
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Computer Science

2014-06-26

The Impact of Fuzzy Requirements on Medical Device Software The Impact of Fuzzy Requirements on Medical Device Software

Development Development

Martin McHugh
Technological University Dublin, martin.mchugh@tudublin.ie

Abder-Rahman Ali
Université d'Auvergne

Fergal McCaffery
Dundalk Institute of Technology, Dundalk, Ireland.

Follow this and additional works at: https://arrow.tudublin.ie/scschcomcon

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
McHugh, M., Ali, A.R & McCaffery, F. (2014). The Impact of Fuzzy Requirements on Medical Device
Software Development, European Systems and Software Process Improvement and Innovation
Conference EuroSPI Luxembourg,25.-27, June. doi:10.21427/r0ws-x837

This Conference Paper is brought to you for free and open access by the School of Computer Science at
ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

Funder: Science Foundation Ireland

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomcon
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomcon?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=arrow.tudublin.ie%2Fscschcomcon%2F147&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.1

Abstract

Any software development project can experience difficulties with unclear or vague
requirements. Unfortunately, this problem can be experience two fold in regulated
environments such as the medical device software development industry. In the medical
device software development industry, development organisations must contend with vague
or “fuzzy” both the customer and regulatory bodies. As new requirements are introduced they
can have a knock on effect on other requirements. These requirements should be analysed to
determine if they are conflicting, cooperative, mutually exclusive and irrelevant. Only when the
requirement is classified can a clear method be established as how to integrate that
requirement with previous ones. Medical device software organisations could benefit from
understanding the impact of fuzzy requirements as it could result in reduced rework at a later
stage in the project.

Keywords

Requirements Engineering, Medical, Fuzzy Requirements, FDA

1 Introduction

Every software development project consist of a Requirements phase. It is at this phase it is
established what is to be development. Experience suggests that requirements are the biggest
software engineering problem for the developers of large, complex systems. Many decades after the
invention of computer programming, software practitioners still have raging debates about exactly
what a “requirement” actually consists [1]. A software requirement can be defined as: “a software
capability needed by the user to solve a problem or to achieve an objective”; “a software capability
that must be met or possessed by a system or a system component to satisfy a contract, standard,
specification, or other formally imposed documentation” [2].

It is generally agreed that the goal of the requirements phase is to establish what the software must
do without describing how to do it. Most authors agree in principle that requirements should specify
“what” rather than “how”. In other words, the goal of requirements is to understand and specify the
problem to be solved rather than the solution. The most basic reason for this is that a specification in
terms of the problem, captures the actual requirements and does not over constrain the subsequent
design or implementation. Also, solutions are typically more complex, more difficult to change, and
harder to understand than a specification of the problem [3].

The Impact of Fuzzy Requirements

on Medical Device Software

Development

Martin McHugh1, Abder-Rahman Ali2 and Fergal McCaffery1

Regulated Software Research Centre, Department of Computing and Mathematics

Dundalk Institute of Technology, Co. Louth Ireland
1(Martin.McHugh, Fergal.McCaffery)@dkit.ie

2
abder-rahman.a.ali@ieee.org

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.2

Obtaining good software requirements is a crucial step towards building reliable and usable software
systems. Studies show that one of the main reasons for software project failures is due to poor
requirements [4]. It is extremely desirable to detect errors in the requirements before the design and
development of the software begins. Due to the nature of the requirements specification phase, there
is a lot of room for misunderstanding and committing errors, and it is quite possible that the
requirements specification does not accurately represent the client’s needs [5].

