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Abstract

Machine learning has been successfully applied to a wide range

of prediction problems, yet its application to data streams can be

complicated by concept drift. Existing approaches to handling

concept drift are overwhelmingly reliant on the assumption that

it is possible to obtain the true label of an instance shortly after

classification at a negligible cost. The aim of this thesis is to

examine, and attempt to address, some of the problems related

to handling concept drift when the cost of obtaining labels is high.

This thesis presents Decision Value Sampling (DVS), a novel con-

cept drift handling approach which periodically chooses a small

number of the most useful instances to label. The newly labelled

instances are then used to re-train the classifier, an SVM with

a linear kernel, to handle any change in concept that might oc-

cur. In this way, only the instances that are required to keep the

classifier up-to-date are labelled. The evaluation of the system

indicates that a classifier can be kept up-to-date with changes in

concept while only requiring 15% of the data stream to be la-

belled. In a data stream with a high throughput this represents

a significant reduction in the number of labels required.



The second novel concept drift handling approach proposed in

this thesis is Confidence Distribution Batch Detection (CDBD).

CDBD uses a heuristic based on the distribution of an SVM’s

confidence in its predictions to decide when to rebuild the clas-

sifier. The evaluation shows that CDBD can be used to reliably

detect when a change in concept has taken place and that concept

drift can be handled if the classifier is rebuilt when CDBD sig-

nals a change in concept. The evaluation also shows that CDBD

obtains a considerable labels saving as it only requires labelled

data when a change in concept has been detected.

The two concept drift handling approaches deal with concept

drift in a different manner, DVS continuously adapts the clas-

sifier, whereas CDBD only adapts the classifier when a sizeable

change in concept is suspected. They reflect a divide also found in

the literature, between continuous rebuild approaches (like DVS)

and triggered rebuild approaches (like CDBD). The final major

contribution in this thesis is a comparison between continuous

and triggered rebuild approaches, as this is an underexplored

area. An empirical comparison between representative techniques

from both types of approaches shows that triggered rebuild works

slightly better on large datasets where the changes in concepts

occur infrequently, but in general a continuous rebuild approach

works the best.
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gratitude to Prof. Pádraig Cunningham for the advice and insight

he provided, particularly around the crucial time of my transfer

exam.

I will look back at the time spent in the Dublin Institute of Tech-

nology with fond memories, due in large part to the friendships

I have made there. I would like thank everyone in the Applied

Intelligence Research Centre, past and present. Particularly my



friends, and fellow travellers along the weird and wonderful path

to a PhD, Dr. Rong (Amy) Hu, Dr. Kenneth Kennedy, Colm
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Chapter 1
Introduction

Artificial Intelligence (AI) (McCarthy et al., 1955) has moved from the realm

of academics and science fiction writers to everyday life in a relatively short

time. Obvious examples of AI are now part of our daily lives, for exam-

ple, search engines, video games, recommender systems and manufacturing

robots. However, AI is also present in more unexpected places such as voice

and handwriting recognition, face detection in digital cameras and spam fil-

tering. One of the major factors contributing to the growth of AI is the rapid

expansion of our collective digital fingerprint. Data is being collected, stored

and analysed at an unprecedented rate, in large part due to the pervasiveness

of the Internet. This has made Machine Learning (ML) (Mitchell, 1997), a

subfield of AI, particularly important.

Machine learning can be used to leverage past data to make predictions

about the future. For example banks use data about previous customers’
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ability to pay back loans to predict whether or not a new customer will be

able to pay back a proposed loan. This can be achieved by training a classifier

on customer data. Classifiers attempt to determine the mapping between the

characteristics of the data and the actual outcome during the training process.

The actual outcome is the “correct” prediction and is essential in the training

process. Once trained, the classifier is able to predict the outcome of data

where the outcome is unknown.

Machine learning excels at finding patterns in large and complex data,

making it very well suited to a variety of tasks which require predictions

about new data based on past data. Examples to which machine learning

has been successfully applied include: sentiment analysis (also known as

opinion mining) (Pang & Lee, 2004), face recognition (Guo et al., 2000),

spam filtering (Delany et al., 2005), handwriting recognition (Xu et al., 1992),

breast cancer diagnosis (Manning & Walsh, 2013), fraud detection (Fawcett

& Provost, 1996) and recommender systems (Mooney & Roy, 2000).

A key assumption about the data is that it does not change significantly

over time, i.e. that the data used to train a classifier is representative of

the data that the classifier will encounter in the future. In machine learning

terms this is known as a stable concept. In many real-world prediction prob-

lems the concept is not static but rather changes over time. The degradation

of classifier performance due to the non-stationary nature of the concept is

known as concept drift. For example, take spam filtering, a machine learn-

ing problem where a classifier is trained on a collection of historical emails,

and then attempts to predict if incoming emails are relevant (ham) or non-
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relevant (spam) to a particular user. Initially the classifier might be able to

correctly predict which emails are spam, but over time the classifier becomes

less accurate due to concept drift. Concept drift in spam filtering can be

attributed to various factors, including changes to the content of the emails,

changes in what the user considers spam and an active effort by spam cre-

ators to obfuscate the spam. Other examples of changing concepts can be

seen in a variety of real-world applications: weather predictions are affected

by seasonal weather variations, customer buying preferences can be influ-

enced by fashion trends or seasonal inclinations, and financial predictions

can be shaped by macroeconomics.

The classifier needs to be re-trained with new, up-to-date data when

a change in concept has occurred in order to maintain classifier perfor-

mance. One way to differentiate how the approaches deal with handling con-

cept drift is based on when they decide to re-train the classifier (Kuncheva,

2009). The first approach regularly updates the classifier, assuming that

this will allow the classifier to handle concept drift whenever it occurs (such

as (Baena-Garćıa et al., 2006; Gama et al., 2004; Klinkenberg & Joachims,

2000; Klinkenberg & Renz, 1998; Kubat, 1989; Nishida & Yamauchi, 2007;

Widmer & Kubat, 1996; Zhu et al., 2007)). This will be referred to as a con-

tinuous rebuild approach, it does not explicitly attempt to detect a change in

concept. The second approach explicitly attempts to detect when a change

in concept has occurred, and only then adapts the classifier (such as (Fan

et al., 2004a; Kifer et al., 2004; Lanquillon, 1999; Sebastião & Gama, 2007;

Zliobaite, 2010)). This type of approach will be referred to as a triggered
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rebuild approach.

A shared trait in both types of approach is the requirement for the actual

outcomes to be known after the prediction is made. A continuous rebuild

approach needs new data with the actual outcomes to re-train the classifier.

Triggered rebuild approaches usually base the decision to rebuild on metrics

which require the actual outcome in their calculation.

In many domains the requirement that the actual outcome is known

shortly after classification is not a restriction. For example in short term

stock market predictions where the correct outcome is known the day after

the prediction is made. However, it can be a significant constraint in domains

such as information filtering.

In information filtering the classification task is to present a user with

documents which the system believes are relevant to a user, while filtering

out non-relevant documents. A practical example of this might be a news

filtering application which receives a continuous stream of news articles which

it attempts to categorise as relevant or not-relevant to a particular user.

The stream might experience concept drift either because the content of the

documents have changed significantly, or the users’ opinion of what is relevant

has changed.

In both cases new documents with their associated actual outcomes are

needed to keep the classifier up to date. In a text classification problem like

information filtering this means that someone needs to read each document

and assign each one a true outcome, a process known as labelling. There is

expense and effort involved in creating this new labelled data, due to the
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effort involved in reading and categorising texts. This problem is magnified

in a domain where a large amount of data needs to be processed. The high

labelling cost provides a strong motivation to develop concept drift handling

approaches that only require a subset of the data in the stream to be labelled.

This area of research has received a relatively small amount of attention

until recently. Most concept drift handling approaches assume that the actual

outcome is readily available. However, there has been an increased emphasis

on this area lately, and it has been proposed that reliance on knowing the

actual outcome is one of the problems preventing machine learning techniques

being deployed more extensively in industry (Zliobaite et al., 2012). This is

the problem this thesis aims to solve.

1.1 Scope and Contributions of this Thesis

This thesis aims to explore the area of concept drift handling in a scenario

where it is infeasible for the full data steam to be labelled. The work in

this thesis will be grounded in the text classification sub-field of information

filtering as this field has a high volume of data, experiences concept drift and

has a high labelling cost.

Addressing changes in concept can be broken down into two subtasks:

concept drift detection and concept drift adaptation. Drift detection deals

with detecting when a significant change in concept has taken place. Con-

cept drift adaptation is concerned with how the classifier is updated to take

account of a change in concept. Reducing the need for labelled data can be

5



achieved by improvements in concept drift detection, concept drift adapta-

tion, or both.

Improvements to concept drift adaptation tend to be achieved through

adjustments to the way that a continuous rebuild approach re-builds the

classifier. This thesis presents Decision Value Sampling (DVS), a continuous

rebuild approach which periodically chooses a small number of the most

useful instances to label. The newly labelled instances are then used to re-

train the classifier, an SVM with a linear kernel, to handle any change in

concept that might occur (Lindstrom et al., 2010a). In this way only the

instances that are required to keep the classifier up to date are labelled,

which greatly reduces the labelling effort required. Evaluation of the system

indicates that a classifier can be kept up-to-date with changes in concept at

a labelling cost of only 15% of the data stream being labelled. In domains

where large numbers of documents are classified this represents a significant

reduction in labelling costs.

This type of approach uses a fixed amount of labelled data (for example

15%) regardless of whether the concept is changing or not. A more label

efficient approach might be to use a concept drift detection approach which

estimates if a change in concept has taken place or not, and only requests

labelled data when a change in concept is suspected. Triggered rebuild ap-

proaches which can estimate if a change in concept has taken place without

needing labelled data are of particular interest. This thesis proposes Confi-

dence Distribution Batch Detection (CDBD) (Lindstrom et al., 2013, 2011),

which uses a heuristic based on the distribution of an SVM’s confidence in
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its predictions to decide when to rebuild the classifier. The CDBD heuristic

does not need labelled data, and evaluations show that CDBD can be used

to reliably detect when a change in concept has taken place. The evaluation

also shows that concept drift can be handled if the classifier is rebuilt when

CDBD signals a change in concept.

The comparison between the continuous and triggered rebuild approaches

is an underexplored area in the literature. An empirical comparison be-

tween representative techniques from both types of approaches was carried

out and the results showed that triggered rebuild works slightly better in large

datasets where the changes in concepts occur infrequently, but in general a

continuous rebuild approach works best.

The main contributions of this thesis can be summarised as follows:� A review of the literature, including literature dealing with handling

concept drift with a limited amount of labelled data (Chapter 3).� A novel continuous rebuild approach for handling concept drift that

handles concept drift using just 15% of the data available (Chapter 5).� A detection and rebuild approach for handling concept drift which only

needs labelled data when rebuilding and has been shown to accurately

detect changes in concept in text data streams (Chapter 6).� An empirical evaluation of representative continuous and triggered re-

build concept drift handling approaches that shows that a continuous

rebuild approach is better than a triggered rebuild approach in most

circumstances (Chapter 7).
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1.2 Summary and Structure of this Thesis

The remainder of this thesis is structured as follows. Chapter 2 provides a

high level overview of machine learning and how it can be applied to text

classification, as the approaches proposed in this thesis are evaluated on text

data. Chapter 3 surveys state of the art research in concept drift and how

concept drift can be handled and detected. A particular emphasis is placed

on approaches which reduce the need for labelled data. Chapter 4 outlines the

methodology used to evaluate the concept drift handling approaches proposed

in this thesis. Chapter 5 presents the design, implementation and evaluation

of DVS while Chapter 6 details the design, implementation and evaluation

of CDBD. Chapter 7 compares continuous and trigged rebuild approaches

to establish under what conditions one approach might be more suited than

the other. Chapter 8 summarises the key contributions of this work and

highlights opportunities for additional research.

1.3 Publications

The publications that form the basis for this thesis are listed below:

Lindstrom, P., Delany, S.J. & Mac Namee, B. (2010). Handling con-

cept drift in a text data stream constrained by high labelling cost. In

H.W. Guesgen & R.C. Murray, eds., Proceedings of the Twenty-Third

International Florida Artificial Intelligence Research Society Confer-

ence, AAAI Press.
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Lindstrom, P., Mac Namee, B. & Delany, S.J. (2011). Drift detec-

tion using uncertainty distribution divergence. In Data Mining Work-

shops (ICDMW), 2011 IEEE 11th International Conference on, 604–

608, IEEE Computer Society.

Lindstrom, P., Mac Namee, B. & Delany, S. (2013). Drift detection

using uncertainty distribution divergence. Evolving Systems , 4, 13–

25.1

Lindstrom, P., Delany, S.J. & Mac Namee, B. (2008). Autopilot:

simulating changing concepts in real data. In Proceedings of the 19th.

Irish Conference on Artificial Intelligence and Cognitive Science, 21.

Lindstrom, P., Hu, R., Delany, S.J. & Mac Namee, B. (2010a).

SVM based active learning with exploration. In AISTATS 2010 Work-

shop on Active Learning and Experimental Design.

Hu, R., Lindstrom, P., Delany, S.J. & Mac Namee, B. (2010). Ex-

ploring the frontier of uncertainty space. In AISTATS 2010 Workshop

on Active Learning and Experimental Design.

1This is an extended version of the paper presented at ICDMW.
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Chapter 2
Machine Learning and Text

Classification

The pace and scope of data gathering is constantly growing as the value of

data is being fully appreciated. Shops, banks, social networks, online retailers

and governments all save data which they hope to analyse for patterns to

aid better decision making. Machine learning techniques are popular ways of

analysing data, and can be applied to a myriad of problems. Particular focus

will be placed on a sub-field of machine learning known as text classification,

which deals with the automatic categorisation of text data. Text classification

problems tend to have large volumes of data, experience concept drift and

have a high labelling cost, which is why this thesis uses text classification as

the real-world domain on which to base the work.

This chapter introduces machine learning and shows how it can be applied
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to text data, to support the material addressing concept drift. The remainder

of this chapter is organised as follows, Section 2.1 gives a high level outline

of how machine learning can be applied to data. Section 2.2 presents an

overview of how raw data is prepared for machine learning, followed by Sec-

tion 2.3 where classification is explained and some common machine learning

algorithms are described in more detail. Section 2.4 shows how classifiers can

be evaluated. Section 2.5 demonstrates how machine learning can be applied

to the abundance of data stored in text format, such as blogs, news articles

and tweets. This is followed by Section 2.6, a brief conclusion.

2.1 The Knowledge Extraction Process

Using machine learning algorithms is only one step in the larger knowledge

extraction process. The knowledge extraction process can be described using

a formal knowledge extraction framework such as the CRoss-Industry Stan-

dard Process for Data Mining (CRISP-DM) (Shearer, 2000) or Knowledge

Discovery in Databases (KDD) (Fayyad et al., 1996).

It has been argued that one of the major weaknesses of CRISP-DM is

that it is not designed for high-frequency, high-volume, real-time, multi-

dimensional time series data (Catley et al., 2009). However, this limitation

will not be dwelled on as the CRISP-DM process is not fundamental to the

work in this thesis, but is rather only used to structure the discussion in this

chapter. The CRISP-DM process involves the following phases:
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1. Business understanding Understanding the project objectives from a

business perspective and translating these objectives to a machine learn-

ing problem.

2. Data understanding Collecting the initial data and ensuring the qual-

ity of the data e.g. handling missing and implausible values.

3. Data preparation Transforming the data into a format suitable for use

with machine learning techniques.

4. Modelling Selecting the appropriate machine learning technique, and

training the model from all, or a subset of the collected data.

5. Evaluation Evaluating the model based on an evaluation metric and

ensuring that it fulfils the business goals.

6. Deployment Deploying the model inside the business decision making

process.

The work in this thesis focuses primarily on phases three to five, but will

reference the other phases when appropriate. The subsequent three sections

will discuss phases three to five in more detail.

2.2 Data Preparation

The knowledge extraction process can be illustrated using a simplified exam-

ple of a bank wishing to use customer data to guide their decision making

processes. The bank has a large customer database at its disposal which it

wants to use for the following machine learning objectives:
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� Predicting if a new customer will be able to pay back a loan if one is

granted.� Predicting how long it will take a current customer to repay their loan.� Identifying new groupings of customers.

The next step is the data understanding phase, in which one goal is to

collect the initial data. It is assumed that the bank in this example already

has a large customer database, which leads to the next step, ensuring the

quality of the data. This generally involves the identification and correction

of incorrect, missing and redundant data. After this the bank must select

what data to use, as it does not collect all possible customer attributes. Some

attributes might be left out due to legal restrictions and other attributes

might be ignored as they are not relevant to the machine learning goal(s).

The attributes which are suspected to affect the machine learning task are

known as features. This might include features such as current salary, number

of dependants and home ownership status.

In machine learning each object is known as an instance and each instance

is comprised of a set of features. In the bank example each customer is an

instance and each instance has features, such as current salary, which describe

the instance. The final data preparation step is to translate the bank data

into a collection of instances, known as a dataset. An instance can be denoted

mathematically as x ∈ Rd where x is a d dimensional vector, containing the

d features of x. In a dataset X instance i can be referenced using xi and

feature j of instance i can be referenced as xij .
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2.3 Modelling

The first task in the modelling step is the selection of an appropriate mod-

elling technique for the machine learning goal(s). Machine learning tech-

niques can be subdivided into three fields, supervised learning, semi-supervised

learning and unsupervised learning. In supervised and semi-supervised learn-

ing, models are constructed which try to make predictions about unseen data

based on historical data. In unsupervised learning, models are constructed

which try to find hidden structure in the data.

This thesis focuses mostly on supervised learning, but will reference semi-

supervised and unsupervised learning when appropriate. In supervised ma-

chine learning a set of instances, known as training data, is used to train a

classifier using a classifier dependent training algorithm. The training data

needs to be labelled, i.e. the instances need to be coupled with the variable

the machine learning algorithm is trying to predict. The variable may be

categorical or numerical. If the variable is categorical the prediction task is

known as classification, and the outcome the classifier is trying to predict is

known as the class or label. In the bank example a classification task might

be to predict if a potential new customer belongs to a high-risk or low-risk

class. On the other hand, if the outcome is numerical the prediction task

is known as regression. In the bank example a regression task might be to

predict how long it will take a given customer to pay back a loan. This thesis

is primarily concerned with classification problems.

If an instance has a corresponding class it is known as a labelled instance,
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conversely an instance without a label is known as an unlabelled instance.

A labelled instance is therefore denoted as (x, y), where y is the label of x,

y ∈ {1, .....K} and K ∈ N for K classes. Classification problems with only

two classes are known as binary classification problems and the instances

belonging to the class of interest are called the positive instances while the

other instances are known as the negative instances.

During the training process the classifier uses the training data to learn a

function which maps between the features and the label. Once the classifier

is trained it can be used to predict the label of unlabelled instances. The

next section covers some supervised classification algorithms which will be

referred to in other parts of this thesis.

2.3.1 Decision Trees

A Decision Tree (DT) is essentially a sequence of nested tests of feature values

which results in a prediction (Quinlan, 1986). The process is analogous to

trouble shooting where an expert asks a series of questions to determine

where the problem lies. The structure can be illustrated using the example

in Figure 2.1. In this example cars are classified based on their suitability

as a family car. An instance is either considered “good” or “bad” based on

four features, its safety record, the number of persons it fits, the size of its

luggage boot and the number of doors it has. A new instance is classified by

following the path though the decision nodes (the rectangles in Figure 2.1)

until a leaf node (the circles in Figure 2.1) is reached. The decision tree

predicts that the instance belongs to the class in the leaf node reached.
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Figure 2.1: A simple example of a decision tree.

Decision trees are relatively slow to train (particularly if the data has a

large number of features), but fast at classifying unlabelled instances. An-

other attractive property of decision trees is their interpretability. The ability

to explain to a non-expert how a classifier arrived at a particular prediction

can be vital in some industries, such as the financial and medical domain.

2.3.2 Similarity Based Classifiers

Similarity based classifiers classify unlabelled instances by measuring how

similar they are to class prototypes. The process can be illustrated using

one of the simplest similarity based classifiers, the single prototype classifier

(Lanquillon, 1999) (also known as “Find Similar” in (Dumais et al., 1998)).

In a single prototype classifier each class is represented by a prototype in-

stance, which is an average of all the training instances of that class (also

known as a centroid).

More formally, let X be the set of training instances with d features
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Figure 2.2: A simple example of a single prototype classifier.

and let Xy be the subset of X of class y and N be the size of Xy. Using

the notation from Section 2.2 the prototype of class y can be written as:

p = {p1, p2...pd} where pj = (1/N)
∑N

i=1
xy
ij . The prototype has the exact

same structure as a training instance, but is seldom an actual instance in

the training data, but rather a virtual instance. One prototype is created for

each class and unlabelled instances are predicted to belong to the same class

as the prototype they are the most similar to, based on a Euclidean distance

measure.

The process is illustrated in the toy example in Figure 2.1 where positive

and negative training examples are plotted in two dimensions. The positive

instances are depicted as circles with a plus sign, negative training instances

as circles with a minus sign and the unlabelled instance as a circle with a

question mark. The class prototypes are marked using a black border. In
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this example D1 is smaller than D2 so the unlabelled instance is predicted

to belong to the positive class.

The single prototype classifier is conceptually simple and has a very short

training time, however it does not always achieve a classification accuracy

comparable with more sophisticated classification techniques (Dumais et al.,

1998).

A more common similarity based classifier is the k Nearest Neighbour

classifier, or k-NN (Cover & Hart, 1967). A k-NN classifier treats each in-

stance in the training data as a prototype. Unlabelled instances are predicted

to belong to the same class as their k closest training instances as measured

by a distance function1.

Figure 2.3: A simple example of a k-NN classifier.

Figure 2.3.2 shows how k-NN works using the same toy example as pre-

1For a comprehensive review of distance functions suitable for similarity based classi-
fiers see (Cunningham, 2009)
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viously. A 1-NN classifier would predict that the unlabelled instance belongs

to the negative class as D1 is the shortest distance. However, a 3-NN clas-

sifier would find the three shortest distances (D1, D2 and D3) and predict

that the unlabelled instance belongs to the positive class, as two out of three

nearest neighbours are positive instances.

Similarity based classifiers are typically very fast to train and easy to

update. However they can be slow to classify unlabelled instances, particular

if the data is high dimensional. This limitation can be somewhat mitigated

by using feature selection, which will be covered in Section 2.5.2.

2.3.3 Support Vector Machines

A Support Vector Machine (SVM) attempts to find the hyperplane which sep-

arates the instances from two classes while maintaining the largest possible

margin between the hyperplane and the instances closest to the hyperplane,

which are known as support vectors (Vapnik, 1999). Figure 2.4 shows an

example plotted in two dimensions. The positive and negative instances are

linearly separable but there are various different lines (or 1-dimensional hy-

perplanes) that can be used to separate the instances. The decision boundary

should be as far away from the instances of both classes as possible. For this

reason SVMs are also known as maximum margin classifiers. In Figure 2.4

L1, L2, L3 would separate the positive and negative instances but L2 would

provide the largest margin, so L2 is chosen as the decision boundary, w.

SVMs work well on linearly separable data, however some data is not

linearly separable. To overcome this limitation a kernel function is used. The
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Figure 2.4: A simple example of an SVM classifier.

kernel of an SVM is a function which maps the data into a higher dimensional

space, where data can be linearly separated. A few commonly used kernels

are Linear, Polynomial and Radial Basis Function (see (Hsu et al., 2003) for

more information about choosing an SVM kernel).

Once an SVM is trained it can produce a decision value for an unlabelled

instance xi using dvi = w · xi + b and the predicted class is y = sign(dvi).

Several studies have shown that SVMs are particularly well suited to text

data (Dumais et al., 1998; Joachims, 1998; Yang & Liu, 1999). Joachims

(1998) suggests this because of how well SVMs handle data which is high

dimensional, sparse and contains few irrelevant features. Another reason

SVMs handle text classification so well is because text classification problems

tend to be linearly separable, due to their high dimensionality. This also

makes the linear kernel a good choice for text classification problems (Dumais
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et al., 1998; Yang & Liu, 1999). However, one of the drawbacks of SVMs is

that, unlike similarity based classifiers the training time of an SVM can

increase dramatically as the size of the training set increases.

2.3.4 Ensemble Classifiers

An ensemble is a collection of classifiers, where the prediction of each clas-

sifier, known as a base classifier, is combined to classify unlabelled instances

(Rokach, 2010). This process is illustrated in Figure 2.5.

Figure 2.5: A simple example of an ensemble classifier.

For an ensemble of base classifiers to be more accurate than any of its

individual members the classifiers must be accurate and diverse (Dietterich,

2000). A base classifier is considered accurate if its predictions are more

accurate than random guessing and two classifiers are considered diverse if

they make different errors on new instances. Opitz & Maclin (1999) state that

the main emphasis of creating ensembles is creating diverse base classifiers,

which centre around producing classifiers that disagree on their prediction.

An ensemble can be categorised based on how diversity is introduced and

how the final prediction of the ensemble is produced.
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Ensemble diversity is usually created by using different training data in

each base classifier. The two most common methods for selecting training

data are bagging and boosting. Bagging (Bootstrap aggregating) (Breiman,

1996) uses random sampling with replacement to select a subset of the orig-

inal training set, which may contain duplicate instances. Bagging is partic-

ularly suitable for base classifiers where a small change in the training data

can cause a large change in the internal structure of the classifier (like deci-

sion trees) but does not show the same performance on stable classifiers (like

SVMs) (Dietterich, 2000). The other common training data selection ap-

proach Boosting (Freund & Schapire, 1996) increases the probability that an

instance will be sampled as training data if the previous classifiers in the en-

semble misclassified that instance. Boosting can produce better results than

bagging, but can also produce a worse performance than a single classifier if

the data is noisy (Dietterich, 2000; Opitz & Maclin, 1999).

The second most important aspect of ensembles, after how diversity is

introduced, is the ensemble strategy used to construct the final prediction.

There are essentially two approaches to forming the final prediction: fusion

methods and selection methods (Rokach, 2010). Fusion methods combine the

output from the base classifiers using a criteria such as majority voting (as

in (Breiman, 1996)) or performance weighted voting (as in (Opitz & Shavlik,

1995)) 1. Selection methods produce the final prediction by selecting which

classifier(s) predictions should be used. This is achieved by giving one base

classifier authority over a particular area of the feature space and if a test

1For a more detailed review of ensemble fusion methods see (Kuncheva, 2002; Ruta &
Gabrys, 2000)

23



instance lies within that area that particular classifier provides the prediction

(as in (Ho et al., 1994; Woods et al., 1997)).

Ensembles are generally more accurate than any one of their base clas-

sifiers. However, this gain in accuracy usually incurs a computational cost,

as it is computationally more expensive to create an ensemble than a single

base classifier.

