedded (FFPE) cervical tissue samples. Ethical approval was also 

obtained from Dublin Institute of Technology ethics committee for this program of research to 

proceed. Under the terms of the ethical approval, access only the patient number and disease 

state of the sample were granted and no follow up or patient outcome information was 

provided. Before collection of any tissue blocks, haemotoxylin and eosin (H&E)  stained sections 

cut by the pathology laboratory Rotunda Hospital, from retrospective cervical biopsy samples 

(sent between 2005 and 2007), were examined in order to identify tissue blocks that contained 

normal cervical tissue, pre-cancerous and invasive lesions and had large enough lesions to allow 

for  tissue microarray production.  Following microscopic examination of the H&Es, samples 

with at least two blocks that contained sufficient lesions were identified (one block for tissue 

microarray production, one for evaluation of HPV status) and their corresponding patient and 

block numbers recorded. The appropriate tissue blocks were then retrieved from the hospitals 

archival storage area.  As patient information is confidential, all patient samples were assigned 

an arbitrary number for the duration of this study.  

  

 

 

 



74 
 

2.2.2 Haematoxylin and Eosin staining and lesion identification  

 

The tissue blocks collected from the hospital had previously been sectioned by the pathology 

laboratory, Rotunda Hospital, and in order to ensure that the area containing the lesion was still 

present in the tissue blocks, it was necessary to cut a new section and perform a haemotoxylin 

and eosin stain from each block. 5µm tissue sections were cut, floated onto a glass slide and 

melted for 2 hours in an oven at 60˚C. The sections were then de-waxed for 5 minutes each in 

two separate xylene baths, two separate absolute alcohol baths and a spirit bath before being 

placed in water. Sections were placed in Mayer’s haematoxylin for 1 minute before being 

washed in warm water for 1 minute. Sections were placed in an acid-alcohol solution for 2 

seconds before being immediately washed in water for 1 minute. Sections were then placed in 

a 1% eosin solution for 5 minutes before being washed in water for 1 minute. Following this, 

the sections were dehydrated by placing sections for 5 minutes each in spirit, absolute alcohol 

(two baths) and xylene (two baths). Sections were mounted with DPX and left to dry on a flat 

surface. Upon examination of the sections, 188 cases were deemed to have adequate lesions 

present of which 160 with the greatest amount of lesion present were selected for TMA 

production and evaluation of HPV status, as each TMA required 40 cases and 4 TMAs were 

produced. 
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2.3 Construction of tissue microarrays and immunohistochemical 

staining 

2.3.1 Tissue microarray instrument/design 

 

The instrument used in the production of the tissue micro-arrays was a Beecher Instruments 

Manual Tissue Array MTA-1 (Beecher Instruments, Wisconsin, USA). The needles used to 

produce the cores were model number MP10, 1.0mm Manual Tissue Array Needles, produced 

by Beecher Instruments. Each tissue micro-array was designed to have: 12 cases of cervical 

carcinoma, 12 cases of high-grade squamous intraepithelial lesion, 12 cases of low-grade 

squamous intra-epithelial lesion and 4 cases of non-neoplastic cervical epithelium, giving a total 

of 40 cases per TMA. In turn, each case was sampled in triplicate giving a total of 120 cores per 

TMA. 

 

2.3.2 Identification of lesion and tissue block orientation 

 

Sampling the correct area is of critical importance during tissue-microarray production. To 

ensure the correct area is sampled, H&Es from every donor tissue block were examined and the 

area of interest was clearly circled on the glass slide. During construction of tissue microarrays 

the slide was overlaid on the tissue block to ensure proper orientation, and to ensure the area 

of the tissue block was correctly sampled.  
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2.3.3 Tissue microarray (TMA) production 

 

A blank recipient paraffin block was placed in the receptacle of the array machine (figure 2.1), 

before then being secured by tightening of the clamp screws. A core was removed from the 

recipient paraffin block and the tissue extraction needle was selected. Next the donor block 

bridge (figure 2.1) was placed above recipient block clamp before the desired tissue block with 

appropriate overlying H&E slide was placed on the bridge. The punch was aligned to the area of 

interest on the tissue block using the overlying H&E template. When correctly aligned, the 

punch was pushed down steadily to remove the area of interest from the donor block. The 

bridge holding the donor block was then removed before the needle was slowly lowered to just 

above the previously punched hole in the recipient block. Once aligned, the stylus of the needle 

was pushed down to force the core into the hole in the recipient block, leaving the core 

protruding approximately 1mm above the surface of the recipient paraffin block. The paraffin 

extraction needle was then selected before the horizontal axis of the micrometer (figure 2.1) 

was adjusted to a position 1.5mm beside the previous punch. This process was then repeated 

until all the required samples had been added to the recipient block. When all the samples had 

been added, the recipient block was placed in a 56˚C oven for 15-20 minutes until the wax had 

softened. A glass slide was then placed on the surface of the block and pushed down firmly and 

evenly to ensure all cores are embedded evenly and surface of the block was flat. 
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Figure 2.5 Schematic diagram of the Beecher Instruments MTA-1 tissue micro-array machine.  

The instrument contains a receptacle into which the recipient paraffin block is placed and 

secured. The small punch needle is used to remove a core from the recipient block while the 

large punch removes a sample from the donor block, to a depth controlled by the depth stop. 

The micrometer is used to set the distance between each sample inserted into the recipient 

block. 
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2.3.4 Antibody Optimisation 

 

Optimal staining conditions were determined for all antibodies listed in table 2.1. Various 

antibody dilutions (ranging from 1:25 up to 1:1000 depending on the antibody) were used with 

a number of different antigen retrieval methods to assess which dilution worked best with 

which antigen retrieval technique. A number of different antigen retrieval techniques were 

used, protease induced epitope retrieval (PIER), heat induced epitope retrieval (HIER) (using a 

microwave oven) and a combination of these two methods. The buffers used for HIER were 

10mmol/l citrate buffer (pH6) and 1mmol/l EDTA buffer (pH8) 

Table 2.1 Antibodies utilised in this study for IHC based detection of biomarkers. 

Protein Antibody Clone Company Raised In 

E-cadherin NCH-38 Dako Mouse (Monoclonal) 

Beta-Catenin Β-catenin-1 Dako Mouse (Monoclonal) 

p120-Catenin EPR357(2) Epitomics Rabbit (Monoclonal) 

N-cadherin EPR1792Y Epitomics Rabbit (Monoclonal) 

Snail Ab63371 Abcam Rabbit (Polyclonal) 

Claudin-1 51-9000 Invitrogen Rabbit (Polyclonal) 

Claudin-7 34-9100 Invitrogen Rabbit (Polyclonal) 

Occludin 33-1500 Invitrogen Mouse (Monoclonal) 

 

Table displays the clone, manufacturer and the species the antibody was raised in for all of the 

antibodies used in this study. 
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Antigen Retrieval 

(i) Protease Enzyme Treatment 

After dewaxing, sections were covered with 0.1% protease (Sigma) in PBS that had been heated 

to 37˚C. Sections were incubated at 37˚C for 5 minutes. After incubation sections were washed 

in distilled water before continuing with ABC protocol 

(ii) Microwave Oven Treatment 

After dewaxing, sections were placed in 10mmol/l citrate buffer pH6 (appendix) or 1mmol/l 

EDTA buffer (appendix). Sections were then heated in a microwave for 12 minutes and left to 

cool for 20 minutes. Sections were washed in distilled water before continuing with the 

standard ABC protocol. 

(iii) Microwave + Protease treatment 

Sections were treated as per microwave oven protocol as described in 2.3.4 (ii). Following 

washing with distilled water, 0.1% protease in PBS (appendix) was applied to sections for 30 

seconds. Sections were washed with PBS before continuing standard ABC protocol. 

 

2.3.5 Avidin-biotin  Complex Immuno-Peroxidase method 

 

 Using a standard histology microtome (Lecia), 5µm cervical sections were cut from 

formalin-fixed paraffin tissue blocks. Folds or creases were removed by placing the sections in a 

42°C water bath for 10 to 15 seconds before mounting sections on Superfrost Plus glass slides 

(Thermo-fisher).  Sections were then placed in a 60oC oven for one hour in order to melt the 

paraffin, before being dewaxed in two washes of xylene for 5 minutes each. Sections were then 
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rehydrated by placing slides in two washes of 100% ethanol, one wash of 95% ethanol and one 

wash of distilled water for five minutes each. Antigen retrieval, using the methods previously 

described, was then carried out. The optimum antigen retrieval method that was determined 

for each antibody can be seen in table 3.1. Following antigen retrieval, sections were washed in 

distilled water before blocking of endogenous peroxidases was carried out by treating sections 

with 3% hydrogen peroxide in methanol for 5 minutes. Sections were then washed in 

phosphate buffered saline (PBS) 3 times, before being treated with the Vectastain Elite ABC kit 

(Vector laboratories).  Normal horse serum, diluted 1:200 in PBS, was applied to the sections 

for 5 minutes. Sections were drained and approximately 500µl of specific primary antibody was 

applied and incubated at room temperature for 1 hour. Following 3 washes with PBS, the 

biotinylated secondary antibody (diluted 1:100 in PBS) was applied for 15 minutes. Sections 

were washed in PBS 3 times before being treated with ABC reagent (diluted 1:100 in PBS) and 

then again washed in PBS 3 times. Peroxidase labeling was visualised using 0.06% 2,4-

diaminobenzidine (Sigma) diluted in PBS and 0.03% hydrogen peroxide (BDH). Sections were 

lightly counterstained by application of Mayers haematoxylin for 40 seconds and then blued in 

distilled water. Sections were then dehydrated by way of 95% ethanol for 30 seconds, two 

washes of 100% ethanol for 5 minutes each and 2 washes of xylene for 5 minutes each. Finally, 

sections were coverslipped in DPX. 
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2.4 Detection and genotyping of HPV DNA in cervical tissue 
 

2.4.1 Extraction of DNA 

 

DNA was extracted from all samples using the Qiagen DNeasy Blood & Tissue Kit protocol. 

Included in this protocol was a xylene dewaxing pretreatment step for FFPE tissue that was 

recommended by the manufacturer. Five 10µm sections from each block were cut on a 

microtome and placed into a sterile 1.5ml eppendorf tube. To prevent contamination between 

blocks a different blade was used for each block, the microtome was cleaned with 70% alcohol 

(appendix) and finally DNAway solution (Sigma) was applied to the microtome between each 

sample. To remove the paraffin wax 1200µl of xylene (BDH) was added to the eppendorf tube 

and vortexed vigorously. The sample was centrifuged at 14,000rpm for 5 minutes before the 

supernatant was removed and 1200µl of 100% ethanol (Sigma) was added. The sample was 

vortexed vigorously before being centrifuged at 14,000rpm for 5 minutes. The supernatant was 

removed and another ethanol wash then performed. After removing the supernatant, being 

careful not to remove any pellet, the eppendorf tube was left open in a 37˚C oven until any 

residual ethanol was evaporated. The pellet was then re-suspended in 180µl of ATL buffer 

(Qiagen) and 20µl of Proteinase K. The sample was vortexed vigorously before being incubated 

overnight at 56˚C in an oven. Following overnight incubation the sample was briefly vortexed, 

200µl of AL Buffer (Qiagen) was added, before being briefly vortexed again and adding 200µl of 

ethanol (Sigma). The sample was then vortexed vigorously for 30 seconds, before transferring 

the entire sample to the upper well of a QIAamp spin column (Qiagen). The sample was the 

centrifuged for 1 minute at 8000rpm. The spin column was placed in a new collection tube and 
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the tube containing the filtrate was discarded. 500µl of AW1 buffer (Qiagen) was added to the 

spin column and it was centrifuged at 8000rpm for 1 minute. The collection tube containing the 

filtrate was discarded and a new collection tube applied to the spin column. 500µl of AW2 

buffer (Qiagen) was added to the spin column and it was centrifuged at 14000rpm for 3 

minutes. The spin column was placed in a sterile 1.5ml eppendorf tube and 200µl of AE Buffer 

(Qiagen) was applied to the spin column. The spin column was left to incubate for 1 minute at 

room temperature before being centrifuged at 8000 rpm for 1 minute. Samples were then 

stored at -20˚C until required. 
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2.4.2 Controls for PCR 

 

With each reaction a positive control was carried out using DNA extracted from the HPV 18 

positive cell line HeLa. A negative control reaction with water in place of template DNA was also 

included with each batch. To ensure there was no carry over contamination between samples,   

skeletal muscle (HPV-) was sectioned on the microtome in between sectioning of cervical 

samples. The DNA from the skeletal muscle section was extracted and underwent GP5+/6+ PCR 

amplification, to confirm there was no contamination of samples. 

 

 

2.4.3 PCR Amplification of Cervical DNA 

 

In order to establish whether the DNA extracted from each sample was of sufficient quality for 

a PCR reaction, a β-globin PCR was carried out using the PC03/04 primer pair. HPV DNA was 

detected using the GP5+/6+ primer pairs. All PCR reactions were carried out in a final volume of 

25µl containing 1x reaction buffer (200mmol/l Tris-HCl pH8.4, 500mmol/l KCl) (Invitrogen), 

0.2mmol/l dNTPs (Invitrogen), 1U Platinum Taq polymerase (Invitrogen) and 3µl template DNA. 

MgCl2 and primer concentration are detailed in table 2.2. The PCR protocol was as follows: an 

initial 5 minute denaturation step at 95˚C, followed by  40 cycles of 95˚C for 30 seconds, 48˚C 

(GP5+/6+) or 60˚C (PC03/04) for 30 seconds, 72˚C for 30 seconds before an final elongation step 

of 72˚C for 5 minutes. All PCR reactions were analysed on a 2% agarose gel (appendix) stained 

with 0.5µg/ml ethidium bromide (Fluka). Gels were run at 120V for 1 hour. 
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Table 2.2 Primers used for DNA quality assessment and HPV detection.  

Primer Primer Sequence 5’-3’ MgCl2 Concentration Primer 

Concentration 

Product 

Size 

PC03 

PC04 

ACACAACTGTGTTCACTAGC 

CAACTTCATCCACGTTCACC 

1.5mmol/l 40nmol/µl 110bp 

GP5+ 

GP6+ 

GP5+ M13 

 

TTTGTTACTGTGGTAGATACTAC 

GAAAAATAAACTGTAAATCAT 

TGTAAAACGACGGCCAGTTTTG

TTACTGTGGTAGATACTAC 

2.5mmol/l 

 

2.5mmol/l 

40nmol/µl 

 

40nmol/µl 

150bp 

 

168bp 

 

Primer sequences, magnesium concentrations, primer concentration and product size for 

primers used in this study 

 

2.4.4 Purification of PCR amplimers 

 

Purification of PCR products was performed using the High pure PCR purification Kit (Roche). 

This product removes excess dNTPs, primers and PCR buffers from PCR reaction solutions. After 

amplification, PCR reaction solution was made up to 100µl with distilled water, then mixed with 

400µl of binding buffer. The solution was loaded into a provided spin column and centrifuged 

for 1 minute at 8000rpm. The eluate from the collection tube was discarded and 400µl of wash 

buffer was loaded into the spin column. The spin column was then centrifuged at 8000rpm for 1 

minute. The eluate in the collection tube was discarded and 300µl of wash buffer was added to 
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the spin column. The spin column was centrifuged at 14000rpm for 1 minute and the collection 

tube was then discarded. A new collection tube was attached to the spin column and 20µl of 

elution buffer was applied. The spin column was then centrifuged at 8000rpm for 1 minute. The 

solution present in the spin column contained the purified DNA and was frozen at -20˚C until 

required. 

 

2.4.5 Sequencing of PCR products and BLAST comparison of sequences 

 

After purification of GP5+/6+ PCR amplimers generated from cervical DNA, samples were sent 

for sequencing to Eurofins Mwg Operon (Ebersberg, Germany). Samples that were successfully 

sequenced were returned to us in FASTA format, which is a text-based file format containing 

the complete nucleotide sequence. The sequences were compared to known HPV L1 sequences 

using the basic local alignment search tool (BLAST). Using this database, sequence homology in 

the PCR amplimers could be found with sequences in the L1 gene of various different HPV 

genotypes, thus allowing the identification of the HPV genotype present in cervical samples. 
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2.5 Establishment and assessment of stable cell lines 

2.5.1 Cell lines and cell Culture 

 

Three cervical cancer cell lines were used during this study. HeLa, a HPV-18 positive cervical cell 

line, and SiHa and CasKi both HPV-16 positive. Cell lines were grown in complete RPMI medium 

(Sigma), including 2mmol/l L-glutamine (Gibco) 10% foetal calf serum (Sigma) and 40 U 

penicillin/streptomycin (Sigma) at 37°C and 5% CO2 in a humidified atmosphere. Cells were 

grown to confluence before being trypsinised with 2% trypsin diluted in 0.02% EDTA (Sigma) for 

10 minutes at 37°C. 10ml complete RPMI medium was added to the culture dish to inactivate 

trypsin. 0.5 x 105 cells were added to a 6mm cell culture dish containing 2ml complete RPMI 

were cultured overnight at 37°C and 5% CO2.  In addition, 0.5 x 105 cells were added to a 25ml 

cell culture flask containing 10ml of complete RPMI medium and incubated at 37°C and 5% CO2 

to maintain the cell culture for future use. 

2.5.2 Transformation of One Shot® TOP10 chemically competent E. Coli 

 

Two separate expression vectors, one encoding claudin-1 and another encoding claudin-7, were 

purchased from Genecopedia (Rockville, MD, USA). An outline of the structure of these 

expression vectors can be seen in figure 2.2. 1µg of plasmid was diluted in 2.5µl of H2O and was 

added to a 50µl vial of One Shot® TOP10 chemically competent E. Coli (Life Technologies) and 

mixed gently. After incubation on ice for 25 minutes the cells were heat-shocked for 30 seconds 

at 42°C and placed for 2 minutes on ice. 250µl of pre-warmed S.O.C medium was added and the 

tube and the tube was placed in a horizontal shaker at 225 rpm at 37°C for 1 hour. 200µl of the 
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transformation solution was spread on a LB agar plate containing 100µg/ml ampicillin and 

incubated at 37°C overnight. 

2.5.3 Production and isolation of high quality plasmid 

 
In order to prepare purified plasmid DNA in large quantities both plasmids were purified with 

the Genopure Plasmid Midi Kit (Roche). Bacterial colonies grown on ampicillin containing agar 

plates (from 2.5.2) were picked, inoculated and cultured overnight at 37°C in 100ml LB medium 

containing 100µl/ml ampicillin, with vigorous shaking. To pellet the bacteria, the culture 

medium was centrifuged for 10 minutes at 3000 x g at 4°C and the supernatant was discarded. 

The pellet was air-dryed and resuspended in 8ml suspension buffer. 8ml lysis buffer was added 

and mixed gently by inverting the tube and the mixture was then incubated at room 

temperature for 2-3 minutes. 8ml of chilled neutralisation buffer was added and mixed 

immediately by inverting the tube before being incubated on ice for 5 minutes. The bacterial 

lysate was filtered and then loaded into a column and allowed to flow though the column. The 

flowthrough was passed though the column again before being discarded. Three separate times 

4ml of wash buffer was passed through the column and discarded after each wash. The column 

was then inserted into a collection tube capable of withstanding high speed centrifugation and 

2.5ml of elution buffer pre-warmed to 50°C was added to the column and allowed to flow 

through. The flowthrough was passed though the column again before 3.6ml of isopropanol 

was added into the tube to precipitate the eluted plasmid. The plasmid DNA was centrifuged 

for 30min at 15000 x g at 4°C. The supernatant was then carefully discarded and the plasmid 

DNA was washed with 3ml of chilled 70% ethanol and centrifuged for an additional 10 minutes 

at 15000 x g at 4°C. The supernatant was removed and the tube was allowed to air-dry for 15 
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minutes. The DNA plasmid pellet was re-dissolved in 50µl nuclease free water buffer and stored 

at -20°C. 