2 Medical Device Software Development

Medical device software is typically developed in accordance with the V-Model [6]. When developing
software in accordance with the V-Model each stage of development is completed sequentially. Unlike
other plan driven software development life cycles such as the Waterfall model, testing is planned in
conjunction with each stage of development. The V-Model is typically followed as it produces the
necessary deliverables required when seeking regulatory approval. However, there is a shift towards
more agile development techniques in the medical device software development industry [7-9]. Agile
methods appear to solve an often faced problem when following a plan driven SDLC, i.e.
accommodating changing requirements once the requirements phase has been completed. However,
this flexibility can create problems in itself. When following a plan driven approach the requirements
are heavily refined before development begins, this includes resolving issues where requirements are
unclear. When following agile methods, requirements are subject to change at any point in a software
development project, therefore the process of understanding fuzzy requirements is need throughout a
software development project. Medical device software development organisations who wish to
market their device for use must conform to the regulations within that region. For example, medical
devices marketed for use must beer the CE mark, showing conformance, and those marketed for use
within the United States (US) must provide evidence of conformance to the Food and Drug
Administration (FDA)

3 FDA & IEC 62304 stance on Requirements

The FDA regulations impose stringent requirements on the process by which software systems used
in medical devices are developed. These requirements translate into various software artefacts that
must be made available for the software to be FDA compliant [10] and, for medical device software,
the FDA is responsible for assuring that the device utilizing the software is safe and effective [1].

FDA requires medical device manufacturers to submit their device requirements before beginning
development. System and software requirements are taken from the FDA medical device Quality
System Regulation [11]. FDA regulations cover all aspects of the medical device product lifecycle,
and the FDA requires medical device manufacturers to submit evidence of product safety and efficacy
for FDA review and clearance before the manufacturer can market, sell, or distribute the product [1].
Thus, it is critical to obtain information from the FDA on the requirements applicable to the proposed
device [5].

Validation compares the final product to the original specifications [3], and is closely related to the
requirements specification. You can validate the user's requirements; this is where ambiguity reigns
most of the time and where formal methods, through the use of specification languages, have the
biggest strides. There is still a wide gap between what the user wants and what the developer
understands that the user wants. Very often this is where one of the causes of initial system failures
can be found [12]. Software validation is the confirmation that all software requirements have been
met and that all software requirements are traceable to the system requirements, provided that it is
not possible to validate software without predetermined and documented software requirements [13].
There are two major types of validation that come into play with medical devices - design validation
and process validation. Design validation means establishing, by objective evidence, that device
specifications conform to the user's needs and the device's intended uses. Process validation, on the
other hand, means establishing, by objective evidence, that a process consistently produces the
desired result or a product meeting the predetermined specifications [14]. The FDA requires medical
device manufacturers to submit their device specifications before beginning development. Thus,
validation could come at early stages of development if the user's requirements could be precisely

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.3

defined, and which from them the rest of the development derived [15]. Ideally, validation work would
be accomplished while the requirements are being written [12]. Any safety and regulatory
requirements for medical devices necessarily call for rigorous software development methods to
ensure reliability and to protect public health. In addition to that, requirements and specifications
based on medical practice are needed to help ensure that devices will perform appropriately [16].

The regulatory bodies request that medical device software development organizations clearly
demonstrate how they follow a software development life cycle without mandating a particular life
cycle. In order to comply with the regulatory requirements of the medical device industry, it is
necessary to have clear linkages to traceability from requirements through the different stages of the
software development and maintenance life cycles. Traceability is central to medical device software
development and essential for regulatory approval. Software traceability refers to the ability to
describe and follow the life of a requirement in both forward and backward direction [17]. FDA for
instance states that traceability analysis must be used to verify that a software design implements all
of its specified requirements [18]. Thus, traceability is particularly important for medical device
companies, as they have to demonstrate this in order to achieve FDA compliance [19].

IEC 62304:2006 [20] is harmonized with the European Medical Device Directive (MDD) [16] and is
approved for use by the FDA. As with guidance documents, adherence to IEC 62304:2006 is not
mandatory, however, if a manufacturer chooses not to follow it, they would need to provide a sufficient
explanation behind not following it. IEC 62304:2006 does not address software development lifecycle
models; instead, it defines processes, which consist of activities that should be conducted in each
medical device software development project [21]. As with the QSR, initial reading of IEC 62304:2006
would appear to suggest it should be followed in accordance with a sequential lifecycle model such as
Waterfall Model. The publishers of IEC 62304:2006 observed that the standard appeared to mandate
following the Waterfall Model and added the following to remove any ambiguity;

“it is easiest to describe the processes in this standard in a sequence, implying a “waterfall”
or “once through” life cycle model. However, other life cycles can also be used”

4 Fuzzy Requirements

Requirements are sometimes not specified and documented in detail in many software development
projects, which makes software validation and maintenance very difficult. One challenge is that many
product requirements are fuzzy in nature. Actually, customers usually describe their requirements in
fuzzy terms such as good, high, very important, etc. Translating such fuzzy terms into design
specifications that will accurately create the desired product is difficult [12].