2.4 Evaluation

An important aspect of machine learning is evaluating the model(s) trained.

Models should be evaluated in terms of an evaluation metric suitable for the

problem being modelled. This thesis focuses on classification tasks where the

goal is to predict which class an unlabelled instance belongs to (as opposed

to regression). The most common evaluation metric to evaluate classifiers is

classification accuracy. Classification accuracy is the fraction of instances for

which the classifier predicted the correct label. The classification accuracy is

normally calculated on a set of instances that the classifier was not trained

on, referred to as a test set. More formally, let C be the set of instances from

the test set where the predicted class matched the true class and let I be the

set of instances from the test set where the predicted class did not match the

predicted class. Classification accuracy is defined as:

accuracy =
|C|

(|C|+ |I|)
(2.1)

Another commonly used evaluation metric is the misclassification rate,
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which is also known as the error rate. The misclassification rate is simply

the fraction of instances for which the classifier predicted the incorrect label,

i.e.

misclassificationRate =
|I|

(|C|+ |I|)
(2.2)

The misclassification rate can also be calculated using the classification

accuracy as misclassificationRate = 1− accuracy.

Classification accuracy might seem like a reliable evaluation metric, how-

ever, inappropriate use of this metric can lead to a situation where an increase

in the classification accuracy actually results in a decrease in the predictive

power of the classifier, which is known as the accuracy paradox (Bruckhaus,

2007). A common example of the accuracy paradox is found in data contain-

ing a high class imbalance, i.e. instances of one class are significantly less

prevalent than the other classes. When the data has a high class imbalance

the accuracy alone might hide the fact that the classifier is unable to predict

the minority class, as only predicting the majority class can yield a high

classification accuracy. In this type of scenario the average class accuracy

can give a better measure of classifier performance:

avgClassAccuracy =

∑|Y |
j=1

accuracyj

|Y |
(2.3)

where Y is the set of possible classes, accuracyj is the classifier accuracy

on instances of class yj.
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2.5 Text Classification

Since the availability of unstructured text documents has increased in recent

times, the ability to automatically group and organise documents is arguably

more important now than ever before. Text classification, which can be de-

fined as the automated categorisation of a text documents into a predefined

categories based on the content of the documents (Dumais et al., 1998; Se-

bastiani, 2002), has proven itself to be a good way of achieving this goal

(Cooley, 1999; Joachims, 1998; Silva & Ribeiro, 2003).

A typical text classification scenario can be described using an exam-

ple from the text classification sub-field of information filtering. Lanquillon

(1999) defines information filtering as an information seeking process in which

non-relevant documents from an incoming stream are rejected according to a

specific long-term user interest in such a way that only the relevant documents

are presented to the user. Information filtering can therefore be considered a

binary text classification problem where the classification task is to predict

if a new document belongs to the “relevant” or “non-relevant” class. To al-

low a machine learning technique to be used, the documents must first be

transformed into a representation suitable for text classification.

2.5.1 Text Representation

An easy, yet effective, way to represent a collection of documents is to use the

Vector Space Model (VSM) (Salton et al., 1975). In the vector space model

each unique term is considered an instance feature and the collection of all
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features is known as the vocabulary. Text classification problems usually

have a large vocabulary but each individual document only contains a small

subset of the vocabulary. This leads to high dimensional, yet sparse (many

features have a value of zero) datasets. Text data is transformed into terms

(or tokens) through a process known as tokenization. The definition of a term

depends on the implementation used, though a common way to tokenize text

data is to split the data into tokens based on whitespace characters, such

as a space or line break. This is known as the Bag-Of-Words (BOW) (or

Set-Of-Words) representation.

Using the previous notation an instance can be represented as, xi =

〈xi1, xi2...xi|V |〉 where each term, xij , is a weight which reflects the term’s

perceived importance in a document and V is the vocabulary used. Some

common term weighting schemes are listed below:

Binary Weighting is the simplest weighting scheme, where the value of xij

is one if the term j is present in document i and zero otherwise.

Term Frequency (TF) is a common term weighting scheme where the value

of xij reflects the number of times term j is present in document i.

Term Frequency - Inverse Document Frequency (TF-IDF) is proba-

bly the most common weighting scheme used in text classification. The

Document Frequency (DF) of a given term is the number of documents

that term occurs in. The Inverse Document Frequency (IDF) is the

log inverse of the document frequency, which results in a large IDF if

the document frequency is small. The intuition behind inverting the
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document frequency is that terms which occur less frequently in the

document collection are more likely to be discriminative and thus re-

ceive a larger weight. TF-IDF of xij therefore reflects the number of

times term j is present in document i weighted by the number of docu-

ments term j is present in, in an overall document collection, typically

the training set.

Cooley (1999) performed a comparative study of weighting schemes and

found that TF and TF-IDF produced similar results and were typically su-

perior to binary weighting.

2.5.2 Feature Space Reduction

Text data tends to be high dimensional since each unique word is a feature.

In fact many text classification datasets have tens of thousands of features,

resulting in a dataset with a higher number of features than there are train-

ing documents. The high dimensionality of text data can have a detrimental

effect on the training and classification time of certain algorithms (Silva &

Ribeiro, 2003). This motivates the field of feature space reduction, the re-

moval of redundant and noisy terms. Feature space reduction is normally

achieved using techniques such as stop word removal, stemming and feature

selection.

Stop words, such as “a”, “able”, “about”, “across”, “after” etc. are im-

portant for human understanding of texts, but not automated text classifi-

cation, as they are usually too common to be discriminative. Stop words are
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either selected from a list of common stop words for the target language1 or

selected based on their frequency across the documents in the text collection

being used. Another way to find non-discriminative terms is by using feature

selection. Feature selection techniques base the decision of which terms to

include on statistics derived from the text collection. One of the simplest ap-

proaches, document frequency thresholding, removes terms with a document

frequency below a given threshold. Other feature selection methods include

information gain (Quinlan, 1986), term strength (Yang & Wilbur, 1996) and

mutual information (Church & Hanks, 1990), but they are more computa-

tionally expensive. Terms with a common stem will usually have similar

meanings. Stemming reduces the vocabulary by trimming words to their

stem. For example the Porter stemmer (Porter, 1980) stems “connected”,

“connecting” , “connection”, “connections” to “connect”.

Silva & Ribeiro (2003) found that stop word removal reduced the number

of features and improved classifier performance significantly, while stemming

reduced the number of terms used but did not appear to have a significant

impact on classification performance. Yang & Pedersen (1997) found that

advanced feature selection techniques like information gain and term strength

did not seem to improve text classification significantly when compared to

the much simpler document frequency thresholding approach. Feature selec-

tion can sometimes disimprove classifier performance. Three separate studies

have found that SVM classifiers perform better on text classification tasks

if feature selection is not performed, as text data contains few extraneous

1For one example of a list of English language stop words see: http://www.textfixer.
com/resources/common-english-words.txt
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features (Cooley, 1999; Joachims, 1998; Yang & Pedersen, 1997).

2.6 Conclusion

Machine learning has been very successful in a wide array of prediction tasks

including text classification, a domain which is likely to experience concept

drift and high labelling costs, the type of problems this thesis is trying to

address.

Text classification is a sub-field of machine learning, this chapter has

therefore explored some of the fundamentals of machine learning. The first

section looked at how machine learning fits into the knowledge extraction

process CRISP-DM. Most of the focus was on the data preparation to eval-

uation phases. The data preparation step deals with how data has to be

collected and prepared before it can be used as an input to the machine

learning algorithm. In the modelling step the data is fed into a machine

learning algorithm, which can then produce predictions. There are various

modelling algorithms with different strengths and weaknesses. The appro-

priateness of a machine learning algorithm can be evaluated in the fifth step

of the CRISP-DM process, evaluation. In the evaluation step the model is

evaluated using an evaluation metric, such as classification accuracy. If the

class distribution of the data is significantly skewed then an evaluation metric

like average class accuracy is normally better suited.

This chapter also looked at how the data preparation step of the CRISP-

DM can be adjusted to allow text data to be used. Text data can be trans-
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formed into a format appropriate for machine learning by using the vector

space model. The number of features in text data is normally very high.

The accuracy and efficiency of trained models can usually be improved by

reducing the number of features using feature selection techniques such as

stop word removal, stemming and feature selection. SVM classifiers are par-

ticularly well suited for text classification both in terms of their ability to

handle text data and their high prediction accuracy.

The next chapter addresses concept drift in greater detail, including the

issues associated with concept drift and how it can be handled. It will also

cover the state of the art in handling concept drift with a reduced amount

of labelled data, as this is the main issue addressed in this thesis.

31



32



Chapter 3
Concept Drift

The previous chapter discussed how a set of labelled instances can be used

to train a classifier, which can then be used to predict the class of a set of

unlabelled data. In some prediction tasks the unlabelled data of interest can

be collected into one dataset and then labelled by the classifier, however, in

many cases the data arrives in a stream. In these cases an online classifier

is required. Real life data streams often contain concept drift, which may

present a problem for online classifiers. A concept can be formally defined

as a set of instances where the function generating the instances, known as

a source, is stationary (Gama et al., 2004; Narasimhamurthy & Kuncheva,

2007; Zliobaite, 2009). Concept drift can therefore be defined as a change in

the source generating the data. Each time a new instance is being processed

an assumption needs to be made about its source, either the source is assumed

to be the same as the last source, or else the source is assumed to be inferable
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by estimation or prediction (Zliobaite, 2009).

However, a change in the source does not necessarily mean that the clas-

sifier needs to be adapted. Concept drift will therefore be defined in this

thesis as a change in source which causes a deterioration in the classifier

performance. Under this definition, concept drift renders once accurate clas-

sifiers less than optimal, which motivates the field of concept drift handling.

There are many approaches for handling concept drift, however the choice of

an appropriate concept drift handling algorithm is contingent on some of the

characteristics of the expected change in concept. This chapter will there-

fore begin with an examination of some of the issues related to concept drift

before reviewing some representative approaches to handling concept drift.

The remainder of this chapter is organised as follows, Section 3.1 discusses

the different ways in which the function generating the data can change

to give rise to concept drift and Section 3.2 looks at how the change in

concept can manifests itself. Section 3.3 reviews some common approaches

to handling concept drift. Section 3.4 covers the main subject of this thesis,

the issues and approaches involved with handling concept drift in a scenario

where the true classes can be obtained, but it is expensive to do so. This is

followed by the chapter conclusion in Section 3.5.

3.1 The Causes of Concept Drift

Gao et al. (2007) proposes that the main causes of change in concept are

either an inherent change in the data stream, known as a feature change; a
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change in the decision boundary, known as conditional change; or a combi-

nation of both, known as dual change.

These causes of concept drift can be formally defined using probabilities.

If P is the probability of a given event, x is an unlabelled instance and y is

a class label, the causes of concept drift can be:� Feature change: a change in the probability of the occurrence of a

particular set of feature values, i.e. a change in P (x). Feature change

is also known as virtual concept drift (or population shift (Kelly et al.,

1999)). It has been argued that the fact that the drift might be virtual

is not important from a practical point of view as the the model needs

to be adapted regardless of whether the drift is virtual or not (Tsymbal,

2004; Zliobaite, 2009).� Conditional change: a change in the conditional probability of a

class given a particular set of feature values, i.e. a change in P (y|x).

If P (y|x) changes but P (x) does not, the drift cause is known as a

hidden context (Widmer & Kubat, 1998). This type of change can occur

when all the attributes needed to predict the class are not included as

features.� Dual change: a feature and conditional change, i.e. a change in both

P (x) and P (y|x).

Regardless of the cause, concept drift manifests itself in a number of different

ways. These have been categorised into different types based on the resultant

effect on classifier performance and will be described in the next section.
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3.2 Types of Concept Drift

Concept drift can be broadly categorised into three types based on the impact

on classifier performance over time (Kuncheva, 2008; Tsymbal, 2004):

(a) Concept shift (b) Concept drift (c) Trends

Figure 3.1: The effect of different types of concept drift on classifier perfor-
mance over time.

Sudden shift occurs when the concept changes abruptly. For example, in

a news filtering application, the death of a prominent media figure can

make articles about that person relevant to the user, where they were

non-relevant before. This often manifests itself as a sudden drop in

classifier performance, as illustrated in Figure 3.1a.

Gradual drift generally happens when the concept gradually changes from

one concept to another. For example, articles about an election might

gradually become less relevant to a user after the election. This nor-

mally results in a gradual degradation in classifier performance as

shown in Figure 3.1b. Helmbold & Long (1994) define the extent of drift

as the probability that two subsequent concepts disagree on a randomly

drawn example and Stanley (2003) categorises drift into moderate and
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slow drift, depending on the rate of change.

Recurring trends/contexts are trends or patterns which repeat them-

selves at intervals and might look something like Figure 3.1c. Recur-

ring trends are commonly found in seasonal data (Widmer & Kubat,

1998).

Classifier performance can also experience temporary fluctuations, such as

noise or blips (Kuncheva, 2008), but these will not be consider fully fledged

types of concept drift. Noise are changes that are deemed non-significant

which can enter the data for various reasons such as, imprecision in data

recording or mislabelled instances. A blip is a“rare event”, or an outlier.

Examples include fraudulent transactions, network intrusion and rare medi-

cal conditions. Noise and blips usually cause small fluctuations in classifier

performance, but not a long term trend.

Certain concept drift handling techniques work well on a few types of

drift, but perform poorly on others. By understanding the types of concept

drift that are expected to occur in a data stream an appropriate drift handling

approach can be selected. However, it is worth noting that data streams can

experience different types of concept drift simultaneously, such as gradual

recurring drift, as the above categories are not mutually exclusive. This

work is mainly focused on sudden shift and gradual drift, but will reference

recurring trends, noise and blips when appropriate.
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3.3 Handling Concept Drift

Chapter 1 notes that concept drift handling approaches can be categorised

based on when the classifier is rebuilt. The model is either adapted contin-

uously at regular intervals, a continuous rebuild, or is only adapted when

it is suspected that a sufficiently large change in concept has occurred, a

triggered rebuild. This is an important distinction which will be referred to

often, however, it is not the only important characteristic of a concept drift

handling approach. Zliobaite (2009) outlines two other important character-

istics upon which concept drift approaches should be categorised on: how

the classifier is adapted and what causes it to adapt.

Tsymbal (2004) proposes that a model can be adapted in one of three

ways: (1) by changing the data in the training set (instance selection), (2) by

changing the ensemble rules or (3) by changing the parameters to the model.

The adaptation is nearly always driven by some heuristic which influences

how the model is adapted. This heuristic will be referred to as an indicator

and an indicator over time as a signal. Klinkenberg & Renz (1998) introduce

three sources of indicators: (1) performance measures (such as the classifier

error rate), (2) properties of the classification model and (3) properties of the

data. An indicator can be used by both continuous and triggered approaches.

A continuous approach uses the indicator to decide how to adapt the model,

and a triggered approach uses the indicator to decide when to rebuild.

Concept drift handling approaches can either be instance-based or batch-

based. Instance-based concept drift handling approaches process the in-

38



stances as they arrive whereas batch-based concept drift handling approaches

collect instances into batches before being processed. However, the way the

instances are processed will not be considered a characteristic of the same

importance as those discussed previously and will only be mentioned when

appropriate. The remainder of this section will instead review concept drift

handling approaches by analysing each approach using all three criteria out-

lined above (when, why and how adaptation takes place), grouped by how

they adapt to changes in concept.

3.3.1 Instance Selection Based Concept Drift Handling

Approaches

Instance selection approaches handle concept drift by selecting which in-

stances to train on, based on their perceived relevance to the current con-

cept. The most common instance selection technique is a variation of the

continuous rebuild approach known as a sliding window. In sliding window

approaches the training set on which the classifier is trained is known as the

training window. The data in the training window is refreshed periodically

with new data, based on the assumption that recent data is more likely to

be from the same concept as the current concept.

With sliding windows new instances are added to the front of the training

window as they arrive. Once the new training window has been formed the

classifier is rebuilt, making sliding window approaches continuous rebuild

approaches. The number of instances in the training window is known as the
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size of the window. A fixed sized sliding window maintains a fixed number

of instances in the window. When new instances are added to the front of

the window, an equal number of instances are removed from the end of the

window. Figure 3.2 illustrates how a fixed size sliding window behaves on

a data steam containing concept drift. The example shows a data stream

split into batches, but the principal of a sliding window can be applied to

an instance based data stream in a very similar manner. Each box is a

(a) A fixed size sliding window at time t.

(b) A fixed size sliding window at time t+ 15.

(c) A fixed size sliding window at time t+ 30.

Figure 3.2: An illustration of how a fixed size sliding window handles concept
drift.

batch of data in a data stream, the red batch is the current batch, the

batch of data that the classifier is currently processing, and the blue batches

are “historic data”, batches which the classifier has processed in the past.

The purple batches are historic data which forms the training data of the

classifier and the orange batches are unlabelled data yet to be processed. At

each batch the classifier is trained on the data in the training window and
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classifies the unlabelled data in the current batch. After the current batch

has been classified it is added to the training window and the oldest batch

is removed from the training window. In Figure 3.2a the sliding window is

one batch away from a change in concept, marked by the dashed vertical

line. Figure 3.2b shows the same data stream after the training window has

moved 15 batches to the right. The training window now contains data from

both before and after the change in concept, which might result in a drop

in classifier performance. Finally Figure 3.2c shows the process 15 batches

further along. At this stage the data in the training window is composed

solely of data from the new concept which should result in a rebound in

classifier performance. The size of the sliding window dictates the properties

of the fixed size sliding window. A small window reacts to a change in concept

faster than a large window, but is more sensitive to noise, whereas a large

window tends to perform better when the concept is stable.

A variable size sliding window allows the size of the window to change,

rather than remain fixed. With a variable size window the window is usually

allowed to grow when the concept is stable (Figure 3.3a) and shrink when

there is a suspicion that the concept has changed (Figure 3.3b).

One of the earliest sliding window approaches was the Floating Rough

Approximation (FLORA) family of concept drift handling approaches start-

ing with FLORA (Kubat, 1989). FLORA uses a sliding window with a fixed

window size. This was improved in FLORA2 (Widmer & Kubat, 1992) which

uses a variable size window with the window size adjusted based on the clas-

sifier error rate. FLORA3 and FLORA4 (Widmer & Kubat, 1996) improved
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(a) A variable size sliding window at time t.

(b) A variable size sliding window at time t+ 15.

(c) A variable size sliding window at time t+ 30.

Figure 3.3: An illustration of how a variable size sliding window handles
concept drift.

the handling of recurring trends and noise respectively.

Klinkenberg & Renz (1998) introduced another notable sliding window

approach which uses accuracy, precision and recall indicators to adjust the

window size. The average value of each indicator is calculated over a number

of previous batches. If any of the indicators for the current batch are above

the average value for that indicator for the previous batches a change in

concept is flagged. The difference between the current indicator value and

the average value obtained from the previous batches determines by how

much the training window is shrunk. If the difference is large, then a concept

shift is suspected and the window is shrunk to the current batch. Otherwise

a more gradual change in concept is presumed and the window size is shrunk

by a user defined constant.

Gama et al. (2004) also created a sliding window approach using an
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error based signal. If the error rate is above a warning threshold a change

in concept is suspected and a new classifier is trained in parallel with the

current classifier. If the error rate goes above a second threshold, the error

threshold, a change in concept is declared and current classifier is replaced by

the one trained from where the error rate exceeded the warning threshold.

Kuncheva (2009) uses statistical tests on the error rate to adjust the

window size. When the error rate is greater than the mean error rate plus

three times the standard deviation the window collapses to the current batch,

otherwise the window grows.

The above mentioned sliding window approaches all use the error rate of

a classifier as an indicator which influences the window size. This is a very

common way of selecting the window size (other examples using this idea

includes (Baena-Garćıa et al., 2006; Klinkenberg & Joachims, 2000; Nishida

& Yamauchi, 2007)), and tends to handle concept drift in an intuitive and

effective manner. However, they require that the classification error can be

calculated.

Vorburger & Bernstein (2006) use an adaptation of Shannon’s entropy

to calculate a window size indicator. The concept drift handling is achieved

using a sliding window, when the entropy goes below a threshold the training

window collapses, otherwise it grows.

Instance based selection approaches attempt to handle concept drift by

selecting which instances are used to train the classifier. The most common

selection technique is a sliding window variant. Sliding window based tech-

niques are intuitive, do usually not require too much parameter tuning and
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are based on an the reasonable assumption that instances which are chrono-

logically close are likely to belong to the same concept. However, sliding

window techniques are restricted by the classifier used. For example some

simple classifiers are fast to update, which is important for processing data

streams, but may suffer in terms of accuracy. Ensembles have been shown

to be able to achieve high accuracy on some non-evolving data, and can be

altered to handle concept drift. The next section will look at how ensembles

can be used on data exhibiting concept drift.

3.3.2 Ensemble Based Concept Drift Handling Approaches

Section 2.3.4 introduced the idea of ensembles, a collection of classifiers whose

individual predictions for an unlabelled instance are combined using fusion

rules to form the overall prediction of the ensemble. The approaches dis-

cussed in this section attempt to handle concept drift using ensembles. This

is generally achieved by adjusting the contribution of each base classifier to-

wards the overall prediction depending on the classifiers perceived relevance

to the current concept.

Concept Drift Committee (Stanley, 2003) and Dynamic Weighted Ma-

jority (Kolter & Maloof, 2003) are two of the earliest approaches which use

ensembles to handle concept drift. Both approaches weight each base classi-

fier’s votes based on its classification accuracy on recent data. When a base

classifier’s classification record falls below a threshold it is removed from the

ensemble and a new classifier, trained on recent data, is added. Other ap-

proaches to handling concept drift with ensembles include: weighting base
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classifier’s vote by their accuracy on the k nearest neighbours of a test in-

stance (Tsymbal et al., 2008) and weighting by the cost of misclassification

coupled with their probability of misclassification (Wang et al., 2003).

However, not all ensemble approaches use some form or classifier accu-

racy to weight the base classifiers, Conceptual Clustering & Prediction is

an ensemble based concept drift handling approach which clusters batches

of data together into concepts and forms one classifier per concept (Katakis

et al., 2010). Each batch of data is classified by the classifier representing

the concept which the previous batch belonged.

Ensemble based concept drift handling approaches have been shown to

achieve strong classification accuracy and can be implemented in such a

way that each base classifier becomes an expert in a particular part of fea-

ture space or concept. However, ensemble based concept drift handling ap-

proaches tend to be more computationally complex than a single classifier

and require many parameters.

3.3.3 Model Parameter Based Concept Drift Handling

Approaches

The third high-level approach to handling concept drift is through changing

the model parameters. One way to do this is through instance weighting.

In most machine learning algorithms each instance contributes equally to

the hypothesis. Certain classifiers, like SVMs allow instances to be weighted

to create a bias towards certain instances. In (Klinkenberg, 2004) a cou-

45



ple of weighting schemes were used in conjunction with an SVM, including

weighting instances according to age and competence in regard to the cur-

rent concept. However, the results seemed to indicate that instance weighting

compared unfavourably to a sliding window approach.

Another way to handle concept drift using model parameters is to modify

the classifier’s internal structure. Black & Hickey (1999) continuously adapt

a decision tree based on the discriminant ability of a time based feature. All

instances in the current training window are given the timestamp attribute of

“current”, when a new batch of data arrives the timestamp attribute for all

instances in the new batch is set to “new”. The decision tree is then rebuilt

with the old training data and the new batch of data. Branches where the

timestamp attribute is highly discriminant are considered out of date. The

invalid rules (and instances covered by those branches) are pruned from the

tree and timestamp feature is removed on the remaining branches.

Model parameter based concept drift handling approaches can offer novel

ways of handling concept drift, but their usefulness can be limited by the

fact that they can only be applied to certain classifiers.

3.4 Handling Concept Drift in the Context

of Expensive Labels

The previous section covered the important approaches to handling concept

drift. However all of the approaches discussed so far operate on the as-

sumption that the true labels for all of the instances in the data stream are
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available shortly after classification. For example sliding window approaches

require a training window of labelled data. This means that they need a

continuous stream of labelled data as each instance in the stream will be in

the training window eventually and the training window needs to be made

up of labelled instances. Similarly, many approaches use the error rate to

adjust the model, for example by changing the window size or weighting base

classifiers in an ensemble. Calculating the error rate requires labelled data,

rendering these types of approaches very expensive in terms of labels used.

In some domains the label assumption is justified. For example in short-

term stock predictions the true label is available shortly after the model’s

prediction is made. In other domains, such as information filtering, labelled

data does not automatically emerge as part of the process (as they do for

the stock example) and are expensive to generate. It is therefore important

to consider how concept drift can be handled with a reduced amount of

labelled data so as to avoid this expense. However, before looking at existing

approaches there are a few issues specific to handling concept drift with

expensive labels which require further examination.

3.4.1 Labelling Scenario

The labelling scenario refers to what fraction of the data in the stream is

labelled. There are three special cases which should be highlighted: fully,

partially and unlabelled data streams.

A fully labelled data stream, is one where all the instances are labelled.
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This is the scenario most concept drift algorithms assume. Concept

drift handling algorithms which require this assumption to be true in-

clude (Baena-Garćıa et al., 2006; Bifet & Gavalda, 2007; Nishida &

Yamauchi, 2007). In a domain such as spam filtering this is a reason-

able assumption because the user will correct the learning algorithm by

moving emails to and from the spam folder, or short-term stock predic-

tions, where the change in share price provides the true label shortly

after the prediction is made.

A partially labelled data stream, is one where a certain percentage of

the instances in the data stream are labelled. For example in quality

control a fixed number of instances are sampled periodically and the

true label of those instances is supplied to the learning algorithm. Ap-

proaches based on this assumption include: (Klinkenberg, 2001; Lind-

strom et al., 2010a; Masud et al., 2008; Zliobaite et al., 2011).

An unlabelled data stream, is one where no instances in the data stream

are labelled. This scenario is particularly common in areas where the

true label of an instance is delayed, such as bankruptcy prediction. The

problem with an unlabelled data stream is that there is no up to date

training data which can be used to re-train the classifier.

This thesis will mainly focus on a particular type of partially labelled

data stream. Namely an unlabelled data stream in which any instance label

can be acquired, but the point is to request as few labels as possible. This

type of labelling scenario can be found in many real life classification tasks.
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For example in information filtering, where the system can select which doc-

uments a human expert should label. The key to this type of algorithm is

deciding which instances to get labelled. Approaches operating under this

assumption include (Lindstrom et al., 2010a; Zhu et al., 2007; Zliobaite et al.,

2011).

3.4.2 Detectability

The cause of the change in concept is an important consideration when select-

ing which concept drift handling approach to use, as some types of concept

drift are not detectable without labelled data. Table 3.1 is based on the work

in (Zliobaite, 2010) and illustrates the contingency table of possible changes

(using the notation from (Gao et al., 2007) described in Section 3.1).

Table 3.1: Concept change detectability contingency table.

