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CLIMBING ELEMENTS IN FINITE COXETER
GROUPS

THOMAS BRADY, AISLING KENNY, COLUM WATT

Abstract. We define the notion of a climbing element in a finite
real reflection group relative to a total order on the reflection set
and we characterise these elements in the case where the total order
arises from a bipartite Coxeter element.

1. Introduction

Suppose (W,S) is a finite Coxeter system. Each reduced expression for
an element w of W determines a total order on the inversion set of w.
The inversion set of the longest element w0 of W is equal to the set, T ,
of all the reflections and a particular reduced expression for w0 gives a
total order, ≤T , on T . For some elements w of W , the restriction of ≤T

to the inversion set of w coincides with the order determined by one
of its reduced expressions. We will call such an element w a climbing
element ofW . Geometrically, this means that there is a gallery from the
fundamental domain C to w(C) which crosses hyperplanes in increasing
order.

In this paper, we characterise the climbing elements in the case where
the reduced expression for w0 is obtained by iterating a bipartite fac-
torisation of a Coxeter element. This characterisation is obtained using
the construction from [6] of a copy of the type-W generalised associ-
ahedron, whose cone is a coarsening of the fan determined by the W
reflection hyperplanes. This coarsening determines an equivalence rela-
tion on W whose equivalence classes we prove directly to be intervals in
the left weak order. The least elements of these intervals are precisely
the climbing elements. It follows that the number of climbing elements
is equal to the W -Catalan number. The maximal elements in these
intervals are translates of the falling elements of W , a notion that is
analagous to that of climbing elements but which is defined using the
reverse of the order ≤T .
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For any minimal factorisation of a Coxeter element, the interval prop-
erty of the equivalence classes can be deduced from [9] and [10], where
the minimal elements are the corresponding Coxeter-sortable elements.
Thus we provide a different characterisation of Coxeter-sortable ele-
ments in the case of a bipartite factorisation of the Coxeter element.
Indeed, the notion of climbing element arose from our attempts to show
that the equivalence classes had the interval property without explicitly
using Coxeter-sortable elements.

The paper is organised as follows. In §2 we collect some facts about
inversion sets, extend a theorem of Papi and recall some results from
[5] and [6] about orderings of roots and the geometry of the generalised
associahedron. In §3 we define climbing elements and we show that
each facet of the generalised associahedron determines such an element.
We characterise climbing elements in §4 while in §5 we introduce and
characterise falling elements.

2. Preliminaries

2.1. Inversion sets. For background on reflection groups, root sys-
tems and inversion sets we refer to [3] and [4]. Throughout this paper,
(W,S) is a Coxeter system with W finite, acting effectively on Rn and
with standard generating set S = {s1, . . . sn}. Denote by T the reflec-
tion set of W , that is, the set of congugates of elements of S. Let C
be the fundamental chamber with inward unit normals given by the
simple roots {α1, . . . , αn}, where si is the reflection in the hyperplane
normal to αi. Let {β1, . . . , βn} be the dual basis so that αi · βj = δij.

For each w ∈ W we define Invρ(w) to be the set of positive roots λ
such that w−1(λ) is a negative root. Thus Invρ(w) is the set of positive
roots whose orthogonal hyperplanes separate the fundamental chamber
C from its image w(C). The corresponding set of reflections is denoted
by Inv(w), that is, Inv(w) = {R(λ) | λ ∈ Invρ(w)}, where R(λ) is
the reflection in the hyperplane orthogonal to λ. We refer to Inv(w)
as the inversion set of w. If w = si1si2 . . . sik is a reduced word, then
Inv(w) = {t1, . . . , tk} where

(1) t1 = si1 < t2 = si1si2si1 < t3 = si1si2si3si2si1 < . . .

as in section 1.3 of [3]. This defines a linear order on Inv(w) and the
corresponding linear order on Invρ(w) is given by

αi1 < si1(αi2) < si1si2(αi3) < . . .