There are two important goals in requirements engineering: (a) acquiring requirements that are
satisfactory to their customers; and (b) generating feasible requirements. These two goals often
compete with each other. To achieve both goals, the requirements often need to be refined many
times [12].

4.1 Fuzzy Requirements & Fuzzy Sets

In the medical device software domain, fuzzy requirements may emerge. An example of such requirements is:

R: the software system should fully support the clinician

The constraint imposed by the fuzzy requirement R can be represented as a satisfaction (membership) function,

denoted as
RSat , which maps an element of 'R s domain D to a number in the range []0,1 , which represents

how well the requirement is satisfied [7]:

 : [0,1]RSat D → (1)

Let us assume that the type of medical device software used is a medical imaging system. The elasticity of R

Session I:

can be captured using the satisfaction function, and corresponds to the membership function of the fuzzy set

FULLY in the requirement R [7].

Examples of the characteristics which should be available in order for the software system to be considered as a

support for the clinician are as follows:

C1: load medical image

C2: view medical image

C3: segment medical image

C4: save medical image

…

Cn

A membership function of the fuzzy set

Where ()F xµ is the degree of membership of the requirement

characteristics achieved, provided that the weights of importance of the characteristics is assumed to be the

same) in the fuzzy set FULLY, where the value

available, () 0F xµ = . a is the

characteristics, and b is any value between

Figure 1

5 Relationship Classification

There are four types of significant relationships between requirements: (a) conflicting; (b) cooperative;
(c) mutually exclusive; and (d) irrelevant. The classification is determined by how satisfying one
requirement impacts the satisfaction degree of anot

Two requirements are conflicting
level of satisfaction. If it always
completely conflicting. Figure 2 shows an example of completely and partially conflicting requirements
[22].

Session I: Session title will be inserted by editors

EuroSPI 2013

can be captured using the satisfaction function, and corresponds to the membership function of the fuzzy set

of the characteristics which should be available in order for the software system to be considered as a

support for the clinician are as follows:

ship function of the fuzzy set FULLY that can be used, is Zadeh’s S-function, defined as follows:

2

2

0, ;

2 , ;

()

1 2 , ;

1,

F

x a

x a
a x b

c a
x

x c
b x c

c a

x c

µ

≤


−  ≤ ≤  −  
= 

−  − ≤ ≤  − 
≥

is the degree of membership of the requirement x (represented in terms of the numbers of

characteristics achieved, provided that the weights of importance of the characteristics is assumed to be the

, where the value evaluates to the range[0,1] , such that, if no characteristics are

is the minimum number of characteristics, c is the maximum number of

is any value between a and c . The S-function can be plotted as shown in figure.1

Figure 1. Membership Function of the Fuzzy Set F (support)

Relationship Classification

There are four types of significant relationships between requirements: (a) conflicting; (b) cooperative;
(c) mutually exclusive; and (d) irrelevant. The classification is determined by how satisfying one
requirement impacts the satisfaction degree of another requirement [12].

conflicting if raising satisfaction in one requirement often decreases the other’s
 decreases the satisfaction degree of the other, they are said to be

igure 2 shows an example of completely and partially conflicting requirements

Session title will be inserted by editors

EuroSPI 2013− 1.4

can be captured using the satisfaction function, and corresponds to the membership function of the fuzzy set

of the characteristics which should be available in order for the software system to be considered as a

, defined as follows:

(2)

(represented in terms of the numbers of

characteristics achieved, provided that the weights of importance of the characteristics is assumed to be the

, such that, if no characteristics are

is the maximum number of

e plotted as shown in figure.1.