 

2.5.4 Transfection of expression vectors and stable clone selection 

2 x 106 HeLa cells were plated per well into 35mm plates and incubated overnight at 37°C, 5% 

CO2. 100µl of serum free RPMI-1640 media was added to a sterile 1.5ml eppendorf tube. 3µl of 

Genejuice (Novagen) per 1µg of DNA was added drop-wise to the media and was mixed 

thoroughly by vortexing. The mixture was incubated at room temperature for 5 minutes. For 

transient transfections a range of plasmid DNA amounts was used (0.1µg, 0.25µg, 0.5µg, 1µg 

and 2µg), for stable transfections 1µg of plasmid DNA was used. The appropriate amount of 

plasmid DNA was added to the serum free RPMI/Genejuice solution, mixed by gentle pipetting, 

and incubated at room temperature for 15 minutes. The entire volume was then added drop-

wise to the well of the plate and the plate was rocked to distribute the transfection mixture. 

The cells were incubated at 37°C and 5% CO2. For transient transfections, 24 hours post 

transfection the medium was removed and the cells were lysed and protein extracted as 

described in 2.4.5. For stable cell lines cells were transferred to a 100mm plates and 200µg/ml 

of G418 was added to allow genticin selection.  Cells were then incubated for 3 weeks to allow 

clones of cells expressing the plasmid to grow. After 3 weeks isolated colonies were picked and 

subcultured in a 35mm plate. 
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Figure 2.6 Outline of expression vector utilised to create C1-HeLa and C7-HeLa stable cell 

lines. Expression vector contains a CMV promoter region ahead of an open reading frame 

containing either the Claudin-1 or Claudin-7 gene. The expression vector contains an ampicillin 

bacterial selection marker for generation of large amounts of plasmid in bacterial cultures and a 

neomycin selection marker for selective isolation of mammalian cells expressing the vector. 
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2.5.5 DNA Extraction 

 

DNA was extracted from stable cell colonies using the Qiagen DNeasy Blood & Tissue Kit 

according to the manufactures protocol. Cells were harvested by trypsinisation and then 

centrifuged at 1500 rpm for 5 minutes in a 1.5ml eppendorf tube. The supernatant was 

discarded and the pellet resuspended in 200µl PBS, 20µl Protinase K and 200µl buffer AL. The 

sample was vortexed vigorously before being incubated for 10 minutes at 56˚C. Following 

incubation the sample was briefly vortexed. The sample was then vortexed vigorously for 30 

seconds, before transferring the entire sample to the upper well of a QIAamp spin column 

(Qiagen). The sample was then centrifuged for 1 minute at 8000rpm. The spin column was 

placed in a new collection tube and the tube containing the filtrate was discarded. 500µl of 

AW1 buffer (Qiagen) was added to the spin column and it was centrifuged at 8000rpm for 1 

minute. The collection tube containing the filtrate was discarded and a new collection tube 

applied to the spin column. 500µl of AW2 buffer (Qiagen) was added to the spin column and it 

was centrifuged at 14000rpm for 3 minutes. The spin column was placed in a sterile 1.5ml 

eppendorf tube and 200µl of AE Buffer (Qiagen) was applied to the spin column. The spin 

column was left to incubate for 1 minute at room temperature before being centrifuged at 

8000 rpm for 1 minute. The sample was then stored at -20˚C until required. 
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2.5.6 PCR verification of stable cell lines 

 

To verify successful uptake of the expression vector in stable cell lines, DNA was extracted from 

each colony and a PCR reaction was performed using the primers listed in table 2.3. The 

forward primer was complementary to a sequence in the CMV promoter and the reverse 

primer was complementary to a sequence in either the CLDN1 or CLDN7 gene. PCR was carried 

out according to the method described in 2.3.2, using the primers listed in table 2.3 and 

according to the following cycling conditions: an initial 5 minute denaturation step at 95˚C, 

followed by 35 cycles of 95˚C for 30 seconds, 59°C for 30 seconds, 72˚C for 30 seconds before 

an final elongation step of 72˚C for 5 minutes. All PCR reactions were analysed on a 2% agarose 

gel (appendix) stained with 0.5µg/ml ethidium bromide (Fluka). Gels were run at 120V for 1 

hour. PCR products were sequenced and matched to the human CLDN1 gene and CLDN7 gene 

respectively using BLAST to ensure specificity of primer sets. 
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Table 2.3 Table of primers sequences, MgCl2 concentration, primer concentration and PCR product 
size used to verify the presence of expression vectors in stable cell lines. 

Primer Primer Sequence 5’-3’ MgCl2 

Concentration 

Primer 

Concentration 

Product 

Size 

CLDN1 Fwd 

CLDN1 Rev 

CAGCCTCCGGACTCTAGC 

GATGTTGTCGCCGGCATAG 

1.5mmol/l 4ng/µl 200bp 

CLDN 7 Fwd 

CLDN 7 Rev 

CAGCCTCCGGACTCTAGC 

GCAGTCCATCCACAGCCCC 

1.5mmol/l 

 

4ng/µl 

 

250bp 

 

 

 

2.5.7 Protein extraction 

 

Cells were harvested from 6-well plates by the addition of 200µl trypsin (Sigma) per well. After 

cells had detached 800µl of complete medium per well was added. After centrifugation of cells 

at 1500rpm for 5 minutes, the supernatant was removed and the pellet resuspended in 1ml of 

cold PBS. The cells were washed in PBS another two times and after centrifugation and removal 

of the PBS, the cells were lysed in 50µl of RIPA buffer containing 0.1% protease inhibitor 

(Calibiochem). The cell lysate was sonicated 5 times, for 10 seconds using a probe sonicator 

with the lysate kept on ice at all times. The cell lysate was centrifuged at 14000 rpm for 30 

minutes at 4°C. The supernatant was transferred into a fresh eppendorf tube and the protein 

concentration was measured in triplicate with a Bradford assay using a BSA standard curve. 
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2.5.8 Western Blotting 

 

30µg of sample protein was made up to a total volume of 15µl in distilled water and an 

additional 5µl of 4X Laemlli buffer was then added. Samples were heated to 95°C for 5 minutes 

and loaded onto a 12% polyacryamide gel (appendix) along with a molecular weight ladder. 

Gels were run at 100V for 3 hours. Proteins were then transferred onto a nitrocellulose 

membrane (0.45µm pore size) using pre-chilled pH 8.3 transfer buffer (appendix) in a wet tank 

apparatus. The tank was kept on ice to keep the buffer chilled and the gel was run at 100V for 

70 minutes. After successful transfer of proteins, the membrane was blocked in 5% non-fat dry 

milk in TBS-0.1% tween. The appropriate antibody (Table 2.4) was diluted in 5% non-fat dry milk 

in TBS-0.1% tween and incubated with membrane for 16 hours at 4°C on a rotary shaker with 

gentle agitation. The membrane was washed 5 times in TBS-0.1% tween before being incubated 

with appropriate anti-mouse or anti-rabbit secondary HRP-linked secondary antibody (Sigma), 

diluted in 5% non-fat dry milk in TBS-0.1% tween for 1 hour at room temperature. The 

membrane was then washed in TBS-0.1% tween 5 times. Protein detection was carried out 

using the Enhanced Chemiluminescence Kit (Pierce Scientific). ECL solutions were mixed in a 1:1 

ratio and applied to the membrane for 5 min. X-Omat film (Kodak) was then overlaid on the 

membrane for the appropriate amount of time and the film was developed. 
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Table 2.4 Antibodies used in this study for western blotting and the molecular weight of the 
proteins they detect. 

Antibody Manufacturer/Clone Dilution Molecular weight 

Claudin-1  

Claudin-7 

Snail 

E-cadherin 

Beta-Actin 

Invitrogen 

Invitrogen 

Cell Signaling (L70G2) 

Invitrogen (4A2C7) 

Sigma 

1:250 

1:250 

1:1000 

1:500 

1:5000 

23kDa 

22kDa 

29kDa 

97kDa 

42kDa 

 

Table shows the manufacturer, clone, working dilution for each antibody and the molecular 

weight of the targeted protein. 
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2.5.9 Trans epithelial electrical resistance (TEER) Measurements 

 

1.5ml of complete medium was added to each lower well of the plate before 0.5 x 105 cells 

were seeded in total volume of 0.5ml of complete medium and added to the insert of 12mm 

diameter transwell plate (Corning Costar, Cambridge, MA). An insert with no cells and only 

0.5ml of complete medium was also used as blank to measure background resistance. Cells 

were then incubated at 37°C until fully confluent and a complete monolayer had formed. After 

reaching full confluence, the medium from each transwell insert was removed and replaced 

with fresh media. The plates were then incubated at room temperature to allow temperature 

equalisation. TEER values were measure using an STX2 electrode (World Precision Instruments) 

connected to an Epithlial Voltohmeter (EVOM) (World Precision Instruments) according to the 

manufacturer’s instructions. Between each reading the STX2 probe was rinsed with complete 

medium. Experiments were carried out in triplicate and on three separate occasions.  

 Resistance per cm2 was calculated according to the EVOM manual by subtracting the 

value of the blank insert from all values then multiplying by the formula for the area of a circle 

(πd2/4). 
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2.5.10 Cell invasion assay 

 

The Cytoselect 24-well cell invasion assay (Cell Biolabs) was used to evaluate the invasive 

properties of stable cell lines. Under sterile conditions the invasion chamber plate was allowed 

to incubate at room temperature for 10 minutes. The basement membrane layer of the cell 

culture insert was rehydrated by the addition of 300µl of warm, serum-free media to the inner 

compartment and incubated at room temperature for 1 hour. The rehydration medium was 

removed, taking care not to disturb the basement membrane. 500µl of media containing 10% 

fetal bovine serum was added to the lower well of the invasion plate. 300µl of serum free 

media containing 0.5 x 106 cells/ml was added to the upper insert and the plate was incubated 

at 37°C, 5% CO2 for 48 hours. The media was then carefully aspirated from the upper insert and 

the surface of the insert was gently cleaned with cotton-tipped swabs to remove non-migratory 

cells.  The insert was transferred to a clean well containing 400µl of cell stain solution (0.09% 

w/v crystal violet) and incubated for 10 minutes, before being washed several times with 

distilled water. Images were then captured of each well under a light microscope, with at least 

three individual fields per insert. Each insert was then transferred into an empty well containing 

200µl of extraction solution and incubated for 10 minutes on an orbital shaker, before 100µl of 

solution was transferred to a 96-well microtiter plate and the absorbance @560nm was 

measured. Experiments were carried out three times on three separate occasions. 
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2.5.11 Gap closure/Wound healing assay 

 

Cells were seeded at 0.5 x 106 cells per well in a 6 well plate and grown to full confluence. Cells 

were examined under an inverted microscope to ensure a continuous monolayer had formed.  

Gently and slowly the monolayer was scratched with a p200 pipette tip in a straight line across 

the center of the well, in a horizontal direction. While scratching across the surface of the well, 

the long-axial of the tip was kept perpendicular to the bottom of the well. Another line was 

then scratched though the center of the monolayer, this time in a vertical direction, to create a 

cross shaped gap in the monolayer. The cells were then washed twice with PBS before 2ml of 

complete medium was added to each well. Under a phase contrast microscope an appropriate 

area of the gap was identified and an image captured (0 hour timepoint). This coordinates of 

the area was noted for future orientation. The plate was placed in an incubator at 37°C, 5% CO2 

until the next timepoint. At 24 hour and 48 hour timepoints the plate was removed and 

another image was captured at the appropriate coordinates. The experiment was performed on 

three separate occasions. 
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2.5.12 MTT assay 

 

Cells were seeded in 96 well plates (1X104 cells per well) and cultured at 37°C, 5% CO2. At 24, 48 

and 72 hour time points the assay was performed in triplicate and in three separate 

experiments according to the following protocol. A stock MTT solution was prepared at a 

concentration of 5mg/ml by dissolving 50mg MTT (Sigma Aldrich, St. Louis, MO, USA) in 10ml 

ddH20. A working solution of MTT reagent was prepared by diluting the stock solution 1:10 in 

RMPI-1640 media and filter sterilising the solution. At the appropriate time point the media 

was removed from each well and 100µl of working MTT solution added to the wells and the 

cells were incubated for 3 hours. After 3 hours, the cells were washed 3 times with sterile PBS 

and after the last wash all residual liquid was removed from the well. 100µl of DMSO was then 

added to each well and the plate was shaken on a rotary shaker for 10 minutes. The absorbance 

of each well at 595nm was then recorded using a spectrophotometer.  
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2.6 siRNA mediated knockdown of SNAIL in HeLa and SiHa cells 

2.6.1 Transfection of siRNA plasmid 

Predesigned Silencer® Select siRNAs (Life Technologies) were used in this study to examine 

knockdown of SNAIL expression in HeLa and SiHa cells.  Two different siRNAs (s13185) and 

(s13187) were obtained (Life Technologies), both targeting the SNAIL mRNA, and co-transfected 

in to cells according to the following protocol. 0.5 x 106 HeLa cells were plated per well into 

35mm plates and incubated overnight at 37°C, 5% CO2. 100ul of serum free RPMI-1640 media 

was added to a sterile 1.5ml eppendorf tube. 3µl of Lipofectamine RNAiMAX (Life Technologies) 

per 10nM of siRNA was added drop-wise to the media and was mixed thoroughly by vortexing. 

The mixture was incubated at room temperature for 5 minutes. The appropriate amount of 

siRNA was added to the serum free RPMI/ Lipofectamine RNAiMAX solution, mixed by gentle 

pipetting, and incubated at room temperature for 15 minutes. The entire volume was then 

added drop-wise to the well of the plate and the plate was rocked to distribute the transfection 

mixture. The cells were incubated at 37°C and 5% CO2 for 24 hours. Cells were transfected with 

a scrambled siRNA as a negative control. Scrambled siRNA contain sequences that are non-

complementary to any known RNA sequences, and thus would not lead to the specific 

degradation of any cellular message. 
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2.6.2 RNA isolation 

 

RNA was isolated from transfected cells using Trizol solution (Life Technologies). Cells were 

harvested by trypsinisation and then centrifuged at 1500 rpm for 5 minutes in a 1.5ml 

eppendorf tube. The supernatant was discarded, 1ml of Trizol solution was added and the 

solution was mixed thoroughly and incubated at room temperature for 5 minutes. 0.1ml of 

bromocholoropropane was added; the solution was mixed thoroughly and then incubated at 

room temperature for 5 minutes. The sample was then centrifuged at 12000 x g for 15 minutes 

at 4°C to allow phase separation. The upper aqueous phase of the sample was removed by 

angling the tube at 45° and pipetting the solution out, taking care to avoid drawing any of the 

interphase or organic layer into the pipette, and transferred to a new eppendorf tube. The 

interphase and organic phase were discarded. 0.5ml of 100% isopropanol was added to the 

aqueous phase and incubated on ice for 10 minutes, before being centrifuged at 12,000 × g for 

10 minutes at 4°C. The supernatant was removed and discarded and the pellet resuspended in 

1 ml of 75% ethanol. The sample was mixed briefly, then centrifuged at 7500 × g for 5 minutes 

at 4°C.  The supernatant was removed and the sample allowed to air dry for 10 minutes before 

being resuspended in 50µl of RNase-free water. The sample was then heated to 55°C for 10 

minutes, before being treated with DNase (Life Technologies) and stored at -80°C. 
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2.6.3 Reverse transcription of extracted RNA to cDNA 

 

Creation of cDNA from RNA was achieved using the Enhanced Avian HS RT-PCR Kit (Sigma). In 

brief,  1µl of dNTP mix (500µm of each dNTP mix), 1µl of anchored oligo (dT)23 (3.5µM) and 

2µg of template DNA were made up to 10ul with RNase free water and placed in a thermal 

cycler at 70°C for 10 minutes. The tube was removed from the thermal cycler and 2µl of 10X 

AMV-RT buffer, 1µl of enhanced AMV-RT (1U/µl), 1µl of RNase inhibitor and 6µl of RNase free 

water was added. The tube was incubated at 48°C for 50 minutes. The cDNA was then either 

utilised in a PCR reaction or stored at -20°C. 

 

2.6.4 Real time PCR 

 

Real-time PCR was carried out on reverse transcribed cDNA products using the GAPDH and 

SNAIL primers listed in table 2.5. All data on CT values (threshold cycle – the point at which 

fluorescence crosses the threshold) was normalised to an internal housekeeping gene, GAPDH, 

in order to control for differences in starting cDNA concentration. All PCRs were carried out 

using the Lightcycler Fast Start DNA Master SYBR Green Kit (Roche). 18µl of PCR reaction mix 

(without template cDNA) was prepared as detailed in table 2.6 and added to pre-cooled light 

cycler capillaries (Roche). 2µl of template cDNA was added to each capillary (blank containing 

2µl of water) and the capillaries were sealed and centrifuged, before being transferred into the 

lightcycler machine.  The real time PCR cycles were as follows: an initial denaturation step at 

95°C for 10 minutes, 45 cycles of 95°C for 10 seconds, 59°C for 10 seconds, 72°C for 10 seconds. 



102 
 

A melt curve analysis was performed on all reactions, up to 95°C, with an increase in 

temperature of 0.1°C/sec. All real time PCRs were analysed for specificity by melt curve analysis 

to ensure only specific peaks for expected products were present. SNAIL primer sequences 

were retrieved from Medici et al., 2008 [201] and GAPDH sequences from Paulukat et al., 2001 

[202].  

Table 2.5 Primers used for real time PCR in this study 

Primer Primer Sequence 5’-3’ MgCl2 

Concentration 

Primer 

Concentration 

Product 

Size 

GAPDH Fwd 

GAPDH Rev 

ACCACAGTCCATGCCATCAC 

TCCACCACCCTGTTGCTGTA 

1.5mmol/l 4ng/µl 453bp 

SNAIL Fwd 

SNAIL Rev 

ACCACTATGCCGCGCTCTT 

GGTCGTAGGGCTGCTGGAA 

1.5mmol/l 

 

4ng/µl 

 

120bp 

 

 

Forward and reverse primer sequences for GAPDH and SNAIL primers along with MgCl2 and 

primer concentrations and the expected product size for each primer set. 
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Table 2.6 Reaction mix for real-time PCR. 

Component Volume Final Conc. 

Water 16.2µl - 

MgCl2 0.8µl 2mM 

PCR primer mix 1µl 50ng/µl 

Lightcycler Faststart DNA 

master SYBR Green Mix 

2µl 1X 

Total 18ul - 

 

 

2.7 Data analysis and statistics 
 

SPSS (Statistical Package for the Social Sciences) software was used to perform statistical 

analysis, including one way ANOVA tests to examine data for statistical significance and Fisher 

least standard difference for post-hoc testing.  Microsoft Excel was used for constructing bar 

charts and all other graphs. 
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3. Examination of tight and adherens junction protein 

expression in cervical lesions 
 

3.1 Introduction 
 

Epithelial tissues are characterised by their cohesive structure and by their barrier and gate 

function in selectively regulating the flow of ions, cytokines, growth factors and other 

molecules through the epithelium and into the underlying tissue.  The loss of cohesive structure 

and of the barrier and gate function associated with normal epithelium are two of the main 

features of epithelial malignancies such as cervical cancer [109]. Tight and adherens junctions 

are  two distinct but complementary structures within epithelial tissues that play a key role in 

initiating and maintaining cell-cell contacts and cohesion [72].  As 90% of cancer deaths are 

caused by malignant cells losing their cohesive structure and disseminating away from their 

original site to form distant metastasis [203], understanding the mechanisms through which 

cells can lose their cohesive structure is of key importance.  Identifying aberrant expression of 

tight and adherens junction proteins in cervical lesions may help identify some of the 

mechanisms by which junctional breakdown occurs, and may also help identify biomarkers that 

could indicate which pre-invasive cervical lesions are more likely to progress into invasive 

malignancies with the potential to metastasise. 
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3.2 Aims 
 

 To select a cohort of cervical tissue samples, including all grades of cervical neoplasia  

and to utilise selected cervical samples to create tissue micro arrays (TMAs). 

