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Abstract—This paper extends a computationally efficient, soft-
mask based source separation (SS) technique called Redress, to
anechoic mixing scenarios. SS methods are an integral part of
hearing aid research. We call the resulting method D-Redress.
In its original form, Redress was intended for instantaneous
mixing scenarios. Numerical evaluations demonstrate that soft-
mask based techniques reduce the level of artifacts in the
separated speech. Monte Carlo trials on 1000 real speech
mixtures demonstrate that the D-Redress successfully extends
Redress in terms of Overall-Perceptual (OPS), Target-Perceptual
(TPS) scores and Human-Ear Intelligibility (HEI).

Keywords—Source-Separation, anechoic, relative attenuation,
Overall-Perceptual Score (OPS), Target-Perceptual Score (TPS),
Human-Ear Intelligibility (HEI)

I. INTRODUCTION

A discrete-time, stereo anechoic de-mixing scenario
consisting of J sources is given as:

x1[n] =

J∑
j=1

sj [n] (1)

x2[n] =

J∑
j=1

αjsj [n− δj ] (2)

Here n is the discrete time index, 1 ≤ n ≤ N and n ∈ Z+. The
total number of discrete time is N . Source sj [n] in mixture
x2[n] is relatively attenuated by αj , where 0 < αj ≤ 1 and
delayed by δj samples, relative to x1[n]. Sources are pan-
mixed, this gives the sources a location in the stereo-field
in line with their corresponding attenuation coefficients aj .
Typical well known techniques for separating out the sources
from x1[n] and x2[n] are ESPRIT [1], DUET [2], TIFROM
[3] and the DEMIX [4] algorithms. DESPRIT [5] is an
extension of ESPRIT. A family of power-weighted estimators
was introduced in [6]. It demonstrates that these estimators can
be unified into one statistical framework. These approaches
were built on initial contributions in the area of Independent
Component Analysis (ICA) [7]. The essence of ICA based
methods lies in the exploitation of the sparsity of the sources
in some transform domain [8]. The sources are sparse implies
that they are in some sense already separated. SS can then
be achieved via a binary or hard mask as shown in Eqn. 3.
Hard-masking techniques assume that a Time-Frequency (TF)
bin belongs to any one source. According to the authors in
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[9], if all the TF bins that correspond to a particular source
are determined, then the sources can be separated.

M[k, τ ] =

{
1, if TF bin is in the source
0, otherwise.

(3)

Here, the mask is M[k, τ ] and k and τ are the discrete
frequency and time indices of the TF representation,
respectively. We contribute to an extension of the Redress
algorithm [10] to anechoic mixtures, which does not
significantly increase the computational cost of it. This
approach is called Delayed-Redress (D-Redress). Redress
is a computationally efficient soft-masking technique for
source separation. The sources are relatively attenuated on
different channels. The soft-mask based methods generate
a ratio-mask, its value lies anywhere in between 0 ≤
M[k, τ ] ≤ 1. The Redress technique localizes the inter-
aural Intensity Difference (IID) cue of the jth source at an
attenuation location in a frequency-attenuation matrix. This
location equals the attenuation coefficient αj in the stereo-
field. The underlying idea of soft-mask techniques is to
allocate appropriate spectral-power to the sources in their
corresponding TF-bins. This allocation of spectral-power is
in line with the source’s attenuation coefficient αj . The hard-
mask counterpart of Redress is AdRess [11]. The downside of
these methods are that they are restricted to the instantaneous
mixing scenario. An extension of the AdRess to anechoic
scenario was recently contributed in [12]. This is known as
D-AdRess. In this paper, we have compared our proposed D-
Redress with Redress, AdRess and D-AdRess. We hypothesize
that soft-mask based methods decrease the level of artifacts
introduced in the separated speech. Typically, interference of
other sources increase as we move from hard-masking to soft-
masking techniques.

This paper is organized as follows. In Section II the effect
of phase on delayed sources is explained. In Section III,
Redress algorithms is detailed. D-Redress is defined in Section
IV. In Section V, we evaluate the performance of D-Redress
by considering the task of separating real speech signals,
where up to four sources are present in the mixture. We have
compared D-Redress algorithm with other known techniques.
The paper finishes with the concluding remarks in Section VI.