P (y|x)
Changes Does not change

P (x)
Changes (1) Dual change (2) Feature change
Does not change (3) Conditional change (4) No concept drift

(1) Dual change (a change in the data and the conditional probabilities)

can be detected without labelled data, as the conditional change is also ac-

companied by a change in the data, which can be detected.

(2) Feature change (a change in the data without a change in the condi-

tional probabilities), also known as virtual concept drift, is detectable with-

out labelled data. For example a detection algorithm which monitors the

frequency of key words in a text data stream would be able to detect when

the word distribution changes significantly, which might signify a change in
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concept, without using labelled data

(3) Conditional change (a change in the conditional probabilities without

a change in the data) is always important to handle, but not possible to

detect without labelled data. For example, in information filtering a user

might find articles about a certain celebrity interesting for a while and then

lose interest in that celebrity. In this case there has been a change in the

decision boundary (i.e. a change in P (y|x)) without a significant change in

the data (P (x)). Therefore concept drift handling approaches which aim to

handle conditional change must use at least some labelled data.

3.4.3 Existing Approaches to Handling Concept Drift

in a Partially Labelled Data Stream

This thesis investigates how concept drift can be dealt with in a data stream

where obtaining labelled data is expensive.

Chapter 1 has already introduced the two ways concept drift handling

approaches tend to reduce the amount of labelled data required, through

improvements to their drift detection or drift adaptation component.

The drift adaptation component of concept drift is usually improved us-

ing semi-supervised learning. The difference between supervised and semi-

supervised learning is that a supervised learner uses labelled data to find

the mapping between features and the class label, whereas semi-supervised

learning uses both labelled and unlabelled data to train the classifier. This

often allows a classifier trained on a small amount of labelled data, and a
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large amount of unlabelled data to achieve classification accuracies compa-

rable with classifiers trained on all the labelled data (Lewis & Gale, 1994;

Tong & Koller, 2002). Semi-supervised learners designed to handle concept

drift are typically continuous rebuild approaches where the amount of la-

belled data required is reduced by using a semi-supervised learner instead of

a supervised learner every time the classifier is retrained.

Concept drift detection can be improved by devising a drift detection

indicator which does not use labelled data. This indicator can then be in-

corporated into a triggered rebuild framework meaning that the classifier is

only retrained, and a labelling cost incurred, when a significant change in

concept is suspected. The approaches in the subsequent literature review

will be grouped based on the label reduction approach (semi-supervised or

triggered) used.

3.4.3.1 Semi-supervised Learning

Klinkenberg (1999) uses a variable size sliding window, just like in (Klinken-

berg & Renz, 1998), but extends the approach by calculating the window size

heuristic only on the small number of instances in the data stream which are

labelled. Exactly which instances are labelled and therefore used in the win-

dow size heuristic calculation is outside the control of the algorithm. The

experimental evaluation indicates that this approach is a good starting point

as concept drift can be handled without a fully labelled data stream. How-

ever, there is scope for improvement if the algorithm is allowed to decide

which subset of the unlabelled instances should be labelled.
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Active learning (AL) (Cohn et al., 1994) is a powerful way of selecting

which instances the classifier would benefit the most from having labelled.

The label is only requested for those examples that are deemed to be most

informative to the training process.

Zhu et al. (2007) combines an ensemble of decision trees with active learn-

ing. In this approach a small portion of the data within a batch is selected

at random and labelled, after which a classifier is built from the labelled

data. The new classifier is added to a fixed size ensemble and all classifiers

in the ensemble are weighted according to their accuracy on instances in the

batch that were randomly sampled and labelled in the previous step. Active

learning is then used to sample the instance that cause maximal classifier

variance within the ensemble for labelling. After the sampled instance has

been labelled the process takes one of three actions, the classifier can be

rebuilt, the labelling process can stop (if the number of instances sampled

from the current batch exceeds a user-specified quota) or the ensembles can

be re-weighted and a new instance sampled based on classifier variance. Con-

cept drift is handled through the weighting of the base classifiers and by only

maintaining a fixed number of classifiers with the best classification accuracy

on the labelled data.

Zliobaite et al. (2011) uses a variable size sliding window approach to

handle concept drift. The reduction of labelled data is achieved by using

active learning to select a small number of instances which are labelled and

added to the training window. The approach uses a sampling heuristic which

ensures that instances close to the decision boundary are more likely to be
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labelled when a change in concept occurs. Instances further from the decision

boundary are sampled when the concept is stable. There is also a component

of randomness in the sampling process to ensure that some instances far from

the decision boundary are sampled periodically. This is done to ensure that

local concept drift occurring far from the decision boundary does not go

unnoticed. A user-specified parameter known as the labelling budget works

in conjunction with the sampling strategy to control how many instances

are sampled over the whole data stream. The window resizing approach

introduced in Gama et al. (2004) is used to adjust the windows size.

There are also examples of semi-supervised learners which do not use ac-

tive learning. Masud et al. (2008) proposed Semi-Supervised Stream Clus-

tering, a semi-supervised approach which is designed to work on a partially

labelled data stream by utilising clustering. In each batch both labelled and

unlabelled instances are clustered while ensuring that all labelled instances

in a cluster belong to the same class. A k-NN classifier is created from each

cluster and the classifier is added to the ensemble of classifiers created from

the previous batches. Concept drift is handled by only keeping the classifiers

which obtained the highest accuracy on the labelled data in the current batch

in the ensemble. This approach is further refined in (Woolam et al., 2009).

3.4.3.2 Triggered Rebuild

The other major approach to handling concept drift with a limited amount

of data is to use a triggered rebuild with an indicator not calculated from

labelled data. The advantage of a triggered rebuild with this type of indicator
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is that no labelled data is needed until a change in concept is suspected.

This stands in contrast to the semi-supervised approaches in Section 3.4.3.1

where a fixed amount of labelled data is required in every batch regardless

of whether the concept is changing or not.

The most common way of creating an indicator not dependant on labelled

data is the two-window paradigm for event detection (Kifer et al., 2004).

The two-window paradigm is a high level approach which compares some

summary information about the past behaviour in a reference window to the

summary information in the current window. Approaches vary depending

on if the windows have a fixed or sliding starting point and if the windows

have a constant or growing size (for a more comprehensive exploration of

the two-window framework see (Ada & Berthold, 2011)). The two-window

paradigm can be used to create a signal which can be used in both triggered

and continuous rebuild approaches. An example of a continuous rebuild

approach which uses a two-window paradigm is the aforementioned entropy

approach used in (Vorburger & Bernstein, 2006), where the difference in the

entropy between the reference and current window is used to control the

size of a variable size sliding window. However, the two-window paradigm

is mostly used to create an indicator for use in triggered rebuild approaches,

some of which will be discussed next.

One of the earliest examples of this type of approach was introduced by

Kifer et al. (2004). The distribution of a feature inside a reference batch

is compared to the distribution inside the current batch to determine if the

data in both batches is likely to have been generated by the same under-
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lying process. This is achieved using a statistical distance function based

on Chernoff bounds. Sebastião & Gama (2007) take a similar approach but

use Kullback-Leibler divergence to measure the difference. Both approaches

require the identification of a feature which is sensitive to change in concept.

In a dataset such as a text dataset where each document is represented by

word frequencies, monitoring the distribution of one word is unlikely to yield

satisfactory detection.

Zliobaite (2010) uses a two-window paradigm to compare the posterior

class membership probabilities in a reference window to the probability of

class memberships in the current test window, using statistical tests to flag

significant differences, and hence the occurrence of concept drift. Although

this approach have been shown to be capable of detecting concept drift with-

out labelled data it has not been tested as an end-to-end system which de-

tects a change, updates the model and evaluates the resultant classification

accuracy.

Lanquillon (Lanquillon, 1999) does develop an end-to-end approach which

uses the training data to estimate the classifier confidence range in which the

predicted label is likely to be correct. A change in concept is flagged if in

subsequent batches the fraction of confidences within that range exceeds the

detection threshold of µ+(3∗σ) where µ and σ are the average and standard

deviation of first ten fractions in the data stream. However this approach is

only evaluated on very simplistic artificial data.

Fan et al. (2004a) propose an approach which uses an indicator based on

decision tree leaf node statistics. If this indicator is above a threshold, a small
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number of instances are labelled and based on those labels the error rate is

estimated. If the estimated error rate is higher than a tolerable maximum

the classifier is reconstructed using the instances labelled in the previous step

(for details on how the classifier is updated see Fan et al. (2004b)). Huang

& Dong (2007) take the detection approach from Fan et al. (2004a) but use

active learning to select which instances to sample when concept drift is

detected.

3.5 Conclusion

This chapter has examined the problem of concept drift. Concept drift is

the deterioration in classifier performance due to the non-stationary nature

of the concept being modelled. It is caused by change in the data, a change

in the decision boundary or both. Changes in concept, regardless of the

cause, usually manifests themselves as a deterioration of a model’s predictive

accuracy. The decline can be either sudden or gradual and might also contain

recurring patterns or random noise.

There is a growing body of research dealing with how concept drift can

be handled but most of it tends to assume that all the instances in the data

stream have their true label available shortly after classification.

Some approaches specifically designed not to require a fully labelled data

stream have emerged. These can be divided into semi-supervised and trig-

gered rebuild approaches1.

1(Fan et al., 2004a) is categorised as a triggered rebuild approach, but it could be
considered an hybrid approach as it also adapts the classifier with a reduced amount of
data.
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Semi-supervised approaches focus on creating a classifier from a partially

labelled data stream, but tend to be computationally expensive and require

extensive parameterisation. Triggered rebuild approaches focus on detecting

changes in concept without needing labelled data, but tend to be designed

for a specific classifier or data type.

One semi-supervised, and one triggered rebuild approach aimed at ad-

dressing these shortcomings will be presented in forthcoming chapters, how-

ever, the next chapter will look at how both of these approaches will be

evaluated.
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Chapter 4
Experiment Methodology

The overarching goal of this thesis is to examine how concept drift can be

handled with as little labelled data as possible. This goal can be achieved us-

ing a continuous or triggered classifier rebuild strategy. A continuous rebuild

approach, Decision Value Sampling (DVS) and a triggered rebuild approach,

Confidence Distribution Batch Detection (CDBD) were briefly introduced

in Chapter 1. How these approaches work and how they compare to other

approaches will be covered in further detail in the next two chapters. The

methodology used to evaluate both approaches is very similar as they are

both designed to work on a partially labelled data stream using as few labels

as possible.

This chapter will outline the aforementioned methodology and is organ-

ised as follows: Section 4.1 describes the datasets used, followed by Sec-

tion 4.2 which covers the experimental set-up. Section 4.3 details the evalu-
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ation measures and, finally, a conclusion is given in Section 4.4.

4.1 Datasets

Concept drift is often present in real data. Chapter 1 gave the examples

of weather predictions, customer buying preferences and changes in users’

interests in information filtering. Other common examples of data which

is likely to experience concept drift include financial (Abdullah & Ganapa-

thy, 2000), biological (Tsymbal et al., 2006) and social media (Wang, 2010)

data. A common source for machine learning datasets on which to perform

experimentation is the University of California, Irvine, Machine Learning

Repository (Frank & Asuncion, 2010)1, which contains a large collection of

datasets of varying sizes and characteristics. However, most of the publicly

available datasets are not datasets which exhibit concept drift. The lack of

appropriate datasets is not a problem exclusive to the concept drift domain2,

but it seems to be particularly prominent in this area. This can be partly

attributed to the fact that many domains where concept drift is typically

found, such as the financial domain, are constrained by privacy and legal

concerns (Kennedy et al., 2011; Narasimhamurthy & Kuncheva, 2007).

Another issue with real data is that the properties of the changes in con-

cept contained in the data are usually not known. It can be hard to determine

when the concept changed, at what rate it changed, what caused the change

and so on. Without this crucial information developing and evaluating an

1http://archive.ics.uci.edu/ml
2For a more through discussion about the lack of dataset sharing in the academic

community as a whole see Fischer & Zigmond (2010).

60

http://archive.ics.uci.edu/ml


algorithm for dealing with concept drift can be problematic.

A second option which overcomes many of the problems with real data

is artificial data. Artificial data exhibiting concept drift can be controlled

so that important properties of the change in concept are known, and is

seldom as constrained by privacy and legal issues as real data is. While

it is paramount that concept drift handling approaches are evaluated on

real datasets exhibiting natural concept drift, it is also useful to evaluate

approaches on artificial datasets with controlled concept drift.

Artificial datasets exhibiting concept drift tend to be one of two types:

synthetic data or drift induced data (Lindstrom et al., 2008). This thesis

focuses mainly on drift induced data but will also briefly cover synthetic

data.

4.1.1 Synthetic Data

Synthetic datasets are generated algorithmically in such a way as to ensure

that concept drift occurs. One of the most widely used synthetic approaches

to generating datasets is the STAGGER approach (Schlimmer & Granger,

1986), which will be used to illustrate how synthetic datasets tend to be

generated.

The STAGGER dataset has three feature:, size ∈ {small,medium, large},

color ∈ {red, green, blue} and shape ∈ {square, circular, triangular}. A

dataset is generated by creating instances where each feature value is ran-

domly selected from one of the allowed values, e.g. {small, blue, square}.

The instances are then assigned their true label according to specific concept
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rules, for example instances with the features size = small and color = red

are assigned to one class while all other instances are assigned to the other

class (STAGGER datasets focus on binary classification problems). Changes

in concept are introduced by changing the concept rules over time. The rules

based labelling method used in the STAGGER approach makes it easy to

generate datasets which exhibit sudden concept shift and recurring trends,

as a change in rules produce a sudden change and rules can be reused. How-

ever, the labelling method makes it hard to produce a gradual change.

Another common way to create synthetic concept drift datasets is the

moving hyperplane (Kolter & Maloof, 2003) approach. In this approach the

instances are separated using a hyperplane and labelled based on what side

of the hyperplane they fall. Sudden concept drift is introduced by abruptly

moving the hyperplane, whereas gradual concept drift is introduced by ro-

tating the hyperplane over time. The rate of drift can be controlled by how

quickly the hyperplane is rotated. Recurring trends can also be simulated

using by re-using hyperplane positions.

In both the STAGGER and moving hyperplane approaches noise and

blips can be introduced by intentionally mislabelling instances. The mis-

labelling manifests itself as blips if it occurs infrequently, and noise if it

is sustained. Both the STAGGER and moving hyperplane approaches also

share the fact that they introduce conditional change rather than feature

change.

Synthetic data allows a larger degree of control than real and drift in-

duced data. However, the author believes that the process used to generate
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synthetic data makes it inherently sterile and prevents it from capturing the

nuances of real concept drift problems. Therefore, the evaluations in this

thesis all use drift induced, rather than synthetic data, as it is the author’s

opinion that this strikes a good balance between realism and control.

4.1.2 Drift Induced Data

Drift induced datasets are created by taking real datasets, which may not

contain a significant amount of concept drift, and tweaking them to introduce

controlled concept drift. A change in concept can be induced in real data by

using instances from a real dataset and adjusting the function which provides

instances with their true label. The process can be illustrated using an

example from information filtering where the classification task is to predict

if a text document is relevant to a particular user, given its content.

A classification problem can be created from a real text dataset by assign-

ing a document’s true label based on what topic it belongs to. For example

in a collection of news articles each article might be associated with a topic,

such as “Business” or “Sport”. All of the articles of one topic, the target

topic, are labelled as “relevant” to the user and the other documents are la-

belled as “non-relevant”. Controlled concept drift is introduced by adjusting

which topic is the target topic. Sudden concept shift can be introduced by

swapping the topics some way into the stream, so the target topic becomes

the non-target topic and vice versa, which is the approach used in (Ada &

Berthold, 2011; Kuncheva, 2009).
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(a) Concept shift.

(b) Concept drift.

Figure 4.1: Using topic probabilities over time to introduce changes in con-
cept.

A more general way to introduce concept drift in a text data stream is to

use a probabilistic labelling function which assigns document labels based on

their topic. If the probability of a given topic being relevant is high, then the

labelling function is likely to set its true label to “relevant”. Conversely, if
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the probability of the topic being relevant is low then it is likely to be labelled

as “non-relevant”. Drift is induced by adjusting the probabilities over time.

The simplified example in Figure 4.1a show how the topic probability can

be adjusted to create a sudden concept shift whereas Figure 4.1b shows how

gradual concept drift can be simulated.

The treatment of the non-target topic is an important consideration as it

dictates if conditional or feature change is induced. The next two sections will

discuss this in further detail and show how conditional and feature change

datasets can be created.

4.1.2.1 Creating a Conditional Change Dataset

Conditional change can easily occur in information filtering tasks. For exam-

ple, in the scenario described in the previous chapter where articles about a

presidential candidate might become less relevant after the election there was

not a change in the data itself, but rather a change in the mapping between

the document and its label, i.e. conditional change.

Conditional change is induced in text datasets by labelling all non-target

topics as “non-relevant”, including topics which will become target topics at

another stage. The process can be illustrated using the example in Figure 4.2

which depicts a stream of instances where the colour signifies what topic an

instance belongs to on the first row, and what true label an instance is

assigned on the second row. The labelling function used is in this example is

P (relevant|topic) = 1 if the topic is the target topic and P (relevant|topic) =

0 if the topic is not the target topic. This allows a concept shift to be induced
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by changing which topic is the target topic.

Figure 4.2: The labelling process for conditional change datasets.

In Figure 4.2 the purple instances belong to the topic that at first is

considered the target topic, orange instances belong to the topic that becomes

the target topic after concept drift has occurred and blue instances belong

to a topic which will never become a target topic. Before the change in

concept (the dashed vertical line), purple instances are assigned the label

“relevant” (a red box in the second row), while orange and blue instances

are assigned the label “non-relevant” (a green box in the second row). After

the change in concept the target topics are reversed. This approach has been

used extensively in previous research, for example in (Klinkenberg, 1999,

2001, 2004; Klinkenberg & Renz, 1998).

4.1.2.2 Creating a Feature Change Dataset

Feature change can also occur in information filtering, for example when

articles of a new topic appear. In this scenario the classifier might be unable

to accurately predict the class of documents from the second topic as there

are no documents from the second topic in the training data. This mimics

situations likely to occur in real data where the training data may only

contain a partial concept.

In feature change text datasets, non-target topics which will become tar-

get topics at another stage never overlap with the current target topic. This
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is, again, best illustrated using an example. Figure 4.3 shows another data

stream and how the topics map to true labels.

Figure 4.3: The labelling process for feature change datasets.

However, in this example there are no instances belonging to a target

topic in the part of the stream where they are not the current target topic.

Purple instances are only found before the change in concept takes place,

and orange instances are only found after the change in concept took place.

This approach is used in (Lanquillon, 1999).

4.1.3 Our Datasets

The experiments described in the later chapters of this thesis are anchored

in the information filtering domain, as text data tends to come in large data

streams with high labelling costs. Our evaluations are performed on both

real-world datasets from the spam filtering domain and artificial datasets

generated from large corpora of text documents.

4.1.3.1 Real Datasets

The real-world datasets used in the experiments in this thesis are two spam

filtering datasets1, Spam1 and Spam2 introduced in (Delany et al., 2005).

These were both collected from real users’ email accounts over a period of

time. Spam filtering can be considered a type of information filtering as the

1http://www.dit.ie/computing/staff/sjdelany/datasets
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classification task is to classify an email as ham (relevant) or spam (non-

relevant) to a given user. The spam datasets are characterised by very high

class imbalance, and like many real datasets, a lack of knowledge about the

concept drift cause and type.

4.1.3.2 Drift Induced Datasets

The experiments in this thesis will also use artificial datasets, to allow for

control for factors like drift type and cause. Drift induced datasets are used,

as they retain some of the interesting artefacts which fully artificial data

might lack, such as underlying natural drift (in addition to that induced

artificially), and therefore lead to more informative evaluations. The drift

induced datasets are based on three text corpora: Reuters-21578 1, 20 news-

groups2 and news sources.

The Reuters corpus is a collection of 21, 578 text articles which appeared

on the Reuters newswire in 1987. The documents are tagged with one or

more topics. The two most common topics in the Reuters collection are both

business related, namely “corporate acquisitions” (“acq”) and “earnings”

(“earn”).

The 20 newsgroups corpus contains nearly 20, 000 newsgroup documents

across 20 different newsgroups. Each text document belongs to a news-

group, such as “comp.graphics” or “rec.motorcycles”. Some newsgroups can

be grouped together as they belong to the same parent group. For exam-

ple “comp.os.ms-windows.misc”, “comp.windows.x” and “comp.graphics” all

1http://www.daviddlewis.com/resources/testcollections/reuters21578
2http://people.csail.mit.edu/jrennie/20Newsgroups
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belong to the same parent group “comp” (computers).

The news sources corpus is a collection of just over 70, 000 news articles

collected from various sources over a period of two months in 2011. Each

article belongs to one topic, such as “Sports”, “Business” or “Politics”.

Chapter 3 discusses some of the important characteristics of concept drift,

such as drift cause and type. This thesis will consider four factors when

generating a drift induced text dataset: (1) corpora (Reuters, 20 newsgroups

or news sources), (2) drift cause (feature or conditional change), (3) drift type

(sudden or gradual drift) and (4) class distribution (balanced or imbalanced).

The first three variables have been discussed previously, while the issue of

class distribution has only been mentioned briefly so far. Two distinct cases

are considered, a balanced data stream where the class distribution is a

fixed, uniform distribution, and an imbalanced data stream where the class

distribution changes over time.

These four variables can be varied to generate 24 datasets, listed in Ta-

ble 4.1. The remainder of this thesis will use the dataset names in the ID

column as shorthand for the dataset generated using that specific combina-

tion of variables. Not all combinations are necessarily needed when evalu-

ating concept drift approaches. For example, triggered rebuild approaches

are usually only evaluated on concept shift datasets with feature change.

All permutations have been included, but the discussions about the specific

datasets used in each experiment will be delayed until the actual experiment

descriptions.

The remainder of this section will instead focus on the process used to
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Table 4.1: Summary of the properties of our drift induced datasets.

ID Corpus Drift Type Class Distribution Drift Cause

20NGSBF 20 newsgroups Sudden Balanced Feature
20NGGBF 20 newsgroups Gradual Balanced Feature
20NGSIF 20 newsgroups Sudden Imbalanced Feature
20NGGIF 20 newsgroups Gradual Imbalanced Feature
20NGSBC 20 newsgroups Sudden Balanced Conditional
20NGGBC 20 newsgroups Gradual Balanced Conditional
20NGSIC 20 newsgroups Sudden Imbalanced Conditional
20NGGIC 20 newsgroups Gradual Imbalanced Conditional
ReutersSBF Reuters Sudden Balanced Feature
ReutersGBF Reuters Gradual Balanced Feature
ReutersSIF Reuters Sudden Imbalanced Feature
ReutersGIF Reuters Gradual Imbalanced Feature
ReutersSBC Reuters Sudden Balanced Conditional
ReutersGBC Reuters Gradual Balanced Conditional
ReutersSIC Reuters Sudden Imbalanced Conditional
ReutersGIC Reuters Gradual Imbalanced Conditional
NSSBF News sources Sudden Balanced Feature
NSGBF News sources Gradual Balanced Feature
NSSIF News sources Sudden Imbalanced Feature
NSGIF News sources Gradual Imbalanced Feature
NSSBC News sources Sudden Balanced Conditional
NSGBC News sources Gradual Balanced Conditional
NSSIC News sources Sudden Imbalanced Conditional
NSGIC News sources Gradual Imbalanced Conditional

generate all of the drift induced datasets listed above. The process is based

on the drift induction techniques discussed earlier in Section 4.1.2. Figure 4.4

shows a high level overview of the process. The process can be broken into

two phases, data pre-processing and drift induction.

Figure 4.4: A high level overview of the process used to generate drift induced
datasets.
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The data pre-processing phase contains the following steps:

1. Convert the documents in the chosen corpus into a Bag-Of-Words

(BOW) representation, weighting each term using term frequency.

2. Apply stop-word removal and Porter’s stemming (Porter, 1980) to re-

duce the number of features.

3. Sort the instances chronologically, based on their timestamp.

The data pre-processing phase produces a collection of instances suitable

for text classification, however, there is no guarantee that the data will exhibit

concept drift. The next phase deals with both the induction of controlled

concept drift and handling class distributions. In the drift induction phase

instances are processed sequentially, one at a time through two filters. The

filters can either discard an instance or allow it to pass through the filter.

If an instance passes through the two filters it is added to a collection of

instances which form the drift induced dataset.

Figure 4.5: The topic filter.
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The topic filter filters out instances based the topic the instance belongs

to. Figure 4.5 shows how the topic filter works. The coloured blocks rep-

resent instances being passed through the topic filter. The purple, orange

and blue blocks represent instances belonging to “Topic 1”, “Topic 2” and

“Topic 3” respectively. An instance might be discarded based on its topic

if a feature change dataset is being generated whereas the data stream will

be left unmodified if a conditional dataset is being generated. The exact

mechanism used to parameterise the topic filter and determine if an instance

will be filtered out will be discussed shortly. The topic filter also provides the

true label of the instance by labelling it probabilistically based on its topic.

Concept drift is introduced by varying the topic filter parameters over time.

If the instance is not filtered out by the topic filter then the newly labelled

instance is passed through the distribution filter. The distribution filter main-

tains a record of the label of the instances it allows to pass through and can

dynamically adjust itself to ensure a given class distribution in the resul-

tant data stream. This thesis focuses on two distinct distribution filters, the

imbalanced filter and the balanced filter. Figure 4.6 shows the distribution

filter in action. In this diagram the green and red blocks represent instances

that have been assigned the true labels “relevant” and “non-relevant” respec-

tively. If the process is set to generate an imbalanced data stream then the

filter does not discard any instances. However, if a balanced data stream is

being generated then the filter selectively discards instances to maintain a

balanced class distribution in the resultant data stream. For example, if the

process is generating a data stream with 50 “relevant” and “non-relevant”
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Figure 4.6: The class distribution filter.

instances per batch then the distribution filter will discard an instances if

50 instances of that class has already passed through the filter. Once 50

instances from each class has passed through the filter the filter is re-set and

will allow instances through until the class limit is once again reached.

The algorithm for the full data generation processes is given in pseudo

code in Algorithm 1.