 To examine the expression of several integral adherens and tight junction proteins in 

cervical TMAs using immunohistochemistry.  

 To analyse the expression profile of each protein and look for changes in expression 

between different grades of neoplasia that are statistically significant, possibly 

identifying biomarkers associated with the progression of neoplasia. 

3.3 Antibody optimisation 
 

In order to determine ideal staining conditions for formalin-fixed paraffin embedded tissue 

sections, IHC reactions were carried out using a range of different antibody dilutions for each 

antibody and under various different antigen unmasking methods. Antibody dilutions ranged 

from 1:20 up to 1:1000 (optimised dilutions can be seen in table 3.1) and unmasking techniques 

involved different levels of microwave heat treatment using citrate and EDTA buffers, and 

protease treatment. Cervical tissue samples were included in all optimisation steps, along with 

another tissue sample that had been reported to have high expression of the protein of 

interest. To ensure that any staining observed was due to specific binding of the primary 

antibody to the antigen, negative controls that replaced the primary antibody with PBS were 

performed simultaneously on the same tissue.  All antibodies were successfully optimised on at 

least one tissue sample with the exception of occludin, with no staining observed on control 

tissues at any antibody dilution or using any antigen retrieval method. The manufacturer of this 
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antibody did not specify a recommended positive control tissue but stated the reactivity of the 

antibody had been verified on Madine Darby Canine Kidney cells.  Human skin tissue was 

selected as a positive control tissue as other studies had previously identified occludin as being 

present in the stratum granulosum of human epidermis [204]. As the manufacturer of this 

antibody had only confirmed the reactivity of this antibody on a cell line it is possible that the 

process of formalin fixation may adversely affect the antigen that it is directed against. This 

antibody may therefore only be useful for immunohistochemistry using non-formalin fixed 

samples such as fresh frozen tissue (cryostat sections) or cell lines. A summary of the optimised 

conditions for each antibody can be seen in table 3.1. Images of the positive control and 

negative control tissues stained under their optimised conditions can be seen in figure 3.1. 

Table 3.1 Outline of optimised antibody dilution, retrieval method, and positive control tissue 
for each antibody used in this study. 

Protein Optimised Antibody 
Diluton 

Optimised Retrival 
Method 

Optimised Positive 
control tissue 

E-cadherin 1:100 12 min MW Citrate 
Buffer 

Normal Cervix 

N-cadherin 1:100 12 min MW Citrate 
Buffer 

Liver 

Claudin-1 1:50 12 min MW Citrate 
Buffer + 30 seconds 
protease 

Skin 

Claudin-7 1:50 12 min MW Citrate 
Buffer + 30 seconds 
protease 

Cervix (HSIL lesion) 

p120-catenin  1:125 12 min MW Citrate 
Buffer  

Cervix (HSIL lesion) 

SNAIL 1:1000 12 min MW Citrate 
Buffer 

Cervix (HSIL lesion)/ 
Breast Carcinoma 
 

Occludin Unable to optimise Unable to optimise Skin/Normal Cervix 

 



107 
 

 

 

 

Figure 3.1 Images of positive and negative controls for each of the antibodies used in this 

study. 

Optimised antibody dilutions, antigen retrieval methods and tissue type can be seen in table 3.1 
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3.4 Evaluation of tissue microarrays 
 

In total 5 tissue microarray blocks were constructed, 4 arrays containing cervical tissue 

samples and 1 array containing control tissue samples for each antibody (Figure 3.3). Each 

cervical tissue microarray was designed to have a total of 40 samples each in triplicate, which 

would ultimately yield a total of 160 cervical samples. After the tissue microarrays were 

constructed a section was cut and a H&E stain was performed to analyse the morphology of 

each core (Figure 3.2). A pathologist at the Rotunda Hospital, Dr Eibhlis O’Donovan, analysed 

each core to decide if there was adequate epithelium present and, if so, to define what grade 

the lesion was.  

 

Figure 3.2 H&E stain of cervical tissue microarrays 

A = No evidence of malignancy, B = Low grade squamous intra-epithelial lesion, C = High grade 

squamous intra-epithelial lesion, D = Squamous cell carcinoma 
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After analysis by the pathologist 126 cases were identified that had adequate lesion 

present, a summary of which can be seen in table 3.2. This amount was lower than the 

intended 160 samples but still included a large number of samples in all disease grades and was 

more than sufficient for subsequent experiments. The tissue blocks used for TMA productions 

had previously been used for diagnostic purposes in the Rotunda hospital, therefore a variable 

amount of tissue was present on each core sampled. As a result, when the TMAs were 

sectioned for use in this study, some cores were lost faster than others and thus all 126 samples 

were not always present for each biomarker. A greater number of N.E.M samples, 36, were 

present on the final TMAs than the intended 16. This was a result of inaccurate punch sampling 

of N.E.M tissue adjacent to the targeted lesion during TMA construction. 

 

 

Figure 3.3 Image of the 4 cervical TMA blocks used in this study 
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Table 3.2 Number of cases selected for TMA construction and final number of cases on 
completed TMAs.  

 

Lesion Grade Number of cases selected for TMA 
construction 

Final number of cases present on 
TMAs 

N.E.M 16 36 

LSIL 48 35 

HSIL 48 45 

SCC 48 10 

Total 160 126 
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3.5 Evaluation of biomarker expression in cervical lesions 
 

Following the optimisation of each antibody, the immunohistochemical expression of each 

protein was analysed on the cervical tissue microarrays. To evaluate the expression of all 

biomarkers except SNAIL, a 4-tier grading system validated for scoring HER-2 expression in 

gastric cancer was used [205].  No reactivity in any cell was graded as 0, faint or barely 

perceptible membranous reactivity was graded as 1+, weak to moderate basolateral or lateral 

membranous reactivity was graded as 2+, strong complete membranous reactivity was graded 

as 3+. For SNAIL a 4 tier grading system was used with no nuclear or cytoplasmic reactivity in 

any cell graded as 0, faint or barely perceptible nuclear or cytoplasmic reactivity was graded as 

1+, weak to moderate nuclear or cytoplasmic reactivity was graded as 2+, strong complete 

nuclear or cytoplasmic reactivity was graded as 3+. In consultation with the pathologist it was 

decided for LSIL and HSIL cases only the dysplastic cells of the lesions would be graded, to avoid 

non dysplastic cells in the epithelium giving an erroneous grading score. Examples of staining 

patterns and grading scores for each antibody were presented to the pathologist to confirm 

samples were being accurately graded.  

A one way ANOVA was performed to determine the statistical significance of the 

grading results for each protein across normal cervical tissue and all disease grades, with a p 

value of <0.05 deemed significant. For post hoc testing, a Fisher least standard difference (LSD) 

test was used to assess the significance of results between individual disease states (e.g NEM vs 

LSIL, NEM vs HSIL) etc. In all cases a p value <0.05 was deemed significant. As each sample was 

in triplicate staining scores presented were averages of the three scores. 
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3.5.1 E-cadherin 

 

Normal cervical epithelium displayed moderate membranous staining of cells in the basal and 

intermediate layers of the epithelium. Low grade lesions showed little or no staining of 

dysplastic cells in the basal layer of the epithelium with some moderate staining in the 

intermediate and superficial layers of the epithelium. High grade lesions predominately had no 

staining or some infrequent weak staining of the dysplastic cells in the basal and intermediate 

layers with the superficial layer often showing some weak staining (Figure 3.5). In cases of 

squamous cell carcinomas a weak staining pattern or an absence of staining was most often 

observed (figure 3.5). The significance of any differences in E-cadherin expression in normal 

tissue compared to different disease grades were determined using a one way analysis of 

variance (ANOVA) test (table 3.4) and a fisher least standard difference (LSD) post-hoc test, 

with a p value <0.05 deemed significant (figure 3.5). 

Figure 3.4 Bar chart showing the mean expression of E-cadherin according to pathological grade with 

error bars showing the standard error for each grade.  Significant differences in expression 
between normal tissue and different disease grades (p<0.05) highlighted on chart using *.  NEM 
= no evidence of malignancy, LSIL = low grade squamous intra-epithelial lesion, HSIL = high 
grade squamous intra-epithelial lesion, SCC = squamous cell carcinoma. n = number of samples 
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Figure 3.5 Expression of E-cadherin in cervical epithelium detected using immunohistochemistry 

 A = No evidence of malignancy (N.E.M), B = Low grade squamous epithelial lesion (LSIL), C = High grade 

squamous epithelial lesion (HSIL), D = Squamous cell carcinoma (SCC) 
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Table 3.3 Evaluation of E-cadherin IHC staining intensity in normal cervical epithelium and neoplasia 

Staining Intensity 

Grade (n=sample no.) 0 1+ 2+ 3+ 

N.E.M (n=33)  3 (9%) 10(30%) 14 (43%) 6 (18%) 

LSIL (n=25) 14 (56%) 8 (32%) 2 (8%) 1 (4%) 

HSIL (n=35) 15 (43%) 9 (26%) 7 (20%) 4 (34%) 

SCC (n=9) 3 (33%) 5 (56%) 1 (11%) 0 (0%) 

 

Table shows the scoring results for E-cadherin IHC staining of cervical TMAs. Staining intensity was 

assessed using a 0-3 scoring system as described in 3.5. As each cervical tissue specimen was sampled in 

triplicate, the results displayed in this table are the average of the three scores rounded to the nearest 

whole number.  

 

Table 3.4 Statistical analysis of E-cadherin staining in normal cervical epithelium and neoplasia. 

Statistical analysis of E-cadherin staining results 

Groups Count Sum Average Variance SD SE  

NEM 33 54.332 1.646424 0.798182 0.8934 0.1555  

LSIL 25 14 0.56 0.6525 0.8077 0.1615  

HSIL 35 34.25 0.978571 1.089601 1.0438 0.1595  

SCC 9 7 0.777778 0.444444 0.6666 0.2222  

        

ANOVA SS df MS F P-value F crit  

Between Groups 18.52644 3 6.175481 7.398154 <0.05 2.697423  

Within Groups 81.8038 98 0.834733     

Total 100.3302 101          
SD = Standard Deviation, SE = Standard Error, SS = Sum of Squares, DF = Degrees of freedom, MS = 
Mean Square, F = F-Statistic, Fcrit = F-Critical value 

 

The IHC E-cadherin scoring data from table 3.3 was assessed using SPSS to determine the standard 

deviation and standard error within each group. A one way ANOVA analysis was performed to 

determine any statistically significant difference between the staining score of the different disease 

groups, with a p value of <0.05 considered significant. 
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3.5.2 N-cadherin 

 

N-cadherin displayed weak membranous staining in normal cervical epithelium, predominantly 

in the basal and intermediate layers.  Low grade lesions displayed moderate membranous 

staining in the dysplastic cells of the basal layers, with weaker staining in the differentiating 

cells of the intermediate and superficial layers. High grade lesions displayed moderate  

membranous staining throughout the epithelium. Squamous cell carcinoma cells showed 

predominantly moderate membranous staining with some weak cytoplasmic positivity (figure 

3.7). The significance of changes in E-cadherin expression in normal tissue compared to 

different disease grades were determined using a one way analysis of variance (ANOVA) test 

(table 3.5) and a fisher least standard difference (LSD) post-hoc test, with a p value <0.05 

deemed significant (figure 3.6). 

Figure 3.6 Bar chart showing the mean expression of N-cadherin according to pathological grade with 
error bars showing the standard error for each grade.  Significant changes in expression between 
normal tissue and different disease grades (p<0.05) highlighted on chart using *.  NEM = no evidence of 
malignancy, LSIL = low grade squamous intra-epithelial lesion, HSIL = high grade squamous intra-
epithelial lesion, SCC = squamous cell carcinoma. n = number of samples 
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Figure 3.7 Expression of N-cadherin in cervical epithelium detected using immunohistochemistry  

A = No evidence of malignancy (N.E.M), B = Low grade squamous epithelial lesion (LSIL), C = High grade 

squamous epithelial lesion (HSIL), D = Squamous cell carcinoma (SCC) 
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Table 3.5 Evaluation of N-cadherin staining intensity in normal cervical epithelium and neoplasia 

Staining Intensity 

Grade (n=sample no.) 0 1+ 2+ 3+ 

N.E.M (n=26)  8 (31%) 8 (31%) 8 (31%) 2 (7%) 

LSIL (n=27) 1 (4%) 3 (11%) 15 (56%) 8 (29%) 

HSIL (n=37) 3 (8%) 8 (22%) 9 (24%) 17 (46%) 

SCC (n=10) 1 (10%) 3 (30%) 4 (40%) 2 (20%) 

 

Table shows the scoring results for N-cadherin IHC staining of cervical TMAs. Staining intensity was 
assessed using a 0-3 scoring system as described in 3.5. As each cervical tissue specimen was sampled in 
triplicate, the results displayed in this table are the average of the three scores rounded to the nearest 
whole number. 

 
Table 3.6  Statistical analysis of N-cadherin staining in normal cervical epithelium and neoplasia 

Statistical analysis of N-cadherin staining results 

Groups Count Sum Average Variance SD SE  
NEM 26 29.583 1.137808 0.890545 0.943687 0.185  

LSIL 27 56.5 2.092593 0.577635 0.760023 0.1463  

HSIL 37 77 2.081081 1.021021 1.010456 0.1562  

SCC 10 17 1.7 0.9 0.948683 0.3  

        ANOVA SS df MS F P-value F crit  

Between 
Groups 

16.73562 3 5.57854 6.51993 <0.05 2.699393  

Within Groups 82.1389 96 0.855614     

Total 98.87452 99      

SD = Standard Deviation, SE = Standard Error, SS = Sum of Squares, DF = Degrees of freedom, MS = 
Mean Square, F = F-Statistic, Fcrit = F-Critical value 

 

The IHC N-cadherin scoring data from table 3.5 was assessed using SPSS to determine the standard 

deviation and standard error within each group. A one way ANOVA analysis was performed to 

determine any statistically significant difference between the staining score of the different disease 

groups, with a p value of <0.05 considered significant. 
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3.5.3 Claudin 1 

 

Claudin-1 displayed weak membranous staining in normal cervical epithelium, predominantly in 

the basal and intermediate layers.  Low grade lesions showed moderate membranous staining 

in the dysplastic cells of the basal layers, with weaker staining in the differentiating cells of the 

intermediate and superficial layers. High grade lesions showed moderate to strong 

membranous staining throughout the epithelium. Squamous cell carcinoma cells showed strong 

membranous staining with some weak cytoplasmic activity (figure 3.9). The significance of 

changes in claudin-1 expression in normal tissue compared to different disease grades were 

determined using a one way analysis of variance (ANOVA) test (table 3.8) and a fisher least 

standard difference (LSD) post-hoc test, with a p value <0.05 deemed significant (figure 3.8). 

 

Figure 3.8 Bar chart showing the mean expression of claudin-1 according to pathological grade with 

error bars showing the standard error for each grade.  Significant changes in expression between 

normal tissue and different disease grades (p<0.05) highlighted on chart using *.  NEM = no evidence of 

malignancy, LSIL = low grade squamous intra-epithelial lesion, HSIL = high grade squamous intra-

epithelial lesion, SCC = squamous cell carcinoma. n = number of samples 
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Figure 3.9 Expression of Claudin-1 in cervical epithelium detected using 

immunohistochemistry 

A = No evidence of malignancy (N.E.M), B = Low grade squamous epithelial lesion (LSIL), C = High grade 

squamous epithelial lesion (HSIL), D = Squamous cell carcinoma (SCC) 
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Table 3.7 Evaluation of claudin-1 staining intensity in normal cervical epithelium and neoplasia 

Staining Intensity 

Grade (n= sample no) 0 1+ 2+ 3+ 

N.E.M (n=33) 3 (9%) 19 (53%) 11 (36%) 0 (0%) 

LSIL (n=31) 0 (0%) 13 (42%) 12 (32%) 6 (26%) 

HSIL (n=40) 0 (0%) 4 (10%) 17 (43%) 19 (47%) 

SCC (n=10) 0 (0%) 1 (10%) 1 (10%) 8 (80%) 

 

Table shows the scoring results for claudin-1 IHC staining of cervical TMAs. Staining intensity was 

assessed using a 0-3 scoring system as described in 3.5. As each cervical tissue specimen was sampled in 

triplicate, the results displayed in this table are the average of the three scores rounded to the nearest 

whole number 

 
Table 3.8  Statistical analysis of claudin-1 staining in normal cervical epithelium and neoplasia 

Statistical analysis of Claudin-1 staining results 

Groups Count Sum Average Variance SD SE  
NEM 33 39.166 1.186848 0.345045 0.587406 0.1022  

LSIL 31 54.5 1.758065 0.581183 0.762353 0.1369  

HSIL 40 93 2.325 0.48141 0.693837 0.1067  

SCC 10 27 2.7 0.455556 0.674949 0.2134  

        Source of Variation SS df MS F P-value F crit  

Between Groups 30.95731 3 10.3191 22.10436 <0.05 2.687139  

Within Groups 51.35193 110 0.466836     

Total 82.30924 113          

SD = Standard Deviation, SE = Standard Error, SS = Sum of Squares, DF = Degrees of freedom, MS = 
Mean Square, F = F-Statistic, Fcrit = F-Critical value 

 

The IHC claudin-1 scoring data from table 3.7 was assessed using SPSS to determine the standard 
deviation and standard error within each group. A one way ANOVA analysis was performed to 
determine any statistically significant difference between the staining score of the different disease 
groups, with a p value of <0.05 considered significant. 
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3.5.4 Claudin-7 

 

Claudin-7 displayed weak membranous staining in normal cervical epithelium, predominantly in 

the basal and intermediate layers.  Low grade lesions displayed weak to moderate membranous 

staining in the dysplastic cells of the basal layers, with less staining in the differentiating cells of 

the intermediate and superficial layers. High grade lesions displayed moderate to strong 

membranous staining throughout the epithelium. Squamous cell carcinoma cells displayed 

moderate  membranous staining with some weak cytoplasmic positivity (figure 3.11). The 

significance of changes in claudin-7 expression in normal tissue compared to different disease 

grades were determined using a one way analysis of variance (ANOVA) test (table 3.10) and a 

fisher least standard difference (LSD) post-hoc test, with a p value <0.05 deemed significant 

(figure 3.10). 