II. PHASE-AWARE INTUITION

SS techniques take the first step of computing the TF
representation of the mixtures. Typically, the synchronized
short-time-Fourier-transform (sSTFT) [13], Wavelet Transform



and Wigner-Ville distribution are used. The TF transform
of an arbitrary discrete-time speech mixture x[n], where
1 ≤ n ≤ N , is X : x[n] 7−→ X[k, τ ] ∈ C. Here,
1 ≤ k ≤ K and 1 ≤ τ ≤ T . The total number of discrete
frequencies and time frames are K and T , respectively.
The magnitude and the phase spectrum of x[n] is given as
|X[k, τ ]| and ∠X[k, τ ], respectively. Now, X[k, τ ] of the
matrix X ∈ CK×T can be written in a phasor form as
X[k, τ ] = |X[k, τ ]|ejθ, where θ is the phase of the TF
bin. Again, a temporal signal incurring a relative delay of
δ samples, x[n − δ], is represented in the TF-domain as
X[k, τ ] = |X[k, τ ]|ejθe−jΩkδ = |X[k, τ ]|ej(θ−Ωkδ). Here,
the discrete angular frequency (in rads/sample) is Ωk = 2π

K k
for a K-point DFT and the kth index. The phase of X[k, τ ]
becomes ej(θ−Ωkδ). Both the magnitude |X[k, τ ]| and the
phase ∠X[k, τ ] spectra are used for speech analysis and
enhancement [14]. We state that signal separation becomes
difficult when the mixture X[k, τ ] is influenced by a phase
quantity of ej(θ−Ωkδ) than when influenced by only ejθ.
Therefore, source-separation from a mixture with the help
of |X[k, τ ]| alone won’t be possible in an anechoic mixing
scenario. In the Section IV, we shall see how delays influence
the traditional analysis of the TF representation for Redress
algorithm.

III. REDRESS ALGORITHM

Let us consider two synthetic signals to motivate our
approach. They consist of sinusoids s1[n] and s2[n]. Source
s1[n] is made up of frequencies f1 = 100 Hz and f3 = 300
Hz; s1[n] = sin(2πf1t) + sin(2πf3t). Source s2[n] is made
up of frequencies f2 = 200 Hz and f4 = 400 Hz; s2[n] =
sin(2πf2t) + sin(2πf4t). They compose two instantaneous
mixtures x1[n] and x2[n]. Their TF representations are
X1[k, τ ] and X2[k, τ ], respectively. In the mixing matrix,
the attenuation coefficients are α1 = 0.2 and α2 = 0.8.
Sources are non-overlapped in frequencies. Considering an
instantaneous scenario, Redress takes the magnitude spectrum
of one mixture |X1| and scales it relative to |X2| and vice-
versa, such that the difference of the magnitude of the TF-
representation is zero or null.

g ← find
(
A1 =

∣∣X1[k, τ ]− gX2[k, τ ]
∣∣ ≈ 0,

and A2 =
∣∣X2[k, τ ]− gX1[k, τ ]

∣∣ ≈ 0
)
. (4)

Redress constructs a frequency-attenuation matrix, A =
[A1,A2] ∈ RK×M , depicted in Fig. 1a. Here, K and M are
the number discrete frequencies and size of the attenuation
range, respectively. The attenuation parameter is g where
0 < g ≤ 1. The set of attenuation values examined is:

g = {g1, g2, . . . . . . , 1} (5)

We have considered the size of the set g to be G = M
2 = 100,

for low computational complexity. The Redress technique
formulates the matrix A in a way to decompose it into
its TF-spectra, W, and attenuation component H, so that
A ≈ WH. The author of the paper [15] applied a Non-
Negative Matrix Factorization (NMF) technique to decompose

A, where A ∈ R+
K×M , W ∈ R+

K×L, H ∈ R+
L×M and

L ≪ M , L ≪ K. The approach struggled to separate the
sources if the number of sources were more than the mixtures.
In the subsequent paper [10], the same author formulated
the problem as a non-negative Quadratic Program given as:
min
W
||A −WH||2F , keeping H fixed, W is updated using

a multiplicative-update optimization method, as proposed in
[16]. For simplicity, we consider the two mixtures x1[n] and
x2[n] having discrete Fourier transforms X1[k] and X2[k],
respectively. Then the Left-Hand Side (LHS) matrix, A1, of
A, is formulated as:

A1 =
∣∣X1[k]− gX2[k]

∣∣ (6)