Most functions do not need further elaboration as their function can be

inferred from their name, however, three functions need some further details:� Head, accepts a collection of instances and returns the first instance

from that collection.� Tail, accepts a collection of instances and returns the same collection

without the first instance.� Floor, accepts a number and returns the integer value of that number,

e.g F loor(234/100) = 2.
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1 Function GenerateDataset(files, DistribFilter, topicFilters,
2 batchSize)
3 rawInstances ← ExtractInstances(files)
4 fsInstances ← FeatureSelection(rawInstances)
5 chronoOrdered ← SortChronologically(fsInstances)
6 return ProcessStream(0, DistribFilter, topicFilters,
7 batchSize, chronoOrdered, ∅)

8 end

9 Function ProcessStream(numPassedFilters, DistribFilter,
10 topicFilters, batchSize, unfiltered, filtered)
11 if unfiltered = ∅ then
12 return filtered
13 end
14 candidate ← Head(unfiltered)
15 currentBatchNo ← Floor(numPassedFilters / batchSize)
16 TopicFilter ← topicFilterscurrentBatchNo

17 if TopicFilter(candidate) && DistribFilter(candidate) then
18 return ProcessStream(numPassedFilters + 1,
19 DistribFilter, topicFilters, batchSize,
20 Tail(unfiltered), filtered ∪ candidate)

21 end
22 else
23 return ProcessStream(numPassedFilters, DistribFilter,
24 topicFilters, batchSize, Tail(unfiltered), filtered)

25 end

26 end

Algorithm 1: The concept drift dataset generation algorithm.
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The key part to the algorithm is line 16 which parameterises the topic

filter. This is a vital part of the algorithm as it is the varying of the topic filter

which introduces controlled concept drift into a dataset. This line ensures

that new parameters are applied to the topic filter every batchSize instances,

where batchSize is a user-specified parameter specifying how many instances

should be in each batch. The set of topic filter parameters are read from the

topic to probability matrix.

(a) Conditional change with a sudden con-
cept shift.

(b) Conditional change with a gradual
change in concept.

(c) Feature change with a sudden concept
shift.

(d) Conditional change with a sudden con-
cept shift and 5% labelling noise.

Figure 4.7: Sample topic to probability matrices.

Figure 4.7 shows four sample topic probability matrices. Each column

is one set of parameters to a topic filter, specifying the probability that an

instance belonging to a given topic is given the true label of “relevant”.

The topic filter parameters are updated every batch and one column in the

topic to probability matrix gives the parameters for one batch. For example,

Figure 4.7a specifies that instances belonging to “Topic 1” will receive the

true label of “relevant” for the first three batches. This topic to probability

matrix produces a conditional change dataset, with a concept shift at batch
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three, as “Topic 1” goes from being “relevant” to “non-relevant” while “Topic

2” goes from being “non-relevant” to “relevant”. A more gradual change

in concept can be created by adjusting the probabilities over a number of

batches, as in Figure 4.7b.

The matrix in Figure 4.7c has no probability specified for “Topic 2”

for the first three batches. This means that instances belonging to that

topic are completely filtered out while the topic filter parameters remain this

way. Leaving entries in the topic to probability matrix empty allows for the

creation of non-overlapping target topics which results in a feature change

datasets.

Labelling noise can also be introduced by using probabilities which are

less than one. For example, setting a probability of relevance to 0.95, as in

Figure 4.7d, gives 5% labelling noise. This type of change is considered noise

rather than gradual concept drift as it manifests itself as small fluctuations

in classifier performance rather than a long term trend.

This approach to generating datasets is similar to the approaches used

to generate conditional change datasets in (Klinkenberg, 1999, 2001, 2004;

Klinkenberg & Renz, 1998) and feature change datasets in (Lanquillon, 1999).

However, our approach differs in two important aspects. Firstly, the data in

our framework is ordered chronologically, which maintains any natural con-

cept drift present in the data. The author believes that datasets generated

using this approach better capture the nuances of real concept drift prob-

lems. Secondly, it also allows the natural class distribution to be maintained

(if so desired), whereas the approach used in (Klinkenberg, 1999, 2001, 2004;
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Klinkenberg & Renz, 1998; Lanquillon, 1999) ensures that the class distri-

bution remains fixed. The author expects that evaluating the approaches

on data which reflects some of the issues found in real concept drift prob-

lems will lead to more informative evaluations. The full collection of drift

induced datasets used in thesis can be downloaded at http://arrow.dit.

ie/sciendoc/147/.

4.2 Experimental Set-up

The experiments described in this thesis aim to evaluate a collection of con-

cept drift handling approaches on real and drift induced datasets. In each

experiment the first 150 documents in the data stream of each class were se-

lected as initial training data. The rest of the documents in the data stream

were grouped into batches of 100 documents to be presented to the classi-

fier for classification. The classifier makes a prediction for each instance in

the batch and the classifier performance for the batch is recorded (using the

evaluation measure discussed in Section 4.3). As this work is grounded in a

text filtering domain a classifier which performs well on text data is needed.

The classifier used in our approaches is an SVM as it has been shown to be

especially suitable for text classification (Joachims, 1998; Yang & Liu, 1999).

The classifier is periodically rebuilt on more recent training data. The

frequency of rebuilds depends the concept drift handling technique used. For

continuous rebuild approaches the classifier is rebuilt every batch, whereas

triggered rebuild approaches only cause the classifier to be rebuilt when a
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significant change in concept is suspected. Each time the classifier is rebuilt

the number of new training instances that need to be labelled is recorded, as

the amount of labelled data required is an important evaluation metric.

The framework used in this thesis is built around the Waikato Environ-

ment for Knowledge Analysis (WEKA) (Hall et al., 2009) library. WEKA

contains implementations of many of the most common machine learning al-

gorithms and also contains implementations of many related tasks, such as

data pre-processing. WEKA supports SVM using the LIBSVM (Chang &

Lin, 2011) implementation through a wrapper class, WLSVM (EL-Manzalawy

& Honavar, 2005).

4.3 Evaluation Measures

The classification accuracy over the whole data stream would normally be a

good metric for determining how well an approach is handling concept drift.

However the imbalanced datasets in Table 4.1 are likely to contain a high

class imbalance, making the average class accuracy (Equation 2.3) a more

appropriate evaluation metric. Average class accuracy tends toward the class

accuracy if the class distribution is balanced but is not as susceptible to a

high class imbalance.

avgClassAccuracy =

∑|Y |
j=1

accuracyj

|Y |
(2.3 revisited)

The second key evaluation measure for assessing our concept drift han-

dling approaches is the number of labelled instances an approach uses. This
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is measured as the number of instances the approach requested a label for

over the number of instances in the test stream. The largest contributor to

this evaluation measure is the new training data required to rebuild a classi-

fier but there are also approaches which uses labelled data to determine when

the classifier should be rebuilt or to determine the size of a sliding window.

In addition to these quantitative measures graphs will also be provided

to illustrate how the concept drift approaches work. One of the simplest

ways of visualising the performance of a concept drift handling approach is

to plot the classifier performance over time. The average class accuracy over

the whole data stream is one number, which does not provide a high level of

temporal information. Instead it needs to be on a batch level, to allow it to

be plotted over time. This can be achieved by grouping the data in to fixed

size batches and modifying Equation 2.3 into Equation 4.1.

avgClassAccuracyi =

∑|yi|
j=1

accuracyij

|yi|
(4.1)

where accuracyij is the accuracy of class j on batch i. It is worth noting

that in rare cases only examples of one class will be present in a batch and

so |yi| = 1.

Figure 4.8a shows a typical average class accuracy over time graph for

“Approach 1“ and “Approach 2”, two notional concept drift handling ap-

proaches. However, it can be hard to discern the long term trends in the

data. An alternative approach to visualising the change over time is to plot

the average of the last m batches, as in Figure 4.8b, where the average of
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(a) Average class accuracy over time.

(b) Windowed average class accuracy over time.

(c) Windowed average class accuracy over time with detection points.

Figure 4.8: Different ways of displaying the average class accuracy over time.
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the last five batches was used. This gives a smoothing effect which makes

it easier to discern patterns and long term trends. For this reason average

class accuracy over time graphs presented going forward will use a five batch

smoothing unless otherwise specified.

The accuracy over time graphs can also be augmented with other useful

information. This is mostly used for triggered approaches, as illustrated in

Figure 4.8c, where a square is used to mark the points where a triggered

rebuild approach detected a change in concept and rebuilt the classifier.

The accuracy over time graphs will be used on certain approaches to

better illustrate their temporal behaviour, however, the two metrics which

will be reported for each experiment are average class accuracy and fraction

of labels used over the whole data stream. These two evaluation measures

might make it hard to compare competing concept drift handling approaches.

For example, it can be difficult to rank approaches if one approach obtains

a high average class accuracy, but requires a large number of labels and a

second approach obtains a lower average class accuracy yet uses less labelled

data. This eventuality necessitates a performance metric which balances the

relative importance of the two conflicting evaluation criteria, average class

accuracy and the number of labels used. This will be the focus of the next

section.

4.3.1 Multi-criteria Decision Analysis

Multi-criteria Decision Analysis (MCDA) allows the combination of various

performance metrics (or criteria) into one number. MCDA has been success-
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fully applied to classification problems (Peng et al., 2011; Triantaphyllou &

Baig, 2005), but has not, to the best of our knowledge been applied to the

evaluation of cost sensitive concept drift handling. In MCDA criteria are a

measure of the benefit or the cost of a solution. A benefit criterion is one

where a large value is desirable and, inversely, a cost criterion is one where a

large value is undesirable. An MCDA problem is framed as a matrix where

the alternative solutions are rows and criteria are columns, as illustrated by

the text classification problem in Table 4.2. In this problem multiple clas-

sifiers have classified the same text dataset and the classification accuracy

and classification time (in ms) have been recorded. The ideal solution would

have classification accuracy of one and a classification time of zero, however

there is no such classifier in this example so the most suitable classifier is

the one which strikes the best balance between classification accuracy and

classification time.

Table 4.2: Classification example to illustrate a MCDA problem.

Classifier Accuracy Classification Time

SVM 0.81 193 ms
Single Prototype Classifier 0.78 924 ms
Decision Tree 0.69 9 ms
Ensemble 0.78 421 ms

The ranking of the solutions can be complicated by the fact that not all

criteria are equally important to the task at hand. For example, it might

be desirable to put less emphasis on the classification time if the classifier is

run on a powerful server. MCDA approaches emphasise important criteria by

giving them high weights, while less important criteria are given low weights.
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The example in Table 4.2 only shows two criteria to keep the example simple,

but MCDA can be applied to a problem with any number of criteria.

There are various MCDA approaches. This thesis uses the Technique

for Order Preference by Similarity to Ideal Solution (TOPSIS) (Hwang &

Yoon, 1981) approach. TOPSIS is well researched and intuitive and unlike

conceptually similar techniques like the Pareto front, it provides a method

of ranking approaches. TOPSIS is comprised of the following steps:

1. Normalise the MCDA Matrix by dividing each element in a criteria by

the square root of the sum of squares of that criteria. This ensures that

a criteria does not unduly influence the score due to its range.

2. Apply a weight to each criteria.

3. Find the notional positive and negative ideal solutions. The positive

ideal solution is the largest value for each benefit criteria and lowest

value for each cost criteria. The negative ideal solution is conversely

the lowest value for each benefit criteria and largest value for each cost

criteria.

4. Calculate the Euclidean distance between each solution and the positive

and negative ideal solution.

5. The TOPSIS score of a solution reflects the relative closeness to the

positive ideal solution and is calculated as:

topsisi =
dist(solutioni, neg)

dist(solutioni, pos) + dist(solutioni, neg)
(4.2)
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where topsisi is the TOPSIS score for solution i and dist(solutioni, pos)

and dist(solutioni, neg) are the distances between solution i and the

positive and negative ideal solution respectively.

6. The solutions can now be ranked by the TOPSIS score, with the solu-

tion with the largest TOPSIS score being considered the best solution.

The example in Table 4.2 can be visualised to further illustrate the TOP-

SIS process using a graph, like Figure 4.9.

Figure 4.9: A visual representation of TOPSIS scores using equal weights.

This graph show the normalised version of the MCDA problem in Ta-

ble 4.2 with the classification time and accuracy plotted on the x and y axis

respectively. The positive and negative ideal solutions are also plotted. In

this example both accuracy and classification time are given a weight of 0.50,

but the weights could be any application appropriate values which sum up

to one.

Applying the TOPSIS calculation to the data in Table 4.2 gives the TOP-

SIS scores and ranking listed in Table 4.3. The ranks show that when both
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Table 4.3: TOPSIS scores and rank for a sample classification problem.

Classifier TOPSIS score Rank

SVM 0.80 2
Single Prototype Classifier 0.06 4
Decision Tree 0.92 1
Ensemble 0.55 3

criteria are considered using TOPSIS and the weights 0.50 for accuracy and

0.50 classification time, a decision tree is the best solution.

4.3.2 Statistical Evaluation Measures

TOPSIS can be used to combine average class accuracy and the number of

labels used into one measure on which the different concept drift handling

approaches can be ranked. The sign test can be used to determine whether

the differences in TOPSIS scores between two approaches across multiple

datasets is statistically significant or not (Demšar, 2006). The sign test

examines the number of times one approach is better than another approach

over multiple datasets, based on an evaluation metric such as classification

accuracy or a TOPSIS score. For one approach to be considered statistically

significantly better than the other it must win on most of the datasets. The

exact number of wins required depends on the number of datasets used in the

comparison and the desired confidence level. For example, if two approaches

are compared over 15 datasets, then one approach has to win on 12 datasets

for the difference to be statistically significant at the 95% confidence level.

The Friedman test (Friedman, 1940) is a more powerful, non-parametric,

statistical test which is suitable for comparing multiple approaches over mul-
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tiple datasets (Demšar, 2006). The Friedman test requires all of the ap-

proaches to be ranked from best to worst based on a metric (such as their

TOPSIS score) on each dataset, after which it compares the average rank for

all approaches for a statistically significant difference in average rank.

If a significant difference in results is found, however, the Friedman test

does not indicate which approach is significantly different, for that a post-hoc

test is needed. In this thesis the Nemenyi test (Nemenyi, 1963) is used as it

is a well studied technique which is suitable to use in conjunction with the

Friedman test (Demšar, 2006). The Nemenyi test uses the ranks to perform

a pairwise comparison of the approaches to establish which pairs show a

statistically significant difference.

4.4 Conclusion

This chapter has covered the methodology which will be used in the exper-

iments described in the remainder of this thesis. It has also looked at how

drift induced datasets exhibiting feature change and conditional change can

be generated by adjusting the labelling process. This chapter has also covered

the classification framework used and discussed the main evaluation metrics:

average class accuracy and the fraction of labels used. The evaluation also

covered how the data can be plotted to allow for a better understanding of

the changes over time and how the two evaluation metrics can be combined

into one measure using the MCDA technique TOPSIS. The last section dealt

with the statistical tests that will be applied to TOPSIS scores to deter-
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mine which concept handling approaches result in a statistically significant

improvement over other approaches. The next chapter will apply the ex-

periment methodology outlined in this chapter to one of our concept drift

handling approaches, Decision Value Sampling (DVS) to establish if DVS can

be used to handle concept drift while reducing the need for labelled data.
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Chapter 5
Decision Value Sampling

Chapter 1 introduced two high level approaches to handling concept drift,

continuous rebuild approaches and triggered rebuild approaches. However,

most approaches in both categories make the strong assumption that the

data will receive its true label shortly after classification, which can make

them infeasible in some domains. A typical example of this is a sliding

window approach which handles concept drift by continuously incorporating

new labelled data into the training data, while discarding old training data.

The size of the training window (the number of instances in the training

set) determines how the sliding window approach handles concept drift and

is normally the distinguishing difference between sliding window approaches

(which are discussed in further detail in Section 3.3.1). Sliding window ap-

proaches share the need for a fully labelled data stream, as all instances in

the data stream will be part of the training window at some stage and all
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instances in the training window need to be labelled. Further more, most

sliding window approaches update the window size based on a labelled data

dependant heuristic.

This limitation can be somewhat mitigated by altering the sliding window

approach. Klinkenberg (1999) showed that the window size heuristic used in

(Klinkenberg & Renz, 1998) can be applied to a data stream where a fixed

number of random instances in the data stream were labelled. However, it

is not clear if the authors only used the labelled random instances in the

training window, or if all instances in the data stream were labelled and

used in the training window. Either way, it provides a good starting point

for further research. The approach operates on the assumption that the

instances were labelled at random, which discards any information that might

be obtained from the unlabelled instances. A natural next step is therefore

semi-supervised learning, which leverages unlabelled data to improve the

classifier. This chapter elaborates on our semi-supervised learning approach,

Decision Value sampling (DVS), introduced in (Lindstrom et al., 2010a).

DVS is a sliding window approach which reduces the labelled data require-

ment by using a sampling strategy to identify the most important instances

in each batch and only requesting the label for those instances. These newly

labelled instances are then added to the existing training window from which

an equivalent number of the oldest instances are removed. The classifier is

then rebuilt from the instances in the training window and the next batch of

instances are presented for classification. This process repeats indefinitely.

The literature review in Chapter 3, details a small number of semi-

90



supervised learning approaches aimed specifically at handling concept drift.

Both (Zhu et al., 2007) and (Masud et al., 2008) use semi-supervised learning

to improve the learning process. However, their approaches use an ensemble

of classifiers, which make them computationally costly, a problem that can

be further exasperated if applied to high dimensional data. They also require

a large number of parameters, which can make them complicated to use.

The remainder of this chapter is organised as follows, Section 5.1 gives a

high level overview of DVS and explains key components such as the sampling

strategy and drift handling mechanism. Section 5.2 looks at the data and

methodology used to evaluate DVS. Section 5.3 examines the results of the

evaluation and Section 5.4 rounds off the chapter with a brief conclusion.

5.1 Overview

DVS aims to handle concept drift without requiring all the instances in the

data stream being labelled. DVS is a continuous rebuild approach which

means that the classifier is continuously adapted, in the case of DVS the

classifier training data is augmented with a small number of labelled in-

stances each batch. Figure 5.1 shows a high-level overview of how DVS

works. After the initial classifier has been trained the instances arrive as

a stream of unlabelled instances, are grouped into fixed size batches, and

are then presented to the classifier for classification. DVS handles concept

drift by continuously incorporating new training data, while discarding old

training data, i.e. a sliding window approach. However, DVS only requires a
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Figure 5.1: A overview of DVS.

subset of the unlabelled instances in the batch to be labelled, unlike the slid-

ing window approaches discussed in Section 3.3.1 which require all instances

in the batch to be labelled. A sampling strategy is used to select a subset of

the instances in the batch which are then labelled and added to the existing

training window. Some of the oldest instances are removed from the training

window and the classifier is rebuilt and ready to classify the next batch of

data.

DVS is comprised of two major components which require further elabo-

ration, the sampling strategy and the window update mechanism.

5.1.1 The Sampling Strategy

The sampling strategy is applied after a batch of unlabelled instances has

been classified. The aim of the sampling strategy is to identify the unlabelled

instances in the current batch which the classifier would benefit the most from

having labelled and request the labels for those instances.
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(a) Sampling scenario. (b) Sampling scenario with unlabelled
data.

(c) One possible result when using random
sampling.

(d) The result when using DVS.

Figure 5.2: Comparing random sampling to DVS.

The sampling process can be illustrated using the 2D toy example in

Figure 5.2. Figure 5.2a shows the step before the sampling process where

positive and negative training examples are plotted in two dimensions. The

positive instances are depicted as green circles with a plus sign, negative

training instances as red circles with a minus sign and the dashed line is

the decision boundary created by the classifier. The batch of unlabelled

instances arrive, which are shown in Figure 5.2b as orange circles with a

question mark. The unlabelled instances are classified by the classifier, after

which the sampling process begins.

The number of instances to sample n, is controlled by the labelling budget
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b, a parameter specifying what fraction of the data stream can be labelled.

In DVS n = F loor(b∗batchSize) (where the Floor function behaves the same

way as defined for Algorithm 1), e.g if the batch size is 100 and the budget

is 0.05 then the number of instances sampled in each batch is 5.

A surprisingly effective selection strategy, often used as a benchmark,

is random sampling. Random sampling is a nondeterministic sampling ap-

proach where every instance is equally likely to be sampled. One possible

case of random sampling from the scenario in Figure 5.2a can be seen in

Figure 5.2c, where the instance s was sampled and labelled (as a negative

instance). The addition of instance s to the training data does not change

the decision boundary. For a batch based active learning approach, random

sampling involves randomly sampling n unlabelled instances in each batch.

DVS uses a form of uncertainty sampling, a selection strategy which aims

to sample the instances which the classifier is the most likely to misclassify

(Lewis & Gale, 1994). It is expected that for a classifier with a discriminative

decision boundary that the instances closest to the decision boundary are the

most likely to be misclassified. Uncertainty sampling can be visualised as in

Figure 5.2d where the instance closest to the decision boundary, instance

s was sampled and labelled. The addition of s to the training data and

subsequent re-training of the classifier moved the decision boundary from its

original position in Figure 5.2a. The example demonstrates how uncertainty

sampling can refine the decision boundary, whereas random sampling may

select instances far from the decision boundary. A batched based uncertainty

sampling approach samples the n instances closest to the decision boundary
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in each batch.

Uncertainty sampling can achieve high accuracy on a relatively small

number of training instances as the instances selected for labelling are the

instances the classifier is most likely to misclassify. However, the approach

does need the decision boundary to be accurate and can be prone to sampling

outliers (Roy & Mccallum, 2001).

Random sampling on the other hand may sample instances which are less

important for finding a good decision boundary. This might therefore seem

like a poor selection strategy, but it can be advantageous in certain circum-

stances. New concepts can only be handled if the selection strategy allows

instances from the new concept to be sampled. If local concept drift oc-

curs far from the decision boundary it might never be noticed by uncertainty

sampling based approaches as they mostly sample from around the decision

boundary. Random sampling on the other hand is just as likely to sample

from areas experiencing localised changes in concept as any other area of

feature space, and thus allowing the local concept drift to be handled.

5.1.2 Updating the Window

The next step in the adaptation phase is the updating of the training window.

The addition of new training data allows a classifier to learn new concepts.

A sampling strategy can be used to only label a small number of carefully

chosen instances, rather than the whole data stream. However, just adding a

few sampled instances to the training data each batch is unlikely to allow the

classifier to handle concept drift in an efficient manner, as it can take a long
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time for a sufficient amount of data from the new concept to accumulate to

overcome the affect of the training data from the outdated concept. Another

problem with this approach is the increasing computational cost required to

retrain the classifier as more instances are added to the training window.

Some form of forgetting policy which allows old instances to be discarded is

needed to overcome these problems. Section 3.3.1 discussed how a sliding

window approach can be used to handle concept drift. The number of in-

stances in the training window, or the window size is a key parameter which

is either fixed or variable.

DVS uses a fixed size sliding window to handle concept drift. After clas-

sifying the instances in each batch the classifier is rebuilt using a training

window augmented with the instances sampled by the selection strategy and

then labelled. Concept drift handling approaches run on real data are very

likely to encounter an imbalanced class distribution. Simply replacing the

oldest n training instances with n new ones would result in training windows

becoming heavily skewed towards the majority class over time. Instead, the

instances removed from the training window at each iteration are the oldest

instances of the same class as the n new instances. As a result the class

distribution of the training window is kept constant, making DVS a fixed

size, and fixed class distribution, sliding window approach.
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5.2 Evaluation

The goal of this evaluation is to determine if DVS can be used to handle con-

cept drift, and to understand the relationship between the labelling budget

b and average class accuracy. The evaluation metrics used will therefore be

the average class accuracy over the whole data stream, and b, the fraction of

instances labelled. DVS aims to minimise the need for labelled instances, so b

should be as small as possible while maintaining high classification accuracy.

It would seem logical to assume that as b approaches one (all the instances in

the batch are labelled and added to the training window, i.e. a fully labelled

data stream), the accuracy increases.

The value of b might also affect the average class accuracy in other ways.

A classifier will only be able to classify instances of an unfamiliar concept

when there are a sufficient number of labelled instances of that concept in

the training window. If b is large then a large number of instances from the

new concept will be sampled, labelled and added to the training window.

Consequently, as b approaches zero the number of instances of the new con-

cept added to the training data is small and the time it takes for the classifier

to “recover” to its previous accuracy might increase. So a secondary area of

interest is evaluating the influence of b on how quickly the algorithm recovers

after a change in concept. Intuition would suggest that a large value for b

would allow the approach to recover quicker, as a larger proportion of the

data in the training window would be from the new concept. Another area

of interest is to establish how DVS compares to random sampling.

97



These goals can be accomplished by varying the labelling budget and

sampling strategy as outlined in Table 5.1.

Table 5.1: DVS evaluation parameters.

b Sampling Strategy

0.00 Random sampling
0.05 Random sampling
0.10 Random sampling
0.15 Random sampling
0.25 Random sampling
0.50 Random sampling
0.75 Random sampling
1.00 Random sampling

0.00 DVS
0.05 DVS
0.10 DVS
0.15 DVS
0.25 DVS
0.50 DVS
0.75 DVS
1.00 DVS

The combination of a particular sampling strategy and labelling budget

will be abbreviated by concatenating the sampling strategy and budget. For

example, DVS-0.05 means DVS using a 0.05 labelling budget while RS-0.75

refers to random sampling using a 0.75 budget.

5.2.1 Datasets

DVS will be evaluated on both real data, in the form of the two spam datasets

detailed in Section 4.1.3.1, and drift induced datasets, generated using the

methodology from Section 4.1.3.2. DVS should be able to handle: (1) both

conditional and feature change as it is continuously updated with new la-

belled data, (2) both balanced and imbalanced datasets due to the update
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mechanism used, which ensures that the training window maintains a bal-

anced class distribution, (3) both gradual and sudden concept drift. DVS

will therefore be evaluated on dataset which exhibit a combination of the

properties listed above.

The specifics of the datasets are given in Tables 5.2 to 5.4. The name

column shows what concepts were created for the dataset, while the other four

columns list the target topic, size and class distribution for each concept. The

datasets were given their true labels as outlined in Section 4.1.2, i.e concept

drift is induced by changing the target topic over time. The topics trade

and religion are composite topics comprised of related topics. For example,

the composite topic religion is comprised of the newsgroups “alt.atheism”,

“talk.religion.misc” and “soc.religion.christian”. The composite topics were

created as the single topics were not large enough. The next section will

present the methodology used to evaluate DVS on the above listed datasets.

5.2.2 Methodology

In each experiment the first 150 documents of each class in the data stream

were selected as initial training data. The rest of the documents in the data

stream were grouped into batches of 100 documents to be presented to the

classifier for classification and the average class accuracy achieved for each

batch was recorded. An SVM is used as the approach classifier as it is well

suited for text classification. Existing work in active learning has suggested

that a good selection strategy for an SVM is to choose instances close to

the separating hyperplane (Tong & Koller, 2002; Xu et al., 2003). These
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Table 5.2: The topic and class distributions of the 20 newsgroups datasets.