In [8], Papi characterises ordered inversion sets among ordered subsets
of T . His proof is given for crystallographic groups although he notes
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that it can be generalised to apply to all Coxeter groups. The following
theorem modifies Papi’s characterisation and is valid in the general
finite case. For completeness the proof is included in an appendix.

Theorem 2.1. An ordered subset Σ of positive roots for W is derived
from a reduced expression for some element of W if and only if Σ
satisfies both of the following conditions on triples {σ, τ, ρ} of positive
roots satisfying ρ = aσ + bτ for some numbers a > 0 and b > 0.
(i) Whenever σ and τ are elements of Σ with σ < τ then ρ ∈ Σ and
σ < ρ < τ .
(ii) Whenever ρ is an element of Σ, then either (a) σ ∈ Σ and σ < ρ
or (b) τ ∈ Σ and τ < ρ.

2.2. Geometry of the generalised associahedron. Let Π+ be the
set of all positive roots. We recall from [5] the special features of the
linear order on Π+ determined by iterating a so-called bipartite Cox-
eter element. First assume that the elements of the simple system are
ordered so that {α1, . . . , αs} and {αs+1, . . . , αn} are orthonormal sets.
Let c = R(α1)R(α2) . . . R(αn) be the corresponding Coxeter element.
Because of this partitioning, such a c is called bipartite. If h denotes
the order of c then W contains nh/2 reflections. Denoting by w0 the
longest element of W it follows from the proof of Corollary 4.5 of [11]
that w0 has the reduced expression

w0 =

{
ch/2 if h is even

c(h−1)/2R(α1) . . . R(αs) if h is odd.

It follows that the ordered set Invρ(w0) is equal to {ρ1, ρ2, . . . , ρnh/2}
where

ρi = R(α1)R(α2) . . . R(αi−1)αi,

and we define αi = αi−n for i > n. In fact, Invρ(w0) = Π+ and we
denote this order on Π+ by ≤ρ and by ≤T the corresponding order on
the reflection set T .

Furthermore, in [5], we define the vectors

µi = R(α1)R(α2) . . . R(αi−1)βi, i = 1, 2, . . . , nh

where we similarly define βi = βi−n for i > n. It is immediate from the
definitions of ρi and µj that ρi+n = c(ρi), µj+n = c(µj) and ρi · µi = 1.
We recall that µi = µ(ρi) where µ is the linear map defined by µ =
2(I − c)−1. In particular, ρi = (1/2)(I − c)µi. Furthermore, we have

Proposition 2.2. (Proposition 4.6 of [5])
(a) µi · ρj = −µj+n · ρi for all i and j.
(b) µi · ρj ≥ 0, for 1 ≤ i ≤ j ≤ nh/2.
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(c) µi+t · ρi = 0, for 1 ≤ t ≤ n− 1 and for all i.
(d) µj · ρi ≤ 0 for 1 ≤ i < j ≤ nh/2.

We recall from [6] that a copy, denoted µAX(c), of the type-W associ-
ahedron has a facet with vertex set {µ(τ1), . . . , µ(τn)} whenever both

ρ1 ≤ τ1 < τ2 < · · · < τn ≤ ρnh/2+n and c = R(τn) . . . R(τ1).

We also recall that µAX(c) determines a particular coarsening of the
Coxeter fan, that is, of the fan defined by the W reflection hyperplanes.
This coarsening has rays in the directions µ1, . . . , µnh/2+n and each
maximal cone is of the form cone(F ), where F is a facet µAX(c) and
cone(F ) denotes the positive cone on F . We define an equivalence
relation on W by w ∼ w′ if and only if w(C) and w′(C) are contained
in the same maximal cone.

Finally, we will use the filtration of µAX(c) inherited from the filtration
of X(c) used in [5]. For each root ρ we define the subsets ρ+, ρ− and
ρ⊥ by

ρ+ = {x ∈ R | x · ρ ≥ 0}
ρ− = {x ∈ R | x · ρ ≤ 0}
ρ⊥ = {x ∈ R | x · ρ = 0}.