We consider only the positive frequencies due to the symmetry
of the TF representation. Solving Eqn. 6 gives us the below:

A1 =

∣∣∣∣∣
(
δ[k − f1] + δ[k − f3]

)(
1− gα1

)

+

(
δ[k − f2] + δ[k − f4]

)(
1− gα2

)∣∣∣∣∣ (7)

In a similar way, the Right-Hand Side (RHS) of A is given
as:

A2 =

∣∣∣∣∣
(
δ[k − f1] + δ[k − f3]

)(
α1 − g

)

+

(
δ[k − f2] + δ[k − f4]

)(
α2 − g

)∣∣∣∣∣ (8)

The derivation of Eqn. 7 and Eqn. 8 is given in paper [10].
If g = 1

α1
or g = 1

α2
, and g = α1 or g = α2, respectively,

then null points are observed at frequencies k = f1 = 100
Hz, k = f2 = 200 Hz, k = f3 = 300 Hz, k = f4 = 400
Hz in the matrix A, provided g ≤ 1. This is depicted in
Fig. 1a. Our anechoic stereo-mixture is composed of one direct
path and the other with relative attenuations and delays, nulls
appear on the RHS A2, as depicted in Fig. 1b. These nulls
determine the exact amount of spectral power by which a
source gets cancelled. Peaks on these nulls give an estimate of
the power content of the constituent sources. The attenuation
estimates are derived where the power of the sources gets
cancelled-out. We observe that this is in line with the relative
attenuation of the sources present in the mixture. In Fig. 1b,
the sources are located at: g = α1 = 0.2 for s1[n] and
g = α2 = 0.8 for s2[n]. The efficacy of Redress also lies in SS
for overlapping frequencies. Real-world speech utterances are
overlapped in frequencies. Let the higher frequencies of the
two sources overlap at f3 = f4 = 300 Hz. Redress assigns a
TF bin to multiple sources. Spectral power is reallocated to the
same bin based upon the attenuation positions αj . Once the
αj’s are estimated, Redress then pre-computes the attenuation
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Fig. 1. Here, figure (a) illustrates the frequency-attenuation matrix A(k, α)
where the nulls appear in the RHS, A2, for anechoic scenarios. Figure (b)
depicts the RHS A2 of the frequency-attenuation matrix. Nulls appears at
attenuation coefficients α1 = 0.2 and α2 = 0.8. The position of these nulls
are the attenuation estimates, αj , of the sources present in the mixture.

component H = [H[1, :],H[2, :]]T . We place the first source
s1[n] in the first row of H

H[1, :] = [|1−g1α1|, |1−g2α1|, . . . , |1−gM
2
α1|, |α1−g1|,

|α1 − g2|, . . . , |α1 − gM
2
|] (9)

and the second source s2[n] is placed in the second row

H[2, :] = [|1−g1α2|, |1−g2α2|, . . . , |1−gM
2
α2|, |α2−g1|,

|α2 − g2|, . . . , |α2 − gM
2
|] (10)

For a two-source case, we have H ∈ R2×M . The TF-
spectra are captured by the matrix W. Each column of W
corresponds to the TF-spectrum of a source. For L sources,
W shall have L columns. Fig. 2a depicts the estimated
magnitude-spectrum of source s1[n], energy is assigned at
frequencies f1 = 100 Hz and f3 = 300 Hz. In Fig. 2b,
energy assigned for s2[n] is at frequencies f2 = 200 Hz
and f4 = 300 Hz. Combining the minimized TF-spectra
with the corresponding TF-bin phases gives us the separated
source. In an anechoic model, the sources in the mixture suffer
relative delays. An arbitrary time domain mixture x[n − δ],
incurring a delay of δ samples is represented in frequency
domain as X : x[n − δ] 7−→ X[k]e−jΩkδ . Sources s1[n]
and s2[n] in mixture x2[n] undergo a delay of δ1 and δ2 in
samples, respectively. Then the expressions for the frequency-
attenuation matrix A and its decomposition into spectral W
and attenuation H components are derived below:

A1 =
∣∣X1[k]− gX2[k]e

−jΩkδ
∣∣ = ∣∣∣δ[k − f1] + δ[k − f3]

+ δ[k − f2] + δ(k − f4)− g
[
α1e

−jΩkδ1
(
δ[k − f1]

+ δ[k − f3]
)
+ α2e

−jΩkδ2
(
δ[k − f2] + δ[k − f4]