Dataset Name Target topic Size No. Rel. No. Non-rel

20NGSBF Training comp.* 300 150 150
C1 comp.* 2000 1000 1000
C2 religion 2100 1050 1050
C3 sci.* 1800 900 900

20NGGBF Training comp.* 300 150 150
C1 comp.* 1800 900 900
C1/C2 N/A 400 200 200
C2 religion 1700 850 850
C2/C3 N/A 400 200 200
C3 sci.* 1800 900 900

20NGSIF Training comp.* 300 150 150
C1 comp.* 4600 1157 3443
C2 religion 4300 1259 3041
C3 sci.* 2500 1468 1032

20NGGIF Training comp.* 300 150 150
C1 comp.* 4400 1115 3285
C1/C2 N/A 400 58 342
C2 religion 3900 1151 2749
C2/C3 N/A 400 86 314
C3 sci.* 2500 1508 992

20NGSBC Training comp.* 300 150 150
C1 comp.* 2400 1200 1200
C2 religion 2400 1200 1200
C3 sci.* 2500 1250 1250

20NGGBC Training comp.* 300 150 150
C1 comp.* 2000 1000 1000
C1/C2 N/A 400 200 200
C2 religion 2000 1000 1000
C2/C3 N/A 400 200 200
C3 sci.* 2300 1150 1150

20NGSIC Training comp.* 300 150 150
C1 comp.* 6600 997 5603
C2 religion 6300 1246 5054
C3 sci.* 6200 1812 4388

20NGGIC Training comp.* 300 150 150
C1 comp.* 6400 957 5443
C1/C2 N/A 400 102 298
C2 religion 5900 1134 4766
C2/C3 N/A 400 107 293
C3 sci.* 6000 1768 4232
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Table 5.3: The topic and class distributions of the Reuters datasets.

Dataset Name Target topic Size No. Rel. No. Non-rel

ReutersSBF Training earn 300 150 150
C1 earn 1300 650 650
C2 trade 1300 650 650
C3 acq 1100 550 550

ReutersGBF Training earn 300 150 150
C1 earn 1100 550 550
C1/C2 N/A 400 200 200
C2 trade 900 450 450
C2/C3 N/A 400 200 200
C3 acq 1000 500 500

ReutersSIF Training earn 300 150 150
C1 earn 5200 1476 3724
C2 trade 5200 402 4798
C3 acq 4200 641 3559

ReutersGIF Training earn 300 150 150
C1 earn 5000 1418 3582
C1/C2 N/A 400 57 343
C2 trade 4800 366 4434
C2/C3 N/A 400 43 357
C3 acq 4100 627 3473

ReutersSBC Training earn 300 150 150
C1 earn 1500 750 750
C2 trade 1500 750 750
C3 acq 600 300 300

ReutersGBC Training earn 300 150 150
C1 earn 1400 700 700
C1/C2 N/A 400 200 200
C2 trade 1000 500 500
C2/C3 N/A 400 200 200
C3 acq 600 300 300

ReutersSIC Training earn 300 150 150
C1 earn 7200 1666 5534
C2 trade 6200 328 5872
C3 acq 5900 690 5210

ReutersGIC Training earn 300 150 150
C1 earn 7000 1640 5360
C1/C2 N/A 400 41 359
C2 trade 5800 307 5493
C2/C3 N/A 400 30 370
C3 acq 5700 674 5026
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Table 5.4: The topic and class distributions of the news sources and spam
datasets.

Dataset Name Target topic Size No. Rel. No. Non-rel

NSSBF Training Business 300 150 150
C1 Business 7900 3950 3950
C2 Sport 8000 4000 4000
C3 Entertainment 5700 2850 2850

NSSIF Training Business 300 150 150
C1 Business 14900 3712 11188
C2 Sport 15000 4867 10133
C3 Entertainment 15000 2350 12650

Spam1 Training N/A 300 150 150
Testing N/A 9900 1036 8864

Spam2 Training N/A 300 150 150
Testing N/A 8200 688 7512

experiments use the SVM implementation LIBSVM, which means that the

instances with low decision values are the ones close to the hyperplane, which

is where decision value sampling gets it name. However, the general approach

of using an active learning sampling strategy and a sliding window to handle

concept drift can be applied to any classifier which can provide confidence

scores.

After classifying the instances in the batch the selection strategy is used

to sample n instances which are then labelled. The sampled instances are

added to the training window and the window is updated as discussed in

Section 5.1.2. It is desirable to keep the number of algorithm parameters to

a minimum, so the size and class distribution of the window is set to the

same size and class distribution as the initial training window (150 instances

of each class). An interesting direction for future research would be to use a

variable size sliding window, or a less rigid class distribution.

As random sampling is nondeterministic the random sampling experi-
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ments will be run 10 times for each value of b, and the average of the class

accuracies will be used.

5.3 Results

Table 5.5 shows the relationship between the parameter b and the average

class accuracy over the whole stream when random sampling was used as the

sampling strategy. Each row gives the average class accuracy over the whole

data stream for that value of b for a given dataset.

Table 5.5: The average class accuracy obtained by random sampling for
various labelling budgets.

0.00 0.05 0.10 0.15 0.25 0.50 0.75 1.00

20NGSBF 0.68 0.74 0.75 0.76 0.78 0.80 0.81 0.81
20NGGBF 0.67 0.72 0.72 0.73 0.76 0.78 0.79 0.80
20NGSIF 0.61 0.73 0.78 0.79 0.81 0.83 0.83 0.84
20NGGIF 0.60 0.73 0.77 0.79 0.81 0.82 0.83 0.83
20NGSBC 0.49 0.58 0.66 0.69 0.73 0.77 0.78 0.78
20NGGBC 0.48 0.58 0.65 0.69 0.73 0.77 0.78 0.78
20NGSIC 0.54 0.66 0.72 0.75 0.78 0.81 0.81 0.81
20NGGIC 0.54 0.66 0.71 0.75 0.78 0.81 0.81 0.81
ReutersSBF 0.63 0.71 0.74 0.77 0.80 0.83 0.83 0.84
ReutersGBF 0.63 0.70 0.73 0.75 0.79 0.82 0.83 0.83
ReutersSIF 0.63 0.71 0.75 0.77 0.81 0.84 0.85 0.86
ReutersGIF 0.63 0.70 0.74 0.76 0.79 0.83 0.84 0.85
ReutersSBC 0.62 0.67 0.70 0.72 0.77 0.82 0.83 0.84
ReutersGBC 0.62 0.67 0.70 0.73 0.77 0.82 0.83 0.84
ReutersSIC 0.58 0.66 0.70 0.72 0.77 0.81 0.83 0.84
ReutersGIC 0.58 0.67 0.71 0.73 0.77 0.82 0.84 0.85
NSSBF 0.60 0.83 0.84 0.85 0.86 0.86 0.86 0.85
NSSIF 0.60 0.80 0.84 0.84 0.85 0.85 0.85 0.84
Spam1 0.81 0.96 0.96 0.96 0.96 0.97 0.97 0.97
Spam2 0.72 0.87 0.89 0.90 0.91 0.93 0.94 0.94

The results show that not updating the classifier at all (b = 0) leads to a

low average class accuracy, whereas rebuilding the classifier with even a small
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number of new labelled instances, such as b = 0.05, improves the accuracy of

the classifier on most datasets. The results also suggest that the approach is

“front loaded”, as the biggest gains come in the beginning, while increasing

the budget above 0.15 gives diminishing returns.

Figure 5.3: The influence of b on the average class accuracy over time using
random sampling on the ReutersSBF dataset.

A further insight to the importance of b can be gained by plotting the

average class accuracy over time. For brevity a graph for each dataset will

not be included, instead a representative graph will be used.

Figure 5.3 show the average class accuracy over time of DVS using the

random sampling selection strategy with different labelling budgets. The

experiment was run on the first two concepts (C1 and C2) on the ReutersSBF

dataset, using the result smoothing approach discussed in Section 4.3. The

dashed vertical lines marks the concept change point.

It is clear from Figure 5.3 that when no concept drift handling is per-

formed the classifier performance deteriorates once the sudden change in

concept occurs, and the non-updating classifier never seems to recover.

Conversely, when all examples in each batch are labelled and used to
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update the classifier (b = 1, which effectively gives a standard sliding window

approach) the performance of the classifier dips after the change in concept,

but recovers shortly afterwards. The classification accuracy remains high

until towards the end of the dataset, where a small decline occurs, likely due

to natural concept drift in the data.

This trend is consistent across all the datasets, as the labelling budget

is raised the average class accuracy over the data stream increases, just like

in Figure 5.3. The difference in classifier accuracy over a range of labelling

budgets can be largely attributed to the recovery time of the approach, which

is heavily related to the value of b. The larger the value of b, the faster the

classifier accuracy picks back up after a change in concept.

Table 5.6 shows the average class accuracy obtained on the same datasets

when DVS was used.

The DVS results follow a very similar pattern to the results in Table 5.5.

Even adding a small number of labelled instances to the training data each

batch improves the classification accuracy on all datasets. Another similarity

with the random sampling results is that most of the improvement occurs for

smaller values of b.

The observations from Figure 5.3 apply equally to Figure 5.4, which shows

the average class accuracy over time when DVS was used. A comparison

between the random sampling graph and DVS graph seems to suggest that

DVS starts to adapt slightly slower than random sampling for low values of

b, but then outperforms random sampling. This probably occurs because it

takes a few batches of training data from the new concept before DVS finds a
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Table 5.6: The average class accuracy obtained by DVS for various labelling
budgets.

0.00 0.05 0.10 0.15 0.25 0.50 0.75 1.00

20NGSBF 0.68 0.72 0.77 0.76 0.79 0.82 0.82 0.81
20NGGBF 0.67 0.69 0.73 0.76 0.78 0.79 0.80 0.80
20NGSIF 0.61 0.77 0.81 0.82 0.83 0.84 0.85 0.84
20NGGIF 0.60 0.77 0.80 0.82 0.82 0.84 0.84 0.83
20NGSBC 0.49 0.58 0.67 0.71 0.74 0.77 0.78 0.78
20NGGBC 0.48 0.56 0.65 0.71 0.74 0.78 0.78 0.78
20NGSIC 0.54 0.66 0.73 0.77 0.79 0.82 0.82 0.81
20NGGIC 0.54 0.66 0.73 0.76 0.79 0.82 0.82 0.81
ReutersSBF 0.63 0.71 0.73 0.76 0.80 0.83 0.84 0.84
ReutersGBF 0.63 0.68 0.71 0.76 0.79 0.84 0.84 0.83
ReutersSIF 0.63 0.72 0.78 0.80 0.84 0.86 0.86 0.86
ReutersGIF 0.63 0.71 0.77 0.80 0.83 0.85 0.86 0.84
ReutersSBC 0.62 0.66 0.68 0.72 0.78 0.82 0.83 0.84
ReutersGBC 0.62 0.67 0.69 0.71 0.78 0.84 0.84 0.84
ReutersSIC 0.58 0.67 0.73 0.76 0.79 0.83 0.84 0.84
ReutersGIC 0.58 0.67 0.74 0.77 0.80 0.83 0.85 0.85
NSSBF 0.60 0.83 0.86 0.86 0.87 0.87 0.87 0.85
NSSIF 0.60 0.84 0.87 0.87 0.87 0.87 0.86 0.84
Spam1 0.81 0.97 0.97 0.97 0.97 0.97 0.98 0.97
Spam2 0.72 0.93 0.93 0.94 0.94 0.93 0.93 0.94

Figure 5.4: The influence of b on the average class accuracy over time using
DVS on the ReutersSBF dataset.

stable decision boundary to sample around. Once a good decision boundary

is found DVS seems to outperform random sampling for most values of b.

Comparing the two results tables shows a small but consistent difference
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between random sampling and DVS, with DVS giving a slightly higher aver-

age class accuracy for most values of b. Tabulating the wins, losses and draws,

as in Table 5.7 allows for an easier comparisons between the two sampling

techniques.

Table 5.7: The wins, losses and draws obtained by each sampling technique.

0.05 0.10 0.15 0.25 0.50 0.75 1.00

20NGSBF RS DVS DVS DVS DVS DVS DRAW
20NGGBF RS DVS DVS DVS DVS DVS DRAW
20NGSIF DVS DVS DVS DVS DVS DVS DVS
20NGGIF DVS DVS DVS DVS DVS DVS DVS
20NGSBC RS DVS DVS DVS DVS DVS DRAW
20NGGBC RS DVS DVS DVS DVS DVS RS
20NGSIC RS DVS DVS DVS DVS DVS RS
20NGGIC RS DVS DVS DVS DVS DVS RS
ReutersSBF DVS RS RS RS DVS DVS DRAW
ReutersGBF RS RS DVS DVS DVS DVS DVS
ReutersSIF DVS DVS DVS DVS DVS DVS RS
ReutersGIF DVS DVS DVS DVS DVS DVS RS
ReutersSBC RS RS DVS DVS DVS DVS DRAW
ReutersGBC DVS RS RS DVS DVS DVS RS
ReutersSIC DVS DVS DVS DVS DVS DVS RS
ReutersGIC RS DVS DVS DVS DVS DVS RS
NSSBF RS DVS DVS DVS DVS DVS DRAW
NSSIF DVS DVS DVS DVS DVS DVS RS
Spam1 DVS DVS DVS DVS DVS DVS RS
Spam2 DVS DVS DVS DVS RS RS DVS

No. wins DVS 10 16 18 19 19 19 4
No. wins RS 10 4 2 1 1 1 10
No. draws 0 0 0 0 0 0 6

A sampling technique is considered to win on a particular dataset if it

obtains a higher average class accuracy than the other sampling technique

using the same labelling budget. For example, Table 5.7 shows that on the

20NGSBF dataset RS-0.05 was better than DVS-0.05, DVS-1.00 and RS-1.00

was a draw and DVS won the other tested labelling budgets. The last three

107



rows give the total number of wins, losses and draws for each approach.

According to the sign test, one approach is statistically significantly better

than the other if it wins 15 out of 20 times (at the 95 % confidence level).

DVS is therefore statistically significantly better than random sampling when

using the a labelling budget of 0.10, 0.15, 0.25, 0.50 or 0.75.

The analysis of the difference between random sampling and DVS can be

further helped by picking a particular value for b and plotting the average

class accuracy over time. There are too many datasets and labelling budgets

to present all possible combinations as accuracy over time graphs. Instead

a selection of representative graphs will be relied upon to illustrate some

differences between DVS and random sampling. The results for b = 0.15 give

a good balance between the labelling effort and the performance achieved

and are fairly representative of the graphs for other datasets. Appendix C.1

contains average class accuracy over time graphs on more datasets which have

been excluded from this section for brevity. Figure 5.5 shows the average class

accuracy over time with b = 0.15 on three datasets.

On each graph no update refers to a scenario in which no concept drift

handling is used (b = 0), while sliding window refers to a fixed size sliding

window approach that uses true labels for all examples in each batch (i.e.

b = 1.00). DVS-0.15 and RS-0.15 refer to the scenarios where decision value

and random sampling selection strategies with a 0.15 labelling budget, re-

spectively, are used. The concept shifts are denoted using a dashed vertical

line (except in Figure 5.5c where there concept shift and drift points are

unknown).
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(a) Average class accuracy over time on the NSSBF dataset

(b) Average class accuracy over time on the ReutersSIC dataset

(c) Average class accuracy over time on the Spam
1
dataset

Figure 5.5: Showing the affect of different sampling techniques and labelling
budgets on the average class accuracy over time.

In general both the RS-0.15 and DVS-0.15 approaches to concept drift

handling perform well. Figure 5.5a is illustrative of how both DVS and ran-

dom sampling handle concept drift. Before the first change in concept both

DVS-0.15 and RS-0.15 maintain an average class accuracy very compara-
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ble to, and sometimes exceeding, the sliding window approach. Particularly

DVS-0.15 occasionally outperforms the sliding window approach (which uses

all the labelled data) when the concept is stable, as can be seen both before

the first concept shift and before the second concept shift in Figure 5.5a.

This is an interesting result and probably arises because there is some noise

in the data stream and DVS avoids the noisy instances to produce a better

classifier. The average class accuracy for all three updating approaches de-

clines when a change in concept occurs. The sliding window approach seems

to recover the fastest, which is consistent with Figures 5.3 and 5.4, which

showed that the larger the labelling budget the faster the average class accu-

racy recovers. DVS-0.15 and RS-0.15 take a bit longer to recover, but they

both catch back up with the sliding window approach over time.

Figure 5.5b shows the same experiment on the ReutersSIC dataset. The

pattern before the first change in concept is very similar to the pattern in

the previous graph. It seems like RS-0.15 recovers faster after the change in

concept than DVS-0.15. This is probably related to the previously mentioned

point of how it might take DVS-0.15 a few batches of labelled data to find

a good decision boundary to sample around. This graph is also interesting

as the difference between the three approaches is more pronounced. It seems

like a larger labelling budget is required to achieve an average class accuracy

comparable to the sliding window as the classification task is harder. This

reinforces the notion that the appropriate labelling budget is highly domain

dependant.

Figure 5.5c shows how RS-0.15 and DVS-0.15 managed to handle concept
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drift on the Spam1 dataset. This graph was included to ensure that these

approaches can manage concept drift on a non-artificial dataset. The average

class accuracy over time shows that the change in concept on the Spam1

dataset is gradual rather than sudden. It should also be noted that there

is little difference between the three approaches, with both DVS-0.15 and

RS-0.15 achieving an average class accuracy which is very comparable to the

one obtained by the sliding window approach. This is probably due to the

fact that the two concepts are easily distinguishable. In fact, the results in

Tables 5.5 and 5.6 show that both approaches can obtain a very high average

class accuracy with a labelling budget of only 0.05. The number, magnitude

and recurrence of changes in concept can provide an alternative, or perhaps

complimentary explanation for the difference between the spam datasets and

the drift induced datasets. However, this is hard to confirm as the properties

of the drift in the spam datasets, such as the drift type and drift cause and

are unknown.

5.4 Conclusion

The goal of this work is to reduce the need for labelled instances when

handling changing concepts using a continuous rebuild approach. This was

achieved by combining active learning and a sliding window. The need for

labelled instances is reduced by using active learning to selectively sample the

most useful instances for labelling each time the classifier is to be retrained.

Experiments were performed on multiple text datasets from commonly used

111



text corpora in which drift was induced, and on two real-world spam filtering

datasets. On all of these datasets it was possible to maintain classification

accuracies comparable with those achieved using full labelling of the data

stream by labelling only 15% of the incoming instances - a significant reduc-

tion in the labelling effort required. However, it should be noted that there

is an inverse relationship between the amount of labelled data used and the

recovery time of DVS, i.e. as the amount of labelled data used decreases,

the recovery time increases. The results also showed that decision value

selection strategy boosted performance more than the random sampling se-

lection strategy emphasising the usefulness of targeted selection of instances

for labelling. The next chapter will cover our triggered rebuild approach,

Confidence Distribution Batch Detection (CDBD).
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Chapter 6
Confidence Distribution Batch

Detection

The results from Chapter 5 suggest that the first high level approach to deal

with concept drift, semi-supervised learning, manages to handle concept drift

while reducing the need for labelled data. Our experiments show that the

semi-supervised learning approach Decision Value Sampling (DVS) handled

concept drift effectively while only requiring 15% of the data stream to be

labelled. However, there is a significant drawback to DVS, and the other

semi-supervised approaches to handling concept drift examined, in that they

require labelled data regardless of whether the concept is changing or not.

For example, imagine a data stream which experiences infrequent sudden

concept shifts, yet is stable in between these shifts. In this type of scenario

the semi-supervised approaches incur an unnecessary labelling cost as they
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require a fixed amount of labelled data (such as 15% for DVS), even when

the concept is not changing. In this scenario the second high level approach

to concept drift handling, triggered rebuilds, might be more appropriate.

Triggered rebuild approaches monitor a variable believed to be correlated

with a change in concept, an indicator, and rebuild the classifier when the

indicator value changes significantly. A common way to form an indicator is

using the two-window paradigm (discussed in more detail in Section 3.4.3.2)

where some summary information from a reference window is compared to

the summary information in the current window. For example, Kuncheva

(2009) and Nishida & Yamauchi (2007) compare the error rate in a reference

window to the error rate in the current window using statistical tests to

determine if a significant change in concept has taken place. In both cases

the indicator is used to adjust the size of a sliding window, but it could also

be used in a triggered rebuild framework to allow a classifier to be rebuilt on

more recent training data when a change in concept is suspected. This type

of approach might seem ideal, as new labelled training data is only needed

when a change in concept is detected. However, labelled data is required to

calculate the error rate indicator, so this type of approach does not reduce

the need for labelled data.

This is where Confidence Distribution Batch Detection (CDBD) fits in.

CDBD is a triggered rebuild approach introduced in (Lindstrom et al., 2011)

and further elaborated on in (Lindstrom et al., 2013). CDBD aims to handle

concept drift by using an indicator which can be calculated without using

labelled data. The literature review in Section 3.4.3.2 cited a few approaches
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with a similar aim. Kifer et al. (2004) and Sebastião & Gama (2007) monitor

the divergence between the distribution of a feature in a reference window and

the current window and use this as a concept drift indicator. This divergence

based indicator does not require labelled data to calculate, but it is limited

in what kind of data it can be applied to. In domains like text classification,

where there are a very large numbers of features, the distribution of any one

feature value is not likely to be informative enough to warn of changes in

concept.

Fan et al. (2004a) create an indicator from decision tree leaf node statis-

tics, however, the approach only works with decision trees, which are not

always the most suitable classifiers. Zliobaite (2010) and Lanquillon (Lan-

quillon, 1999) are the two approaches closest to CDBD. Both use classifier

output to detect changes in concept, which removes the need to identify one

feature for monitoring and makes them suitable for use on a large range of

classifiers.

The remainder of this chapter is organised as follows, Section 6.1 gives a

high level overview of CDBD and explains key components of the algorithm.

Section 6.2 looks at how the CDBD indicator was evaluated and the result of

the evaluation. Section 6.3 evaluates how CDBD works when the classifier is

rebuilt based on the CDBD indicator and is followed by Section 6.4, a brief

conclusion.

115



6.1 Overview

At a high level CDBD monitors an indicator for the occurrence of concept

drift and when a change is suspected the classifier is rebuilt using recent data.

The indicator is based on comparing the distribution of classifier confidences

in two different parts of the data. This is based on the expectation that

when feature change occurs, the distribution of classifier outputs will change

significantly. CDBD is comprised of three phases: (1) Initialization, (2)

Detection and (3) Adaptation. These are shown in Figure 6.1.

Figure 6.1: An overview of the CDBD approach.

The next three sections will expand on these phases and show how they

combine to form the CDBD approach.
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6.1.1 The Initialization Phase

The first step in CDBD is to train the initial classifier. After the initial clas-

sifier has been trained the data arrives as a stream of unlabelled instances,

which are grouped into fixed size batches, and presented to the classifier for

classification. CDBD uses the two-window paradigm to create the concept

drift indicator, so a reference window is created from the first batch of in-

stances immediately after the classifier is trained. The confidences in the

reference window are then discretized into a histogram. The bins are se-

lected by first identifying a range in which most of the confidences in the

reference batch lie, then dividing the range into uniformly sized bins. Initial

experiments seemed to indicate that between 7 and 13 bins produced a signal

which was well correlated to changes in concept.

The next step is to set the threshold value used by CDBD to determine if

a change of concept has taken place. The threshold is set using an approach

similar to that used in (Lanquillon, 1999). The indicator value for the first v

batches immediately after the reference batch is calculated by measuring the

divergence between the distribution of the classifier outputs in the reference

batch and the distribution of classifier outputs in each of those v batches.

The exact method used to calculate the divergences will be covered in the

next section. The threshold used by CDBD is µ+ (α ∗ σ) where µ and σ are

the mean and standard deviation of the v indicator values respectively while

α is a user-specified threshold parameter. More information about how α

was chosen empirically will be given in the Section 6.2.3.
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Figure 6.2: The Initialization Phase of CDBD.

Figure 6.2 shows a summary of the initialization phase of CDBD (with

v set to four). Once the initialization phase is complete CDBD is ready to

detect sudden concept shifts.

6.1.2 The Detection Phase

After the initialization phase the detection phase begins. During this phase

the new unlabelled instances arrive in batches to be processed by CDBD.

This phase consists of three steps:� Classify all the instances in the current batch.� Measure for drift by calculating the drift indicator.� Decide if the value of the drift indicator warrants a rebuilding of the

classifier on more recent data.

These steps will now be discussed in more detail. The first step is to

classify all the instances in the current batch. A by-product from the classi-

fication is a confidence score for each instance in the batch.

The second step is to calculate the indicator value for the current batch.

This is done by measuring the divergence between the distribution of the
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confidences for the current batch and the reference window. The indicator

value for any batch can be calculated by discretizing the confidence values

for that batch using the same bins as the reference window, normalizing both

the reference histogram and the current histogram and then calculating the

divergence using a divergence measure. The choice of measure used to calcu-

late the divergence between distributions can greatly affect the indicator and

subsequently the concept drift detection ability of the algorithm. Sebastião

& Gama (2007) provide a good comparison of such measures and CDBD

uses Kullback-Leibler divergence which was found to be particularly effec-

tive. The Kullback-Leibler divergence between two distributions represented

as histograms can be defined as:

KL(h1, h2) =
k∑

i=1

h1
i log

h1
i

h2
i

(6.1)

where h1 and h2 are both histograms with the same k bins, and h1
i refers to

bin i of histogram h1.

The final step is to decide if the classifier needs to be adapted. This is

done using a rule, which will be referred to as a trigger. The trigger used in

CDBD is a variation of the Western Electric rules (Montgomery, 2004). It

fires when the indicator values for x out of the last y batches have been above

the threshold. For example, a 3/5 trigger fires when three out of the last five

indicator values are above the threshold, and so on. CDBD parameterised

with a particular trigger will be referred to using CDBD-x-y, e.g. CDBD-3-5

means CDBD using a 3/5 trigger.
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Figure 6.3: The Detection Phase of CDBD.

The process so far is illustrated in Figure 6.3. This process repeats with

each new batch until the trigger fires. When the trigger fires the adaptation

phase begins.

6.1.3 The Adaptation Phase

When the occurrence of concept drift is flagged by the trigger the classifier

needs to be adapted. The simplest approach to adapting the classifier is to

retrain it using the instances in the current batch as the new training data.

However, class imbalance can be very common in real life data streams, so

it is presumptuous to assume that the current batch will give a sufficiently

balanced dataset from which to retrain the classifier. Instead, a balanced

training set with d instances from each class, is constructed from as many

batches as is required. The batch where the detection takes place becomes

the beginning of the new training window and new test batches are added

to the training window as they arrive until the number of instances of each

class is equal to, or greater than d. At this point the d most recent instances
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of both classes are used as training data while the rest are discarded 1.

Figure 6.4: The Adaptation Phase of CDBD.

The process so far is illustrated in Figure 6.4. After the new classifier has

been trained CDBD moves from the adaptation phase to the initialization

phase where the reference window is reconstructed and the trigger threshold

is recalculated and after that CDBD re-enters the detection phase. This

process repeats indefinitely.

6.2 Signal Experiment

The overall goal of CDBD is to detect and handle concept drift while using

as little labelled data as possible. However, the evaluation of CDBD can be

broken down into two distinct sub-experiments.

