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Nonlinear Behaviour of Sea Surface Waves Based
on Low-Gradient Phase-Only Scattering Effects

J M Blackledge, E Coyle and D Kearney
School of Electrical Engineering Systems

Dublin Institute of Technology, Ireland
http://eleceng.dit.ie

Abstract—Nonlinear sea waves generated by the wind, includ-
ing freak waves, are considered to be phenomena that can be
modelled using the nonlinear (cubic) Schrödinger equation, for
example. However, there is a problem with this approach which is
that sea surface waves, driven by wind speeds of varying strength,
must be considered to be composed of two distinct types, namely,
linear waves and nonlinear waves. In this paper, we consider a
different approach to modelling ‘nonlinear’ waves that is based
on a solution to the linear wave equation under a low-gradient,
phase-only condition. This approach is entirely compatible with
the fluid equations of motion (the Navier-Stokes equations) and
is thereby not based on a phenomenological model such as the
nonlinear Schrödinger equation.

I. INTRODUCTION

There are a number of aspects about the dynamical be-
haviour of the sea surface that are obvious. For example,
the state of the sea can change radically from ‘calm’ to
‘rough’ and the height and wavelength of sea waves can vary
significantly. In nearly all cases, ‘sea states’ are determined
by the interaction of the wind (in particular, the wind force,
i.e. the rate of change of wind velocity) with the sea surface
and as a general rule, greater ‘wind energy’ results in greater
‘wave power’.

A. Linear Sea Wave Models

There are two principal measurable properties of sea surface
waves: their height and period of oscillation. Real ocean
waves do not generally occur at a single frequency but have
a frequency distribution for which a range of linear models
have been developed. For example, if s(t) denotes the spectral
density as a function of the wave period t in seconds, then,
for a linear wave pattern, it can be shown that [1] and [2]

s(t) = αt3 exp(−βt4)

where α and β are given by

α = 8.10× 10−3 g2

(2π)4

and
β = 0.74

( g

2πv

)
respectively, v is the wind velocity measured 19.5m above still
water and g is the acceleration due to gravity.

Models of this type are non-realistic for a number of
reasons: (i) They do not take into account that wave states are

non-stationary; (ii) there is no modelling of the connectivity
between the wind velocity and wave energy; (iii) it is assumed
that the wind velocity is constant and no statistical variability
in wind velocity is taken into account; (iv) they assume that
local wind conditions and swell are correlated and are thereby
not capable of explaining the ‘split spectra’ phenomenon, for
example, in which the spectrum of the wavefield consists of
two distinct peaks.

Linear wave spectrum models assume that the distance over
which the waves develop and the duration for which the wind
blows are sufficient for the waves to achieve their maximum
energy for the given wind speed. It is assumed that waves
can be represented by sinusoidal forms. This relies on the
following: (i) Waves vary in a regular way around an average
wave height; (ii) there are no energy losses due to friction or
turbulence, for example; (iii) the wave height is much smaller
than the wavelength.

Linear models are used to predict wave height, at least on
a statistical basis. These assume that wave height conforms to
a Rayleigh distribution given by

P (h) =
h

σ2
exp

(
− h2

2σ2

)
where h is the wave crest height and σ is the most probable
wave height. The ‘Significant Wave Height’ (SWH) is then
defined as the average of one third of the maximum wave
height which, based on this Rayleigh distribution, is given by

SWH = 2.2σ

In high storm condition with significant wave heights ∼ 15m,
this statistical model suggests that it is rare to obtain waves
higher than 15m and that the probability of obtaining waves
with heights of more than twice the SWH is of the order of
10−5. This result is a direct consequence of assuming linear
models for deep ocean surface wavefields and can not account
for the existence of ‘freak waves’ that have been observed
and measured with increasing regularity throughout the worlds
oceans.

B. Nonlinear Sea Wave Models

Freak waves, e.g. [4], [5] [6] and [7], have been know
about for many years but it is only relatively recently that
experimental data has been obtained on their occurrence and
research has been undertaken into their cause. A well known



example of experimental evidence for freak waves is given in
Figure 1 which is a signal of the wave height (in metres) as
a function of time (in second) recorded on New year’s Day,
1995, using a radar pulse-echo system setup on the Draupner
oil rig on the North Sea off Norway [8], [9]. In this case, a
freak wave of approximately 26m was measured.

Fig. 1. Wave height (in metres) as a function of time (in seconds) recorded on
New year’s Day, 1995, using a radar pulse-echo system setup on the Draupner
oil rig in the North Sea off Norway.