 

Figure 3.10 Bar chart showing the mean expression of claudin-7 according to pathological grade with 

error bars showing the standard error for each grade.  Significant changes in expression between 

normal tissue and different disease grades (p<0.05) highlighted on chart using *.  NEM = no evidence of 

malignancy, LSIL = low grade squamous intra-epithelial lesion, HSIL = high grade squamous intra-

epithelial lesion, SCC = squamous cell carcinoma. n = number of samples 
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Figure 3.11 Expression of Claudin-7 in cervical epithelium detected using 

immunohistochemistry 

A = No evidence of malignancy (N.E.M), B = Low grade squamous epithelial lesion (LSIL), C = High grade 

squamous epithelial lesion (HSIL), D = Squamous cell carcinoma (SCC) 
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Table 3.9 Evaluation of claudin-7 staining intensity in normal cervical epithelium and neoplasia 

Staining Intensity 

Grade (n=sample no.) 0 1+ 2+ 3+ 

N.E.M (n=29) 13 (45%) 12 (41%) 4 (14%) 0 (0%) 

LSIL (n=30) 7 (21%) 13 (45%) 4 (14%) 6 (20%) 

HSIL (n=31) 2 (7%) 5 (16%) 9 (29%) 15 (48%) 

SCC (n=10) 1 (10%) 5 (50%) 1 (10%) 3 (30%) 

 

Table shows the scoring results for claudin-7 IHC staining of cervical TMAs. Staining intensity was 
assessed using a 0-3 scoring system as described in 3.5. As each cervical tissue specimen was sampled in 
triplicate, the results displayed in this table are the average of the three scores rounded to the nearest 
whole number. 

 
 
Table 3.10  Statistical analysis of claudin-7 staining in normal cervical epithelium and neoplasia 

Statistical analysis of Claudin-7 staining results 

Groups Count Sum Average Variance SD SE  
NEM 29 19.5 0.672414 0.504926 0.710582 0.132  

LSIL 30 39 1.3 1.13793 1.055364 0.1055  

HSIL 31 66 2.129032 0.882796 0.939572 0.1581  

SCC 10 16 1.6 1.155556 1.074968 0.34  

        Source of Variation SS df MS F P-value F crit  

Between Groups 34.09222 3 11.36407 16.10223 <0.05 2.698398  

Within Groups 68.45729 97 0.705745     

Total 102.5495 100      

SD = Standard Deviation, SE = Standard Error, SS = Sum of Squares, DF = Degrees of freedom, MS = 
Mean Square, F = F-Statistic, Fcrit = F-Critical value 

 

The IHC claudin-7 scoring data from table 3.9 was assessed using SPSS to determine the standard 
deviation and standard error within each group. A one way ANOVA analysis was performed to 
determine any statistically significant difference between the staining score of the different disease 
groups, with a p value of <0.05 considered significant. 
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3.5.5 p120-catenin 

 

p120-catenin  showed weak membranous staining in normal cervical epithelium, predominantly 

in the basal and parabasal layers.  Low grade lesions showed moderate membranous staining in 

the dysplastic cells of the basal layers, with less staining in the differentiating cells of the 

intermediate and superficial layers. High grade lesions showed strong membranous staining 

throughout the epithelium. Squamous cell carcinoma cells showed strong membranous and 

cytoplasmic staining (figure 3.13). The significance of changes in p120-catenin expression in 

normal tissue compared to different disease grades were determined using a one way analysis 

of variance (ANOVA) test (table 3.12) and a fisher least standard difference (LSD) post-hoc test, 

with a p value <0.05 deemed significant (figure 3.12). 

 

Figure 3.12 Bar chart showing the mean expression of p120-catenin according to pathological grade 

with error bars showing the standard error for each grade.  Significant changes in expression between 

normal tissue and different disease grades (p<0.05) highlighted on chart using *.  NEM = no evidence of 

malignancy, LSIL = low grade squamous intra-epithelial lesion, HSIL = high grade squamous intra-

epithelial lesion, SCC = squamous cell carcinoma. n = number of samples 
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Figure 3.13 Expression of p120-catenin in cervical epithelium detected using 

immunohistochemistry 

A = No evidence of malignancy (N.E.M), B = Low grade squamous epithelial lesion (LSIL), C = High grade 

squamous epithelial lesion (HSIL), D = Squamous cell carcinoma (SCC) 
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Table 3.11 Evaluation of p120-catenin staining intensity in normal cervical epithelium and neoplasia 

Staining Intensity 

Grade (n=sample no.) 0 1+ 2+ 3+ 

N.E.M (n=30) 7 (23%) 12 (40%) 8 (27%) 3 (10%) 

LSIL (n=28) 7 (25%) 1 (4%) 14 (50%) 6 (21%) 

HSIL (n=32) 0 (0%) 3 (9%) 4 (13%) 25 (78%) 

SCC (n=10) 0 (0%) 1 (9%) 4 (36%) 6 (55%) 

 

Table shows the scoring results for p120-catenin IHC staining of cervical TMAs. Staining intensity was 

assessed using a 0-3 scoring system as described in 3.5. As each cervical tissue specimen was sampled in 

triplicate, the results displayed in this table are the average of the three scores rounded to the nearest 

whole number 

 
Table 3.12  Statistical analysis of p120-catenin staining in normal cervical epithelium and neoplasia 

Statistical analysis of p120-catenin staining results 

Groups Count Sum Average Variance SD SE  
NEM 30 36 1.2 0.803448 0.896353 0.1636  

LSIL 28 47 1.678571 1.189153 1.090483 0.206  

HSIL 32 86 2.6875 0.415323 0.644455 0.1127  

SCC 10 27 2.454545 0.472727 0.687552 0.2073  

        Source of Variation SS df MS F P-value F crit  

Between Groups 39.13415 3 13.04472 17.33115 <0.05 2.698398  

Within Groups 73.00942 97 0.752674     

Total 112.1436 100      

SD = Standard Deviation, SE = Standard Error, SS = Sum of Squares, DF = Degrees of freedom, MS = 
Mean Square, F = F-Statistic, Fcrit = F-Critical value 

 

The IHC p120-catenin scoring data from table 3.11 was assessed using SPSS to determine the standard 
deviation and standard error within each group. A one way ANOVA analysis was performed to 
determine any statistically significant difference between the staining score of the different disease 
groups, with a p value of <0.05 considered significant 
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3.5.6 Snail 

 

In normal cervical epithelium an absence of staining was most often observed. In low grade 

lesions weak nuclear and cytoplasmic staining of dysplastic cells in the basal layer was observed 

with no staining of cells in the intermediate and superficial layers. In high grade lesions weak to 

moderate nuclear and cytoplasmic staining was observed of dysplastic cells in the basal and 

intermediate layers of the epithelium. In squamous cell carcinoma cases moderate nuclear and 

cytoplasmic staining of malignant cells was observed (figure 3.15). The significance of changes 

in SNAIL expression in normal tissue compared to different disease grades were determined 

using a one way analysis of variance (ANOVA) test (table 3.14) and a fisher least standard 

difference (LSD) post-hoc test, with a p value <0.05 deemed significant (figure 3.14). 

 

Figure 3.14 Bar chart showing the mean expression of SNAIL according to pathological grade with 

error bars showing the standard error for each grade.  Significant changes in expression between 

normal tissue and different disease grades (p<0.05) highlighted on chart using *.  NEM = no evidence of 

malignancy, LSIL = low grade squamous intra-epithelial lesion, HSIL = high grade squamous intra-

epithelial lesion, SCC = squamous cell carcinoma. n = number of samples 
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Figure 3.15 Expression of SNAIL in cervical epithelium detected using immunohistochemistry 

(N.E.M) No evidence of malignancy, (LSIL) Low grade squamous epithelial lesion, (HSIL) High grade squamous 

epithelial lesion, (SCC) Squamous cell carcinoma 
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Table 3.13 Evaluation of Snail staining intensity in normal cervical epithelium and neoplasia 

Staining Intensity 

Grade (n=sample no.) 0 1+ 2+ 3+ 

N.E.M (n=27) 19 (70%) 7 (26%) 1 (4%) 0 (0%) 

LSIL (n=28) 8 (29%) 13 (46%) 7 (25%) 0 (0%) 

HSIL (n=29) 2 (7%) 13 (45%) 11 (38%) 3 (10%) 

SCC (n=9) 0 (0%) 4 (40%) 2 (30%) 3 (30%) 

 

Table shows the scoring results for SNAIL IHC staining of cervical TMAs. Staining intensity was assessed 
using a 0-3 scoring system as described in 3.5. As each cervical tissue specimen was sampled in 
triplicate, the results displayed in this table are the average of the three scores rounded to the nearest 
whole number. 

 

Table 3.14  Statistical analysis of Snail staining in normal cervical epithelium and neoplasia 

Statistical analysis of Snail staining results 

Groups Count Sum Average Variance SD SE  
NEM 27 8.333 0.30863 0.232272 0.476968 0.0928  

LSIL 28 26 0.928571 0.531746 0.729209 0.1378  

HSIL 29 43 1.482759 0.597906 0.773244 0.14  

SCC 9 17 1.888889 0.861111 0.927961 0.3093  

        Source of Variation SS df MS F P-value F crit  

Between Groups 26.43769 3 8.812564 17.64647 <0.05 2.709402  

Within Groups 43.44738 87 0.499395     

Total 69.88508 90      

SD = Standard Deviation, SE = Standard Error, SS = Sum of Squares, DF = Degrees of freedom, MS = 
Mean Square, F = F-Statistic, Fcrit = F-Critical value 

 

The IHC SNAIL scoring data from table 3.13 was assessed using SPSS to determine the standard deviation 
and standard error within each group. A one way ANOVA analysis was performed to determine any 
statistically significant difference between the staining score of the different disease groups, with a p 

value of <0.05 considered significant. 
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3.6 Correlation between expression of different biomarkers 
 

In order to assess any possible correlation between the expression of different biomarkers in 

cervical lesions, the mean expression for each biomarker in each disease grade was entered 

into microsoft excel and a correlation test was performed. The correlation co-efficient is 

expressed within a range of -1 to +1 inclusive, with -1 indicating a high inverse correlation and 

+1 indicating a high positive correlation between two biomarkers. E-cadherin was inversely 

correlated to all other biomarkers, as E-cadherin was the only biomarker with highest 

expression in NEM tissue and reduced expression in neoplastic lesions, with its strongest 

inverse correlation to N-cadherin (-0.85821).  Apart from its strong inverse correlation to E-

cadherin, N-cadherin also had a high positive correlation to Claudin-7 (0.784817). Claudin-1 

expression was very highly correlated with both p120-catenin (0.92857) and SNAIL expression. 

(0.99966). Claudin-7 also displayed a strong correlation with SNAIL (0.820169) and p120-catenin 

(0.923247).  Correlation coefficients for all biomarkers can be seen in table 3.15. 

Table 3.15 Correlation coefficients between different biomarker staining results. 

  ECAD NCAD CLDN1 CLDN7 p120 SNAIL 

ECAD 1      

NCAD -0.85821 1     

CLDN1 -0.62422 0.546993 1    

CLDN7 -0.56719 0.784817 0.822935 1   

p120 -0.50664 0.630428 0.92857 0.960345 1  

SNAIL -0.64353 0.559515 0.99966 0.820169 0.923247 1 

Coefficent of +1 indicates strong correlation. Coefficient of -1 indicates strong negative correlation 
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3.7 Summary & Key findings 
 

A cohort of cervical tissue samples containing normal cervical tissue and all grades of 

cervical neoplasia were selected and retrieved from the Rotunda Maternity Hospital.  Sections 

from all of the tissue blocks were cut and a H&E stain was performed to identify the area 

containing the lesion.  Several tissue microarrays were then produced using the cervical tissue 

blocks, and these TMAs were imunohistochemically stained to examine the expression of 

several adherens and tight junction proteins in cervical tissue.  

 

 The expression of several tight and adherens junction proteins is altered in pre-invasive 

and invasive cervical lesions 

o Reduction in the expression of E-cadherin  in all grades of neoplasia compared to 

normal cervical epithelium 

o Increase in the expression of  N-cadherin, claudin-1, claudin-7, p120-catenin, and 

SNAIL 

 

 Change in expression for many proteins was observed even in low-grade lesions 

indicating some of these proteins may be of use as biomarkers for differentiating 

between borderline normal and LSIL lesions and also in identifying pre-invasive lesions 

more likely to progress to invasive cancers. 

 

 Identified aberrant expression profile of AJ and TJ proteins in this study may offer 

further insight into the pathogenesis of cervical malignancies, potentially uncovering 

new targets for future therapies. 
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3.8 Discussion 
 

This study aimed to examine the expression profiles of a range of adherens and tight junction 

proteins in normal cervical epithelium and in different grades of cervical neoplasia. To this end 

we utilised a cohort of cervical tissue samples from the Rotunda Maternity Hospital to create 

several tissue microarrays, each containing normal cervical tissue and all grades of neoplasia. 

We examined the expression of several adherens and tight junction proteins and a significant 

change in expression of these proteins was observed in both pre-invasive and invasive lesions. 

A change in expression of many adherens and tight junction proteins was observed in both low 

grade and high grade pre-cancer lesions and in invasive cancer. In particular, a reduction in the 

expression of E-cadherin and a reduction in the expression of N-Cadherin, claudin-1, claudin-7, 

p120-cateninand SNAIL was observed in all grades of neoplasia. This may indicate that some of 

these proteins could be of use as biomarkers for disease progression, potentially helping the 

identification of pre-cancerous lesions that are more likely to progress to invasive cancers, and 

also help to differentiate pre-cancerous lesions from other non-cancer related conditions in the 

cervical epithelium, such as metaplasia.  To fully assess the usefulness of these proteins as 

markers of disease progression, it would be necessary to compare the expression of each 

protein to patient follow up information, such as patient outcomes. Unfortunately, due to 

ethical constraints, this information was not made available to this study. As a result of not 

having access to patient follow up information, this study was unable to assess if there is any 

relationship between changes in expression of a particular adherens or tight junction protein 

and aspects of patient outcome, such as prognosis. Further studies are therefore required to 



133 
 

determine if any of these proteins would be of use in a clinical setting as prognostic indicators 

or biomarkers for disease progression. 

 One limitation of this study, however, was the lower number of invasive cancer samples 

analysed compared to NEM, LSIL, and HSIL samples.  Initially, during TMA design, it was 

intended to include 48 samples each of LSIL, HSIL and invasive cancer in the study. 

Unfortunately, inclusion of 48 invasive cancer samples was not possible as this study only had 

access to patient samples from the Rotunda Hospital that were treated between 2005-2007 

and an insufficient number of invasive cancer samples were processed in the hospital during 

this period. Although in Ireland there are on average 180 cases of cervical cancer per year 

(WHO 2012), these cases are treated throughout all the maternity hospitals in the state, thus an 

individual hospital may only have a small number of patients presenting with cervical cancer 

per year. As a result, this study was limited to analysing 10 samples of invasive cancer. The 

sample number of this study was similar to the 12 SCC samples used by Wang et al., 2005 to 

assess p16 expression in cervical neoplasia,  and was still sufficient to assess the expression 

profile of tight and adherens junction proteins in invasive cancer and to allow comparisons of 

expression of these proteins in normal cervical tissue and low and high grade lesions. 
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4. Detection and genotyping of HPV in cervical tissue samples 
 

4.1 Introduction 
 

The causal role of HPV in the development of cervical cancer had been well established and is 

highlighted by the fact that HPV DNA is detected in 99% of invasive cervical tumours [3]. 

Significant diversity exists within the HPV family, with over 120 HPV genotypes currently 

identified and 12 subgroups within the α-papillomvirus genus alone [14]. In a clinical setting 

HPV genotypes are classified into ‘high-risk’ and ‘low-risk categories depending on their ability 

promote oncogenic changes within the cervical epithelium. HPV-16 and HPV-18 subtypes in 

particular are strongly associated with the development and persistence of pre-invasive cervical 

lesions, and subsequent development of invasive cervical cancer [207]. The viral proteins E6 

and E7 are two of the main promoters of oncogenic change in cervical cells primarily though 

their interaction with p53 and pRb respectively, with HPV-16 E6 shown to have a higher affinity 

for p53 than other subtypes [31]. However, malignant transformation of cervical cells is a 

complex process involving more than interaction with p53 and pRb alone, and it is likely that 

the virus also possesses mechanisms for disrupting tight and adherens junctions and thus cell 

cohesion and polarity. It is possible that high risk HPV subtypes may also possess a more 

effective mechanism for disrupting cell cohesion and thus cervical lesions infected with a high 

risk HPV genotypes may display a different tight and adherens junction expression profile 

compared to lesions with a lower risk subtype. 
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4.2 Aims 
 

 To investigate the prevalence of different HPV genotypes in the selected cohort of FFPE 

cervical tissue samples.  

o Extracting DNA from the samples and utilising a PCR based method to amplify 

any HPV DNA present in the samples.   

o HPV amplimers will then be sequenced and compared to known HPV sequences 

to discover the HPV genotype present in each sample.  

 To investigate if there is a correlation between specific HPV genotypes and aberrant 

expression profiles of tight and adherens junction proteins, by comparing the detected 

genotypes to the results in chapter 3. 

 

 

 

 

 

 

.  
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4.3 Optimisation of PCR 
 

Optimization of PCR conditions for the amplification of the β-Globin gene (used as a control to 

assess DNA quality) and the HPV L1 gene using the PC03/04 and GP5+/6+ primer sets (table 4.1) 

respectively were performed using DNA extracted from cultured HPV-18+ HeLa cells. All PCR 

reactions were performed using the T Professional Basic thermocycler (Biometra). A series of 

PCR reactions were performed using different annealing temperatures and magnesium chloride 

concentrations to determine the conditions for optimum amplification of target genes.  To aid 

in sequencing of the PCR products a M13 (uni -21) primer sequence was added to 5’ end of the 

forward (GP5+) primer, producing a 168bp amplimer. This would allow sequencing of PCR 

products without having to send sample of primer and should aid in the successful sequencing 

of amplimers.  

Table 4.1 Primers used for DNA quality assessment and HPV detection 

Primer Primer Sequence 5’-3’ Primer 

Concentration 

Product Size 

PC03 

PC04 

ACACAACTGTGTTCACTAGC 

CAACTTCATCCACGTTCACC 

40nmol/µl 110bp 

GP5+ 

GP6+ 

GP5+ M13 

TTTGTTACTGTGGTAGATACTAC 

GAAAAATAAACTGTAAATCAT 

TGTAAAACGACGGCCAGTTTTGTTACTGTG

GTAGATACTAC 

40nmol/µl 

 

40nmol/µl 

150bp 

 

168bp 

Primer sequences, primer concentration and product size for primers used in this chapter. GP5+/6+ 
sequence was retrieved from de Roda Husman et al. 1995 [208], PC03/04 sequence retrieved from de 
Roda Husman, Snijders, et al. 1995 [209] 
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4.3.1  PC03/04  

 

The PC03/04 primer set amplifies a 110bp region of the β-Globin gene. Several PCR reactions 

were performed with this primer set using annealing temperatures from 58˚C to 60˚C and with 

MgCl2+ concentration ranging from 1.5mM to 3.5mM. It was found that annealing temperature 

of 60°C and a magnesium concentration of 1.5mM MgCl2+ was optimal and gave the strongest 

amplimer (Fig 4.1).  DNA extracted from HeLa cells was used as the template for this 

optimisation reaction. Negative controls for optimisation reactions used H2O instead of 

template DNA. 

 

Figure 4.1 Optimisation of annealing temperature and MgCl2+ concentration for PC03/04 

primer set.  

A range of temperatures from 58˚C to 60˚C and MgCl2+ concentrations were examined with 

60˚C and a MgCl2+ concentration of 1.5mM determined to be optimum 
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4.3.2 GP5+/6+ 

 

HPV DNA was detected in cervical tissue samples using the GP5+/6+ primer set. This primer set 

amplifies a section of the L1 gene, producing a 150bp amplimer.  Optimisation of this primer set 

was performed using magnesium chloride concentrations of 0 to 3.5mM (at 48°C) (Fig 4.2) and 

annealing temperature ranges of 48˚C to 55˚C (using 2.5mM MgCl2) (Fig 4.3). It was found that 

an annealing temperature of 48°C and MgCl2+ concentration of 2.5mM were optimum.  DNA 

extracted from HeLa cells was used as the template for this optimisation reaction. Negative 

controls for optimisation reactions used H2O instead of template DNA.  