The first experiment aims to establish the viability of using the confidence

distribution divergence as a drift detection indicator. The second experiment

couples the detection with an adaptation mechanism to establish if the two

combined can handle concept drift using a limited number of labels.

1This is not the most efficient way to update the training window as the true class
labels must be sought for every test instance in the training window. Further label savings
could be achieved by improving the adaptation process and would make an interesting
direction for future work. It is however outside the scope of this thesis.
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This section deals with the first experiment, which will be referred to as

the signal experiment. The signal experiment aims to examine if the CDBD

signal can be used to detect changes in concept, but will also be used to

empirically ascertain the best values for the CDBD parameters, such as the

threshold and trigger values. This will be achieved by plotting the indicator

over time to observe if the indicator value changes at the point where a

concept shift was introduced and applying detection metrics to establish

what threshold and trigger combination gives the best detection results.

6.2.1 Datasets

The signal experiment will not be evaluated on the spam datasets, as it is

impossible to know where a change in concept took place in those datasets,

which makes the evaluation of the signal impractical.

The indicator cannot be evaluated on conditional change datasets as it is

not possible to detect conditional change without using labelled data and the

goal of the CDBD indicator is to detect concept drift without using labelled

data. Detecting a change in a data stream with an imbalanced and changing

class distribution is a challenge significantly harder than detecting a change

in a data stream with a balanced class distribution. The balanced datasets

are therefore not used in the evaluation as they are superfluous, if CDBD

works on a imbalanced data stream it is very likely to work on a balanced

one.

The gradual concept drift datasets will also be discarded for this ex-

periment as they do not have a fixed change point, which complicates the
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evaluation metrics. Instead the precedent set by other detection approach

evaluations (like the ones in (Kuncheva, 2009) and (Lanquillon, 1999)) will

be followed by evaluating CDBD on sudden concept shift datasets.

CDBD will be evaluated on imbalanced, concept shift induced, feature

change datasets generated from the Reuters, 20 newsgroups and news sources

corpora, i.e. ReutersSIF , 20NGSIF and NSSIF .

The specifics of the datasets are given in Table 6.1. The name column

shows what concepts were created for each dataset, while the other four

columns list the target topic, size and class distribution for each concept.

The feature change datasets were given their true labels as outlined in Sec-

tion 4.1.2.2. All documents belonging to the target topic in each concept

are labelled as relevant for that concept. All other documents are labelled

as non-relevant. As the target topic changes between concepts, documents

that belong to a target topic will not appear in any other concept that has

a different target topic to prevent introducing concept drift based on a con-

ditional change. So, for example, for the NSSIF dataset no documents from

the Business topic will appear in concept C2.

6.2.2 Methodology

For each experiment the initial classifier was trained on the training concept

for that dataset, as described in Table 6.1. The documents in concepts

C1 and C2 were grouped into batches of 100 documents to be presented to

the classifier for classification. CDBD can be used with any classifier that

produces a score that can be interpreted as an estimate of confidence that
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Table 6.1: Details of the datasets used in the signal experiment evaluation.

Dataset Name Target topic Size No. Rel. No. Non-rel

20NGSIF Training comp.* 300 150 150
C1 comp.* 4600 1157 3443
C2 religion 4300 1259 3041
C3 sci.* 2500 1468 1032

ReutersSIF Training earn 300 150 150
C1 earn 5200 1476 3724
C2 trade 5200 402 4798
C3 acq 4200 641 3559

NSSIF Training Business 300 150 150
C1 Business 14900 3712 11188
C2 Sport 15000 4867 10133
C3 Entertainment 15000 2350 12650

a prediction made by the classifier is correct. For example, in the case of a

single prototype classifier the distance between a test instance and the closest

class prototype might be considered indicative of how confident the classifier

is that the test instance is of the same class as that class prototype. In these

experiment an SVM with a linear kernel was used as the classifier and the

decision values from the SVM were used as classifier confidence outputs.

The discretization of the classifier confidences requires that a set of bins

is identified. Initial experiments seemed to indicate that the decision val-

ues produced by the SVM on these datasets lay in the −2 to 2 range.

The preliminary experiments also showed that between 7 and 13 bins pro-

duced a signal which was well correlated to changes in concept so the bins

{−2.0,−1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0} were used in all subsequent ex-

periments, with any value outside the range put in the first and last bin

respectively.

This primary goal of this set of experiments is to establish if there is a
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relationship between the indicator signal and changes in concept, so in this

set of experiments the batches which caused a trigger to fire were noted, but

the classifier was not adapted. A visual inspection of the signal plotted over

time should answer the question if there is a relationship between the signal

and changes in concept. The signal will also be evaluated more formally

using a two-tailed t-test to determine whether or not the signal before the

change in concept is significantly different from the one after the change in

concept.

The secondary goal, assuming the signal works, is to establish which

combination of threshold and trigger values give the best detection result.

To this end the mean and standard deviation was calculated on the indicator

value for the 6 batches after the reference batch.

The trigger can be evaluated in a quantitative way as detections should

not take place in concept C1, and should take place in C2. More formally,

the metrics used were True Positive (TP), False Positive (FP), True Negative

(TN) and False Negative (FN) rates. A detection in C1 is an FP, while a

detection in C2 is a TP. Conversely, a non-detection in C1 is a TN, while

a non-detection in C2 is an FN. The relative importance placed on the sys-

tem detecting a change when it should not have (an FP) and the system

not detecting a change when it should have (an FN) is highly application

dependant. For example, in a trial the presumption of innocence stipulates

that an FP (convicting an innocent person) is highly undesirable.Conversely,

cancer prediction systems should produce very few FNs, as not detecting

cancer when it is present is very serious.
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These figures can be further refined into accuracy ( TP+TN
TP+FP+TN+FN

), preci-

sion ( TP
TP+FP

) and recall ( TP
TP+FN

) numbers. The final metric used is the Run

Length (RL), which is defined as the number of batches between the batch

where the concept shift occurred and where the detection algorithm flags a

change in concept. In this set of experiments the 1/1, 2/3 and 3/5 triggers

were evaluated on each dataset to find which trigger (or triggers), consis-

tently detects a change in concept in C2 while not erroneously detecting a

change in concept in C1.

6.2.3 Results

Figures 6.5, 6.6, and 6.7 show the indicator value over time on the 20NGSIF ,

ReutersSIF , and NSSIF datasets. The figures also show how varying the user-

specified α parameter creates different detection thresholds. An α value of,

one, two and three are shown as “1 Std. Dev.”, “2 Std. Dev.”and “3 Std.

Dev” respectively (for more information about how the threshold is calcu-

lated see Section 6.1.1). The concept drift point is marked by the dashed

vertical line. These graphs show that although the signal is not perfect, in

general the indicator values before the change in concept are substantially

different from the values after the change in concept. This was confirmed

using unpaired two-tailed t-tests which showed a statistically significant dif-

ference (at the 95% confidence level) in indicator values before and after the

concept drift on all three datasets.

On the NSSIF dataset it is evident from Figure 6.7 that the signal starts

increasing before the change in concept. This could be due to naturally
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Figure 6.5: Signal over time on the 20NGSIF dataset.

Figure 6.6: Signal over time on the ReutersSIF dataset.

Figure 6.7: Signal over time on the NSSIF dataset.

Figure 6.8: Signal over time on the NSSIF dataset with randomised instance
order.

occurring concept drift in the data, as might be expected in real data (par-

ticularly in the NSSIF dataset as it is considerably larger than the other
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datasets used) making a gradual change in concept more likely to occur.

One way to test the hypothesis that there is naturally occurring concept

drift due to the chronological ordering of the data is to randomise the order

of the instances within each concept. Figure 6.8 shows the same experiment

but with the instance order within C1 randomised and the instance order

within C2 randomised.

The increase in the signal before the change in concept seen in Figure 6.7

is not present in Figure 6.8, which supports our argument that the signal

increase seen in Figure 6.7 is due to natural concept drift. It also strengthens

the argument made in Chapter 4 that ordering the data chronologically can

preserve interesting characteristics of the data which might otherwise be lost

and which might make the classification problem harder, but more realistic.

Once it has been established that the indicator signal seems to be related

to changes in concept then Figures 6.5, 6.6 and 6.7 can be used to help

choose a detection threshold. Based on these graphs it seems like most signal

values are below the mean plus one standard deviation before the change in

concept, and above the mean plus one standard deviation after the change

in concept. A higher detection threshold of the mean plus two or three times

the standard deviation seems unable to separate the before and after signal

so a α of one was used giving a detection threshold of the mean plus one

standard deviation, which was used for all the subsequent experiments.

Another interesting finding is that even though the signal is reasonably

well behaved, it does often break the mean plus one standard deviation

threshold before the concept changes. This shows the importance of us-
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ing the Western Electric rules which require multiple indicator values to be

above the threshold within a short time frame, rather than a simpler trigger

which would cause a rebuild every time the indicator value goes above the

threshold.

It is hard, however, to establish what specific trigger rule is the most

suitable based on Figures 6.5 to 6.7. For this a more quantitative evaluation

is needed. Table 6.2 shows the detection results for the 1/1, 2/3 and 3/5

triggers on the three datasets. The second and third column show how many

detections took place in each concept for that trigger. These detection results

can be further refined into FPs, TPs, FN and TNs (using the definitions

from Section 6.2.2), which in turn can be distilled into accuracy, precision

and recall scores.

Table 6.2: Summary table of detection results.

(a) Detections on the 20NGSIF dataset.

#Detections
Trigger C1 C2 #FP #TP #FN #TN Acc Prec Rec RL

1/1 1 33 1 33 7 32 0.89 0.97 0.83 0
2/3 0 36 0 36 4 33 0.95 1.00 0.90 1
3/5 0 37 0 37 3 33 0.96 1.00 0.93 2

(b) Detections on the ReutersSIF dataset.

#Detections
Trigger C1 C2 #FP #TP #FN #TN Acc Prec Rec RL

1/1 4 49 4 49 3 42 0.93 0.92 0.94 0
2/3 2 51 2 51 1 44 0.97 0.96 0.98 1
3/5 0 50 0 50 2 46 0.98 1.00 0.96 2

(c) Detections on the NSSIF dataset.

#Detections
Trigger C1 C2 #FP #TP #FN #TN Acc Prec Rec RL

1/1 59 148 59 148 3 84 0.79 0.71 0.98 1
2/3 57 148 57 148 3 86 0.80 0.72 0.98 2
3/5 63 150 63 150 1 80 0.78 0.70 0.99 0
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The precision and recall values give an understanding of the detection

characteristics of a particular trigger. A perfect trigger would have a precision

and recall of one. A recall of one means that the trigger fired every time in

C2, when the concept is different from the concept the classifier was trained

on, and a precision of one means that it only fired in C2. The results in

the detection tables show that no trigger is a perfect detector, but all three

did well on the 20NGSIF and ReutersSIF datasets, but not as well on the

NSSIF dataset due to natural concept drift in the data stream. The best

trigger is dependant on the relative importance of detecting every change

(recall) and not falsely detecting (precision) a change in concept. The run

length column (RL) suggest that the 1/1 trigger is able to detect a change in

concept the fastest, but the precision column shows that it is susceptible to

false positives. The 2/3 and 3/5 triggers are more cautious approaches which

make them slower to react to changes in concept. In a domain where the cost

of labelling is high and a false positive trigger would result in unnecessary

labelling, a 2/3 or 3/5 trigger would be better suited than a 1/1 trigger as

they have a higher precision score. However, there does not seem to be a

substantial difference between the 2/3 and 3/5 triggers.

The signal experiment shows that the CDBD signal can be used to detect

concept drift in a document stream. The signal experiment is, however, arti-

ficial as when the full CDBD approach is applied the classifier will be rebuilt

and the detection algorithm re-initialised when detection occurs. The aim of

the next experiment is to evaluate whether the CDBD detection mechanism

coupled with a rebuild policy could handle concept drift.
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6.3 Detection and Rebuild Experiment

The result from the signal experiment suggest that a confidence distribution

divergence based indicator can be used to detect concept drift. The aim of

this experiment, which will be referred to as the detection and rebuild ex-

periment, is to investigate if the CDBD signal coupled with a trigger and

rebuild policy can maintain classification accuracy in a data stream contain-

ing sudden changes in concept while using very few labels. CDBD will also be

compared against other triggered rebuild benchmarks (which will be detailed

shortly in Section 6.3.2), to establish if CDBD is on par with comparable ap-

proaches which use a fully labelled data stream.

6.3.1 Datasets

The detection and rebuild experiment was evaluated on feature change datasets,

just like the signal experiment, as conditional change can not be detected

without labelled data. The gradual drift datasets were also discarded as

CDBD is designed to detect sudden concept shifts.

Both balanced and imbalanced datasets were used so that the affect of a

variable class distribution on triggered detection algorithms could be evalu-

ated. The Spam datasets were also included to see if CDBD could handle

concept drift on a dataset with an unknown drift cause and type.

This gives a total of eight datasets created using the concepts listed in

Table 6.3. All documents with the target topic in each concept are labelled

as relevant for that concept. For each corpora a balanced and an imbalanced
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dataset was generated. The imbalanced datasets retain the class distribution

one gets when the documents are ordered chronologically. The documents in

the balanced datasets are also ordered chronologically, but they are filtered

to remove documents until the class distribution in each batch is 50-50 (using

the topic filter as described in Section 4.1.3.2).

Dataset Name Target topic Size No. Rel. No. Non-rel

20NGSBF Training comp.* 300 150 150
C1 comp.* 2000 1000 1000
C2 religion 2100 1050 1050
C3 sci.* 1800 900 900

20NGSIF Training comp.* 300 150 150
C1 comp.* 4600 1157 3443
C2 religion 4300 1259 3041
C3 sci.* 2500 1468 1032

ReutersSBF Training earn 300 150 150
C1 earn 1300 650 650
C2 trade 1300 650 650
C3 acq 1100 550 550

ReutersSIF Training earn 300 150 150
C1 earn 5200 1476 3724
C2 trade 5200 402 4798
C3 acq 4200 641 3559

NSSBF Training Business 300 150 150
C1 Business 7900 3950 3950
C2 Sport 8000 4000 4000
C3 Entertainment 5700 2850 2850

NSSIF Training Business 300 150 150
C1 Business 14900 3712 11188
C2 Sport 15000 4867 10133
C3 Entertainment 15000 2350 12650

Spam1 Training N/A 300 150 150
Testing N/A 9900 1036 8864

Spam2 Training N/A 300 150 150
Testing N/A 8200 688 7512

Table 6.3: Details of the datasets used in the detection and rebuild experi-
ment.
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6.3.2 Methodology

The methodology for the detection and rebuild experiment is very similar to

the methodology used for the signal experiment. The only difference is that in

the rebuild experiment the classifier is updated, as outlined in Section 6.2.2,

with the distribution parameter d set to 150, when the trigger fires. The

signal experiment was inconclusive on the question of what trigger rule is

the most appropriate. All three triggers (1/1, 2/3 and 3/5) were therefore

used in the experiment. In addition to CDBD-1-1, CDBD-2-3 and CDBD-3-5

the following benchmarks were also evaluated:� No Update: No concept drift handling.� Sliding Window: A fixed distribution, fixed-size sliding window ap-

proach.� Window Resize Algorithm for Batch Data (WRABD) (Kuncheva,

2009): The triggered rebuild WRABD approach which detects drift

when the classification error in the current batch is above the mean

plus three standard deviations. The mean and standard deviation is

calculated using 10 batches of data, as in (Kuncheva, 2009).� Perfect Detection: A notional approach which is set to trigger a

classifier rebuild at each of the known concept drift points (this is

used purely as an indicator of the performance limits of the CDBD

approach).

133



Both the perfect detector and WRABD use the same rebuild approach as

CDBD so that they can be applied to data with varying and imbalanced class

distributions. CDBD was evaluated and compared to the above approaches

in terms of average class accuracy and fraction of labels used.

6.3.3 Results

Table 6.4 summarises the performance of all approaches. The table is ver-

tically divided into concept drift handling approaches. For each approach

the first column shows the average class accuracy obtained by the classifier,

while the second column shows the fraction of instances labelled, excluding

the initial training data.

The first important thing to note from these results is that considering

the difference in performance between the no update and sliding window it

is evident that all datasets exhibit substantial concept drift which can be

handled.

It is also clear that the sliding window approach achieves the best per-

formance on all datasets, although at the expense of 100% label usage. It is

interesting to note that sliding window obtains higher average class accuracy

than WRABD. It is likely that reason for this is that the sliding window

approach recovers faster, in terms of average class accuracy, after a change

in concept occurs. The sliding window also has another advantage, in that

it handles any gradual concept drift which might be present in the data,

whereas WRABD only rebuilds when a significant change is suspected.

The overall result seems to be that out of the CDBD family of approaches
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Table 6.4: The average class accuracy and fraction of labels used for each of the tested approaches.

No Update CDBD-1-1 CDBD-2-3 CDBD-3-5 WRABD Perfect Detection Sliding Window

20NGSBF 0.68 0 0.73 0.10 0.75 0.10 0.76 0.10 0.77 1 0.77 0.10 0.81 1
20NGSIF 0.61 0 0.79 0.28 0.78 0.16 0.76 0.09 0.76 1 0.78 0.10 0.84 1
ReutersSBF 0.63 0 0.79 0.16 0.78 0.16 0.75 0.16 0.80 1 0.80 0.16 0.84 1
ReutersSIF 0.63 0 0.78 0.33 0.79 0.23 0.78 0.19 0.72 1 0.77 0.19 0.86 1
NSSBF 0.60 0 0.84 0.13 0.81 0.06 0.83 0.04 0.83 1 0.84 0.03 0.85 1
NSSIF 0.60 0 0.81 0.17 0.84 0.16 0.83 0.09 0.81 1 0.85 0.04 0.85 1
Spam1 0.81 0 0.96 0.45 0.93 0.24 0.90 0.21 0.93 1 - - 0.97 1
Spam2 0.72 0 0.86 0.44 0.88 0.42 0.84 0.45 0.82 1 - - 0.94 1
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both CDBD-2-3 and CDBD-3-5 obtain a good balance between high aver-

age class accuracy and low label usage. Most importantly, these CDBD ap-

proaches achieve comparable average class accuracies to the triggered rebuild

WRABD approach, while using only a fraction of the labelled data.

The temporal behaviour of CDBD is best illustrated by plotting the av-

erage class accuracy over time. For brevity CDBD-2-3 will be presented

as representative of CDBD as it is not as sensitive to signal fluctuations

as CDBD-1-1 nor as conservative as CDBD-3-5. For the graphs showing

CDBD-1-1 and CDBD-3-5 please see Appendix D.1.

Figures 6.9 to 6.16 show a more detailed exploration of CDBD-2-3. These

figures plot the average class accuracy over time, using a five point moving

average for smoothing, for the sliding window, no update, CDBD-2-3 and

WRABD approaches. The concept drift points are marked by dashed vertical

lines and the concept drift detection points for the CDBD-2-3 trigger are

marked with squares at the top and the detection points for WRABD are

marked with a triangle.

Figure 6.9 is illustrative of the full suite of graphs, and clearly illustrates

the concept drift process. This graph shows classifier performance on the

20NGSBF dataset as the relevant topic is changed from “comp.*” (which was

also relevant during training) to “religion”, and finally to “sci.*”. The sliding

window approach manages to maintain a reasonably constant classification

accuracy throughout the concept changes, albeit with a slight dip right after

the two changes in concept occur. The CDBD-2-3 profile is an almost per-

fect template for what is expected from a triggered rebuild strategy. After
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Figure 6.9: CDBD-2-3 average class accuracy over time on the 20NGSBF

dataset.

Figure 6.10: CDBD-2-3 average class accuracy over time on the ReutersSBF

dataset.

Figure 6.11: CDBD-2-3 average class accuracy over time on the NSSBF

dataset.

137

Ch6-CDBD/images/accOverTime-20NG-SBF-CDBD-2-3.ps
Ch6-CDBD/images/accOverTime-Reuters-SBF-CDBD-2-3.ps
Ch6-CDBD/images/accOverTime-NS-SBF-CDBD-2-3.ps


Figure 6.12: CDBD-2-3 average class accuracy over time on the 20NGSIF

dataset.

Figure 6.13: CDBD-2-3 average class accuracy over time on the ReutersSIF
dataset.

Figure 6.14: CDBD-2-3 average class accuracy over time on the NSSIF
dataset.
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Figure 6.15: CDBD-2-3 average class accuracy over time on the Spam1

dataset.

Figure 6.16: CDBD-2-3 average class accuracy over time on the Spam2

dataset.

the first concept change the performance falls off dramatically. A concept

drift detection is triggered almost immediately, however, and performance

improves again. The visible delay between detection and performance im-

provement is partly due to the use of a moving average line and partly due

to the time it takes to gather enough data to build a new training set. Fig-

ure 6.10 tells an almost identical story to Figure 6.9. WRABD performs

very well in both diagrams as it accurately detects the change in concept at

both shift points. In Figure 6.11 both WRABD and CDBD-2-3 flag a few
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changes in concept in the NSSBF data outside the artificially induced concept

change. In this case, however, it might be due to natural concept drift within

the data. At around the same period the performance of the sliding window

and the no update approaches also seem to undergo a series of performance

fluctuations, which would suggest that the nature of the data is changing.

Figures 6.12 to 6.14 show that the performance of the four approaches on

imbalanced versions of the same three datasets is not quite as impressive, as

both CDBD-2-3 and WRABD flag a number of false positives, and in some

cases once detections are made it takes a considerable amount of time before

the classification performance improves. This is because the class imbalance

in the data means it takes a large number of batches to build a new balanced

training set with which to update the classifier. The amount of labelled data

required in these cases is also much higher than for the balanced datasets

for the same reason. In all cases, however, performance is still considerably

better than the no update approach, comparable to WRABD, and in most

cases close to that of the sliding window approach. These results reinforce

the conclusion that CDBD can handle concept drift without using a large

numbers of labelled instances.

The classifier performances shown in Figures 6.15 and 6.16 for the real

Spam1 and Spam2 datasets are a little harder to interpret as the nature of the

concept drift present is unknown. The difference between the performance

of the sliding window approach and no update approach clearly show that

concept drift is present. As this is real data this drift is likely to be due to a

mixture of feature and conditional change, so it is interesting that the CDBD
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approach is able to detect drift and successfully respond to it, as CDBD is

only designed to handle feature change. The response is far from perfect,

however, and the adaptation mechanism used by CDBD and WRABD suffers

from the fact that it can take an excessively large number of batches before

an updated balanced training set can be created. During this time the out-

of-date classifier is used to classify the stream, which is suboptimal. An

improvement to the rebuild process could decrease the amount of labelled

data used and ensure that a classifier trained on up-to-date data is used

earlier.

The performance of the perfect detection approach is included in Table 6.4

as an indication of the smallest amount of labelled data a triggered rebuild

approach needs, while still handling concept drift effectively. Any differences

between the amount of data used by the CDBD approaches and perfect detec-

tion show the impact of false positives, while the significantly larger amounts

of labelled data required for the 20NGSIF , ReutersSIF , NSSIF , Spam1 and

Spam2 datasets show the impact of class imbalance.

Taken together the results of the evaluation experiments described above

show that CDBD, a triggered rebuild concept drift detection approach that

is based on classifier output and does not need full access to true class la-

bels, can handle concept drift as effectively as WRABD, a triggered rebuild

approach that requires all the instances to be labelled. While CDBD does

not perform as effectively as the sliding window approach, the potential that

triggered rebuild approaches have for handling concept drift in scenarios con-

strained by high labelling cost is clearly evident, particularly on the larger
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datasets.

6.4 Conclusion

In this chapter CDBD, a triggered rebuild approach to handling concept

drift was presented. CDBD uses a concept drift indicator which is based on

the divergence between the classifier confidence scores in a reference window

and a moving window. The advantage of CDBD over most other triggered

detection approaches is that the CDBD indicator does not require labelled

data to calculate.

The first experiment showed that the CDBD indicator responds to changes

in concept. It also showed that the signal can be noisy, which necessitates us-

ing Western Electric rules to decide when to rebuild the classifier. The rules

which required two out of three (2/3) or three out of five (3/5) values to be

above the threshold achieve the best balance between detecting changes and

false positives (for more information about how the triggers were compared,

please see Appendix E.2).

The second experiment showed that the CDBD indicator coupled with

a trigger and adaptation mechanism was able to detect changes in concepts

and adapt the classifier to handle sudden concept shifts. The evaluation

results also indicate that CDBD works on data streams with a varying class

distribution, but that it works even better on data where each batch has a

fixed class distribution. Another important finding is that CDBD performed

more effectively than a similar triggered rebuild approach that require full
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access to actual class labels, while using only a fraction of the labelled data

in rebuilding the classifier. It was also noted that the rebuild policy used in

CDBD is sub-optimal and an interesting area for future research.

However, both CDBD and our other concept drift handling approach

DVS have so far only been evaluated against benchmarks which require a

fully labelled data stream. In the next chapter DVS and CDBD will be

compared to each other and competing approaches which also attempt to

handle concept drift while trying to reduce the amount of labelled data used.
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Chapter 7
Evaluating Concept Drift

Handling Approaches using

Multiple Criteria

Chapter 1 introduced two high level approaches to handling concept drift,

continuous rebuild approaches and triggered rebuild approaches. The two

high level approaches differ in when they adapt the classifier: continuous

rebuild approaches are characterised by the classifier being continuously

adapted whereas triggered rebuild approaches only adapt the classifier when

a sizeable change in concept is suspected. However, most concept drift han-

dling approaches, regardless of when they adapt the classifier, rely on a fully

labelled data stream.

In previous chapters Decision Value Sampling (DVS), a novel continu-
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ous rebuild approach and Classifier Distribution Batch Detection (CDBD),

a novel triggered rebuild approach have both been shown to be capable of

handling concept drift without relying on a fully labelled data stream. The

fact that either approach is viable raises the interesting question of which

approach is the most appropriate for handling concept drift with a reduced

amount of labelled data. The comparisons carried out so far have mainly

focused on how DVS and CDBD perform in terms of average class accuracy.

A more comprehensive evaluation of continuous and triggered rebuild ap-

proaches requires that the appropriateness of an approach is judged on two

criteria, the average class accuracy obtained by the approach and the fraction

of labels used.

Section 4.3.1 described the Multi-criteria Decision Analysis (MCDA) ap-

proach Technique for Order Preference by Similarity to Ideal Solution (TOP-

SIS) which can be used to combine the two criteria into a single measure and

also has the ability to weight the two criteria differently to reflect scenar-

ios where one criteria is more important than the other. The evaluation

performed in this chapter will therefore use TOPSIS when comparing ap-

proaches on multiple criteria.