There are four types of significant relationships between requirements: (a) conflicting; (b) cooperative;
(c) mutually exclusive; and (d) irrelevant. The classification is determined by how satisfying one

decreases the other’s
decreases the satisfaction degree of the other, they are said to be

igure 2 shows an example of completely and partially conflicting requirements

Session I:

(a)

Figure 2. (a) completely conflicting requirements; (b) Partially conflicting requirements

Fuzzy conflicting relationships can relax the conditions of the crisp conflicting relationships using
fuzzy terms such as strong, medium
medium conflict, and weak conflict
conflicting relationships [22], where it can be noticed that when two requirements have the conflicting
degree 0.5, we are very sure that they are weak conflicting, since their satisfaction
membership function Weak Conflict
satisfaction in membership function
medium conflicting since their degree of satisfaction

Figure 3 Fuzzy conflicting requirements

Two requirements are cooperative
the other. If the rise in satisfaction of one always increases
completely cooperative. Figure 4 shows an example of completely and partially cooperative
requirements [22]. Fuzzy cooperative relationships can relax the conditions of the crisp conflicting
relationships using fuzzy terms such as
as strong cooperative, medium cooperative

 (a) (b)

Figure 4 (a) completely cooperative requirements; (b) Partially cooperative requirements

Sometimes, two requirements cannot be satisfied at the same time, such that, if one fuzzy
requirement is satisfied, the other is not satisfied at all. Those requirements are referred to as
mutually exclusive requirements

Session I: Session title will be inserted by editors

EuroSPI 2013

 (b)

(a) completely conflicting requirements; (b) Partially conflicting requirements

Fuzzy conflicting relationships can relax the conditions of the crisp conflicting relationships using
medium, weak, etc. Thus, one can define terms such as

weak conflict using satisfaction functions. Figure 3 shows an example of fuzzy
, where it can be noticed that when two requirements have the conflicting

degree 0.5, we are very sure that they are weak conflicting, since their satisfaction
Weak Conflict is 1.0, and are not strong conflicting since their degree of

satisfaction in membership function Strong Conflict is 0. These two requirements are somewhat
medium conflicting since their degree of satisfaction in membership function Medium Conflict

Fuzzy conflicting requirements

cooperative if increasing the satisfaction in one often increases the degree in
the other. If the rise in satisfaction of one always increases satisfaction in the other, they are

. Figure 4 shows an example of completely and partially cooperative
. Fuzzy cooperative relationships can relax the conditions of the crisp conflicting

relationships using fuzzy terms such as strong, medium, weak, etc. Thus, one can define terms such
cooperative, and weak cooperative using satisfaction functions.

(a) (b)

(a) completely cooperative requirements; (b) Partially cooperative requirements

Sometimes, two requirements cannot be satisfied at the same time, such that, if one fuzzy

requirement is satisfied, the other is not satisfied at all. Those requirements are referred to as
 [12].

Session title will be inserted by editors

EuroSPI 2013− 1.5

(a) completely conflicting requirements; (b) Partially conflicting requirements

Fuzzy conflicting relationships can relax the conditions of the crisp conflicting relationships using
. Thus, one can define terms such as strong conflict,

using satisfaction functions. Figure 3 shows an example of fuzzy
, where it can be noticed that when two requirements have the conflicting

degree 0.5, we are very sure that they are weak conflicting, since their satisfaction degree in the
is 1.0, and are not strong conflicting since their degree of

is 0. These two requirements are somewhat
Medium Conflict is 0.6.

if increasing the satisfaction in one often increases the degree in
satisfaction in the other, they are

. Figure 4 shows an example of completely and partially cooperative
. Fuzzy cooperative relationships can relax the conditions of the crisp conflicting

. Thus, one can define terms such
isfaction functions.