For n ≤ i ≤ nh/2 + n, we define Vi = {µ1, . . . , µi}, µXi to be the
subcomplex of µAX(c) consisting of those simplices with vertices in Vi

and
µZi = ρ+i−n+1 ∩ ρ+i−n+2 ∩ · · · ∩ ρ+nh/2.

It follows that the closure of µZi \ µZi−1 is equal to

ρ−i−n ∩ ρ+i−n+1 ∩ · · · ∩ ρ+nh/2.

We note that µZn and µZnh/2+n coincide with the fundamental chamber
C and with Rn respectively. We also note that Proposition 7.6 of [5]
(in the case α = c) can be extended to show that µZi coincides with
both the positive cone on µXi and the positive span of Vi.

3. Climbing elements

In this section we define climbing elements and show that each subset
of the vertex set of µAX(c) determines a climbing element. In the case
of the vertex set of a facet we will show that this climbing element is
the minimum in the corresponding equivalence class of (W,∼).

Definition 3.1. An element w of W is climbing (with respect to the
reflection order ≤T ) if the order on Inv(w) given by ≤T coincides with
the order determined by one of the reduced expressions for w.
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Definition 3.2. For each subset A of Vnh/2+n we define the set N(A)
of positive roots by

N(A) = {ρi | 1 ≤ i ≤ nh/2 and ρi · µ ≤ 0 for all µ ∈ A}.

Thus a positive root ρ belongs to N(A) if and only if A ⊆ ρ−.

Example 3.3. If A = {µ(ρi)} then Proposition 2.2 implies that

N(A) = {ρj : j < i or ρj · µ(ρi) = 0}.

For a larger set B, N(B) is the intersection of sets of this form.

Proposition 3.4. For each subset A of Vnh/2+n there exists a element
w ∈ W such that the ordered set (N(A),≤ρ) coincides with the or-
dered set Invρ(w) for some reduced expression of w. In particular, w
is climbing.

Proof: We show that N(A) satisfies the criteria (i) and (ii) of Theo-
rem 2.1. First suppose ρi, ρj ∈ N(A) with i < j and that a, b > 0 are
such that ρk = aρi + bρj is a positive root. For each µ ∈ A we have

ρk · µ = (aρi + bρj) · µ = a(ρi · µ) + b(ρj · µ) ≤ 0

since ρi, ρj ∈ N(A). Thus, ρk ∈ N(A). As the order≤ρ on Π+ is derived
from a particular reduced expression for the longest element w0, the
‘only if’ part of Theorem 2.1 yields ρi ≤ρ ρk ≤ρ ρj and criterion (i)
follows.
Next, suppose that ρi and ρj are positive roots with i < j and that
a, b > 0 are such that ρk = aρi + bρj ∈ N(A). As in the previous
paragraph, Theorem 2.1 yields ρi ≤ρ ρk ≤ρ ρj. It remains to show that
ρi ∈ N(A).
If ρi ̸∈ N(A) then ρi · µ > 0 for some µ ∈ A. By definition of µAX(c),
µ = µ(ρq) for some root ρq with 1 ≤ q ≤ nh/2 + n. In fact, 1 ≤ q ≤
nh/2 since {µnh/2+1, . . . , µnh/2+n} are the rays of the cone w0(C), the
opposite chamber to C. Now part (d) of Proposition 2.2 gives q ≤ i.
Therefore q < j and, hence, part (b) of Proposition 2.2 implies that
ρj · µ = ρj · µ(ρq) ≥ 0. Thus

ρk · µ = (aρi + bρj) · µ = a(ρi · µ) + b(ρj · µ) ≥ a(ρi · µ) > 0,

contradicting the assumption that ρk ∈ N(A).