TOPSIS does not specify what weights should be used, as the appropriate

set of weights is completely dependent on the classification task at hand. To

establish suitable weights the cost of acquiring labelled data and the cost

of misclassification must be determined. In many real life scenarios both of

these costs can be quantified. For example, in the case of fraud detection

the cost of investigating suspected cases of fraud, and the cost of the fraud
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going unnoticed can be estimated based on experience. Once the costs have

been established they can be normalised and used with TOPSIS to evaluate

concept drift handling approaches.

Another aspect of the evaluation so far is that DVS and CDBD, have

been compared to benchmark approaches which require a fully labelled data

stream, but not against other approaches which attempt to handle concept

drift in a partially labelled data stream, such as Variable Uncertainty with

Randomness (VUR) (Zliobaite et al., 2011) and Confidence Range Batch

Detection (CRBD) (Lanquillon, 1999). This chapter will continue the evalu-

ation by using TOPSIS to compare DVS, CDBD, VUR and CRBD against

each other and baseline concept drift handling approaches to establish which

approach is the most appropriate for handling concept drift in the context

of expensive labels. There will also be an attempt, if possible, to extrapolate

from the results a more expansive comment on the strengths, weaknesses and

applicability of continuous and triggered rebuild approaches in general.

The remainder of this chapter is organised as follows Section 7.1 will list

and briefly discuss the approaches which will be compared. Section 7.2 will

deal with the evaluation of the two new approaches VUR and CRBD, while

Section 7.3 will be an evaluation of various concept drift handling approaches

using TOPSIS to combine average class accuracy and fraction of labels used

into one evaluation metric. The chapter will finish with Section 7.4, a brief

conclusion.
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7.1 Approaches

In some scenarios either a continuous or triggered rebuild approach is suit-

able, for example concept drift caused by conditional change does not mani-

fest itself in a way which can be detected without some labelled data. This

makes triggered approaches which do not use an indicator based on labelled

data unsuitable for this type of problem. However, there are also scenarios

where a triggered approach might result in a larger label saving, such as a

data stream which experiences infrequent sudden concept shifts, yet is stable

in between these shifts. In this case a triggered rebuild approach might use

less data as a continuous rebuild approach requires some labels regardless

of whether the concept is changing or not, whereas a triggered rebuild ap-

proach only requires labelled data when a change in concept is suspected.

The experiments performed in this chapter are all grounded in a scenario

where either a continuous or triggered rebuild approach could be used.

The approaches evaluated in this chapter are as follows:� No Update� Error rate based detection (WRABD) (Kuncheva, 2009)� Fixed size sliding window� Random sampling1� Variable Uncertainty with Randomness1 (VUR) (Zliobaite et al., 2011)

1using a labelling budget, b of 0.05, 0.10, and 0.15
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� Decision Value sampling1(DVS)� Confidence Range Batch Detection (CRBD) (Lanquillon, 1999)� Classifier Distribution Batch Detection2 (CDBD)

No update, WRABD and sliding window are included as representative

baselines. No update gives an indication of what kind of accuracy can be

expected if no labelled data is used, whereas WRABD and sliding window

show the accuracies that can be obtained by a triggered and continuous

rebuild approach respectively, assuming labelling cost is not a factor.

Random sampling will be included in the comparison to show how well a

naive sampling approach coupled with a sliding window can perform.

VUR, which is described in more detail in Section 3.4.3.1, is a sliding

window approach combined with an active learning based sampling strategy,

and is similar to DVS. VUR will be included in the comparison as it is a state

of the art concept drift handling approach which aims to handle concept drift

while using as little labelled data as possible.

CRBD, which is described in more detail in Section 3.4.3.2, is the ap-

proach in the literature most closely related to CDBD as it is also a triggered

rebuild approach with an indicator based on classifier output. CRBD esti-

mates a class confidence range from the training data. A change in concept

is flagged if in subsequent batches of data the number of predictions in that

range exceeds the detection threshold.

Some of the approaches used in the experiments in this chapter have an

2using a 1/1, 2/3 and 3/5 trigger
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algorithm parameter which influences how much labelled data an approach

uses. If the approach uses a parameter which influences its label usage then

the parameter value(s) recommended by the developers of the approach will

be used. In the case of the labelling budget parameter for DVS and the trigger

parameter for CDBD the values used are based on a series of experiments

performed by the author and described in Appendix E.2.

The average class accuracy and labels used evaluation metrics for all

approaches except VUR and CRBD are available from Sections 5.3 and 6.3.3,

so the next section will deal with the experiment used to collect the average

class accuracy and fraction of labels used by VUR and CRBD.

7.2 Benchmarking the State of the Art Ap-

proaches

This experiment aims to evaluate the two state of the art approaches, VUR

and CRBD, in terms of average class accuracy and fraction of labels used.

This section will cover the methodology used in the experiment and an anal-

ysis of the evaluation results.

7.2.1 Methodology

The evaluation will be performed on drift induced datasets with feature

change and real datasets with an unknown concept drift cause. This al-

lows for a fair comparison as the continuous rebuild approaches listed in the

previous section can handle both conditional and feature change, whereas
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the triggered rebuild approaches are limited to feature change. The feature

change datasets will exhibit sudden rather than gradual change, as triggered

rebuild techniques perform best on sudden concept shifts whereas continu-

ous rebuild approaches work well on both gradual and sudden changes. So

the datasets used in this evaluation are the same as the datasets used in

the CDBD detection and rebuild experiment from Chapter 6, i.e. 20NGSBF ,

20NGSIF , ReutersSBF , ReutersSIF , NSSBF , NSSIF , Spam1 and Spam2.

The general experiment methodology is very similar to the methodology

used to evaluate VUR and CRBD in the previous chapter: train the initial

classifier on the training data then allow the approach to process the data,

noting the average class accuracy obtained by the classifier, and the labels

required by the approach. There are however some differences in the method-

ology used by the approaches when viewed on a more low level, which will

be discussed in the next section.

7.2.1.1 Variable Uncertainty with Randomness

VUR will be evaluated on a modified version of the ActiveClassifier in the

Massive Online Analysis (MOA) (Bifet et al., 2010) framework. The method-

ology used to evaluate VUR is very similar to the one used to evaluate DVS,

the major difference is that VUR processes instances one by one, whereas

DVS processes instances in batches. The first step is to train the initial clas-

sifier on the training data. An SVM was used in these experiments as they

are very suitable on text data (Dumais et al., 1998; Joachims, 1998; Yang

& Liu, 1999). After the initial classifier has been trained the unlabelled in-
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stances are processed sequentially. When a new unlabelled instance arrives

the classifier predicts its label, then makes a decision if that instance should

be sampled or not, using the sampling strategy covered in Section 3.4.3.1. If

an instance is sampled it is labelled and added to the training window. The

error rate, calculated on the sampled instances, is used to adjust the window

size.

The sampling strategy is non-deterministic (due to the random compo-

nent) so VUR will be run ten times and the mean of the ten average class

accuracies and fraction of labels used1 metrics will be considered representa-

tive values for the approach. The experiment will be run three times on each

dataset with a labelling budget of 0.05, 0.10 and 0.15 to match the labelling

budget used by DVS (as the authors do not recommend a particular value

for the labelling budget).

7.2.1.2 Confidence Range Batch Detection

CRBD was briefly discussed in Section 3.4.3.2. It is the approach most

closely related to CDBD as it is also a triggered rebuild approach with an

indicator based on classifier output. The methodology used to evaluate this

approach is very similar to the one used to evaluate CDBD. The classifier is

first trained on the initial training data. The same classifier will be used as

in (Lanquillon, 1999), a single prototype classifier, as this approach requires

a classifier which can produce a confidence score for each class, where the

1The labelling budget guides the probability of sampling so that, on average, the
fraction sampled over the full data stream is equal to b. However, the labels used by VUR
can be slightly less than allowed by the labelling budget due to the probabilistic nature of
the approach.
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scores do not add up to unity1. After the initial classifier has been trained,

and the confidence range estimated, the unlabelled instances are batched

together and presented for classification. CRBD then uses the detection

approach detailed in Section 3.4.3.2 to examine each batch of data for a

change in concept. However, initial experiments showed that this approach

did not work because the initial training data on which the confidence range

was estimated had a very different class distribution to the test data (as

the initial training data has a balanced class distribution). This problem

probably never arose in the evaluation performed in (Lanquillon, 1999) as

the datasets used had a fixed class distribution. The approach was modified

to overcome this by estimating the range on ten batches after the training

data. The classifier is adapted when a change in concept is detected in the

same way as CDBD, as exploratory experiments showed that just updating

the classifier with data from the place where the detection took place (as

specified in (Lanquillon, 1999)) produced a highly skewed training set which

led to poor classification accuracy and detection results.

The modified version of CRBD will be run on each of the datasets and

the classification accuracy and fraction of labels used will be noted.

1The single prototype classifier returns the distance between an unlabelled instance
and each class prototype, and the distances do no add up to unity, unlike an SVM. Some
early experiments on static text datasets (which includes the experiment used to illustrate
TOPSIS in Section 4.3.1) showed that a single prototype classifier achieves a classification
accuracy comparable to an SVM.

153



7.2.2 Results

Both VUR and CRBD attempt to handle concept drift without requiring a

fully labelled data stream. The evaluation results will be analysed separately

to attempt to determine how well the approaches performed.

7.2.2.1 Variable Uncertainty with Randomness

Table 7.1 shows the average class accuracy obtained by VUR on each of the

eight datasets. The table also includes the average class accuracies obtained

by DVS on the same datasets to allow a comparison between the two ap-

proaches. Each row in the table shows the average class accuracy on that

dataset using a given approach and labelling budget. The average class accu-

Table 7.1: Average class accuracy of DVS and VUR for different labelling
budgets.

b = 0.05 b = 0.10 b = 0.15

DVS VUR DVS VUR DVS VUR
20NGSBF 0.72 0.71 0.77 0.75 0.76 0.77
20NGSIF 0.77 0.73 0.81 0.76 0.82 0.77
ReutersSBF 0.71 0.72 0.73 0.75 0.76 0.79
ReutersSIF 0.72 0.69 0.78 0.74 0.80 0.76
NSSBF 0.83 0.81 0.86 0.84 0.86 0.83
NSSIF 0.84 0.75 0.87 0.79 0.87 0.79
Spam1 0.97 0.92 0.97 0.94 0.97 0.95
Spam2 0.93 0.85 0.93 0.89 0.94 0.90

racies obtained by VUR shows that the approach is handling concept drift on

all datasets. The average class accuracy improves as the labelling budget is

increased, just like DVS. Comparing the two sets of average class accuracies

shows that the average class accuracies obtained by VUR are comparable to

the ones obtained by DVS in Chapter 5.
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7.2.2.2 Confidence Range Batch Detection

Table 7.2 shows the average class accuracy obtained and fraction of labels

used by CRBD on each of the eight datasets. The table also includes the

average class accuracies obtained by CDBD-3-5 on the same datasets to al-

low a comparison between the two approaches. CDBD-3-5 was chosen for

this comparison over CDBD-1-1 and CDBD-2-3 as evaluations performed in

Appendix E.2 showed that the 3/5 trigger is the best out of the three when

both average class accuracy and fraction of labels used are considered. Each

row in the table shows the average class accuracy and fraction of labels used

on that dataset using a given approach.

Table 7.2: The average class accuracy and fraction of labels used by CRBD
and CDBD.

CRBD CDBD-3-5

Acc. Labels Acc. Labels
20NGSBF 0.72 0.15 0.76 0.10
20NGSIF 0.73 0.04 0.76 0.09
ReutersSBF 0.71 0.08 0.75 0.16
ReutersSIF 0.74 0.25 0.78 0.19
NSSBF 0.61 0.03 0.83 0.04
NSSIF 0.58 0.01 0.83 0.09
Spam1 0.70 0.22 0.90 0.21
Spam2 0.76 0.41 0.84 0.45

The results show that CRBD obtains an average class accuracy compara-

ble with the one obtained by CDBD on some datasets, yet does very poorly

on other datasets. The labels used column shows that CRBD uses consider-

ably less labelled data on many of the datasets. Both of these inconsistencies

can be explained by the CRBD detection points.

Table 7.3 shows the instance number in the data stream where the no-
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tional perfect detector and CRBD detected changes in concept. The perfect

detector triggers a classifier rebuild at each of the known concept drift points,

i.e. one rebuild at the beginning of the second concept (C2) and one in the

beginning of the third concept (C3) on each dataset1 (it does not detect a

change in C1, as this is the same concept as the one the initial classifier was

trained on). The detection points listed for CRBD are the ones closest to the

perfect detector detection points in that concept. CRBD misses a detection

on three datasets, these are marked with a dash.

Table 7.3: The detection points for CRBD and the perfect detector.

C2 C3

Perfect CRBD Perfect CRBD
20NGSBF 2300 2300 4400 4300
20NGSIF 4800 - 9400 9200
ReutersSBF 1600 1600 2900 -
ReutersSIF 5500 5800 10700 9400
NSSBF 8200 1700 16200 3500
NSSIF 15200 6300 30200 -

On the 20NGSBF dataset CRBD detects a change in concept exactly

where it should in C2 and before the change has taken place in C3. A similar

detection pattern is found on the ReutersSIF dataset. A slightly prema-

ture detection by CRBD might seem acceptable, however this means that

the classifier is rebuilt on training data from both the new and old concept,

which may lead to lower classification accuracy and worse detections. CRBD

misses a detection on the 20NGSIF , ReutersSBF and the NSSIF datasets,

which leads to a smaller number of labels being used, but worse accuracy

when compared to CDBD-3-5. However, the accuracy obtained by CRBD

1The Spam datasets are not included in this analysis as the drift points are unknown
in those datasets.
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on some datasets is not much lower than CDBD-3-5 even though CDBD-3-5

is better at detecting changes in concept. This is because on those datasets

the concept changes again before the benefit obtained by rebuilding the clas-

sifier is consolidated. This is more obvious on small datasets where the time

between changes in concept is smaller, and imbalanced datasets where the

time it takes to rebuild the classifier is higher (as the rebuild mechanism at-

tempts create a balanced training set). However, the classification accuracy

difference between CRBD and CDBD-3-5 on larger datasets, like NSSBF and

NSSIF , and highly imbalanced datasets like Spam1 and Spam2 shows the cost

of bad detections.

Based on Table 7.2 it might seem like CDBD-3-5 is a better concept drift

handling algorithm than CRBD, however, this is only the case if average class

accuracy is the only evaluation metric used. The next section will therefore

compare CRBD, CDBD and other concept drift handling approaches on an

evaluation metric which combines both average class accuracy and labelling

cost into one measure.

7.3 Evaluating Concept Drift Handling Ap-

proaches using Multiple Criteria

This experiment aims to evaluate the approaches listed in Section 7.1 based

on two criteria: average class accuracy and fraction of labels used. Because

two criteria are being considered, the suitability of an approach is fully de-

pendent on the weight placed on each criterion. Evaluating the approaches
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using TOPSIS requires the domain dependant costs (such as misclassifica-

tion and labelling costs) to be expressed as TOPSIS weights. This can be

achieved by first expressing the costs as a ratio. For example, in the con-

text of this experiment a ratio of 3 : 1 implies that when comparing two

approaches one approach would have to obtain 3% higher average class ac-

curacy than the other for them to be equal, if the other approach uses 1%

less labelled data. The ratio can then be written as a fraction and used as

TOPSIS weights. In the previous example the TOPSIS weights would be

0.75 and 0.25 respectively.

The experiment in this section will not evaluate the approaches based

on a particular set of costs, but will instead use the TOPSIS weights to

simulate many different labelling cost scenarios. For example, weights heavily

skewed towards labelling cost simulates a scenario where labelled data is very

expensive to obtain, and conversely if the weights are heavily skewed towards

average class accuracy then a high average class accuracy is desirable and the

fraction of labelled data used is considered unimportant.

7.3.1 Methodology

The first step in these experiments is to gather the two evaluation metrics for

each approach, in this case average class accuracy and fraction of labels used.

The evaluation metrics will be collected from various experiments performed

so far. The data for no update, sliding window, random sampling and DVS

will be taken from Section 5.3, WRABD and CDBD from Section 6.3.3, and

the two state of the art approaches, VUR and CRBD, from Section 7.2.2.
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TOPSIS will then be applied to the results with equal weights for aver-

age classification accuracy and fraction of labels used, creating a TOPSIS

score for each combination of dataset and approach. This score will then

be used to rank each dataset from best to worst. The average rank will be

calculated and used in a Friedman test to establish whether or not there is

a statistically significant difference in the average ranks. If a statistically

significant difference is found then the Nemenyi test will be used to ascertain

which pair, or pairs, of approaches show a statistically significant difference

in performance. However, this only provides a conclusion predicated on the

assumption that the average class accuracy and labelling cost are equally

important. The final part of the experiment is therefore to examine how

the average ranks change under different weighting scenarios. This will be

achieved by varying the labelling cost weight from zero to one, while setting

the accuracy weight to 1− labellingCostWeight. The two weights are linearly

correlated as TOPSIS requires the weights to sum to one. Table 7.4 lists the

weights that will be used in this experiment and shows how they relate to a

labelling cost scenario.

7.3.2 Results

The TOPSIS scores presented in Table 7.5 are calculated using the procedure

described in Section 4.3.1. The TOPSIS scores are based on equal weights

for average class accuracy and labelling cost. The approaches examined

span from no update (abbreviated as “NU”) to the fixed size sliding window

(abbreviated as “SW”).
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Table 7.4: Weights for the TOPSIS multi-criteria experiment.

Labelling cost Labelling weight Accuracy weight

Low 0.0 1
... 0.1 0.9

0.2 0.8
0.3 0.7
0.4 0.6
0.5 0.5
0.6 0.4
0.7 0.3
0.8 0.2

... 0.9 0.1
High 1.0 0.0

The TOPSIS scores suggests that there are two distinct groupings of

approaches. The two baseline approaches which require a fully labelled data

stream, WRABD and sliding window, obtained low TOPSIS scores as they

are heavily penalised for using all the labels. The other approaches seem to

fare a bit better, earning a more respectable TOPSIS score ranging from 0.55

to 0.96.

Table 7.6 simplifies the comparison by ranking the approaches on each

dataset, based on their TOPSIS score. The last row gives the average rank

of each approach. The average ranks show that given equal weights, RS-0.05

is the best approach, closely followed by DVS-0.05. This result makes sense

as this choice of weights favours approaches which use little or no data. The

fact that RS-0.05 is better than DVS-0.05 can be easily explained, as the

results from Chapter 5 showed that random sampling is often better than

DVS on a 0.05 budget, while DVS is better when the label budget is above

0.05.
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Table 7.5: TOPSIS scores for continuous and triggered rebuild approaches using equal weights.

NU Random sampling DVS VUR CDBD CRBD WRABD SW
0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 1/1 2/3 3/5

20NGSBF 0.94 0.94 0.90 0.85 0.94 0.90 0.85 0.93 0.90 0.85 0.89 0.90 0.90 0.84 0.04 0.06
20NGSIF 0.90 0.94 0.90 0.85 0.93 0.90 0.85 0.93 0.89 0.85 0.72 0.84 0.90 0.94 0.07 0.10

ReutersSBF 0.91 0.92 0.89 0.85 0.92 0.89 0.85 0.93 0.89 0.85 0.84 0.84 0.83 0.90 0.08 0.09
ReutersSIF 0.89 0.92 0.89 0.85 0.91 0.89 0.84 0.91 0.88 0.84 0.67 0.77 0.81 0.75 0.05 0.11
NSSBF 0.89 0.95 0.90 0.85 0.95 0.90 0.85 0.95 0.90 0.85 0.88 0.94 0.96 0.89 0.09 0.10
NSSIF 0.89 0.95 0.90 0.85 0.94 0.90 0.85 0.93 0.89 0.85 0.83 0.84 0.91 0.88 0.10 0.11
Spam1 0.93 0.95 0.90 0.85 0.95 0.90 0.85 0.95 0.90 0.85 0.55 0.76 0.79 0.76 0.09 0.10
Spam2 0.90 0.95 0.90 0.85 0.94 0.90 0.85 0.93 0.90 0.85 0.56 0.58 0.55 0.58 0.04 0.10

Table 7.6: Ranks for continuous and triggered rebuild approaches based on TOPSIS scores using equal weights.

NU Random sampling DVS VUR CDBD CRBD WRABD SW
0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 1/1 2/3 3/5

20NGSBF 1 3 5 12 2 7 13 4 6 11 10 9 8 14 16 15
20NGSIF 7 1 6 10 3 8 11 4 9 12 14 13 5 2 16 15

ReutersSBF 4 2 8 11 3 7 10 1 6 9 12 13 14 5 16 15
ReutersSIF 4 1 5 8 2 6 9 3 7 10 14 12 11 13 16 15
NSSBF 10 3 6 12 2 7 13 4 8 14 11 5 1 9 16 15
NSSIF 8 1 5 10 2 6 11 3 7 12 14 13 4 9 16 15
Spam1 4 1 5 8 2 6 9 3 7 10 14 12 11 13 16 15
Spam2 4 1 5 8 2 6 9 3 7 10 13 11 14 12 16 15
AVG 5.25 1.63 5.63 9.88 2.25 6.63 10.63 3.13 7.13 11.00 12.75 11.00 8.50 9.63 16.00 15.00
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Another interesting result is that no update does so well. It seems that

what it lacks in accuracy it makes up for in label frugality. This also em-

phasises one of the most important aspects of handling concept drift in the

context of expensive labels: that the appropriateness of an approach is highly

dependent on the relative importance placed on average class accuracy and

fraction of labels used. It could be argued that in the equal weights scenario

the no update approach is very attractive as its TOPSIS scores are compa-

rable to RS-0.05 and DVS-0.05, but unlike those approaches it does not need

to be continuously adapted.

The Friedman test shows that there is a statistically significant difference

in average ranks in Table 7.6 (at the 95% confidence level). Table 7.7 shows

the absolute difference in average rank between all of the approaches. The

statistically significant differences, based on the Nemenyi test at the 95%

confidence level are underlined. The table shows that, DVS-0.05, RS-0.05 and

VUR-0.05 are statistically significantly better than both WRABD and sliding

window. DVS-0.05 is also statistically significantly better than CDBD-1-1,

CDBD-2-3 and the continuous rebuild approaches using a labelling budget

of 0.15 (i.e. DVS-0.15, RS-0.15 and VUR-0.15). The results indicate that

when average class accuracy and fraction of labels used are weighted equally,

approaches which use a small amount of labelled data, yet obtain a sizeable

accuracy increase over no update (like RS-0.05 and DVS-0.05) are the best

approaches. However, these results only show the ranks when equal weights

are used. This chapter deals with evaluating the concept drift handling

approaches over a number of labelling cost scenarios, so the remainder of
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Table 7.7: Absolute difference in rank between concept drift handling approaches.

DVS Random sampling VUR CDBD CRBD WRABD SW
0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 1/1 2/3 3/5

NU 3.63 0.38 4.63 3.00 1.38 5.38 2.13 1.88 5.75 7.50 5.75 3.25 4.38 10.75 9.75
DVS-0.05 4.00 8.25 0.63 5.00 9.00 1.50 5.50 9.38 11.13 9.38 6.88 8.00 14.38 13.38
DVS-0.10 4.25 3.38 1.00 5.00 2.50 1.50 5.38 7.13 5.38 2.88 4.00 10.38 9.38
DVS-0.15 7.63 3.25 0.75 6.75 2.75 1.13 2.88 1.13 1.38 0.25 6.13 5.13
RS-0.05 4.38 8.38 0.88 4.88 8.75 10.50 8.75 6.25 7.38 13.75 12.75
RS-0.10 4.00 3.50 0.50 4.38 6.13 4.38 1.88 3.00 9.38 8.38
RS-0.15 7.50 3.50 0.38 2.13 0.38 2.13 1.00 5.38 4.38
VUR-0.05 4.00 7.88 9.63 7.88 5.38 6.50 12.88 11.88
VUR-0.10 3.88 5.63 3.88 1.38 2.50 8.88 7.88
VUR-0.15 1.75 0.00 2.50 1.38 5.00 4.00
CDBD-1-1 1.75 4.25 3.13 3.25 2.25
CDBD-2-3 2.50 1.38 5.00 4.00
CDBD-3-5 1.13 7.50 6.50
CRBD 6.38 5.38
WRABD 1.00
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this section will therefore look at how the average ranks change when the

weights are varied.

Table 7.8 shows the average rank of each approach while varying the la-

belling cost weight (the average class accuracy weight moves correspondingly

but does not need to be shown as it is linearly correlated with the labelling

cost weight). Each row shows the average rank (on all datasets) obtained by

an approach for a given labelling cost weight. The first row shows the ranks

when the amount of labelled data used is not considered (the assumption

made by most concept handling techniques). The opposite situation is when

the labelling cost weight is set to one, i.e. a scenario where the accuracy

is unimportant and the only consideration is the amount of labelled data

used. The last row shows the average of the average ranks, which gives an

indication of how well an approach does over all of the different weight values.

Figure 7.1 shows a visual representation of Table 7.8 where the average

rank over various labelling cost weights is plotted.

The graph shows that approaches with a large labelling budget have the

lowest average rank when the TOPSIS scores are calculated using weights

heavily skewed towards accuracy. Approaches which use less labelled data

receive a more competitive average rank as the weights are adjusted to place

more importance on the labelling cost. When the label weight is set to one

(and therefore average class accuracy weight is zero) the approaches with the

same labelling budget converge on the same average rank, which makes sense

as they have the same budget and their average rank is solely based on the

labelling budget.
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Table 7.8: The average rank of each approach while varying the labelling cost weight.