(a) completely cooperative requirements; (b) Partially cooperative requirements

Sometimes, two requirements cannot be satisfied at the same time, such that, if one fuzzy
requirement is satisfied, the other is not satisfied at all. Those requirements are referred to as

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.6

6 Implicit Relationships Detection

In large scale software systems for instance, many conflicts are implicit, and thus, difficult to identify.
Therefore, it helps to have techniques that can aid in identifying implicit conflicting and cooperative
relationships between requirements. In this case, several heuristics can be used to infer relationships
between requirements based on the identified relationships [22, 23]:

It can be noticed from heuristic rule 1 that a completely cooperative relationship in a domain is
transitive. Whilst heuristic rule 3 indicates that a completely conflicting relationship in a domain is not
transitive.

7 Results and Discussions

Suppose that we are planning to develop some medical device software, MEDSYS. Such software to
be used in or as a medical device is subject to user requirements. However, unlike unregulated
software, medical device software must meet both the user’s requirements and the requirements of
the regulatory body (i.e. FDA) of the region into which the software will be marketed [10]. Thus, we
are expected to comply with both user requirements and regulatory requirements.

Examples of user requirements for MEDSYS are:

R1: The medical device software shall fully support the clinician
R2: The medical device software shall be developed in short time

Examples of IEC 62304:2006 requirements for MEDSYS are:

R3: The manufacturer shall retain sufficient records to permit the test to be repeated
R4: The manufacturer shall establish procedures to ensure that the released software product can be
reliably delivered to the point of use without corruption or unauthorized change
R5: The manufacturer shall consider potential causes including, as appropriate, reasonably
foreseeable misuse

In the above requirements, the fuzzy terms have been written in italics. Such fuzzy terms can be
characterized by fuzzy sets, and thus, represented by a membership function.

Figure 5 shows the relationships between the requirements as given by a requirements analyst and a
customer, where “-” denotes a conflictive relationship, and “+” denotes a cooperative relationship.
Here, we assume that the conflictive and cooperative relationships are complete (Figure 2(a) and
Figure 4(a)).

Heuristic rule 3 (infer relationships from conflicting requirements): Let D be a domain
shared between three requirements R1, R2, and R3. If requirement R1 completely conflicts with
R2 in D, R2 completely conflicts with R3 in D, and they are not irrelevant, then R1 is completely
cooperative with R3 in D.

Heuristic rule 2 (infer relationships from conflicting and cooperative requirements): Let D
be a domain shared between three requirements R1, R2, and R3. If requirement R1 is
completely cooperative with R2 in D, R2 completely conflicts with R3 in D, and they are not
irrelevant, then R1 is completely conflicting with R3 in D.

Heuristic rule 1 (infer relationships from cooperative requirements): Let D be a domain
shared between three requirements R1, R2, and R3. If requirement R1 is completely cooperative
with R2 in D, R2 is completely cooperative with R3 in D, and they are not irrelevant, then R1 is
completely cooperative with R3 in D.

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.7

 R1 R2 R3 R4 R5

R1 + + +

R2 -

R3

R4

R5

Figure 5 Initial relationships as specificed by a requirements analyst and a customer

Using the heuristics in section 6, more relationships (shown with a green background box) could be
infered as shown in figure 6.

 R1 R2 R3 R4 R5

R1 - + + +

R2 -

R3 - + +

R4 + +

R5 - + +

 Figure 6 Inferring relationships between requirements

From Figure 6, we can notice some interesting relationships being inferred. Since most of the time we
may be interested in trying to manage between the user requirements and the requirements of the
IEC 62304:2006 standard (regulatory requirements), it is thus necessary to find out where such
requirements would not meet (i.e. conflict). For instance, it can be noticed that the user requirement
R2 and the IEC 62304:2006 requirement R5 cannot be achieved at the same time, since they
completely conflict with each other.

8 Conclusions

Vague or unclear software requirements also known as “Fuzzy Requirements” can have a detrimental
effect on a software development project. Often what is finally delivered to the customer is not what
they asked for, rather what the software development organization perceived them to need. This
problem can be exacerbated in the medical device software development industry where there are
two customers, the end user and the regulatory bodies. Regulatory bodies impose strict controls to
ensure the safe and reliable performance of medical devices. However, these regulations and
associated development standards introduce requirements which can be deemed as fuzzy. By fully
understanding fuzzy and categorizing them they can be accommodated better in a software
development project and therefore the potential for a project being deemed a failure can be reduced.