)]∣∣∣ (11)

Solving Eqn. 11, we get the below:

A1 =
∣∣∣(δ[k − f1] + δ[k − f3]

)(
1− gα1e

−jΩkδ1

)
+

(
δ[k − f2] + δ[k − f4]

)(
1− gα2e

−jΩkδ2

)∣∣∣ (12)
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(c) D-Redress(Cancel) s1[n]
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(d) D-Redress(Cancel) s2[n]

Fig. 2. Recovered TF-spectra W: The blue line depicts the TF-spectrum
of the original signal sj [n]. The red line signifies the TF-spectrum of the
estimated version of that signal. Two synthetic sources overlap at k = 300 Hz.
Redress: Figure (a) illustrates that the source s1[n] has energy at k = 100Hz
and k = 300Hz. In figure (b), the energy assigned to source s2[n] is at
k = 200Hz and k = 300Hz. D-Redress(Cancel): The figures (c) and (d)
shows similar performance to the Redress. The difference is that a minor
power assignment to s1[n] at 200 Hz in figure (c) is observed.

In a similar way, A2 =
∣∣X2[k]e

−jΩkδ − gX1[k]
∣∣ can be

represented as:

A2 =
∣∣∣(δ[k − f1] + δ[k − f3]

)(
α1e

−jΩkδ1 − g

)
+

(
δ[k − f2] + δ[k − f4]

)(
α2e

−jΩkδ2 − g
)∣∣∣ (13)

From Eqn. 12 and Eqn. 13 we get the null locations on
matrix A = [A1,A2] on frequencies f1, f2, f3, f4 at gains
g = 1

α1e
−jΩkδ1

or g = α1e
−jΩkδ1 and at g = 1

α2e
−jΩkδ2

or
g = α2e

−jΩkδ2 , subject to g ≤ 1, and j =
√
−1. The location

of null peaks are characterized by the quantity e−jΩkδj . Here
the subscript j = 1, 2 is the source index. Estimating the TF-
spectra for anechoic mixtures is not as straight forward as the
instantaneous scenario. Therefore, we devise a novel technique
D-Redress which mitigates this issue.

IV. D-REDRESS

We have extended the Redress by two methods: firstly,
using the attenuation component H for instantaneous mixtures,
Eqn. 9, but cancelling-out the delay in the mixture. This
is known as D-Redress (Cancel). The other method is
adapting H to a complex attenuation component as depicted
by Eqn. 12 and Eqn. 13, called D-Redress (Complex). D-
Redress(Cancel): Redress groups the null-peaks of the target
source at an appropriate g location based upon its position
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Fig. 3. The position of null-peaks on the frequency-attenuation matrix A
changes with delays δj . Figure (a) illustrates sources with no delays, the
peaks are clustered at g ≈ 0.8 = α2. Figure (b) depicts that a delay of
0.2 samples causes the null-peaks bend. Figure (c) shows that a delay of 0.7
samples shifts the peaks to the extreme left. Figure (d) illustrates that a delay
of 5 samples makes it difficult to determine the null-peak locations.

in the mixture, provided the sources frequencies are non-
overlapping. Let the ground-truth location be α2 = 0.8 in
our mixture. Fig. 3a depicts that with no delay, the null-peaks
of s2[n] are grouped at g ≈ 0.8 = α2. A delay of δ = 0.2
samples causes the alignment of this grouping to bend to the
left, as shown in Fig. 3b. For δ = 0.7 samples, this deviation
gets more pronounced and the peaks start to get shifted to
the extreme left, as depicted in Fig. 3c. Lastly, in Fig. 3d, at
δ = 5 samples, the null-peaks get entirely dislocated. Thus,
determining the location of the null-peaks is difficult. This
makes A hard to use for instantaneous de-mixing. The D-
Redress(Cancel) method implements cancellation of relative
delays in the mixture [12]. If δ2 is cancelled-out in the mixture
X2, that is X2 = e+jΩkδ2 ⊙X2, then the disorganized null-
peak shall again be grouped at g = 0.8 = α2. This is
equivalent to the no-delay case as depicted in Fig. 3a. More
appropriately the delay in X2 has been cancelled-out, the
probability of obtaining A similar to the instantaneous mixing
scenario is increased. Let us have a 2-source mixture with
sources s1[n] and s2[n] and delays δ1 and δ2. Cancelling δ2
and then running the same quadratic program update with H
(of Eqn. 9 and Eqn. 10) gives an estimate of the TF-spectrum
of s2[n]. Fig. 2c and Fig. 2d depict the TF spectral extraction
of s1[n] and s2[n], respectively. In the extracted TF spectrum,
we assume that the power of one source dominates over the
other sources. Empirically for a 2-source case, if we cancel X2

by any one of the delay, the corresponding source is separated.
Let us have a set of delays in samples δj = δ1, δ2, δ3, δ4.