 

 

Figure 4.2 Optimisation of MgCl2+ concentration for GP5+/6+ primer set.  

Optimisation using a range of 0 to 3.5mM MgCl2+ with 2.5mM determined to be the optimum 

concentration for this primer set. 
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Figure 4.3 Optimisation of annealing temperature for GP5+/6+ primer set.  

Optimisation of annealing temperature for GP5+/6+ primer set was performed using a 

temperature range of 48˚C to 55˚C. An annealing temperature of 48˚C was determined to be 

optimum.  
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4.4 Extraction of DNA from formalin fixed paraffin embedded cervical 

tissue. 
 

From the 160 cases examined using the H&E stain DNA was extracted from 101 samples. During 

the sectioning of cervical tissue samples for DNA extraction the blade was changed after each 

sample and muscle tissue block was sectioned after every 10 cervical sections. Muscle tissue 

should not contain HPV DNA, as HPV is epitheliotropic [210] thus DNA extracted from muscle 

tissue ensured that no HPV DNA contamination was occurring during the DNA extraction 

process (Fig 4.4). With each reaction a positive control was carried out using DNA extracted 

from the HPV 18 positive cell line HeLa. A negative control reaction with water in place of 

template DNA was also included with each batch.  

 

 

Figure 4.4 PCR amplification using GP5+/6+ primers on negative controls 

Lane 1: 100bp ladder, Lane2: Muscle DNA 1, Lane 3: Muscle DNA 2, Lane 4: HeLa DNA (positive 

control), Lane 5: Negative Control (H2O instead of template DNA) 
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In total DNA was extracted from 101 cervical samples.  The presence of amplifiable DNA 

was detected using the PC03/04 primers, of which 85/101 (85%) samples were positive (Figure 

4.5), while in the remaining 16 samples DNA of sufficient quality could not be extracted. Of the 

85 samples in which amplifiable DNA was detected, HPV DNA was detected in 60 of these 

samples using the GP5+/6+ primer set (figure 4.6),  while in the remaining 25 samples either no 

GP5+/6+ PCR product was detected, or the product was not of sufficient quality for sequencing. 

The HPV-genotypes detected in the 60 GP5+/6+ positive samples can be seen in table 4.3 and 

figure 4.9.  

 In N.E.M cervical samples DNA was extracted from 9 samples of which 8/9 samples 

produced amplifiable DNA. HPV DNA was detected in 5 of these samples (63%) while in 3 of the 

samples no HPV DNA could be detected. In 22/28 LSIL samples, DNA of sufficient quality for PCR 

was extracted, with HPV DNA detected in 12 of these 22 samples (55%). For HSIL samples DNA 

of sufficient quality for PCR was extracted from 45 of 54 samples. Of these 45 samples, HPV 

DNA was detected in 34/45 (73%) of samples. In all 10 SCC samples amplifiable DNA was 

extracted and HPV DNA was detected in 9/10 of these samples. For a summary of these results 

see (Table 4.2) 
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Figure 4.5 β-globin amplification of DNA extracted from cervical tissue 

Lane 1: 100bp ladder, Lane 2-11: Cervical sample number 1-10, Lane 12: Negative Control, Lane 

13: Positive Control 

 

 

 

Figure 4.6 PCR detection of HPV DNA in cervical tissue samples using GP5+/6+ primer set. 

Lane 1: 100bp ladder, Lane 2-9: Cervical sample number 1-8, Lane 10:, Positive Control, Lane 

11: Negative Control. 
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Table 4.2 Detection of HPV DNA in cervical tissue samples using GP5+/6+ primers 

Disease staus No. of Samples tested HPV+ HPV- β-Globin Neg. 

N.E.M 9 5 (63%) 3 (37%) 1  

LSIL 28 12(55%) 10 (45%) 6  

HSIL 54 34 (76%) 11 (24%) 9  

SCC 10 9 (90%) 1 (10%) 0  

Total 101 60 (71%) 25 (29%) 16  

 

Summary of the results from PCR detection of HPV DNA in cervical tissues. SCC samples had the 
highest % positivity for HPV DNA. 

N.E.M = No evidence of malignancy, LSIL = Low grade squamous intraepithelial lesion, HSIL = 
High grade squamous epithelial lesion, SCC = Squamous cell carcinoma. 

 

 

4.5 HPV genotyping 
 

Sequencing was performed by Eurofins DNA MWG Operon, Ebersberg, Germany. After PCR 

reactions were performed the products were purified by spin column, sequenced, and an 

electropherogram was produced (Figure 4.7). The electropherogram shows the absorbance 

peak of each nucleotide in the DNA strand and thus sequence of the strand. The sequenced PCR 

products were then matched for sequence homology with known L1 sequences of specific HPV 

genotypes using the Basic Local Alignment Search Tool (BLAST) (Figure 4.8). 60 samples were 

successfully sequenced, with HPV-16 the most common genotype detected (Figure 4.9) 
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Figure 4.7 Example of an electropherogram produced from a GP5+/6+ amplimer.  

Each nucleotide is tagged with a different fluorescent dye and detected simultaneously by a 

laser, allowing determination of base pair sequence in the DNA fragment. 

 

 

Figure 4.8 Example of results from BLAST analysis of sequenced HPV amplimers, showing 

level of sequence homology with known HPV sequences.  

BLAST is an algorithm that allows comparison of an unknown DNA sequence with database of 

published sequences. In this case the query sequence matched published sequences from the 

HPV-16 L1 gene, indicating that the original sample contained HPV-16 DNA. 

 

HPV DNA was successfully detected and genotyped in a total of 60 cervical tissue 

samples. HPV-16 was the most common genotype detected, with a total of 44/60 (73.3%) of 

successfully sequenced samples being HPV-16 positive. HPV-18 was the second most common 

genotype detected, with 11/60 (18.3%) of samples being HPV-18 positive. In total, 4 other HPV-
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strains were detected with HPV-33 being present in 2/60 (3.3%) and HPV-6, HPV-58 and HPV-67 

each detected in 1/60 (1.7%) of cases.  HPV-16 and HPV-18 together were detected in 91.6% of 

overall cases and both genotypes were detected in cases of NEM and across all grades of 

neoplasia. Both HPV-33 genotypes detected were identified in HSIL lesions, as well as the only 

detected HPV-58 genotype. The low risk, HPV-6 genotype, was identified in a sample containing 

a LSIL lesion, as was the high risk HPV-67 genotype (Table 4.3) 

 

Figure 4.9 Pie chart displaying the prevalence of different HPV genotypes detected 

HPV-16 was the most prevalent subtype detected with a 44 cervical samples testing positive for 

this genotype. HPV-18 DNA second most prevalent subtype, with 11 samples testing positive. A 

small number of samples tested positive for other genotypes including 2 for HPV-33 and 1 each 

for HPV-6, HPV-58 and HPV-67. 

44 

11 

2 1 1 1 

HPV-genotypes detected 

HPV-16 

HPV-18 

HPV-33 

HPV-6 

HPV-58 

HPV-67 
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Table 4.3 Number of different HPV genotypes detected and their overall distribution per 
pathological grade 

 

Pathological Grade HPV-6 HPV-16 HPV-18 HPV-33 HPV-58 HPV-67 

N.E.M (n=5)  3 2    

LSIL (n=12) 1 9 1   1 

HSIL (n=34)  24 7 2 1  

SCC (n=9)  8 1    

Total (n=60) 1 (1.7%) 44 (73.3%) 11 (18.3%)  2 (3.3%) 1 (1.7%) 1(1.7%) 

 

HPV-16 and HPV-18 were most frequently observed genotypes in all disease grades and the 

only subtypes detected in N.E.M tissue and invasive cancer samples. In low grade lesions HPV-6, 

HPV-18 and HPV-67 subtypes were also detected. In high grade lesions, HPV-33 was detected in 

2 samples and HPV-58 in 1 sample in addition to 24 HPV-16 and 7 HPV-18 samples. (N.E.M) = 

No evidence of malignancy (LSIL) = Low grade squamous epithelial lesion, (HSIL) = High grade 

squamous epithelial lesion, (SCC) = Squamous cell carcinoma  
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4.6 Biomarker expression per HPV-genotype 
 

Of the 60 cervical samples that were successfully genotyped, 31 of these had cores 

present on the tissue microarrays that could be graded. HPV-16 and HPV-33 positive samples 

had on average low expression of E-cadherin along with moderate to high expression of N-

cadherin, claudin-1, claudin-7, p120-catenin and SNAIL (table 4.4). HPV-18 positive samples 

displayed on average moderate expression of E-cadherin, weak expression of N-cadherin, 

claudin-1, claudin-7 and SNAIL and high expression of p120-catenin. HPV-6 and HPV-67 positive 

samples both displayed high E-cadherin expression, moderate N-cadherin expression, weak 

claudin-1 expression and an absence of p120 catenin expression (table 4.4). 

Table 4.4 Comparison of biomarker expression per HPV genotype 

Genotype 
 (number of samples, lesion grade) 

ECAD NCAD CLDN-1 CLDN-7 p120 SNAIL 

HPV-6 
(1 LSIL) 

3 2 1 3 0 N/A 

HPV-16 
(4 LSIL, 10 HSIL, 7 SCC) 

0.824 2.316 2.425 1.75 2.526 1.7 

HPV-18 
(1 NEM, 4 HSIL, 1 SCC) 

1.583 0.8666 1.3 1.1 2.6 0.7666 

HPV-33 
( 2 HSIL) 

0.5 2.5 2.5 1.5 3 1.5 

HPV-67 
(1 LSIL) 

3 2 1 0 0 0 

 

Mean IHC staining intensity for each biomarker per HPV genotype. Staining intensity was 

graded from 0-3 with 0 indicating no staining and 3 indicating strong staining intensity.  HPV-16 

and HPV-33 samples displayed on average the lowest expression of E-cadherin and highest 

expression of N-cadherin, claudin-1 and SNAIL compared to other HPV subtypes. HPV-6 and 

HPV-67 subtypes displayed the strongest E-cadherin expression and weakest claudin-1 and 

p120-catenin expression compared to other HPV subtypes. 
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4.7 Summary & Key Findings 
  

 DNA was extracted from the cohort of cervical tissue samples and the presence of HPV 

DNA in the samples was assessed using a PCR based method. A modified GP5+/6+ primer set 

producing an amplimer of 168bp was used, with the PC03/04 β-globin primer set used to assess 

the quality of the extracted DNA. For any samples that successfully produced an amplimer using 

the GP5+/6+set, this amplimer was sequenced and compared to known HPV sequences to 

determine the HPV genotype present in the sample. 

 HPV DNA was detected in 60/101 (59%) of the cervical tissue samples 

o In 25/101 (25%) samples HPV DNA could not be detected, while in the remaining 

16 samples (16%) no amplifiable DNA could be detected.  

 The highest detection rate of HPV was in squamous cell carcinoma samples (90%), while 

the lowest detection rate was in LSIL samples, with HPV DNA detected in 12/22 (55%) of 

samples in which amplifiable DNA was detected.  

 6 different HPV genotypes were detected with HPV-16 being by far the most prevalent 

genotype, with 44/60 (73%) of samples containing HPV-16 DNA. 
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4.8 Discussion 
 

This study aimed to examine the prevalence of HPV genotypes in the cohort of FFPE 

tissues used in the earlier study. A PCR based method using the GP5+/6+ consensus primer set 

was utilised in this study to detect HPV DNA in FFPE cervical tissue samples. Amplimers were 

sequenced and compared with published HPV sequenced using BLAST to assess the HPV 

genotype present in the sample. While this is a sensitive and reliable method for detecting HPV 

DNA, this method has some limitations. Infection with multiple HPV types is relatively common 

occurrence in normal cervical tissue and in cervical neoplasia with Huang et al., 2004 finding 

28.9% of invasive cervical tumours co-infected with multiple HPV genotypes. Co-infection with 

multiple HPV types can have a significant effect on patient outcomes, with Munagala et al., 

2009 finding that patients with multiple infections up to have a poorer response to treatment 

compared to patients with infected with a single HPV type. As the HPV detection method used 

in this study was unable to detect more than one HPV genotype in a sample, this study was 

unable to assess any relationship between HPV co-infection any expression of tight and 

adherens junction proteins. PCR systems using multiple primers such as PGMY09/11 and SPF-

PCR are more robust in detecting multiple infections than systems using single consensus 

primers such as GP5+/6+. This may especially be true in cases of mixed infections where one 

type is present in a high viral load compared to the other genotype. Methods that use reverse 

line blot assays such as the commercial INNO-LiPA kit produced by Roche, instead of DNA 

sequencing are also more effective in determining the presence of multiple HPV genotypes in a 

single sample, however, for this study the cost of using such a kit was prohibitive. 
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One of the aims of this study was to assess if particular HPV genotypes are associated 

with a greater degree of aberrant AJ and TJ protein expression compared to other HPV 

gentoypes. This study was limited in its ability to compare and contrast the expression profile of 

AJ and TJ proteins across a large range of HPV genotypes, due to the predominance of HPV-16 

and HPV-18 in the cohort of samples. In this study 73% of samples tested positive for HPV-16 

and 18% tested positive for HPV-18. A small number or other HPV genotypes, such as HPV-6, 

HPV-33 and HPV-67 were detected although often only a single sample tested positive for these 

other genotypes, and overall only 9% of the sample tested positive for a non HPV-16 or HPV-18 

genotype. With a small sample number of genotypes other than HPV-16 and -18 this study was 

limited in its ability to make meaningful or significant comparisons of AJ and TJ protein 

expression between different HPV genotypes. The high prevalence of HPV-16 and -18 in pre-

cancerous and invasive cervical lesions has been well established with most studies identifying 

HPV-16 and -18 being responsible for around 70% of invasive cancers. This study detected and 

genotyped HPV from 60 cervical samples but higher number of samples would need to be 

analysed in order to have an adequate number of other HPV genotypes to offer a significant 

comparison between expression pattern of the different AJ and TJ proteins. This study was 

limited in the number of samples it could analyse due to ethical approval only granting access 

to retrospective cervical samples sent to the Rotunda hospital between 2005 and 2007. 
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5. The role of SNAIL in E-cadherin expression and investigation 

into the role of claudin-1 and claudin-7 on cervical cell 

tumourigenesis 

 

5.1 Introduction 
 

Changes in the expression of adherens and tight junction proteins are often observed in 

epithelial malignancies [116]. In chapter 3 of this study, an increase in expression of claudin-1, 

claudin-7 and SNAIL was observed in cases of cervical neoplasia. Claudin-1 and claudin-7 are 

both integral tight junction proteins and have both been implicated as having pro and anti 

tumourigenic properties depending on the tumour cell line [113], [124], [125], [211]. SNAIL is a 

zinc fingered transcriptional repressor protein and has been shown to be a potent repressor of 

E-cadherin expression when overexpressed in the epithelial MDCK cell line [212].  To the best of 

our knowledge, there is a lack of studies in the literature about the effect of claudin-1 and 

claudin-7 overexpression, or of the role SNAIL may play in the regulation E-cadherin expression, 

in cervical cell lines. In this chapter we will attempt to elucidate what role claudin-1, claudin-7 

and SNAIL may play in cervical tumourigenesis.  
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5.2 Aims 
 

 To determine the significance of the increased claudin-1, claudin-7 and snail expression 

observed in cervical neoplasia tissue samples in chapter 3 of this study. 

 To elucidate the role these proteins may play in cervical tumourigenesis by performing a 

number of experiments in cervical cell lines. 

o To transfect two cervical cell lines that display high expression of SNAIL and no E-

cadherin expression, HeLa and SiHa cells, with two siRNAs targeting SNAIL and 

the effect of SNAIL knockdown on E-cadherin expression would be examined. 

o To investigate the role of claudin-1 and claudin-7 overexpression by generating 

claudin-1 and claudin-7 overexpressing HeLa cell lines. The characteristics of 

these stable cell lines would then be assessed, in terms of cell 

proliferation/viability, permeability, invasion and migration. 
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5.3 siRNA mediated knockdown of SNAIL in HeLa cells 
 

HeLa cells were transiently co-transfected two different siRNAs targeting SNAIL in order 

to establish knockdown of SNAIL expression in these cells. Two different siRNAs both targeting 

SNAIL were selected in order to maximise the level of gene knockdown. Endogenous expression 

of SNAIL in HeLa cells had previously been reported by Zhao et al., 2007 [213] and was 

confirmed by western blot before proceeding with siRNA experiments (data not shown)  Cells 

were co-transfected with both siRNAs at concentrations of 100nM, 50nM, 20nM, 10nM, 5nM 

for 24 hours. A commercially purchased scrambled siRNA sequence (Ambion) that has no 

homology to any known mammalian gene was used as a negative control. The scrambled siRNA 

was validated by the manufacturer to ensure minimal non specific effects and to ensure that 

comparison of the gene-specific siRNA to the negative control gives a true picture of the effects 

of target-gene knockdown on gene expression and phenotype. No reduction of SNAIL protein 

expression was observed at all utilised siRNA concentrations, compared to the scrambled siRNA 

control (Figure 5.1). No detectable changes in cell morphology were observed at 24 hours post 

transfection, although cell viability was not assessed. The siRNAs used in this study were 

commercially purchased and were predesigned by the manufacturer, although not validated. 

One possibility for the lack of SNAIL knockdown was that siRNA sequences were not fully 

complementary to SNAIL mRNA sequences and therefore the mRNA was not efficiently 

targeted for degradation. The manufacturer offers several different siRNA variants that target 

SNAIL and offers to replace siRNAs that don’t achieve significant knockdown with alternate 

siRNAs. To assess if the problem was with a lack of siRNA specificity or another factor, a similar 
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cervical cell line (SiHa) was transfected with the siRNA to see if knockdown could be achieved in 

this cell line. 

 

Figure 5.1 Western blot of HeLa cells transiently transfected with SNAIL siRNA 

Lane 1: 100nM siRNA,  Lane 2: 50nM siRNA,  Lane 3: 25nM siRNA,  Lane 4: 10nM siRNA, 

 Lane 5: 5nM siRNA  Lane 6: Scrambled siRNA 

 

5.4 siRNA mediated knockdown of SNAIL in SiHa cells 
 

 After being unable to achieve significant knockdown of SNAIL expression in HeLa cells, 

another cervical cancer cell line, SiHa, was selected to evaluate the role SNAIL in the expression 

of E-cadherin. SiHa cells, like HeLa cells, do not express E-cadherin and display high SNAIL 

expression. Endogenous expression of SNAIL in SiHa cells was previously reported by Haaberg 

et al., 2008 [51] confirmed by western blot before proceeding with siRNA experiments (data 

not shown).  SNAIL siRNAs were co-transfected at 100nM, 50nM, 5nM and also with a 

scrambled siRNA sequence as a negative control for 24 hours. No detectable changes in cell 

morphology were observed at 24 hours post transfection, although cell viability was not 

assessed. A reduction of SNAIL expression at the protein level was observed compared to the 

scrambled siRNA negative control, at all concentrations of siRNA (Figure 5.2).  
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Figure 5.2 Western blot of SiHa cells transiently transfected with SNAIL siRNA. 