If F is a facet of µAX(c), we denote its set of vertices by VF . That is
VF = F ∩ Vnh/2+n. Such vertex sets will be particularly important in
the sequel.
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Proposition 3.5. If F is a facet of µAX(c) and xF ∈ W is the climb-
ing element with Invρ(xF ) = N(VF ), then xF (C) ⊆ cone(F ).

Proof: The set cone(F ) can be characterised as an intersection of
halfspaces determined by the roots ρi. We show that xF (C) is contained
in the same intersection. If ρi is a positive root with F contained in
ρ−i , then ρi ∈ N(VF ). Since N(VF ) = Invρ(xF ), it follows that xF (C)
must also be contained in ρ−i . On the other hand, if ρj is a positive
root with F contained in ρ+j then ρj ̸∈ N(VF ) since F has nonempty

interior and hence cannot be contained in ρ⊥j . Thus xF (C) must also

be contained in ρ+j .

Corollary 3.6. Each equivalence class of (W,∼) contains a minimum
in the left weak order on W .

Proof: Let F be a facet of µAX(c) with vertex set VF and let xF

be the element of W whose inversion set is N(VF ) (Proposition 3.4).
By Proposition 3.5, xF (C) is contained in cone(F ). If w ∼ xF then
w(C) ⊆ cone(F ), by definition, and it follows that w(C) ⊂ ρ−i for each
ρi ∈ N(VF ). Thus N(VF ) ⊆ Invρ(w) and Proposition 3.1.3 of [3] now
implies that xF precedes w in the left weak order on W .

4. Characterising climbing elements

The proof of Corollary 3.6 shows that the number of facets of µAX(c)
does not exceed the number of climbing elements. In fact the theorem
below implies that these two numbers are equal. The number of facets
of µAX(c) is one of the quantities counted by the W -Catalan number.
For a description of these numbers and their properties see Chapter 1
of [1].

Lemma 4.1. If µ(ρi) is the last vertex of a facet F of µAX(c) and if
w is a climbing element for which w(C) ⊂ cone(F ), then R(ρi−n)w is
also a climbing element.

Proof: Assume that µ(ρi1), µ(ρi2), . . . , µ(ρin−1), µ(ρi) are the ver-
tices of F where 1 ≤ i1 < · · · < in−1 < i ≤ nh/2 + n and c =
R(ρi)R(ρin−1) . . . R(ρi1). Since 1 ≤ i− n ≤ nh/2 and

c = R(ρi)R(ρin−1) . . . R(ρi1) = R(ρin−1) . . . R(ρi1)R(ρi−n),

Lemma 2.2 of [2] implies that ρi−n · µ(ρik) = 0 for k = 1, 2, . . . , n − 1.
Thus the face of F opposite to the vertex µ(ρi) is contained in the
hyperplane ρ⊥i−n. It follows that

F ⊆ µZi \ µZi−1 = ρ−i−n ∩ ρ+i−n+1 ∩ · · · ∩ ρ+nh/2
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and, hence, the last wall crossed by any increasing gallery for w is ρ⊥i−n.
If we delete the last chamber from such an increasing gallery, we obtain
an increasing gallery for R(ρi−n)w. Therefore R(ρi−n)w is a climbing
element, as required.

Theorem 4.2. Each equivalence class of (W,∼) contains exactly one
climbing element. In particular the number of climbing elements is
equal to the W -Catalan number.

Proof: Fix an associahedron facet F whose vertices are µ(ρi1), µ(ρi2),
. . . , µ(ρin−1), µ(ρi) where 1 ≤ i1 < · · · < in−1 < i ≤ nh/2 + n and
c = R(ρi)R(ρin−1) . . . R(ρi1). We need to show that there is only one
climbing element w ∈ W for which w(C) ⊂ cone(F ). Our proof is by
induction on i.

First note that i ≥ n and if i = n then cone(F ) must coincide with the
fundamental domain C. In this case the identity element of W is the
only element for which w(C) ⊂ cone(F ).