For a 3-source case, the best human-ear intelligibility of the
separated sources holds when X2 is cancelled-out by δ2.
For a 4-source case, the most intelligible speech is extracted
when cancelled by δ = δ2+δ3

2 samples. D-Redress(Complex):
In this approach, we adapt the set of discrete frequencies
Ω = {−π, . . . , . . . ,+π}, where |Ωk| ≤ π ∈ Ω, to build
the attenuation component H for anechoic mixtures. In our
experiment, the size of g is set to be G = 100. We divide Ω
into 100 equal parts, then adapt it in Eqn. 12 and Eqn. 13.
This formulates the anechoic H similar to Eqn. 9 and Eqn. 10
. We repeat the same quadratic program update to extract the
magnitude-spectra W.

V. EXPERIMENTS AND RESULTS

Our proposed D-Redress algorithm is compared with three
other techniques, namely AdRess, D-AdRess and Redress. The
quality of the separated speech utterances are evaluated using
BSS Eval [17] and PEASS [18] toolkits. We have randomly
selected the utterances from a total number of 25200 files
of the TIMIT corpus [19]. Each speech utterance is sampled
at 16 kHz. In our experiments, we have considered a 1024
sample Hamming window for a 50% overlap. Our evaluations
are based upon 1000 Monte Carlo trials. We observe that:
(1) Mean reconstruction Source-to-Distortion Ratio (SDR) of
Redress exceeds D-Redress(Cancel) and D-Redress(Complex)
by 0.2 dB and 0.5 dB respectively. (2) Source-to-Artifact
Ratio (SAR) of Redress exceeds AdRess by 0.5 dB. (3)
Mean reconstruction Source-to-Interference Ratio (SIR) of
Redress, D-Redress(Cancel) and D-Redress(Complex) is less
than AdRess by 2 dB, 3.5 dB and 5 dB, respectively.

The quality of separated utterances decrease as SS move
from instantaneous to anechoic mixing models. Higher values
of SDR, SAR and SIR signify better performance. We have
considered up to four sources (J = 4) in the mixture. The
attenuation coefficients αj’s are chosen in a such a way that
they are distant from one another. Otherwise, the null-peaks
formed on A, Fig. 3a, shall be very close in the g axis. This
may make extraction of spectral-power of the desired source
from the appropriate sub-portion of A difficult. Energy from
the neighbouring sources may get included or “leaked” into the
desired utterance. In our experiments, for a 4-source scenario,
the attenuation values are chosen as: α1 = 0.20, α2 =
0.45, α3 = 0.70, α4 = 0.98. A 3-source scenario consists
of α1 = 0.20, α2 = 0.55, α3 = 0.85. The 2-source case
consists of α1 = 0.20, α2 = 0.80. The delays considered (in
samples) are δ1 = 10, δ2 = 7, δ3 = 4, δ4 = 1 for a 4-source
mixture. We have also considered other values of delays too.
The algorithms are coded in Matlab R2021a. Since the Redress
is a soft-masking technique, the reconstructed TF spectra shall
have negligible number of holes. Unlike AdRess, the Redress
assigns the TF bins some spectral power implying better SAR
as depicted in Fig. ??. Fewer artifacts implies musical-noise.
The drawback here is that the interference in the separated
utterances gets more.