Acknowledgments

This research is supported by the Science Foundation Ireland (SFI) Stokes Lectureship Programme,
grant number 07/SK/I1299, the SFI Principal Investigator Programme, grant number 08/IN.1/I2030
(the funding of this project was awarded by Science Foundation Ireland under a co-funding initiative
by the Irish Government and European Regional Development Fund), and supported in part by Lero -
the Irish Software Engineering Research Centre (http://www.lero.ie) grant 10/CE/I1855.

9 References

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.8

[1] F. McCaffery, V. Casey, M. Sivakumar, G. Coleman, P. Donnelly, and J. Burton, "Medical
Device Software Traceability," in Software and Systems Traceability, J. Cleland-Huang, O.
Gotel, and A. Zisman, Eds., ed: Springer-Verlag, 2012.

[2] C. Denger, R. L. Feldman, M. Host, C. Lindholm, and F. Schull, "A Snapshot of the State of
Practice in Software Development for Medical Devices," presented at the First International
Symposium on Empirical Software Engineering and Measurement, 2007. ESEM 2007,
Madrid, 2007.

[3] R. C. Fries, Reliable Design of Medical Devices vol. 3rd ed. Boca Raton FL: CRC, 2012.
[4] H. Mehrfard, H. Pirzadeh, and A. Hamou-Lhadj, "Investigating the Capability of Agile

Processes to Support Life-Science Regulations: The Case of XP and FDA Regulations with a
Focus on Human Factor Requirements," presented at the In Proceedings of SERA (selected
papers), 2010.

[5] F. Pavese and A. B. Forbes, Data Modeling for Metrology and Testing in Measurement
Science: Birkhäuser, 2009.

[6] T. H. Faris, Safe And Sound Software: Creating an Efficient And Effective Quality System for
Software Medical Device Organizations: Asq Press, 2006.

[7] J. K. Shapiro, "The Pathway to Market for your Medical Device: A Primer on Obtaining
Information from FDA " FDLI, vol. Update May/June, 2008.

[8] M. S. Sivakumar, V. Casey, F. McCaffery, and G. Colema, "Verification & Validation in Medi
SPICE," presented at the The 11th International SPICE Conference Process Improvement
and Capability dEtermination, Dublin, 2011.

[9] J. O. Grady, System Requirements Analysis Amsterdam: Elsevier Academic, 2006.
[10] D. Farb and B. Gordon, Pharmaceutical Computer Validation Introduction Guidebook:

UniversityOfHealthCare, 2005.
[11] C. T. DeMarco, Medical Device Design and Regulation: Asq Press, 2011.
[12] A. Dasso and A. Funes, Verification, Validation and Testing in Software Engineering: Idea

Group Pub., 2007.
[13] V. Casey and F. McCaffery, "Med-Trace: Traceability Assessment Method for Medical Device

Software Development.," presented at the European Systems & Software Process
Improvement and Innovation Conference, (EuroSPI). Roskilde, Denmark, 2011.

[14] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker, "A machine learning
approach for tracing regulatory codes to product specific requirements," presented at the
Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 1, Cape Town, South Africa, 2010.

[15] F. McCaffery and G. Coleman, "The need for a software process improvement model for the
Medical Device Industry," International Review on Computers and Software, vol. 2, pp. 10-15,
2007.

[16] FDA, "Title 21--Food and Drugs Chapter I --Food and Drug Administration Department of
Health and Human Services subchapter h--Medical Devices part 820 Quality System
Regulation," ed: U.S. Department of Health and Human Services, 2007.

[17] FDA Design Control Guidance for Medical Device Manufacturers, 1997.
[18] FDA, "General Principles of Software Validation: Final Guidance for Industry and FDA Staff,"

ed: Centre for Devices and Radiological Health, 2002.
[19] AAMI, "ANSI/AAMI/IEC 62304, Medical device Software - Software life cycle processes," ed.