Assume now that i > n and that for each associahedron facet F ′ ⊆
µZi−1 there is a unique climbing element w′ for which w′(C) ⊆ cone(F ′).
Let G be the only other associahedron facet which contains the face
F ∩ ρ⊥i−n. Since µ(ρi) · ρi−n < 0, G is contained in µZi−1. Then
[R(ρi−n)w](C) also lies in cone(G) since G shares the face ρ⊥i−n ∩ F
with F . As R(ρi−n)w is climbing (by Lemma 4.1), the induction hy-
pothesis implies that R(ρi−n)w = w′, the unique climbing element for
which w′(C) ⊆ cone(G). Hence w = R(ρi−n)w

′ is uniqely determined.

Corollary 4.3. The set of climbing elements in W coincides with the
set of Coxeter-sortable elements of W .

Proof: By Theorem 1.1 of [9] the Coxeter-sortable elements of W are
precisely the minima of the equivalence classes of (W,∼). By Theo-
rem 4.2 and the proof of Corollary 3.6, the climbing elements are also
the minima of these equivalence classes.

5. Falling elements

In this section we show that each equivalence class of (W,∼) contains
a maximum in the left weak order on W . Just as a climbing element is
reached from the fundamental chamber C via a gallery which crosses
hyperplanes in increasing order, each of these maxima is reached from
the opposite chamber w0(C) via a gallery which crosses hyperplanes
in decreasing order. In order to use the results of sections 3 and 4
our strategy is to rebuild the fan determined by µAX(c) with w0(C)
taking the place of C and c−1 taking the place of c. This will give an
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ordering on T which is the reverse of the order ≤T and we will refer to
the corresponding notion of climbing element as a falling element. The
required maxima will then have the form fw0 where f is falling.

Since the inward pointing normals for w0(C) are just the negatives
of the inward pointing normals for C, the new simple system will be
{−α1, . . . ,−αn}. We will order this simple system by using the cor-
responding order on the dual basis. Sometimes this order is different
than the order −αn, . . . ,−α1 but we will see that it gives the reverse
of the order ≤T on T .

Definition 5.1. For 1 ≤ j ≤ n we define β′
i = µnh/2+n−i+1 and we

define {α′
1, . . . , α

′
n} to be the dual basis to {β′

1, . . . , β
′
n}.

Proposition 5.2. The set {β′
1, . . . , β

′
n−s} is a permutation of {−βs+1, . . . ,−βn}

and the set {β′
n−s+1, . . . , β

′
n} is a permutation of {−β1, . . . ,−βs}.

Proof: This follows from Steinberg’s proof of Theorem 4.2 of [11],
where the vectors he denotes by σ and τ lie in the non-negative linear
spans of our β1, . . . , βs and βs+1, . . . , βn, respectively.

Corollary 5.3. The set {α′
1, . . . , α

′
n−s} is a permutation of {−αs+1, . . . ,−αn}

while the set {α′
n−s+1, . . . , α

′
n} is a permutation of {−α1, . . . ,−αs}. In

particular, the product c−1 = R(α′
1)R(α′

2) . . . R(α′
n) is a bipartite fac-

torisation.

Definition 5.4. With the convention that α′
i+n = α′

i and β′
i+n = β′

i, we
define µ′

i = R(α′
1)R(α′

2) . . . R(α′
i−1)β

′
i and ρ′i = R(α′

1)R(α′
2) . . . R(α′

i−1)α
′
i.

Note that µ′
j = β′

j for 1 ≤ j ≤ n and µ′
i+n = c−1µ′

i.

Proposition 5.5. The vectors µ′
j and ρ′i are related to µj and ρi by

µ′
j = µnh/2+n−j+1 and ρ′i = −ρnh/2−i+1, for 1 ≤ j ≤ nh/2 + n and

1 ≤ i ≤ nh/2 respectively.