Fig. ?? depicts that the SIR for Redress is less than AdRess
by 1 dB. The PEASS toolkit [18] is used to evaluate the
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Fig. 4. PEASS Score: Overall Perceptual Score (OPS) is measured.
AdRess: Figure (a) illustrates that the mean reconstruction OPS is 31.6.
Redress: Figure (b) depicts the mean reconstruction OPS is 25.28. D-
Redress(Cancel): Figure (c) shows the mean reconstruction OPS is 19.18.
D-Redress(Complex): Figure (d) illustrates that the mean reconstruction OPS
is 17.84.

perceptual-score. This score is reduced for anechoic mixing
scenario. The PEASS-score [18] of the estimated source,
ŝj , is measured in a scale within 1 − 100. Higher values
signify better performance. Let us have J number of speech
signals in the mixture index by j. PEASS seeks to split the
distortion between the estimated ŝj and the target-original sj
into given as: ŝj − sj = etarget

j + einterference
j + enoise

j . Fig. 4
shows, the Overall Perceptual Score (OPS) of the Redress
decreases as extended to anechoic scenario. The OPS describes
the perceptual-similarity measure (PSM) [20], between the
original and the estimated as perceived by a human ear. The
mean reconstruction OPS of the Redress surpasses its anechoic
variants, by 6.1 for D-Redress (Cancel) and 7.84 for D-Redress
(Complex). The Target related-Perceptual-Score (TPS) means
PSM

(
ŝj , ŝj−etarget

j

)
. This is the perceptual similarity measure

between the estimated utterance ŝj with itself, minus the
target-distortion component etarget

j . Fig. 5a shows that the TPS
of Redress is 29. It drops to 22 for D-Redress(Cancel) and
to 20 for D-Redress(Complex). Lastly, we perform human-ear
intelligibility, a study involving 5 participants, they were asked
to access each sound and mark them somewhere in between
1−10. The perceived utterance’s intelligibility was measured,
bench-marked against a set of reference values as follows:

• Completely similar-10
• Sound Quality deteriorates but very intelligible-7
• Sound Quality bad, but intelligible-4
• Sounds unintelligible-1
Fig. 5b depicts Human-Ear Intelligibility (HEI) of the

separated speech utterance decreases with increase in number
of sources in the mixture.

VI. CONCLUSION AND FUTURE WORK

The soft-mask Redress reduces the artifacts in the separated
speech. This gives the Redress a higher SAR compared
to the AdRess technique. On the other hand, the Redress
introduces more interference to the separated speech utterances
compared to AdRess. Consequently, the SIR of Redress is than
AdRess. Perceptual-quality, distortions, artifacts, interference
and human-ear intelligibility of the utterances separated by the
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Fig. 5. Figure(a) depicts that the Target-Perceptual Score (TPS) of
instantaneous mixtures have more overall scores their anechoic counterparts.
Soft-mask D-Redress(Cancel) and D-Redress(Complex) is less than Redress
by 6 and 10 respectively. Hard-mask D-AdRess for anechoic mixing scenarios
is less than AdRess by 1. Figure (b) illustrates that the Human-Ear
Intelligibility (HEI) of the separated speeches become less intelligible with
increase in number of sources in the mixture.

Redress were reduced when extended to anechoic scenarios.
An increase in the number of constituent sources in the mixture
also decreases these metrics. Perceptually, D-Redress(Cancel)
is more satisfactory than D-Redress(Complex). In our
evaluations, we have considered small delays up to 10 samples.
In future, we shall evaluate how close the neighbouring
sources can be on the frequency-attenuation matrix, while still
achieving good separation. We shall also consider how to adapt
Redress to big delay scenarios that might occur in real-world
sensor networks.
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[13] R. de Fréin and S. T. Rickard, “The synchronized short-time-
Fourier-transform: Properties and definitions for multichannel source
separation,” IEEE Trans. Sig. Proc., vol. 59, no. 1, pp. 91–103, Jan
2011.
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(a) Original Male Utterance (b) AdRess Separated Male
Utterance

(c) Original Female Utterance (d) D-AdRess Separated Female
Utterance

(e) Original Male Utterance (f) Redress Separated Male
Utterance

(g) Original Male Utterance (h) D-Redress (Cancel) Separated
Utterance

(i) Original Female Utterance (j) D-Redress(Complex) Separated
Utterance

Fig. 6. Column1: Original utterances (TIMIT database). Column2: Estimated
utterances from a mixture of 2-sources. Top-Down order: AdRess, D-
AdRess, Redress, D-Redress(Cancel), D-Redress(Complex); As we extend the
instantaneous algorithms to anechoic scenarios, incongruities in the temporal
structures of the separated utterances are observed. This indicates increased
distortion and interference. Moving from instantaneous to anechoic scenarios
decreases the intelligibility of the separated utterances. Increasing the number
of sources to four in the mixture decreases the quality and intelligibility.
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