The example given in Figure 1 is typical of freak waves
generated in deep water that evolve in stormy conditions with
high wind energies. A freak wave is not the same as a Tsunami
that are mass displacement generated waves that propagate at
high speed and are more or less unnoticeable in deep water,
rising in wave height as they approach the shoreline. A freak
wave is a spatially and temporally localized event that most
frequently occurs far out at sea. Freak waves of up to 35m in
height are much more common than probability theory would
predict using a Rayleigh distribution for wave heights. They
appear to occur in all of the world’s oceans many times every
year during a storm. This has called for a reexamination of the
reasons for their existence, as well as reconsideration of the
implications for ocean-going ship design [7] and wave energy
conversion technology, e.g. [10], [11], [12] and [13].

There appear to be three principal categories of freak waves:
(i) Walls of water travelling up to 10km over the ocean
surface before become extinct; (ii) Three sisters which are
groups of three waves; Single, giant storm waves that build up
to more than four times the average height of storm waves and
then collapse over a relatively small time scale (in seconds).
These wave types are only three of a range of freak wave
phenomena that have yet to be fully classified. It is clear
that, whatever the range and diversity of freak waves, their
existence can not be explained using linear wave models. One
of the most common models used to explain these effects
is the Nonlinear Schrödinder equation which is the focus of
this paper. However, there are other physical reasons for the
generation of freak waves which include the following:

Diffraction Effects. Like optical and acoustic waves, sea
surface waves can be diffracted producing a diffraction pattern
that is related to the angle of incidence and the shape of

the coat and/or seabed. In some cases, the diffraction pattern
produces a focus where a collection of relatively small waves
coherently combine in phase to produce a freak wave. The
basic physics of this effect is the same as in optics accept
in terms of scale where the wavelength of the wavefield is
relatively large and the frequency spectrum is very low.

Current Focusing. If storm force waves are driven together
from opposite directions as opposing ‘current’ then the wave-
length of the waves are shortened causing an increase in wave
height. Oncoming wave trains are then ‘compressed’ together
into a freak wave.

It is known that freak waves occur in deep water when
diffraction effects can not be the cause and current focusing
is weak. In this case, the freak wave is taken to be the result
of a nonlinear effect in which the energy of many randomly
generated waves is combined into a single wave front which
continues to grow until collapsing under its own weight.

II. MODELS BASED ON NONLINEAR SCHRÖDINGER
EQUATION

One of the underlying models for explaining freak waves
is the Non-Linear Schrödinger (NLS) equation. For example,
for a one-dimensional model, the ‘cubic’ NLS is given by (for
normalised units)

i∂tΨ(x, t) + ∂2
xΨ(x, t) + 2Ψ(x, t) | Ψ(x, t) |2= 0

where Ψ is the wave function. This equation has two types of
‘soliton solutions’ associated with a group of wave functions.
The first is the ‘soliton’ solution given by [14]

Ψ(x, t) =
exp(it)
cosh(x)

This solution describes an envelope that does not change its
form with time. The second class of solutions are of the form
[15], [16]

Ψ(x, t) = exp(2it)
cosh(Ωt− 2iθ)− cos(θ) cos(px)

cosh(Ωt)− cos(θ) cos(px)

where
p = 2 sin θ and Ω = 2 sin(2θ)

The amplitude is periodic in time with frequency Ω and for
real θ, the solution tends to an unperturbed plane wave as
| x |→ ∞. For | x |→ 0, the solution describes a wave
that begins as a modulated plane wave and evolves into one
or several peaks that ‘extract energy’ from the surrounding
peaks. The peak values for Ψ(x, t) are twice the amplitude of
the unperturbed value of the wave function and for imaginary
θ, Ψ(x, t) becomes a space period wave that tends to an
unperturbed plane wave as | t |→ ∞, [17]. The maximum
value of the peak amplitude is approximately three times the
unperturbed value (depending on θ). For the limiting case,
when θ → 0, we can consider the algebraic solution [18]

Ψ(x, t) = exp(2it)
(

1− 4(4 + 4it)
1 + 4x2 + 16t2

)



It is this aspect of the available analytical solutions that has
been considered responsible for the generation of deep water
freak. The freak waves observed in the numerical simulations
based on the NLS equation can be approximately modelled by
this algebraic solution [19].

III. SCATTERING MODEL FOR A FREAK WAVE

One of the principal issues associated with using the (cubic)
NLS equation to model freak waves is that it is based on a
phenomenology, like the Schrödinger equation itself (linear
of otherwise). In this section, we illustrate how to obtain
analogous (nonlinear) behaviour based on a novel approach
to solving the Helmholtz scattering problem which, in turn,
is based on the classical linear wave equation for variable
wavespeed. We consider a solution to this equation based on
a phase only condition for the sum of the incident and scattered
wavefield and aim to develop a solution that provides a model
for the time evolution of a freak wave.