Proof: For the first identity, write j = mn+k with 0 ≤ k < n. Then

µ′
j = R(α′

1) . . . R(α′
j−1)β

′
j

= [c−1]mR(α′
1) . . . R(α′

k−1)β
′
k

= c−mβ′
k since β′

k ⊥ α′
1, . . . , α

′
k−1

= c−mµnh/2+n−k+1

= µnh/2+n−mn−k+1

= µnh/2+n−j+1.
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For the second identity, we use the first identity and the relationships

cµi = µi − 2ρi, c−1µ′
i = µ′

i − 2ρ′i

to get

2ρ′i = (I − c−1)µ′
i

= (I − c−1)µnh/2+n−i+1

= (I − c−1)cµnh/2−i+1

= −(I − c)µnh/2−i+1

= −2ρnh/2−i+1,

for 1 ≤ i ≤ nh/2.

We now construct a copy of the type-W associahedron using c−1 instead
of c and {µ′

1, . . . , µ
′
nh/2+n} instead of {µ1, . . . , µnh/2+n}. We find that

the geometric complex is exactly the same since the vertex sets coincide
by Proposition 5.5 and there is a facet on a set

{µ′
i1
, . . . , µ′

in}

if and only if there is facet on the corresponding set

{µnh/2+n−i1+1, . . . , µnh/2+n−in+1}.

The reflection ordering ρ′1, ρ
′
2, ρ

′
3, . . . is the reverse of≤T and determines

a different notion of climbing element which we will now call falling.

Definition 5.6. An element w of W is falling if the order on Inv(w)
given by the reverse of the total order ≤T coincides with the order
determined by one of the reduced expressions for w.

The results of sections 3 and 4 apply to give

Theorem 5.7. Each equivalence class of (W,∼) determines a unique
falling element f . The element fw0 is the maximal element in the
corresponding equivalence class in the left weak order.

Corollary 5.8. Each equivalence class of (W,∼) is an interval in the
left weak order on W .

6. Appendix

Before proving Theorem 2.1, we prove some elementary facts.

Lemma 6.1. If the positive root ρ is not simple then we can write
ρ = aσ + bτ for some real numbers a, b > 0 and some positive roots
σ, τ .



10 THOMAS BRADY, AISLING KENNY, COLUM WATT

Proof: First, if ρ is any positive root then we can write

ρ = a1α1 + · · ·+ anαn with ai ≥ 0 for 1 ≤ i ≤ n

and it follows that

0 < ρ · ρ = ρ ·

(∑
i

aiαi

)
=
∑
i

ai(ρ · αi).

yielding ρ · αi > 0 for some simple root αi.

Now suppose that ρ is a non-simple, positive root and that αi is a
simple root with ρ · αi > 0 as above. Since ρ is not a simple root, it
follows that si(ρ) = σ is a positive root. However, σ = ρ − bαi, and
hence ρ = σ + bαi where b = 2(ρ · αi) > 0, as required.

Define the vector v0 by v0 = β1 + · · ·+ βn and note that v0 lies in the
interior of the fundamental chamber C since v0 · αi = 1, for each i.
Note also that for each w ∈ W , the set Invρ(w) is equal to the set of
positive roots λ such that λ · w(v0) < 0.

Lemma 6.2. If w ∈ W and w(σ) ∈ Invρ(w) then σ is a negative root.

Proof: Directly from the definition of Invρ(w) we have

σ · v0 = w(σ) · w(v0) < 0.

Proof of Theorem 2.1: First, assume that the ordered set Σ is
derived from a reduced expression w = si1si2 . . . sik for some element
w ∈ W . Extend this to a reduced expression

si1si2 . . . sinh/2

for the longest element of W , as in Section 1.8 of [7]. For each 1 ≤
j ≤ nh/2, let wj = si1si2 . . . sij be the jth prefix of this expression and
note that w = wk.
For condition (i), assume that σ < τ are elements of Σ and that ρ =
aσ+bτ is a positive root for some a, b > 0. Then R(σ) = tr1 , R(ρ) = tr2
and R(τ) = tr3 for some 1 ≤ r1 < r3 ≤ k (by our assumption on Σ)
and some 1 ≤ r2 ≤ nh/2, and where the tj are given by equation (1).
We show that r1 < r2 < r3 by eliminating the other possibilities. It
then follows that ρ ∈ Σ. First, if r2 < r1 < r3 then

wr2(v0) · σ > 0 and wr2(v0) · τ > 0 while wr2(v0) · ρ < 0.