Lane 1: 100nM siRNA,  Lane 2: 50nm siRNA,  Lane 3: 5nm siRNA,  Lane 4: Scrambled siRNA 

 

 Although knockdown of SNAIL protein had already been confirmed by western blot, a 

preliminary real time PCR reaction was carried out on SiHa cDNA using SNAIL and GAPDH 

primers, to confirm knockdown of SNAIL mRNA. The CT value (cycle threshold) value is the cycle 

at which fluorescence achieves a certain threshold, and is inversely correlated to the amount of 

nucleic acid that was in the original sample. To account for any differences in overall cDNA 

concentration, the GAPDH housekeeping gene was used to normalise the SNAIL CT values and 

the relative expression was assessed using the 2-∆∆CTmethod as described by Livak et al., 2001 

[214]. An decrease in relative SNAIL  expression was observed for all concentrations of siRNA , 

compared to the scrambled siRNA samples.  The lowest observed relative expression was at the 

100nM siRNA concentration, although both 50nM and 5nM concentrations were below the 

scrambled siRNA control (Figure 5.3).  
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Figure 5.3 Bar chart of relative change in expression of SNAIL in SiHa cells transfected with 

different concentrations of siRNA. A reduction in relative SNAIL expression was observed at all 

concentration of siRNA compared to the scrambled siRNA control. The greatest reduction was 

observed at 100nm with just below 20% of relative expression observed. 

 

 

 

5.5 Detection of E-cadherin in siRNA transfected SiHa 
 

 After determining that knockdown of SNAIL expression had been achieved at the mRNA 

and protein level, an investigation of the relationship between SNAIL and E-cadherin expression 

was performed. To assess if siRNA mediated knockdown of SNAIL affected E-cadherin protein 

expression, protein was extracted from transfected SiHa cells and a western blot was 

performed. As a positive control extracts from the CasKi cell line, that strongly expresses E-

cadherin, were used. 
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Figure 5.4 Western blot detection of E-cadherin protein in SNAIL siRNA transfected SiHa cells 

Lane 1: 100nM SNAIL siRNA, Lane2: 50nM SNAIL siRNA, Lane3: 5nM SNAIL siRNA  

Lane 4: Scrambled siRNA Lane 5: Positive Control (CasKi cell extracts) 

 

No expression of E-cadherin was observed at any of the concentrations of transfected SNAIL 

siRNA or, as expected, in the scrambled siRNA negative control (Figure 5.4). CasKi cell extracts 

were used as a positive control for this experiment as they have high endogenous expression of 

E-cadherin. The lack of E-cadherin expression observed in SNAIL knockdown cells could be due 

to a number of reasons. It is possible that level of SNAIL knockdown achieved was not sufficient 

to nullify its effects in repressing E-cadherin expression. The highest concentration of siRNA 

used for transfection was 100nM, which is well above the range recommended by the 

manufacturer of 5-30nM. Another siRNA delivery method such as lentivirus particles may offer 

a greater level of SNAIL knockdown and perhaps have a greater effect on the level of E-cadherin 

expression. It is also possible that in SiHa cells there may be other factors, such as deletions in 

the E-cadherin gene itself that may negatively regulate E-cahderin and prevent its expression. 
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5.6 Transient transfection of HeLa cells with CLDN expression vectors. 
 

 An initial transient transfection of HeLa cells was carried out with the claudin-1 and 

claudin-7 expression vectors in order to establish whether claudin protein expression could be 

achieved in this cell line. Each vector contained a CMV promoter ahead of either a claudin-1 or 

claudin-7 ORF and a neomycin selection marker (Figure 5.7). Varying amounts of each plasmid 

were transfected, from 0.1µg to 2µg, to determine the optimum plasmid concentration.  

 

 

Figure 5.5 Western blot of HeLa cells transiently transfected with a range of Claudin-1 plasmid 

concentrations. 

Lane 1: Untransfected HeLa, Lane 2: 0.1µg of plasmid, Lane 3: 0.25µg of plasmid, Lane 4: 0.5µg of 

plasmid, Lane 5: 1.0µg of plasmid, Lane 6: 2.0µg of plasmid.  
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Figure 5.6 Western blot of HeLa cells transiently transfected with a range of Claudin-7 plasmid 

concentrations. 

Lane 1: Untransfected HeLa, Lane 2: 0.1µg of plasmid, Lane 3: 0.25µg of plasmid, Lane 4: 0.5µg of 

plasmid, Lane 5: 1.0µg of plasmid, Lane 6: 2.0µg of plasmid.  

 

HeLa cells transiently transfected with the Claudin-1 expression vector showed expression of 

Claudin-1 protein at all ranges of transfected plasmid, from (0.1µg to 2.0µg). Increased 

expression of Claudin-1 protein was observed with increasing plasmid concentration, with the 

highest expression observed with 0.5µg, 1.0µg and 2.0µg of plasmid (Figure 5.5). A very faint 

band was observed in the untransfected HeLa lane, likely as a result of an overflow of sample 

from an adjacent lane.  

 In HeLa cells transiently transfected with the claudin-7 expression vector, no expression 

of claudin-7 protein was observed in cells transfected with 0.1µg, 0.25µg, or 0.5µg of plasmid. 

Expression of claudin-7 protein was observed in HeLa cells transfected with 1.0µg and 2.0µg of 
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plasmid, with a similar level or protein expression observed for both plasmid concentrations 

(Figure 5.6). 

5.7 PCR screening of claudin-1 stable clones 
 

After transfection of HeLa cells with the claudin-1 expression vector, genticin selection was 

performed using G418 (Roche). Cells that survived genticin selection were cultured until 

isolated colonies of cells had formed. 50 colonies were picked, although only 42 successfully 

grew when subcultured, and DNA was extracted from each sample. To determine successful 

uptake of the expression vector and to ensure vector fidelity in each colony, a PCR was 

performed (figure 5.8) using primers listed in table 2.3. An outline of the area amplified by the 

claudin-1 primers within the expression vector can be seen in figure 5.7. For PCR reactions a 

sample of the expression vector was used as a positive control, and DNA extracted from 

untransfected HeLa was used as a negative control. 

 

Figure 5.7 Outline of expression vector used for the production of stable cell lines.  

Area of expression vector amplified by claudin primers is indicated, spanning from the CMV 
promoter to the claudin ORF. 
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Figure 5.8 PCR screening of stably transfected claudin-1 colonies 

100bp = 100 base pair DNA ladder,    Lane 1-42: Colonies 1-42 respectively 

Lane 43: Positive control (plasmid DNA)  Lane 44: Negative control 
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 After PCR screening the claudin-1 stable colonies, 8 different colonies were identified 

that successfully produced an amplimer : Colony#7, Colony#11, Colony#14, Colony#16, 

Colony#24, Colony#27, Colony#34, Colony#42 (figure 5.8), indicating that the expression vector 

had been successfully integrated and that the CMV-CLDN1 ORF area of the vector was intact. 

Amplimers were sequenced and compared to published CLDN1 ORF sequences using BLAST to 

ensure the area being amplified was homologous to the CLDN1 ORF (Figure 5.9). These colonies 

were then selected for western blotting analysis to assess if the claudin-1 was being expressed 

at the protein level. The overall length of the sequence analysed using BLAST was shorter than 

length of the amplicon as the sequencing method used ‘clips’ the sequence or automatically 

removes the low-quality sections at the start and end of the amplimer by using sequence 

quality scores.  

 

 

Figure 5.9 BLAST analysis of amplimer from claudin-1 stable colony showing sequence 

homology with published claudin-1 sequences 
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5.8 Western blot analysis of claudin-1 stable colonies 
 

Following, the identification of colonies that had successful uptake of the expression 

vector, an assessment of the level of claudin-1 protein expression in each colony was carried 

out using western blotting. 

 

Figure 5.10 Western blot detection of claudin-1 in stable colonies 

Lane 1: Colony #7 Lane 2: Colony# 11 Lane3: Colony # 14 Lane4: Colony#16 

Lane 5: Colony #24 Lane 6: Colony# 27 Lane7: Colony# 34 Lane8: Colony #42 

Lane 9: Positive Control Lane 10: Untransfected HeLa 

 

Western blot analysis showed varying levels claudin-1 expression in different colonies 

(figure 5.10). Colony #11 and #27 displayed very low expression, while moderate expression 

was observed in colonies #24 and #14. The highest observed expression was in colony#7 and 

therefore this colony was selected for use in further experiments and designated as C1-HeLa. 

Beta-actin bands in lanes 1 and 2 were slightly weak, likely as result of the chemluminescent 

substrate draining off the edge of the membrane. Equal loading of proteins was ensured 

however, by using a Bradford assay to match protein concentration before loading. 
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5.9 PCR screening of claudin-7 stable clones 
 

After transfection of HeLa cells with the claudin-7 expression vector, genticin selection was 

performed using G418. Cells that survived genticin selection were cultured until isolated 

colonies of cells had formed. 50 colonies were selected, however only 42 colonies continued to 

grow when subcultured, and DNA was extracted from each of these colonies. To determine 

successful uptake of the expression vector and to ensure the vector fidelity in each colony, a 

PCR was performed (figure 5.11) using primers listed in table 2.3.  

 

Figure 5.11 PCR screening of stably transfection claudin-7 colonies 

100bp = 100 base pair DNA ladder   Lane1-42: Colonies 1-42 respectively 

Lane 43: Positive control (plasmid DNA)  Lane 44: Negative control 
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After PCR screening the claudin-7 stable colonies, 8 different colonies were identified that 

successfully produced an amplimer : Colony#6, Colony#16, Colony#18, Colony#20, Colony#21, , 

Colony#23, Colony#24, Colony #31, indicating that the expression vector had been successfully 

integrated and that the CMV-claudin-7 ORF area of the vector was intact. Amplimers were 

sequenced and compared to published claudin-7 ORF sequences using BLAST to ensure the area 

being amplified was homologous to the claudin-7 ORF (figure 5.12). These colonies were then 

selected for western blotting analysis, to assess if the claudin-7 was being expressed at the 

protein level. The overall length of the sequence analysed using BLAST was shorter than length 

of the amplicon as the sequencing method used ‘clips’ the sequence or automatically removes 

the low-quality sections at the start and end of the amplimer by using sequence quality scores. 

 

 

Figure 5.12 BLAST analysis of amplimer from claudin-7 stable colony showing sequence 

homology with published claudin-7 sequences. 
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5.10 Western blot analysis of claudin-7 stable colonies 
 

Following, the identification of colonies that had successful uptake of the expression 

vector, an assessment of the level of claudin-7 protein expression in each colony was carried 

out using western blotting. 

 

 

Figure 5.13 Western blot detection of claudin-1 in stable colonies 

Lane 1: Colony #6 Lane 2: Colony# 16 Lane3: Colony # 18 Lane4: Colony#20 

Lane 5: Colony #21 Lane 6: Colony# 23 Lane7: Colony# 24 Lane8: Colony #31 

Lane 9: Positive Control Lane 10: Untransfected HeLa 

 

Western blot analysis showed varying levels claudin-7 expression in different colonies 

(figure 5.13). Colony #31 displayed very low expression, while moderate expression was 

observed in colonies #16, #18, #20, #21, #23, and #24. The highest observed expression was in 

colony#6 and therefore this colony was selected for use in further experiments and designated 

as C7-HeLa. 
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5.11 Assessment of the effect claudin-1 and claudin-7 expression on cell 

viability 
 

The effect of claudin-1 and claudin-7 expression on the viability and proliferation of C1-HeLa 

and C7-HeLa stable cell lines was assessed using the MTT assay. Non-claudin transfected HeLa 

(Null HeLa) was used as a negative control to assess the endogenous level of viability in HeLa 

cells and to allow comparison with claudin transfected cell lines. Results indicate that Claudin-1 

and Claudin-7 expression had no effect on the proliferative ability of Hela cells. Claudin-1 and 

Claudin-7 transfected cells showed a high level of proliferation at the 48hrs and 72 hrs 

timepoints of the assay, with absorbance values roughly doubling at each timepoint.  The assay 

results from Claudin-1 and Claudin-7 stable cells lines closely matched those of non claudin 

expressing HeLa cells (Figure 5.14) indicating that Claudin-1 or 7 expression did not affect the 

viability or proliferation of the cells. In addition, no changes in cell morphology were observed. 

All experiments were carried out in triplicate on three separate occasions and one way ANOVA 

analysis indicated results were not statistically significant. 
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Figure 5.14 Graph showing proliferation of C1-Hela, C7-Hela and Hela-Null cell lines using MTT 

assay at 24hr, 48hr and 72 hr time points. Error bars show + or – one standard deviation. 
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5.12 The effect claudin-1 and claudin-7 expression on cell invasion 
 

The effect of claudin-1 and claudin-7 expression on the invasive ability of HeLa cells was 

assessed using the C1-HeLa and C7-HeLa stable cell lines. The ability of cells to digest 

extracellular matrix components and permeate through a basement membrane was assessed 

using a boyden chamber assay. Non-claudin transfected HeLa (Null HeLa) was used as a 

negative control to assess the endogenous level of invasive ability in HeLa cells and to allow 

comparison with claudin transfected cell lines. C1-HeLa cells showed a very low invasive ability 

as evidenced by the low absorbance reading observed upon staining and lysis of invaded cells 

(Figure 5.15A). This result correlated with the observation of very few cells on the membrane 

when observed under a light microscope (Figure 5.15B). C7-Hela displayed a similar invasive 

ability to C1-Hela cells, with both a low number invaded cells observed when the membrane 

was observed under a light microscope (Figure 5.15C) and low absorbance reading observed 

when invaded cells stained and lysed (Figure 5.15A) Null-Hela, showed slightly higher invasive 

ability compared to C1-Hela and C7-Hela although overall the level of invasion was still very low 

(Figure 5.15A, 5.15D). A one way ANOVA test indicated results were not significant with a p 

value >0.05.  
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Figure 5.15 Cell invasion assay results for claudin-1 and claudin-7 stable cell lines 

(A) Graph showing quantification of invaded Claudin-1, Claudin-7 transfected and untransfected 

Hela cells at 560nm following staining and extraction, error bars indicate + or – one standard 

deviation (B) Brightfield image of invaded claudin-1 transfected (C) claudin-7 transfected and 

(D) null-HeLa x40 magnification (arrows indicate invasive cells) 
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5.13 Effect of claudin-1 and claudin-7 expression on permeability  
 

The effect of claudin-1 and claudin-7 expression on the permeability of HeLa cells was assessed 

using the C1-HeLa and C7-HeLa stable cell lines. Non-claudin transfected HeLa (Null HeLa) was 

used as a negative control to assess the endogenous level transepithlial electrical resistance in 

HeLa cells and to allow comparison with claudin transfected cell lines. To assess the 

permeability of stable cell lines, monolayers were cultured on transwell plates and the 

transepithelial electrical resistance was measured. Claudin-1 transfected cells displayed 

increased TEER values compared with non-transfected HeLa cells, with an average resistance of 

27.55 Ω per cm2 compared to 12.89 Ω per cm2 for untransfected HeLa cells. Claudin-7 

transfected cells had an average resistance of 28.26 Ω per cm2 which is significant increase 

compared to the resistance of claudin null HeLa (Figure 5.16) and comparable to value 

observed for Claudin-1 transfected cells (Figure5.16). Results were analysed using a one way 

ANOVA test and were deemed to be statistically significant (P<0.05). 

 

 

 

 

 



172 
 

 

Figure 5.16 TEER reading for claudin-1, claudin-7 stable cell lines and null-HeLa 

Graph showing average resistance per cm2 in ohms for cultured monolayers of Claudin-1 transfected, 

Claudin-7 transfected and untransfected HeLa cells. Error bars indicate + or  –  one standard deviation. 

Significance (p<0.05) indicated using *. 
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5.14 Effect of claudin-1 and claudin-7 transfection on cell migration 
 

The effect of Claudin-1 and Claudin-7 expression on the migratory ability of HeLa cells 

was assessed using a wound healing/gap closure assay. Non-claudin transfected HeLa (Null 

HeLa) was used as a negative control to assess the endogenous level of migratory ability in HeLa 

cells and to allow comparison with claudin transfected cell lines. After creating the gap in the 

cell monolayer, the size of the gap was measured using image j© software to ensure the gaps 

were close to equal size. The gap in the C1-HeLa, C7-HeLa and Null-HeLa were 840µm, 870µm, 

850µm respectively at the beginning of the experiment (0 hours). Images of Null-HeLa show 

significant migration of cells into the gap after 24 hours and complete closure of the gap after 

48 hours (Figure 5.17). The size of the gap had reduced after 24 hours for C1-HeLa although not 

to the same extent as the Null-HeLa at 24hours and the gap had not shown complete closure 

after 48 hours, in contrast to the Null-HeLa cells. 

C7-HeLa showed a similar pattern to C1-HeLa with partial closure occurring after 24 hours but 

with gap closure still incomplete after 48 hours, unlike the HeLa-null cells which completely 

infiltrated and filled the gap after 48 hours (Figure 5.17). These results indicate that Claudin-1 

and Claudin-7 transfection may have an effect on the migratory ability of HeLa cells, possibly 

impeding the motility of cells and their ability to detach from a group of cells and disperse.  
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Figure 5.17 Cell migration assay images for claudin-1 and claudin-7 stable cell lines and 

untransfected HeLa  

Gap closure assay showing migration of cells over 48hr time period. Initial width of gap was 

measured at 0 hour timepoint as being 840µm, 870µm and 850µm for C1-HeLa, C7-HeLa and 

Null-Hela respectively. Null-Hela showed partial migration of cells into the gap after 24 hours 

and complete gap closure at 48 hour timepoint. C1-HeLa showed partial gap closure at 24 hours 

and 48 hours but incomplete gap closure over 48 hour period. C7-HeLa showed a similar 

pattern to C1-HeLa with partial but incomplete gap closure after 48 hour time period. 
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5.15 Summary and Key findings 
  

 SNAIL has been shown to be a potent repressor of E-cadherin [141] and in this study an 

increase in SNAIL expression was observed in cases of cervical neoplasia. To assess what role 

SNAIL might have on E-cadherin expression in a cervical context, siRNA was purchased from Life 

Sciences and used to knockdown expression of SNAIL in two cervical cell lines, SiHa and HeLa. 

An increase in claudin-1 and claudin-7 expression in cases of cervical neoplasia was also 

observed in this study. To elucidate the role claudin overexpression may play in cervical 

neoplasia, HeLa cells were stably transfected with expression vectors containing the claudin-1 

and claudin-7 genes to produce two separate stable cell lines expressing claudin-1 and claudin-

7 respectively. The effect of claudin-1 and claudin-7 overexpresion on these cells, in terms of 

cell proliferation/viability, permeability, invasion and migration, was then assessed.  

 Knockdown of SNAIL in SiHa cells had no effect on E-cadherin expression 

 Claudin-1 and claudin-7 overexpression both had a similar effect on HeLa cells 

o Reduction in the migratory ability of transfected cells 

o Increase in trans-epithelial electrical resistance of cell monolayers, indicating 

decreased permeability. 

o No significant effect on cell invasion 

o No significant effect on cell proliferation/viability 
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5.16 Discussion 
 

This study assessed the role SNAIL may play in the regulation of E-cadherin expression in 

two cervical cell lines, SiHa and HeLa. Both cell lines have high endogenous expression of SNAIL 

and do not express E-cadherin. As SNAIL has been shown to be a potent repressor of E-cadherin 

expression, this study used siRNAs targeting SNAIL to see if knockdown of SNAIL could be 

achieved and if it had an effect on E-cadherin expression in these cells lines. siRNA is widely 

used to tool in gene expression and silencing studies , however, the technique has limitations 

that must be considered. The transduction of siRNA into cells leads to only a transient 

knockdown of the gene of interest, with the duration of gene knockdown being determined by 

the rate of cell growth and the dilution of the siRNAs below a crucial threshold level that is 

necessary to maintain the inhibition of gene expression. As a result, the half-life of the target 

protein must be considered to ensure that protein does not outlast the duration of gene 

knockdown achieved by the siRNA. As SNAIL protein has a reported half-life of 20-45 minutes 

[215], cells were harvested after 24 hours in order to try and minimize dilution of the siRNA 

during cell growth and maximise knockdown of the SNAIL protein.  