Association for the Advancement of Medical Instrumentation, 2006.
[20] Directive 2007/47/EC of the European Parliament and of the Council of 5 September 2007,

2007.
[21] M. McHugh, F. McCaffery, and V. Casey, "Standalone Software as an Active Medical Device

" presented at the The 11th International SPICE Conference Process Improvement and
Capability dEtermination, Dublin, 2011.

[22] C. Lan and B. Ramesh, "Agile Requirements Engineering Practices: An Empirical Study,"
Software, IEEE, vol. 25, pp. 60-67, 2008.

[23] M. Coram and S. Bohner, "The impact of agile methods on software project management," in
Engineering of Computer-Based Systems, 2005. ECBS '05. 12th IEEE International
Conference and Workshops on the, 2005, pp. 363-370.

[24] Standish Group, "Chaos Report," ed, 1995.
[25] F. Paetsch, A. Eberlein, and F. Maurer, "Requirements engineering and agile software

development," presented at the Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on,
2003.

Session I: Session title will be inserted by editors

EuroSPI 2013− 1.9

[26] P. L. Jones, J. Jorgens, A. R. T. Jr, and M. Weber, "Risk Management in the Design of
Medical Device Software Systems," Biomedical Instrumentation & Technology: July 2002, vol.
36, pp. 237-266, 2002.

[27] (2001). Manifesto for Agile Software. Available: http://agilemanifesto.org/
[28] M. McHugh, F. McCaffery, and V. Casey, "Barriers to using Agile Software Development

Practices within the Medical Device Industry," in European Systems and Software Process
Improvement and Innovation Conference, EuroSPI Vienna Austria, 2012.

[29] M. Cohn, Succeeding with Agile - Software Development Using Scrum. Upper Saddle River
NJ: Addison Wesley, 2011.

[30] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, "Systematic Mapping Studies in Software
Engineering," presented at the 12th International Conference on Evaluation and Assessment
in Software Engineering (EASE), University of Bari, Italy, 2008.

10 Author CVs

Martin Mc Hugh
Martin is a lecturer in Computer Science at Dublin Institute of Technology. He received his
B.Sc. (Hons.) in Information Technology Management in 2005 and M.Sc. in Computer
Science in 2009, from Dundalk Institute of Technology. He is now undertaking research for his
Ph.D. in the area of software process improvement for medical devices with emphasis on the
usage of agile practices when developing medical device software, as part of the Regulated
Software Research Centre in Dundalk Institute of Technology.

Abder-Rahman Ali
Abder-Rahman received his BSc in Computer Science in 2006 from the University of Jordan
and MSc Software Engineering in 2009 from DePaul University. He is interested in applying
technology to medicine, and in building computer aided diagnosis systems that aid in
diagnosing disease. He is currently pursuing his Ph.D. degree at Université d'Auvergne in
France, as part of the ISIT lab, in the area of fuzzy clustering and discrete geometry for image
analysis of MRI and ultrasound imaging sequences for Hepatocellular Carcinoma (HCC). He
is very passionate to the idea of applying computer science to medical imaging, and software
engineering to medical device software systems, in an eventual goal to come up with
algorithms and systems that aid in Computer Aided Diagnosis (CAD). He also likes to adopt
fuzzy logic in his research.

Fergal Mc Caffery
Dr Fergal Mc Caffery is the leader of the Regulated Software Research Centre in Dundalk
Institute of Technology and a member of Lero. He has been awarded Science Foundation
Ireland funding through the Stokes Lectureship, Principal Investigator and CSET funding
Programmes to research the area of software process improvement for the medical device
domain. Additionally, he has received EU FP7 and Enterprise Ireland Commercialisation
research funding to improve the effectiveness of embedded software development
environments for the medical device industry.

	The Impact of Fuzzy Requirements on Medical Device Software Development
	Recommended Citation

	Microsoft Word - 418577-convertdoc.input.406511.LJIQK.docx