This is impossible since ρ is a positive linear combination of σ and τ .
Similarly, if r1 < r3 < r2 then

wr3(v0) · σ < 0 and wr3(v0) · τ < 0 while wr3(v0) · ρ > 0
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which is also impossible since ρ is a positive linear combination of σ
and τ .

For condition (ii), assume that σ and τ are positive roots and that
a, b > 0 are such that ρ = aσ + bτ is an element of Σ. Thus R(ρ) = tr,
for some 1 ≤ r ≤ k, and hence wr(v0)·ρ < 0. Since ρ is a positive linear
combination of σ and τ , at least one of wr(v0) · σ and wr(v0) · τ must
be strictly negative. Thus, either R(σ) ∈ Inv(wr) and hence σ ≤ ρ
or R(τ) ∈ Inv(wr) and hence τ ≤ ρ. As a, b > 0, we can exclude the
possibilities of σ = ρ or τ = ρ.

For the converse, assume that Σ is a set of positive roots which satisfies
conditions (i) and (ii). As in [8], we proceed by induction on the
cardinality of Σ. To start the induction we assume that Σ = {ρ}. It
suffices to show that ρ is a simple root, for then (R(ρ) is the required
group element. If ρ is not a simple root, then Lemma 6.1 implies that
ρ = aσ+bτ for some other positive roots σ and τ and some a, b > 0. By
condition (ii), either σ or τ is also in Σ, contradicting the assumption
that Σ has cardinality one.

For the inductive step, assume that k > 1 and that the result is true for
sets of cardinality less than k. Assume that Σ = {ρ1, ρ2, . . . , ρk} satis-
fies conditions (i) and (ii). Then the ordered set Σ′ = {ρ1, ρ2, . . . , ρk−1}
also satisfies these two conditions and hence there is a reduced expres-
sion u = si1si2 . . . sik−1

, of some element u ∈ W , such that

ρ1 = αi1 , ρ2 = si1(αi2), . . . , ρk−1 = si1si2 . . . sik−2
(αik−1

).

If u−1(ρk) is a simple root, αik say, then the positivity of αik implies
that l(si1si2 . . . sik) = l(u) + 1 and, hence, w = usik = si1si2 . . . sik is
the required minimal expression. Thus it remains to show that u−1(ρk)
must be simple.

Assume that u−1(ρk) is not simple. As ρk ̸∈ Invρ(u), it follows that
u−1(ρk) is a positive root. Then u−1(ρk) = aσ + bτ for some positive
roots σ and τ and some real numbers a, b > 0, by Lemma 6.1. Thus

(2) ρk = au(σ) + bu(τ).

In order to apply condition (ii) to this equation, we need to show that
neither u(σ) nor u(τ) can be a negative root. For example, if u(σ) is
negative, then

−u(σ) · v0 > 0 and − u(σ) · u(v0) = −σ · v0 < 0

putting −u(σ) in Invρ(u). Thus −u(σ) = ρi for some i < k. Condition
(i) applied to the expression u(τ) = (1/b)ρk +(a/b)ρi now implies that
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u(τ) ∈ Σ and u(τ) < ρk, so that, in fact, u(τ) ∈ Σ′ = Invρ(u). This
gives a contradiction by Lemma 6.2.

Thus both u(σ) and u(τ) must be positive and by Lemma 6.2 again
neither belong to Invρ(u). This gives a contradiction since condition
(ii) applied to equation (2) implies that one of u(σ) and u(τ) is in Σ
and precedes ρk, putting one of u(σ) and u(τ) in Σ′ = Invρ(u).
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