Another common limitation is of siRNA based techniques are the potential for off target 

effects. Off target effects occur through partial complementarity of the siRNA with unintended 

mRNA targets leading to down-regulation of non-target genes. The two siRNAs used in this 

study were purchased commercially and designed by Ambion using off-target effect prediction 

algorithms to ensure specificity for SNAIL mRNA only and to minimise any cross 

complementariness with other mRNA sequences.  
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Another limitation of siRNA based studies is the need for an effective delivery system, as 

siRNAs are naturally repelled by the negatively charged cell membrane. This study utilised a 

commercial lipofectamine, RNAi Max (Ambion), reagent to transfect siRNA into the target cells. 

This reagent had been specifically designed for transfection of siRNA and had been validated for 

use on HeLa cells by the manufacturer, which should have ensured effective transfection of 

siRNAs into target cells during the experiments performed in this study. 

To investigate the effect of claudin-1 and claudin-7 transfection on HeLa cells a number 

of assays were used to assess cell behavior, such as migration, invasion, viability and 

permeability. To assess cell migration a wound-healing or gap closure assay was performed. 

This assay involves manually scraping a gap in a cultured monolayer and measuring the rate at 

which surrounding cells migrate into the space and fill the gap. The main limitation of this assay 

is the lack of precision associated with manually scratching the gap in the monolayer and the 

variability that can occur in the total area of the gap using this method. To minimise any 

variability in the size of the gap, the size of the gap was measured using image j software to 

ensure uniformity in the gap size and all assays were performed a minimum of 3 times. To 

assess the invasive ability of cells a boyden chamber assay was used. This assay measures the 

ability of cells to digest an extracellular matrix and pass through a semi-permeable membrane. 

A limitation of this method is that it lacks sensitivity when only a small number of cells invade 

through the membrane and thus with a weakly invasive cell line like HeLa, it is difficult to detect 

any statistically significant changes in invasive ability. It is therefore possible that if claudin 

transfection had only a minor effect on cell invasion, due to the low invasive ability of HeLa 

cells, this assay may lack the sensitivity to detect these changes. To measure the effect of 
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claudin transfection on cell monolayer permeability, TEER readings of cells cultured on a porous 

filter membrane were measured using a voltmeter. The ability of the voltmeter to accurately 

and reliably measure the resistance across the membrane is dependent on the correct and 

consistent positioning of the electrode in the transwell plate. TEER readings were measured 10 

times and experiments performed in triplicate on 3 separate occasions, to ensure results were 

as accurate as possible any variability in resistance readings associated the positioning of the 

electrode was minimised. 
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6. Discussion 
 

Adherens and tight junctions play a key role in maintaining the cohesive structure of 

epithelial tissue.  Loss of cell-cell cohesion is a key mechanism in the development of epithelial 

malignancies, allowing cells to leave their site of origin and spread throughout the body, 

forming distant metastasis [216]. The significance of the process of metastasis is highlighted by 

the fact that 90% of cancer deaths are due to the formation of distant metastasis [203]. Since 

adherens and tight junctions in epithelial cells are important for maintaining tissue homeostasis 

by regulating epithelial barriers, and are important for cell adhesion and for cohesive structure, 

aberrant expression of the proteins that make up these structures is frequently observed in 

epithelial malignancies [116] [217] [218]. The aims of this study were to examine if various AJ 

and TJ proteins are aberrantly expressed in cases of cervical neoplasia, if these aberrant 

expression profiles are associated with any specific HPV subtype, and to analyse what effects 

aberrant AJ and TJ protein expression may have on dysplastic cervical cells. 

 To examine AJ and TJ protein expression several tissue microarrays were constructed 

containing normal cervical tissue and all grades of neoplasia. These tissue microarrays were 

stained using immunhistochemistry and assessed to see if there was any change in AJ and TJ 

protein expression in cases of cervical neoplasia.  E-cadherin is an important part of adherens 

junctions being one of the main trans-membrane proteins in the junction and initiating cell-cell 

adhesion through trans-cadherin interactions between neighbouring cells. In this study normal 

cervical tissue displayed moderate E-cadherin staining in the basal and intermediate layers of 

the epithelium with weaker staining observed in the superficial layers of the epithelium, and 
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this is a staining pattern also observed by Vessey et al. 1995 [219] . E-cadherin expression is 

thought to be reduced in the superficial layers of the epithelium as the cells terminally 

differentiate, allowing these cells to be sloughed off and for new cells to move up through the 

epithelium [220]. Low grade lesions displayed significantly less staining than normal epithelium. 

Dysplastic cells in basal portion of the epithelium frequently displayed a lack of staining, while 

some weak staining was observed in the intermediate and superficial layers of the epithelium. 

High grade lesions often displayed a complete absence of staining with occasional weak staining 

observed in the superficial portion of the epithelium. The weak staining observed in the 

superficial sections of the epithelium most likely reflect the immature dysplastic cells beginning 

to mature further up the epithelium than in normal epithelium, where cells begin to mature in 

the basal and intermediate layers of the epithelium. Two different patterns were observed in 

squamous cell carcinoma samples with some samples displaying an absence of staining while 

others displayed weak staining. The dichotomy between weak and absent staining of sqaumous 

cell carcinomas most likely reflects the level of differentiation within the tumour, with Wu et 

al., 2000 showing that well differentiated squamous tumours often retain some level of E-

cadherin expression while poorly differentiated tumours tend to lose all expression completely. 

The findings of this study are in agreement with other studies Munhoz, et al., 2009 [221] , 

Branca, et al., 2006 [222] that have observed a reduction of E-cadherin in cases of cervical 

intraepithelial neoplasia and squamous cell carcinomas compared to normal cervical 

epithelium., indicating that loss of E-cadherin expression may play an important role in cervical 

tumourigenesis. 
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This study found N-cadherin displayed predominantly weak membranous staining in 

normal cervical epithelium, mostly in the basal and intermediate layers. Low grade lesions 

displayed moderate membranous staining in the dysplatic cells of the basal layers, with weaker 

staining in the differentiating cells of the intermediate and superficial layers. High grade lesions 

showed moderate to strong membranous staining throughout the epithelium. Squamous cell 

carcinoma cells showed strong membranous staining with some weak cytoplasmic activity. 

Currently there are few studies of N-cadherin expression in cervical malignancies to directly 

compare the results of this study to. An immunohistochemistry based study by Fan et al. 2012 

[223] found an increase in N-cadherin expression in LSIL, HSIL and invasive cancer compared to 

normal cervical epithelium, which is similar to the findings in this study. Another 

immunohistochemistry based study found increased expression of N-cadherin in oral squamous 

cell carcinoma samples, and that N-cadherin expression correlated with poor patient outcome 

[224].  The role of N-cahderin in tumourigenesis has been extensively studied in cell models 

which may offer insight into its potential role in cervical neoplasia. N-cadherin has been shown 

to promote motility and invasiveness in breast [132] and melanoma cells lines [225], which may 

indicate the increased expression observed in cases of cervical neoplasia in this study could be 

associated with cervical tumourigenesis. 

 This study observed an increase in staining of Claudin-1 and Claudin-7 in cervical 

neoplasia compared to normal cervical epithelium. A gradual increase in staining intensity for 

Claudin-1 was observed, with low grade lesions showing a slight increase, high grade lesions a 

more pronounced increase and squamous cell carcinoma samples showing the highest level of 

staining. Claudin-7 displayed a similar staining pattern to claudin-1 except the most intense 
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staining was observed in high grade lesions. The results of this study concur with other studies 

that have observed increased Claudin-1 and Claudin-7 expression in cervical neoplasia. Lee, et 

al., 2005 [226] observed gradually increased expressions of claudins-1 and -7 in accordance 

with progression from LSIL to HSIL and invasive carcinoma. Lee et  al., 2005 [226] however, did 

not observe Claudin-1 or -7 expression in normal cervical epithelium and found the highest 

expression levels of Claudin-7 in invasive carcinoma samples, contrary to our findings. Sobel et 

al., 2005 [227] observed Claudin-1 and -7 expression in normal cervical epithelium with an 

increase in expression in low and high grade lesions and invasive carcinoma in concordance 

with our results. Sobel, et al., 2005 observed the highest level of expression for Claudin-7 in 

HSIL lesions, which concurs with this study, although they observed the highest expression of 

Claudin-1 in HSIL lesion whereas this study observed the greatest expression in invasive 

carcinoma samples. Claudins-1 and -7 are closely related TJ proteins [228], which may explain 

the similarities in staining patterns observed for both proteins in this study. Parallel up and 

down regulation of structurally similar claudin proteins has been observed in other cancer types 

such as prostatic adenocarcinomas [121]. Overexpression of Claudin-1 has been suggested to 

destabilise the tight junctions and lead to a loss of adhesion in oral squamous carcinoma cell 

lines [112], although in lung adenocarcinoma Claudin-1 has been observed to be a metastasis 

suppressor [115] 

This study observed an increase in staining of p120 catenin in cervical neoplasia 

compared to normal cervical epithelium. HSIL lesions displayed the most intense staining 

pattern while both LSIL and squamous cell carcinoma displayed greater staining intensity than 

normal epithelium. p120 catenin is an integral part of adherens junctions with p120 binding 
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promoting the stabilisation of cadherin complexes on the plasma membrane and thus 

strengthens cell-cell adhesion [87]. The E-cadherin/p120-catenin complex is important for 

formation and maintenance of the adherens junctions, and Stairs, et al., 2011[229] found that 

in mouse models p120-catenin loss in the mouse oral cavity and esophagus leads to squamous 

cancers and suggested p120-catenin functions as a tumour suppressor gene. 

p120 overexpression, however, can induce dramatic changes in cell morphology and 

increase cell motility [230]. These effects are apparently mediated by the ability of p120 to 

suppress RhoA activity and induce the activities of the related Rho GTPases, Rac1 and Cdc42 

[230]. The dual role of p120, both promoting and inhibiting tumourigenesis, is thought to occur 

as a result of the interactions between p120 and E-cadherin. Endogenous p120 promotes the 

transformed growth of E-cadherin–deficient tumours by promoting Rac1 activation and 

inducing MAPK signaling. In contrast, p120 potently suppresses the growth of tumour cells 

expressing endogenous or exogenous E-cadherin [91]. In this study LSIL, HSIL and SCC samples 

frequently displayed a lack of positive staining for E-cadherin while strong positive staining for 

p120-catenin was observed for all grades of neoplasia. These findings suggest p120 may play a 

role in the pathogenesis of cervical neoplasia, although detection of the Rac1 and Cdc42 Rho 

GTPases in SIL and SCC samples would be needed to confirm this. 

This study observed an increase in staining of SNAIL in cases of cervical neoplasia as 

compared to normal epithelium. Very few cases of normal cervical epithelium showed any 

staining with a gradual increase in staining observed in accordance with progression from LSIL 

to HSIL and invasive carcinoma. As yet, few studies have been published looking at SNAIL 
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expression in cervical neoplasia. Zhao et al., 2008 [231] analysed SNAIL expression at the 

transcriptional level finding SIL lesions and invasive carcinoma samples had much greater 

expression of SNAIL mRNA than normal cervical tissue. Increased expression of SNAIL in cervical 

neoplasia may be of significance, as SNAIL has been shown to a potent repressor of E-cadherin 

in epithelial cell lines [212]. This study attempted to gain further insight into the role that SNAIL 

might play in suppressing E-cadherin in cervical neoplasia, by performing siRNA mediated 

knockdown of SNAIL expression in two malignant cervical cell lines, HeLa and SiHa that lack E-

cadherin expression. In HeLa cells we were unable to achieve significant knockdown of SNAIL 

expression, however, significant reduction in SNAIL was observed at the protein and mRNA 

level in SiHa cells.  This reduction in SNAIL expression did not correspond to an increase in E-

cadherin expression in transfected cells, for which there could be several explanations. It is 

possible that the potency of SNAIL is such that the level of knockdown we achieved in this study 

is insufficient to inhibit its repression of E-cadherin. It is also possible that there is another 

mechanism involved in repression of E-cadherin in the SiHa cell line and in cervical neoplasia. 

Loss of E-cadherin expression is observed in many different tumour types, and SNAIL mediated 

suppression is only one possible mechanism by which repression of E-cadherin may occur.  E-

cadherin promoter methylation [232] and the action of other transcriptional repressor proteins 

, Slug [233], SIP1 [234],  and ZEB1 [235] may also play a role in suppressing E-cadherin 

expression. Further experiments are necessary to fully reveal the role that SNAIL may play in 

cervical tumorigenesis, however, the immunohistochemistry staining results in our cervical 

tissue samples indicate that its expression is associated with disease progression and thus it 

may be useful as a biomarker for disease progression. The role of HPV in promoting EMT is still 
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not fully understood although a number of studies are beginning to uncover interactions 

between HPV oncoproteins and key EMT pathways. Over expression of HPV16 E7 causes 

molecular changes indicative of a mesenchymal transition in normal human foreskin 

keratinocytes [236]. Expression of HPV16 E7 in normal human epithelial cells caused increased 

levels of vimentin and fibronectin and N-cadherin, all markers associated with a mesenchymal 

phenotype, whereas E-cadherin, a marker of the epithelial phenotype, was expressed at 

decreased levels [236]. In a similar study, many epithelial features were gradually eliminated 

and some mesenchymal traits were established in HPV16-transformed keratinocytes during 

HPV induced transformation [237]. These studies indicate that HPV proteins likely play a key 

role in driving EMT in cervical cancer. 

After identifying aberrant expression of tight and adherens junction protein in cases of 

cervical neoplasia, the prevalence of different HPV genotypes in our samples was analysed. This 

would offer insights into the prevalence of HPV in the Irish population, and also allow 

comparisons between infection with certain HPV-genotypes and the expression profile of tight 

and adherens junction proteins.  This study utilised a PCR based method to identify the 

presence of HPV DNA in FFPE cervical tissue samples. The GP5+/6+ consensus primer set was 

selected as it is capable of amplifying DNA from a broad spectrum of HPV types and produces  a 

150bp amplimer that can be subsequently sequenced to determine the HPV genotype of the 

sample. Other primer sets, such as SPF10 and MY09/11, can also be utilised in the detection and 

genotyping of HPV, however, they were not utilised for a number of reasons. The degradation 

of DNA in formalin-fixed samples hinders the PCR amplification of DNA fragments over 200bp 

[238]. As the MY09/11 primer set amplifies a 450bp part of the L1 genome it was not utilised in 
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this study. The SPF10 primer set is capable of detecting more HPV genotypes than the GP5+/6+ 

primer set and is more sensitive, however, as it uses multiple forward and reverse primer and 

amplifies a short 65bp sequence of the genome, that is unsuitable for sequencing, it was not 

utilised in this study. 

 This study detected HPV DNA in 60 of 101 samples examined (60%). HPV DNA was 

detected in 9 of 10 (90%) squamous cell carcinoma samples examined , in 12 of 28 (43%) of LSIL 

samples and 33 of 54 (61%) HSIL samples.  For 16 of the 101 (16%) samples no beta-globin 

amplimers could be produced, indicating an absence of amplifiable DNA. It has previously been 

reported that HPV DNA is present in up to 99% of cervical cancers and 94% of CIN lesions [3]. 

This discrepancy in the levels of HPV DNA detection in this study and other studies may be due 

to a number of factors.  Overall FFPE tissue is not ideal for PCR studies because of the damage 

done to DNA during the formalin fixation process, that causes fragmentation and cross linking 

of the DNA strands. The damage caused to DNA by formalin fixation is highlighted by the fact 

that in 16% of the analysed samples no amplifiable DNA could be detected at all using the beta-

globin primers. For N.E.M samples that were beta-globin positive but  GP5+/6+ negative it is 

possible that in these samples there was simply no HPV DNA present; in the vast majority of SIL 

samples however HPV DNA would be expected to be present.  One factor that may explain why 

some SIL samples had amplifiable DNA present but still failed to produce an amplimer using the 

GP5+/6+ primers, is due to the relative lower level of HPV DNA compared to genomic DNA is 

the samples. In samples with SIL, the lesions may only cover a small area and overall only 

contain a few cells. While PCR amplification for β-globin may be successful in a given sample 

due to the fact that every cell within the tissue should contain a copy of the beta-globin gene, 
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the number of cells containing HPV DNA may be much lower, making detection of HPV more 

difficult. This effect is highlighted by the fact that the highest HPV detection rate was in invasive 

carcinoma samples, in which the majority of cells would be expected to contain HPV DNA.  

 A study by Steineau, et al., 2011 [239] using the same DNA extraction method as this 

study, was able to detect HPV DNA in 62.7% cases of formalin-fixed cervical neoplasia and other 

HPV induced carcinomas, which is comparable to the 60% detection rate of this study. 

Interestingly this study noted that by using an additional heating step during DNA extraction 

that HPV DNA detection was increased to 73.3% of samples. This study also found that they 

were unable to detect amplifiable DNA in 19% of their samples, which is comparable to the 16% 

of this study, and they also noted that with heat treatment this figure lowered to 5%.  A study 

by Odida et al., 2010 [240] found a HPV DNA detection rate of 88.9% in formalin fixed paraffin 

embedded invasive cervical carcinoma samples , which contrasts with the 60% detection rate of 

this study. The study by Odida et al., 2010 utilised the SPF10 primer set which is capable of 

detecting a greater number of HPV types than the GP5+/6+ primer set utilised in this study, and 

also produces a shorter amplimer that is more effective in FFPE tissue, which may explain the 

greater detection rate compared to this study. Ideally all samples that were beta-globin 

negative or SIL lesions that were beta-globin positive but GP5+/6+ negative would have had the 

DNA extraction step repeated using more tissue, and possibly using the heating step described 

by Steineau et al., 2011 in order to try and increase the HPV DNA detection rate. Unfortunately 

this was not possible due to ethical constraints, as the tissue samples were only available for a 

limited time before they had to be returned to the hospital. 
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After detection of HPV DNA in samples, the amplified PCR products were sent for 

external sequencing by Eurofins MWG Operon, Ebersberg, Germany.  Of the 60 samples 

successfully sequenced HPV-16 was by far the most common genotype detected with 77.3% of 

samples being HPV-16 positive.  The second most common genotype detected was HPV-18 with 

18.3% of samples, with HPV-16 and HPV-18 combined accounting for the vast majority, over 

90%, of HPV genotypes detected.  A large scale meta-study by Smith et al. 2007 [241] of HPV 

genotype global distribution in invasive cervical cancer and high-grade squamous intraepithelial 

lesions (HSIL) identified the highest prevalence of HPV16/18 in invasive carcinoma was in 

Europe, North America and Australia, with a prevalence 74-77% and global prevalence of 68%.  