A. Inhomogeneous Wave Equation

Consider the inhomogeneous wave equation(
∇2 − 1

c2(r)
∂2

∂t2

)
Ψ(r, t) = −s(r, t)

where the three-dimensional wave function Ψ is ‘driven’
by a source function s(r, t) and where c(r) is the variable
wavespeed function. Let

Ψ(r, t) =
1

(2π)3

∞∫
−∞

ψ(r, ω) exp(iωt)dω

and

s(r, t) =
1

(2π)3

∞∫
−∞

S(r, ω) exp(iωt)dω

so that, with
1

c2(r)
=

1
c20

[1 + γ(r)]

we can write(
∇2 + k2

)
ψ(r, ω) = −k2γ(r)ψ(r, ω)− S(r, ω) (1)

where k = ω/c0 and γ is the ‘scattering function’. This
result can be derived from the (linearised) Navier-Stokes
equations where Ψ represents the scalar velocity field and γ
represents variations in the material density for the case when
the viscosity is negligible and the compressibility is a constant.

Let
ψ(r, ω) = ψi(r, ω) + ψs(r, ω)

where ψs is the scattered field whose solution we require and
ψi is the incident wave which is the solution of

(∇2 + k2)ψi(r, ω) = −S(r, ω)

given by

ψi(r, ω) =
exp(ikr)

4πr
⊗r S(r, ω)

where ⊗r denotes the convolution integral over r. Equation
(1) is then reduced to(

∇2 + k2
)

(ψi + ψs) = −k2γ(ψi + ψs)− S

is then reduced to (
∇2 + k2

)
ψs = −k2γψ (2)

B. Low Gradient Wave-function Condition

Consider the case where the scattered wave function has a
very low gradient such that

| ∇ψ |<< k

and equation (2) is reduced to the form

ψ∗i ψs+ | ψs |2= −γ | ψ |2

This result is consistent with the application of a low spatial
frequency condition.

C. Phase Only Solution

If we consider the function ψ(r, ω) to be a phase only
wavefield where, for unit amplitude,

ψ(r, ω) = exp[iθψ(r, ω)]

then
ψs = − ψi

| ψi |2
(γ+ | ψs |2)

which has first and second order solutions given by

ψ(1)
s = − γψi

| ψi |2

and
ψ(2)
s = − γψi

| ψi |2

(
1 +

γ

| ψi |2

)
respectively.

D. Model for a Separable Source Function in the Low Fre-
quency Limit

Let S(r, ω) = R(r)F (ω) so that in the low frequency limit

ψi(r, ω) ∼ 1
4πr
⊗r R(r)F (ω), ω ∈ [−Ω,Ω], Ω→ 0

In this case, the solution for Ψ(1)
s becomes

Ψ(1)
s (r, t) =

2γ(r)
r−1 ⊗r R(r)

Ω∫
−Ω

F (ω)
| F (ω) |2 +ε

exp(iωt)dω

where ε is a regularising constant.
Figure 2 shows a numerical example of the temporal charac-

teristics associated with this solution for ε = 10−9 computed
over a 1000 element array. The spectrum F (ω) is computed
from a zero mean Gaussian distributed noise field. The figure
compares this result with the signal

f(t) =
1

2π

Ω∫
−Ω

F (ω) exp(iωt)dω



Fig. 2. Example simulation of the time dependent component of the wave
function Ψ = Ψi + Ψ

(1)
s (Red) and the normalised source function f(t)

(Blue) for Ω = 10.

used to ‘source’ the solution.
This example illustrates the ability for a low spatial fre-

quency and phase only scattering model to generate large am-
plitude waves even when the scattering function is a constant.
This is due to the phase only solution being characterised by
the inverse filter F/ | F |2. In contrast, if the phase only
condition is relaxed, then the first and second order scattered
fields become

ψ(1)
s = −γψi

and
ψ(2)
s = −γ(1− γ)2ψi − γ2ψi

respectively, and, for constant γ, the temporal characteristics
of both solutions are characterised by F (ω).

IV. CONCLUSION

In contrast to using the cubic NLS equation for modelling
nonlinear sea surface wave such as freak waves, in this paper
we have considered a low spatial frequency scattering model
to illustrate that there are other ‘routes’ to explaining and mod-
elling freak wave occurrences. Under the phase only condition,
this approach reveals that the time-dependent characteristics
of the scattered wave are determined by the inverse of the
spectrum of the source function. Unlike phenomenological
models such as the (cubic) NLS equation, the scattering
model considered here (Section III) is based on the Navier-
Stokes equations. In order to illustrate the solution method
considered and some of its characteristics, we have considered
a wave equation for the scalar velocity propagating in a non-
viscous fluid where the relaxation time is zero. Thus, a further
development will be to consider a model for wave propagation
and scattering in a homogeneous viscous fluid.
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