All samples of invasive carcinoma in which HPV was detected in the study were HPV-16/18 

positive; the discrepancy between the HPV-16/18 prevalence in this study is likely due to the 

relatively low sample number compared to the meta-study.  The detection rate of HPV in HSIL 

lesions globally in the meta-study by Smith et al. 2007 was 84.9%, compared to the 61% 

detection rate of this study. One aspect that may explain the lower HPV detection rate in this 

study compared to the meta-study is the fact the meta-study compiled results from various 

different studies using a variety of tissue types, including FFPE tissue and fresh samples 

collected for cytological analysis, and a variety of HPV detection methods. This study examined 

FFPE tissue exclusively and, as has previously been discussed, it is likely that that this 

contributed to the lower detection rate compared to the meta-study.  The prevalence of HPV-

16/18 in the meta-study was 52% compared to 90% observed in this study. The higher 

prevalence observed in this study is likely due to the nature of samples utilised. Most tissues 

sample used in this study would have been referred for biopsy after several abnormal smear 
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tests, thus were likely cases with persistent lesions.  HPV-16 infection in particular is strongly 

associated with persistent lesions [242], thus it is likely that our samples would be more 

inclined towards  HPV-16 infected lesions.  A significant number of samples in the meta-study 

(44%) were derived from thin-prep cytological preparations, which may not contain as many 

persistent lesions and therefore may contain a lower number of HPV-16 positive samples, 

compared to this study. Of the other subtypes detected HPV-6 was the only low risk genotype 

detected and was found in a LSIL sample.  Low risk HPV subtypes are typically associated with 

benign condylomas and may also infrequently be associated with a LSIL lesion, with Clifford et 

al., 2005 [243] finding approximately 10% of HPV positive LSIL cases containing HPV-6 DNA.  A 

small number of other high risk subtypes were detected, HPV-33 HPV-58 and HPV-67, with both 

HPV-33 samples associated with high grade lesions, HPV-58 positive sample didn’t have a 

gradable core on the TMA and HPV-67 was associated with a LSIL sample. HPV-67 is a genotype 

from the same alpha-9 subgroup as many highly oncogenic HPV subtypes, such as HPV-16 and -

33, however, it’s association with cancer is less clear with only a few reports of HPV-67 being 

identified in cervical cancer cases [244] [245]. A combination of low frequency, lack of data on 

active transcription and it’s transforming potential in model systems, has led HPV-67 to be 

classified as only probable/possible carcinogen [246]. A number of NEM samples also tested 

positive for HPV. HPV infection can often be asymptomatic, presenting with no discernable 

dysplasia.  A study of 996 liquid cytology samples from Irish women aged between 16 and 72 by 

Keegan et al., 2007 found that 11.4% of samples with normal cytology tested positive for HPV, 

highlighting that infection with even high-risk HPV subtypes does not necessarily lead to the 

development of dysplasia. 
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One of the aims of this study was to examine if there was any association between an 

individual HPV genotype and aberrant expression of particular adherens and tight junction 

proteins. After successfully genotyping 60 samples,  only 31 of these samples were available for 

comparison on the corresponding TMAs. The reasons for this discrepancy were twofold. Firstly, 

some samples were damaged during TMA construction process, meaning the cores were 

ungradable after IHC staining. Secondly, inaccurate punch sampling during TMA construction 

meant that in a number of cases the area containing the desired lesion was missed and an 

adjacent area of the epithelium was incorporated into the TMA instead. While this adjacent 

area of the epithelium was still graded by the pathologist and used for IHC staining, it could not 

be used for comparison with detected HPV genotypes, as it had been adjacent to another part 

of the epithelium containing a lesion with a different disease grade. Other methods that would 

have allowed detection of HPV directly in our TMA sections, such as chromatic in-situ 

hybridization (CISH), were explored however this method only distinguishes between high-risk 

low-risk subtypes and doesn’t allow for comparison between specific subtypes of HPV. 

  

After determining that several adherens and tight junction proteins were expressed 

aberrantly in cervical neoplasia, it was decided to examine further the role that claudin-1 and 

claudin-7 overexpression may play in cervical tumourigenesis. Claudin-1 and claudin-7 were 

selected for further analysis for a number of reasons. Firstly, the role of claudins in 

tumourigenesis is far from fully understood and is currently an area of significant research. The 
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difficulty in fully elucidating the role of claudins in cancer is highlighted by the fact that both up 

and downregulation of claudins is frequently observed in tumours. [116].  

 Secondly, while the results of this study and others [227],[247] have observed increased 

Claudin-1 and Claudin-7 in pre-invasive cervical lesions and in cases of cervical carcinoma, to 

the best of our knowledge, there have been no studies studying the effect of claudin-1 and 

claudin-7 overexpression in cervical cell lines. This study aimed to investigate the effect of 

Claudin-1 and 7 overexpression on the cervical carcinoma cell line HeLa, and to elucidate what 

role Claudin-1 and -7 overexpression may play in cervical carcinoma. To this end, stable cell 

lines expressing claudin-1 and claudin-7 were generated and their invasive, migratory, 

permeability and proliferative ability assessed.  

 This study found that Claudin-1 or Claudin-7 over expression had no significant effect on 

the invasive ability of HeLa cells.  Studies have identified that Claudin-1 overexpression is 

associated with an increased invasiveness in oral carcinoma cells through upregulation of 

several matrix metalloproteases [112] [113]. Claudin-1 expressing colon carcinoma cells that 

underwent siRNA mediated knockdown of Claudin-1 displayed significantly decreased 

anchorage-independent growth and invasion with a significant decrease in MMP-9 activity. 

Conversely, claudin-1 overexpression suppresses metastasis and invasion in lung cancer cells 

[115]. The interaction between claudins and MMPs is likely to have a key influence on the 

invasive ability of malignant cells as the role of MMPs in digesting the extracellular matrix and 

promoting invasion has been well established [248] and claudins have previously been shown 

to promote activation of matrix metalloproteinase-2 in Human Embryonic Kidney cells [249].  

Studies have previously reported that HeLa cells lack the alphavbeta3 integrin receptor [250] 
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which through its interaction with membrane type-1 metalloproteinase-2 (MT1-MMP), and 

tissue inhibitor of metalloproteinase-2 (TIMP-2)  aids the activation of MMP-2 [251]. A lack of 

MMP-2 activation in HeLa cells may explain why they show low invasive ability and why the 

Claudin-1 and -7 overexpression in HeLa cells had no significant effect on the invasive ability of 

HeLa cells in this study.  

 The association between Claudin-1 and Claudin-7 expression and cell migration is also 

highly dependent on tumour type, with Claudin-1 expression associated with increased cell 

migration in breast cancer cells [252] and, conversely, associated with an inhibition of cell 

migration in lung cancer cells [211]. Claudin-7 expression is associated with increased migratory 

ability in ovarian carcinoma cells [125] but is associated with reduced migratory ability in lung 

carcinoma cells[124].  This study found that Claudin-1 and Claudin-7 overexpression reduced 

the migratory ability of HeLa cells. These results suggest there may be some establishment of 

homotypic claudin interaction between neighbouring cells leading to increased adhesion, or 

that claudin-1 and -7 transfection had a downstream effect on another motility related 

pathway. The exact mechanisms by which claudins contribute to cell migration and motility is 

still not fully understood.  A recent study by Webb et al. 2013 [253]  found that second 

extracellular loop of claudin-4 is able to interact with the extracellular environment to promote 

cell motility. Another mechanism through which claudins may influence cell motility and 

migration is through the N-WASP (neuronal Wiskott–Aldrich Syndrome protein) and ROCK (Rho-

associated Coiled-coil Kinase) pathways.  N-WASP is a key regulator of actin cytoskeleton 

remodeling which is an essential process for cell motility [254] [255], while ROCK is also 

involved in regulation of cell motility through modulation of the cytoskeleton [256] [257]. Loss 
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of claudin-5 in the breast cancer cell line MDA-MB-231 inhibited cell motility through 

involvement in signaling pathway of N-WASP and ROCK [258], while transfection of claudin-5 

into a human endothelial cell line also reduced the motility of transfected cells through the 

same pathways [259]. Similar to claudin-5, it is possible that claudin-1 and claudin-7 may also 

interact with the N-WASP and ROCK signaling pathways to reduce cell motility, although further 

experiments would be needed to confirm this. 

 Aside from contributing to disruption in cellular cohesion, tight junction breakdown is 

thought to contribute to tumorigenesis through disorganised paracellular permeability allowing 

an unregulated flow of various potentially oncogenic molecules, such as growth factors and 

cytokines, through the epithelium [260]. This study found that claudin-1 and claudin-7 

transfected cells showed increased TEER readings suggesting decreased permeability. Claudin-1 

and claudin-7 are reported to increase TEER when transfected into cultured epithelial cells 

[109] although Claudin-1 transfected colon carcinoma cells showed reduced TEER readings 

[114]. The increased in TEER readings observed in claudin-1 and claudin-7 stable cell lines, along 

with the decreased migratory ability of these cells suggests that some level of claudin-claudin 

interaction may be re-established in these cell lines. 

 The role of claudins in tumourigenesis is still not fully understood, part of which relates 

to the fact that in certain tumours an increase in expression a particular claudin is associated 

with tumourigenesis, while in another tumour type a reduction of the same claudin is 

associated with tumourigenesis.  Immunohistochemistry based studies of pre-invasive cervical 

lesions and cases of cervical carcinoma found an increase in expression of claudin-1 and 

claudin-7 compared to normal cervical epithelium[227],[247], which would suggest that in the 
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case of cervical malignancies claudin-1 and claudin-7 may be involved in oncogenic progression. 

The findings of this study, that claudin-1 and claudin-7 expression reduces HeLa cell migration, 

increases TEER and has no significant effect on cell invasion or proliferation, suggest that 

alteration in claudin-1 and claudin-7 expression alone are not responsible for tumourigenesis in 

cervical malignancies, but likely play a role as part of a larger process of tight junction 

disruption and cellular transformation. The process of tight junction dysregulation is a complex 

process likely involving the aberrant expression of several tight junction proteins. Claudin-1,-2,-

4,-7 have been previously reported to be overexpressed in cervical pre-invasive lesions and 

cases of carcinoma[247]. Other non tight junction related proteins that are involved in cellular 

adhesion, such as E-cadherin and beta-catenin, are also reported to be aberrantly expressed in 

cervical malignancies [261]. The nature of any possible interactions between these proteins and 

how they contribute to tumourigenesis in cervical malignancies is yet to be fully understood, 

although experiments in other cell models may offer some insights. In colon carcinoma cell lines 

claudin-7 forms a complex with epithelial cell adhesion molecule (EpCAM), CD44v6 and CO-

O29, that confers a higher degree of apoptosis resistance than lines devoid of any one of the 

four molecules [262]. A recent study also found that claudin-7 associates with claudin-1 and 

facilitates incorporation of claudin-1 into EpCAM-containing complexes, and that TJ formed 

readily after EpCAM knockdown; the acquisition of trans-epithelial electroresistance was 

enhanced, and TJ showed increased resistance to disruption by calcium chelation [263].  

This study identified a change in expression of a number of key tight and adherens 

junction proteins in pre-invasive and invasive cervical lesions. The change in expression of a 

number of these proteins, often observed even in low grade lesions, suggest that disruption of 
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tight and adherens junction may be an early step in the oncogenic transformation of epithelial 

cervical cells. As such, many of these proteins may be of use as prognostic indications or 

biomarkers for disease progression. This study did not have access to patient follow up 

information, such as patient outcomes, and thus was unable to fully assess if there is any 

relationship between changes in expression of particular proteins and factors related to 

prognosis. Future studies with access to full patient follow up information, should seek to 

examine whether changes of tight and adherens protein expression in cases of cervical 

neoplasia are associated with any difference in various factors relating to prognosis, such as 

disease recurrence, resistance to treatment or survival rates. Further studies of this type would 

allow a more complete evaluation of the potential role that these proteins may play as 

biomarkers for disease progression or prognostic indicators. This may allow for the 

identification of pre-invasive lesions more likely to progress to invasive cancers or identify 

cancers more likely have poorer responses to treatment and thus give more information to 

physicians when assessing treatment options for patients. 

 This study detected and genotyped HPV DNA in number of cervical samples, with HPV 

16 and 18 being by far the most prevalent subtypes detected, and aimed study aimed to assess 

whether infection with a particular HPV subtype was associated with an aberrant expression 

profile of adherens and tight junction proteins. Due to the predominance of HPV-16 in the 

sample cohort (73% of samples) and the low prevalence of other HPV genotypes, this study was 

limited in its ability to make significant comparisons of protein expression profiles between the 

different genotypes. Future studies with a larger cohort of non HPV-16 samples could offer 

greater insight into whether infection with different HPV genotypes is associated with differing 
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adherens and tight junction expression profiles. This may allow identification of HPV subtypes 

more associated with disruption of adherens and tight junction function and thus potentially 

with a greater risk of disease progression. If particular HPV genotypes are associated with a 

greater degree of aberrant protein expression, future studies may also aim to uncover the 

different mechanisms by which particular HPV genotype effect the expression of adherens and 

tight junction proteins in infected cervical cells. 

 Future studies may also examine the interactions between different tight and adherens 

junction proteins and explore if several proteins can act synergistically to promote 

tumourigenesis.   The results of this study indicated that claudin-1 and claudin-7 expression 

alone in HeLa cells did not increase cell invasion and reduced the migratory ability of 

transfected cells. Other studies have begun to uncover the complex interactions between 

claudins and other proteins, within and outside of tight junctions, and how these interactions 

can promote invasion and other features associated with tumourigenesis. Studies by Kuhn et 

al., 2007 and Wu et al., 2013 have indicated claudins can interact with EpCam and other 

claudins to destabilise tight junctions and confer increased resistance to apoptosis in a 

synergistic mechanism that is reliant on co-expression of several proteins simultaneously. This 

study identified changes in expression of several adherens and tight junction protein in cervical 

tissue samples and future studies may focus on how co-expression of several of these proteins 

effects cell behaviour, such as invasion, migration and proliferation. By uncovering any 

potential mechanisms through which claudins can co-operate to promote invasion, it may 

identify new pathways that can be used for targeted therapies in cervical cancer treatment. 
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The future outlook for cervical cancer prevention is relatively positive due to a number 

of recent advancements. Early detection of pre-invasive lesions before they have a chance to 

progress to invasive cervical lesions has played a key role in the reduction of cervical cancer 

incidence. The introduction of cervical screening programmes in several countries, including 

Ireland, has helped greatly increase the detection rate of preinvasive lesions, which once 

detected can usually be removed without complication. Another recent development which 

should greatly reduce the incidence of cervical cancer is the introduction of vaccination 

programmes.  Two vaccines are currently available, Cervarix which offers protection from HPV-

16 and HPV-18, and Gardasil that offers protection from HPV-6,-11,-16 and -18. With HPV-16 

and HPV-18 being responsible for approximately 70% of cervical cancer cases, a large reduction 

in the incidence of cervical cancer should be observed in countries with organised vaccination 

programmes. In Ireland the full benefits of the vaccination programme, in terms of lower 

cervical cancer incidence will not be seen immediately, but over a longer period of time. This is 

due to the fact vaccine is only effective in pre-sexually active women and is therefore currently 

mostly being administered to girls aged 12 to 14. 

While the outlook for cervical cancer prevention is positive in most developed nations, 

the outlook for developing countries is less encouraging.  Over 85% of cervical cancer deaths 

occur in developing countries (WHO 2012) and this is projected to rise to 90% by 2020 [264]. 

There are huge divergences in mortality rates between developing and developed nations. For 

example, in Malawi the mortaility rate is 38.3 per 100,000 people, compared to 1.8 per 100,000 

in France (WHO 2012). The massive difference in mortality rates is principally down to a lack of 

funding for cervical screening and vaccination programmes in developing countries. There have, 
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however, been some encouraging signs recently that the burden of disease in developing 

countries may be eased. The Global Alliance for Vaccines and Immunisation (GAVI) is a public-

private health charity that aims to increase access and availability of vaccines in developing 

countries. GAVI is currently trailing a HPV vaccination programme is in several developing 

countries with the aim of vaccinating 30 million girls by 2020. Although this programme will not 

completely address the overall burden of disease, it is hoped that it will pave the way for 

further implementation of vaccination programmes in developing countries and ultimately lead 

to significant reduction in cervical cancer incidence worldwide. 

In summary, cervical cancer continues to be a significant cause of cancer deaths 

worldwide, although the successful implementation of screening and vaccination programmes 

should help reduce the burden of disease. Understanding the mechanisms by which HPV-

induced cervical lesions acquire the ability to invade and metastasise and identifying 

biomarkers that may predict this process remains critically important.  This study identified 

changes in expression of several adherens and tight junction proteins in cases of cervical 

neoplasia, and identified a possible association between aberrant adherens and tight junction 

expression and specific HPV genotypes. In order to elucidate how aberrant adherens and tight 

junction expression may promote cervical tumourigenesis, this study examined the 

overexpression of claudin-1 and claudin-7, and the knockdown of SNAIL, in cervical cell models. 

This study observed that SNAIL knockdown in cervical cancer cell lines is insufficient to induce 

E-caherin expression, which is a novel finding and indicates that another mechanism may be 

responsible for the repression of E-cadherin expression observed in cases of cervical neoplasia. 

Despite the increased expression of claudin-1 and claudin-7 observed in cases of cervical 
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neoplasia, claudin-1 or claudin-7 overexpression did not contribute to increased tumourigenesis 

in HeLa cells. On the contrary this study identified claudin-1 and claudin-7 overexpression 

reduces cell migration and decreases permeability in cervical cell models, which is a novel 

finding, and suggests that the development of invasive and metastatic characteristics in 

malignant cervical cells is likely reliant on the synergistic aberrant expression of several 

adhesion proteins. 
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Appendix 
 

Mayer’s Haematoxylin  

2g haematoxylin (Merck)  

100g aluminium sulphate (BDH)  

0.4g Sodium Iodate (EMD Chemicals)  

Make up to 2 litres with distilled water and leave overnight  

2g citric acid (BDH)  

Mix and Boil for 5 minutes  

Allow to Cool and filter before use  

 

1% Eosin  

1g eosin powder (Merck) dissolved in 100ml water  

 

Spirit (96%)  

960ml absolute alcohol (Merck) made up to 1 litre with distilled water  

 

70% Alcohol  

700ml absolute ethanol (Merck) made up to 1 litre with distilled water  
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2% agarose gel  

2g agarose powder (Invitrogen)  

100ml of TBE (invitrogen)  

Boil in microwave until dissolved  

Cool to 60˚C  

Add 0.5μg/ml Ethidium Bromide (Fluka)  

Mix and gently poor into template 

6x DNA loading buffer (50ml)  

0.25% bromophenol blue (BDH)  

0.25% xylene cyanol (BDH)  

30% glycerol (BDH)  

 

0.01mol/l citrate buffer (pH6)  

2.1g citric acid (BDH)  

Add approximately 800ml distilled water  

Adjust to pH 6 using 2M NaOH  

Make solution up to 1 litre  

 

0.01mol/l EDTA buffer (pH8)  

3.7g EDTA (BDH)  

Add approximately 800ml distilled water  

Adjust pH to pH 8 using 2M NaOH  
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Phosphate Buffered Saline (PBS)  

Add 1 PBS tablet (Sigma) to 100ml distilled water.  

 

0.1% protease  

0.1g protease type 24 (Sigma) in 100ml PBS  

 

3% Hydrogen Peroxide in methanol  

1ml 30% hydrogen peroxide (BDH)  

9ml Methanol (Fluka)  

 

0.06% 2,4 diaminobenzidine (DAB)  

16ml PBS injected into 1 container of DAB (Sigma) 

1XTBS (Tris-buffered saline) 

1.21g Tris + 4.38g NaCl in 500ml dH2O 

 

T-TBS 1X 

To 1 liter of TBS 1X, add 1 mL of Tween 20. 

1X Running Buffer  

1.5g Tris + 7.2g glycine + 0.5g SDS in 500ml H2O 
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1X Transfer Buffer 

0.6g Tris  

2.882g glycine  

adjust to pH 8.3 in 200ml H2O 

 

APS 10% 

0.1 g      Ammonium Persulfate 

1 mL distilled H2O 

LB Broth 

5g Tryptone (Lab M) 

5g NaCl (Merck) 

2.5g Yeast extract (Lab M) 

Mix with 500ml distilled water and autoclave 

0.1M CaCl2 

5.5g CaCl2 (Fisher Scientific) 

Mix with 250ml distilled water 
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