Labelling weight: NU DVS Random sampling VUR CDBD CRBD WRABD SW
0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15 1/1 2/3 3/5

0 15.75 9.13 3.63 2.88 11.75 7.38 5.50 13.75 9.88 7.38 7.38 7.75 9.00 14.00 9.25 1.63
0.1 14.25 6.00 2.63 3.25 8.63 5.50 5.38 11.13 7.88 6.25 8.75 6.88 6.50 13.38 15.63 14.00
0.2 12.63 4.25 3.00 6.13 6.25 4.75 7.38 8.75 6.13 8.00 10.38 8.00 6.50 12.88 16.00 15.00
0.3 11.38 1.88 3.63 8.75 2.88 5.00 9.50 4.75 6.13 10.13 11.88 10.13 7.63 11.38 16.00 15.00
0.4 7.88 1.50 5.00 9.38 2.13 6.13 10.13 3.38 6.63 10.50 12.50 10.88 8.38 10.63 16.00 15.00
0.5 5.25 1.63 5.63 9.88 2.25 6.63 10.63 3.13 7.13 11.00 12.75 11.00 8.50 9.63 16.00 15.00
0.6 3.25 2.00 6.25 9.88 2.50 7.13 10.63 3.38 7.63 11.00 12.75 11.25 8.88 8.50 16.00 15.00
0.7 1.25 2.63 6.25 9.88 3.13 7.13 10.63 4.00 7.63 11.00 12.75 11.50 8.88 8.38 16.00 15.00
0.8 1.00 2.88 6.25 9.88 3.38 7.13 10.63 4.25 7.63 11.00 12.75 11.50 9.13 7.63 16.00 15.00
0.9 1.00 2.88 6.25 9.88 3.38 7.13 10.63 4.25 7.63 11.00 12.75 11.50 9.13 7.63 16.00 15.00
1 1.00 3.50 7.00 10.50 3.50 7.00 10.50 3.50 7.00 10.50 12.75 11.50 9.13 7.63 15.50 15.50

AVG 6.78 3.48 5.05 8.20 4.52 6.44 9.23 5.84 7.39 9.80 11.58 10.17 8.33 10.15 15.31 13.74
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Figure 7.1: The average rank over various labelling cost weights.
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The graph contains a large number of series, making it cumbersome to

read. However, all the approaches have been included in the graph for com-

pleteness, but the focus will be placed on the approaches with the lowest

average rank. No update is the best concept drift handling approach when

the cost of acquiring labelled data is very high. In this experiment no update

is the best concept drift handling approach when the labelling cost weight is

above 0.65. Conversely, sliding window is the best approach when there is

no labelling cost (the labelling cost weight is zero). However, in the labelling

weight cost range of 0.05 to 0.65, DVS is the best concept drift handling

approach as long as the correct labelling budget parameter is used. In the

case of this experiment the optimal labelling budget is roughly 0.05 for a

labelling cost weight between 0.25 and 0.65. When the labelling cost weight

is between 0 and 0.25 then a labelling budget of 0.10 is most apt1.

The last part of this analysis will attempt to provide a few high level

conclusions based on the results from this section and Chapters 5 and 6. The

first conclusion is that unless the cost of acquiring labelled data is very high

it is worth attempting to handle concept drift. The results also indicate that

even a small amount of labelled data can drastically improve classification

accuracy over not updating the classifier at all. This is particularly true for

DVS which shows a lot of potential for handling concept drift with a small

amount of labelled data. The experiment results show that DVS obtained the

best trade-off between average class accuracy and labels used for nearly all

1DVS-0.15 is better than the suggested DVS-0.10 at a labelling cost weight of about
0.05, however, the difference is so small that it simplifies the parameterisation of DVS to
recommend the use of DVS-0.10 even in this case.
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labelling weight scenarios tested. The other continuous rebuild approaches,

random sampling and VUR also performed well with average ranks very

comparable to the average rank obtained by DVS. This suggests that the act

of continuously adapting the classifier with recent training data is the key

property which makes sliding window approaches so successful, yet the idea

of a sampling strategy should not be discarded as the results from Chapter 5

show that using a targeted sampling strategy gives slightly better results

than random sampling.

The results also show that triggered rebuild approaches can be used to

handle concept drift unless the labelling weight is very high (in the case of

Figure 7.1 less than 0.40). CDBD-3-5 provides the best trade-off between

average class accuracy obtained and fraction of labels used out of the trig-

gered rebuild approaches, when the labelling cost justifies handling concept

drift.

The comparison between continuous and triggered rebuild approaches

raises an interesting question about the strengths and weaknesses of each type

of approach. There might not be enough concept drift handling approaches

used in these experiments to reliably extrapolate a more general conclusion

about continuous and triggered rebuild approaches, however, some important

points which are likely to be broadly applicable will be highlighted, as the

approaches evaluated are representative of their respective types.

Continuous rebuild approaches benefit from being able to handle small,

gradual change as it occurs, whereas triggered rebuild approaches need to

wait until the change in concept accumulates enough to trigger a rebuild.
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Another strength shared by continuous rebuild approaches is that they are

able to handle conditional, feature and dual change, whereas triggered rebuild

approaches based on a signal not derived from labelled data are only able to

handle feature and dual change.

However, this does not mean that triggered rebuild approaches should

not be considered. In the case where changes in concept occur suddenly and

infrequently triggered rebuild approaches have the potential to use apprecia-

bly less labels than a continuous rebuild approach. This is supported by the

CDBD-3-5 results on the NSSIF and NSSBF datasets.

Overall continuous rebuild approaches seem to show the most potential,

particularly DVS, which not only handles concept drift, but is also concep-

tually simple and only requires the setting of one parameter.

7.4 Conclusion

The first part of this chapter evaluated VUR and CRBD, two state of the art

approaches which both aim to handle concept drift using a limited amount

of labelled data. VUR is a continuous rebuild approach, which, like DVS

uses a sliding window and active learning to handle concept drift. CRBD is

a triggered rebuild approach, which, like CDBD constructs an indicator from

the output of the classifier and rebuilds the classifier when a sizeable change

in the indicator values takes place.

The evaluation showed that VUR was capable of handling concept drift

on a variety of datasets, while CRBD could handle concept drift on some
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datasets, but missed detections on others.

The second part of the chapter dealt with comparing both continuous and

triggered rebuild approaches. The evaluation so far had been limited to a

comparison based on either average class accuracy or fraction of labels used,

which prevents the comparison between approaches which use an unequal

amount of labelled data. In this comparison the two evaluation metrics were

combined into one evaluation metric using TOPSIS.

The results showed that the best approach was highly dependent on what

accuracy and labelling cost weights were used in the TOPSIS score calcula-

tion. When equal weights were used approaches which used a small amount of

labelled data, like DVS-0.05 and RS-0.05 were statistically significantly better

than both the fully labelled data stream benchmark approaches WRABD and

sliding window, and the triggered rebuild approaches CDBD-1-1 and CDBD

2-3.

The weights were adjusted to investigate how the best approach changes

as the weights change. When the labelling cost was above 0.65 no update

was the best approach, and conversely when the labelling cost was close to

one, the fixed size sliding window approach was the best approach. DVS was

the best approach when the labelling cost weight was in the range 0.05 to

0.65. In fact, continuous rebuild approaches with a low labelling budget were

better than the triggered rebuild approaches in most cases. However, trig-

gered rebuild approaches showed potential on large datasets with infrequent

changes in concept, such as NSSIF and NSSBF .

The next chapter will summarise the findings and contributions from this,
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and the proceeding chapters.
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Chapter 8
Conclusion

Machine learning has been very successful in a wide array of prediction prob-

lems, yet applying it to large data streams can be complicated by concept

drift. There is a growing body of research dealing with how concept drift

can be handled but most of it is underpinned by the assumption that the

data stream is fully labelled, or that it is possible to obtain the true label of

an instance shortly after classification at a negligible cost. The aim of this

thesis is to examine ways in which concept drift can be handled when this

pivotal assumption does not hold. More specifically, when labelled data can

be obtained, but the cost of doing so is high.

Two distinct ways of dealing with this can be found in the literature: con-

tinuous rebuild approaches which use semi-supervised learning, and triggered

rebuild approaches. Decision Value Sampling (DVS), a semi-supervised ap-

proach was shown to be capable of handling concept drift when only a small
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fraction of the instances in the data stream are labelled. Confidence Distri-

bution Batch Detection (CDBD), is a triggered rebuild approach capable of

detecting changes in concept without requiring labelled data and can be used

in conjunction with an adaptation mechanism to handle concept drift.

Finally, an empirical evaluation of both continuous and triggered rebuild

approaches was also performed. It, coupled with the results from the pre-

vious evaluations showed that semi-supervised rebuild approaches with a

low labelling budget were better than the triggered rebuild approaches in

most cases, but triggered rebuild approaches should be considered on large

datasets.

The remainder of this chapter will be used to summarise how this thesis

contributes towards concept drift research and suggest interesting areas for

future study.

8.1 Summary of Contributions and Achieve-

ments

The fact that most concept drift handling approaches assume the availability

of labelled data has been referred to throughout this thesis. The importance

of developing concept drift handling approaches that do not rely on that

assumption has also been highlighted. The purpose of this section is to sum-

marise how this thesis is contributing towards that goal, and more generally

towards concept drift research as a whole. Specific contributions include:
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� A process for generating text datasets exhibiting highly controllable con-

cept drift – Section 4.1 described some of the issues associated with

naturally occurring data exhibiting concept drift and motivated the

need for a process which can generate datasets exhibiting controlled

concept drift. The framework described allows for the generation of

drift induced datasets where the change type, change cause and class

distribution can be controlled while maintaining some of the nuances of

real data. The method was applied to text documents, but it is likely

that the general procedure is versatile enough to be applied to other

types of data, such as financial data.� A novel continuous rebuild concept drift handling approach – Chapter 5

introduced DVS, a continuous rebuild approach that combines active

learning and a sliding window to handle concept drift. The evaluation

described in that chapter showed that DVS was capable of handling

both conditional and feature change, both gradual and sudden concept

drift and both balanced and imbalanced class distributions. This sug-

gests that DVS is a good choice of concept drift handling approach

when little is known about the characteristics of the concept drift that

will be encountered. The evaluation also showed that most of the gains

in classification accuracy were obtained at the lower labelling budgets.� The CDBD signal, a novel way of measuring feature change – Chapter 6

showed how an indicator believed to be correlated with changes in

concept can be created by measuring the difference in a classifier’s

175



confidence output. The CDBD signal was shown to be well correlated

with changes in concept, both by comparing the signal values before

and after changes in concept, and by calculating the detection accuracy

of a trigger applied to the signal.� A novel triggered rebuild concept drift handling approach – Chapter 6

also showed how the CDBD indicator can be combined with a trig-

ger and adaptation mechanism to handle changes in concept. CDBD

only requires labelled data when a change in concept is detected, and

has been shown to accurately detect changes in concept in text data

streams. This represented a sizeable saving in labelled data, particu-

larly on large datasets with infrequent changes in concept.� A methodology for comparing concept drift handling approaches in the

context of expensive labels – Chapter 7 showed how TOPSIS can be

used to evaluate concept drift handling approaches by combining aver-

age class accuracy and fraction of labels used into one evaluation metric.

The usefulness and versatility of this approach was demonstrated on

a collection of representative concept drift handling approaches. Ar-

guably the most important attribute of an MCDA approach like TOP-

SIS is that it allows the relative importance of the criteria to be ad-

justed. This is of particular interest in the context of expensive labels

as our evaluation showed that the appropriateness of a given approach

was highly dependant on the weight given to the labelling cost.
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� An empirical evaluation of representative continuous and triggered re-

build concept drift handling approaches – Chapter 7 also compared rep-

resentative continuous and triggered rebuild approaches. The results

showed that continuous rebuild approaches are better than a triggered

rebuild approaches in most circumstances, but triggered rebuild ap-

proaches might be more appropriate on large datasets which exhibit

infrequent feature change.

8.2 Open Problems and Future Work

The contributions listed in the previous section are centred around the prob-

lem of expensive labels in concept drift handling. However, the exploration of

the problem unearthed more questions than can be addressed in one thesis.

This section aims to list some interesting directions for future research in the

area of concept drift handling with expensive labels. Most of the suggested

directions have been discovered due to the work on DVS and CDBD, but are

largely applicable to most concept drift handling approaches attempting to

handle concept drift using a limited amount of labelled data.

8.2.1 Investigating Other Uses for Change in Concept

Indicators

In Chapter 6 the CDBD indicator was shown to be able to distinguish be-

tween two concepts. It was also shown that the CDBD indicator combined

with a trigger and adaptation mechanism could handle concept drift. How-
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ever, the CDBD indicator might also be useful outside of a triggered rebuild

framework, for example to dynamically adjust algorithm parameters.

One way the CDBD signal could be used in this manner is to adjust the

labelling budget in DVS and Variable Uncertainty with Randomness (VUR)

so that more instances are sampled when the signal suggests that the concept

is changing, and less (or none) when the concept is believed to be stable. This

change to the sampling strategy could result in a sizeable reduction in the

number of labels used by the approach, particularly if changes in concept

occur infrequently.

The CDBD signal need not be confined to just continuous rebuild ap-

proaches using active learning. In fact, the CDBD signal could be used in

a similar way to how the error rate is used in many common concept drift

handling approaches. For example, it could be used to adjust the window

size of a sliding window or form a part of an ensemble weighting scheme.

8.2.2 Decreasing the Adaptation Lag

CDBD often takes an excessively large number of batches before an updated

balanced training set can be created, during which the out-of-date classifier

is still being used. This results in a noticeable lag between when a change in

concept is flagged and when the classification accuracy improves.

A simple modification to CDBD would be to start incrementally adapt-

ing the classifier straight after a change in concept is detected. A classifier

agnostic way to achieve this is to use a sliding window approach which dis-

cards old data in the training window until all of the instances in the training
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window have been replaced. One of the large advantages of incrementally

updating the classifier is that the classifier can immediately start learning

the new concept, rather than having to wait until the new training window

is formed. However, any changes to the adaptation approach must ensure

that the ability to handle data with a high class imbalance is not hampered.

8.2.3 Handling Class Imbalance

DVS and CDBD handle class imbalance using a form of undersampling, as

they discard instances from the majority class to balance the class distribu-

tion in the training window. An interesting direction for future work would

be to incorporate a more sophisticated class imbalance approach, such as

SMOTE (Chawla et al., 2002), which undersamples the majority class and

artificially generates instances of the minority class. Improving the way class

imbalance is handled might enable the training window size to be reduced

without the loss of classification accuracy, which, in turn should decrease the

detection lag discussed in the previous section and more importantly reduce

the amount of labelled data required (as a smaller training window requires

less labelled data). There are concept drift approaches which are specifically

designed to handle class imbalance, however, to the best of our knowledge,

DVS and CDBD are the only concept drift handling approaches which are

designed to handle concept drift in an imbalanced data stream which is not

fully labelled.

Another interesting direction for future work is to use a sampling strategy

to attempt to balance the dataset. Positive biased sampling (Lindstrom et al.,
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2010b) seems like a good starting point. Positive biased sampling aims to

identify two types of instances: those which will refine the decision boundary

and those which will balance the class distribution. The sampling strategy

attempts to sample an equal number of instances of both types by sampling

instances close to the decision boundary and instances which are likely to be

of the minority class (based on their distance and orientation to the decision

boundary). The approach is designed for static datasets, but could probably

be adapted for use in a concept drift handling approach like DVS.

8.2.4 Improving the Selection Strategy

Chapter 6 introduced a sampling strategy which selects a number of instances

from each batch based on their proximity the classifier’s decision boundary.

There are however improvements which could be made to how the instances

are selected.

One interesting modification to the sampling strategy would be to incor-

porate instance similarity into the sampling process. This modification is

based on the intuition that instances being sampled based on distance to the

decision boundary might be very similar, and the refinement of the decision

boundary might benefit more from instances which differ from the already

sampled instances. The approach presented in (Zliobaite, 2011) incorporates

instance similarity into the selection strategy, but requires a fully labelled

data stream.

Another way to ensure more diversity among the sampled instances is

to first select a number of instances near the decision boundary, then ap-
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ply clustering to those instances and sample no more than one instance per

cluster. Hu et al. (2010) introduced a sampling strategy like this, but only

applied it to a static dataset. An interesting direction for future work would

be to apply a similar selection strategy to a concept drift handling approach

like DVS.

8.3 Final Thoughts

This section will provide some final thoughts on the thesis as a whole, and

some of the lessons learned. An early goal was to create a unified and com-

prehensive approach to handling concept drift in the context of expensive

labels. It turned out to be an elusive goal as the appropriateness of a given

approach was highly dependent on the specifics of the classification task at

hand. One obvious example is how the appropriateness of an approach varies

depending on the relative importance placed on obtaining a high classifica-

tion accuracy and using as little labelled data as possible. If the classification

task demands a high classification accuracy then a sliding window seems to

be the most appropriate approach, conversely if a low label usage is the most

important criterion, then a continuous rebuild approach with a low labelling

budget, or even not updating the classifier, is the best approach.

Prohibitively expensive labels is one of the main assumptions made in this

thesis, however every stage of the design, development and evaluation of a

concept drift handling approach is predicated on assumptions about the clas-

sification task the approach will be applied to. One of the most fundamental
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task dependant decisions is what type of concept drift handling should be

used, instance selection, model parameters or ensembles. Implementations

of all three types have shown to be capable of handling concept drift and

each type has inherit advantages and disadvantages associated with it. So

the choice of high level concept drift handling approach comes down to a

careful balancing of the positive and negative aspects of that particular type

of approach.

DVS and CDBD are both types of instance selection approaches. Instance

selection was chosen as it is classifier agnostic and not overly computationally

expensive. However, if interoperability is not important then a concept drift

handling approach can be developed exploiting properties of specific classi-

fiers, such as instance weighting an SVM or pruning out-of-date branches

of decision trees. On the other hand, if computational cost is not an issue,

for example if the approach is run on a powerful server, or distributed over

multiple servers, then an ensemble based approach might be more suitable.

Similar task-dependant design decisions were made throughout the thesis.

Some by choice, and some by necessity due to the data the approaches were

being evaluated on. DVS was designed to be robust and handle most concept

drift types and causes, whereas CDBD was specifically focused on infrequent

feature change. Neither approach considered re-occurring concepts (which

could potentially save a lot of labelled data), but they both handle noisy,

balanced and imbalanced data.

An example of a design decision in development phase is the choice of

classifier. DVS and CDBD both use an SVM as they have been shown to be
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suitable for many classification tasks, including text classification. Yet other

classifiers could also have been considered, to show the versatility of DVS

and CDBD.

Most of the evaluation decisions were focused around what data should

be used to evaluate the two approaches. It was considered important to

ground the evaluations in a domain which is likely to experience the issues

the thesis addresses, such as concept drift and expensive labels. Information

filtering was identified as a suitable domain, however, other domains such

as the financial domain could also have been explored. In fact, additional

evaluations on a larger number, and more varied datasets, would help to

further validate the results of the experiments performed in this thesis.

Another evaluation-related issue shared by both DVS and CDBD is the

reliance on well tuned algorithm parameters. DVS is intentionally simple,

requiring only one parameter to be set, the labelling budget. It should how-

ever be noted that in many cases the labelling budget is dictated by what the

business can afford. CDBD on the other hand has more parameters to set,

including the bins to use, the detection threshold, and the trigger. CDBD

also has no way of predicting how much labelled data it will require before

it is used, which might make it unsuitable when the labelling requirement of

the approach needs to be known before deployment. The use of algorithm pa-

rameters give the approaches some flexibility, but also complicates their use,

as a separate, fully labelled dataset might be needed to empirically establish

the optimal parameter value(s) in some cases.

The final evaluation issue worth raising is the range of approaches that
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DVS and CDBD were compared to. The benchmark approaches which use

a fully labelled data stream seem appropriate for comparison, even though

the inclusion of an ensemble approach might also have been interesting. The

partially labelled data streams approaches that DVS and CDBD were com-

pared to were, in our opinion, the most appropriate approaches. Neverthe-

less, comparing the DVS and CDBD to more partially labelled data streams

approaches would further strengthen the conclusions drawn from this work.

Concept drift handling in the context of expensive labels is still a budding

area of research which warrants further exploration. Our evaluations have

shown that, although DVS and CDBD are predicated on some assumptions,

both very capable concept drift handling approaches when those assumptions

are met and successfully address the task of handling concept drift when la-

bels are expensive. The author is also of the opinion that both continuous

and triggered rebuild approaches can deal with the problem of prohibitively

expensive labels, with the choice of approach being dependant on the specifics

of the classification task at hand. Hopefully this work can serve as a step-

ping stone for further research in this very promising area of concept drift

handling.
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Appendix A
Notation

x: an instance

X : a set of instances

xi: instance i in a dataset

xij : feature j of instance i

N : number of instances

d: number of features

y: an output (referred to as a class or label in a classification task)

Y : the set of all outputs

yi: class i in set Y

(x, y): a labelled instance

V : vocabulary of a collection of documents

P (x): the probability of x

P (y|x): the probability of y given x
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µ: the mean

σ: the standard deviation
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Appendix B
Abbreviations

AI Artificial Intelligence p. 1

AL Active Learning p. 52

BOW Bag-Of-Words p. 27

CDBD Confidence Distribution Batch Detection p. 6

CRBD Confidence Range Batch Detection p. 147

CRISP-DM CRoss-Industry Standard Process for Data Mining p. 12

DF Document Frequency p. 27

DT Decision Tree p. 16

DVS Decision Value Sampling p. 6

FLORA Floating Rough Approximation p. 41

IDF Inverse Document Frequency p. 27

KDD Knowledge Discovery in Databases p. 12

k-NN k Nearest Neighbour p. 19
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MCDA Multi-criteria Decision Analysis p. 81

ML Machine Learning p. 1

MOA Massive Online Analysis p. 151

SVM Support Vector Machine p. 20

TDM Term Document Matrix p. 27

TF Term Frequency p. 27

TF-IDF Term Frequency - Inverse Document Frequency p. 27

TOPSIS Technique for Order Preference by Similarity to Ideal Solution p. 83

VSM Vector Space Model p. 26

VUR Variable Uncertainty with Randomness p. 147

WEKA Waikato Environment for Knowledge Analysis p. 78

WRABD Window Resize Algorithm for Batch Data p. 133
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Appendix C
Additional Material for

Chapter 5

C.1 DVS Accuracy Over Time Graphs

This section contains the omitted average accuracy over time graphs from

Chapter 5. For completeness it also include the three graphs which were

presented previously in Section 5.3.
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Figure C.1: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGSBF dataset.

Figure C.2: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGGBF dataset.

Figure C.3: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGSIF dataset.
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Figure C.4: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGGIF dataset.

Figure C.5: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGSBC dataset.

Figure C.6: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGGBC dataset.
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Figure C.7: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGSIC dataset.

Figure C.8: DVS-0.15 and RS-0.15 average class accuracy over time on the
20NGGIC dataset.

Figure C.9: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersSBF dataset.
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Figure C.10: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersGBF dataset.

Figure C.11: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersSIF dataset.

Figure C.12: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersGIF dataset.
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Figure C.13: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersSBC dataset.

Figure C.14: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersGBC dataset.

Figure C.15: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersSIC dataset.
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Figure C.16: DVS-0.15 and RS-0.15 average class accuracy over time on the
ReutersGIC dataset.

Figure C.17: DVS-0.15 and RS-0.15 average class accuracy over time on the
NSSBF dataset.

Figure C.18: DVS-0.15 and RS-0.15 average class accuracy over time on the
NSSIF dataset.
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Figure C.19: DVS-0.15 and RS-0.15 average class accuracy over time on the
Spam1 dataset.

Figure C.20: DVS-0.15 and RS-0.15 average class accuracy over time on the
Spam2 dataset.
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Appendix D
Additional Material for

Chapter 6

D.1 CDBD Accuracy Over Time Graphs

This section contains the omitted average accuracy over time graphs from

Chapter 6. For completeness it also include the CDBD-2-3 graphs which

were presented previously in Section 6.3.3.
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Figure D.1: CDBD-1-1 average class accuracy over time on the 20NGSBF

dataset

Figure D.2: CDBD-2-3 average class accuracy over time on the 20NGSBF

dataset

Figure D.3: CDBD-3-5 average class accuracy over time on the 20NGSBF

dataset
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Figure D.4: CDBD-1-1 average class accuracy over time on the 20NGSIF

dataset

Figure D.5: CDBD-2-3 average class accuracy over time on the 20NGSIF

dataset

Figure D.6: CDBD-3-5 average class accuracy over time on the 20NGSIF

dataset
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Figure D.7: CDBD-1-1 average class accuracy over time on the ReutersSBF

dataset

Figure D.8: CDBD-2-3 average class accuracy over time on the ReutersSBF

dataset

Figure D.9: CDBD-3-5 average class accuracy over time on the ReutersSBF

dataset
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Figure D.10: CDBD-1-1 average class accuracy over time on the ReutersSIF
dataset

Figure D.11: CDBD-2-3 average class accuracy over time on the ReutersSIF
dataset

Figure D.12: CDBD-3-5 average class accuracy over time on the ReutersSIF
dataset
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Figure D.13: CDBD-1-1 average class accuracy over time on the NSSBF

dataset

Figure D.14: CDBD-2-3 average class accuracy over time on the NSSBF

dataset

Figure D.15: CDBD-3-5 average class accuracy over time on the NSSBF

dataset
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Figure D.16: CDBD-1-1 average class accuracy over time on the NSSIF
dataset

Figure D.17: CDBD-2-3 average class accuracy over time on the NSSIF
dataset

Figure D.18: CDBD-3-5 average class accuracy over time on the NSSIF
dataset
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Figure D.19: CDBD-1-1 average class accuracy over time on the Spam1

dataset

Figure D.20: CDBD-2-3 average class accuracy over time on the Spam1

dataset

Figure D.21: CDBD-3-5 average class accuracy over time on the Spam1

dataset
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Figure D.22: CDBD-1-1 average class accuracy over time on the Spam2

dataset

Figure D.23: CDBD-2-3 average class accuracy over time on the Spam2

dataset

Figure D.24: CDBD-3-5 average class accuracy over time on the Spam2

dataset
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Appendix E
Additional Material for

Chapter 7

E.1 Finding the Best Budget for DVS

This section contains supplemental material describing how the best budget

for DVS was determined. The best labelling budget is wholly dependent

on the relative importance placed on the two evaluation metrics average

class accuracy and fraction of labels used. TOPSIS allows the two metrics

to be weighted and combined into one measure, upon which the differently

parameterised versions of DVS can be ranked.

The methodology used will follow the methodology outlined in Section 7.3.1,

which can be summarised as: (1) calculate the TOPSIS score using equal

weights, (2) rank the approaches based on TOPSIS score, (3) adjust the la-
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belling cost weight from zero to one, while setting the accuracy weight to

1 − labellingCostWeight. For each value of the two weights recalculate the

TOPSIS score for each approach and rank the approaches based on their

score.

Table E.1 shows step one, the TOPSIS score for each version of DVS on

each dataset when equal weights are used. The average class accuracy and

fraction of labels used for each approach are the values obtained in Chapter 5

(for more information about the experiment datasets and methodology see

Section 5.2).

Table E.1: The TOPSIS score for differently parameterised versions of DVS.

DVS-
0.05

DVS-
0.10

DVS-
0.15

DVS-
0.25

DVS-
0.50

DVS-
0.75

20NGSBF 0.94 0.92 0.85 0.71 0.36 0.06
20NGGBF 0.93 0.91 0.85 0.71 0.36 0.07
20NGSIF 0.95 0.92 0.86 0.71 0.36 0.05
20NGGIF 0.96 0.92 0.86 0.71 0.36 0.04
20NGSBC 0.86 0.89 0.85 0.72 0.38 0.14
20NGGBC 0.85 0.88 0.85 0.72 0.38 0.15
20NGSIC 0.90 0.91 0.85 0.72 0.37 0.10
20NGGIC 0.90 0.91 0.85 0.72 0.37 0.10
ReutersSBF 0.92 0.90 0.85 0.71 0.36 0.08
ReutersGBF 0.90 0.89 0.85 0.71 0.37 0.10
ReutersSIF 0.91 0.91 0.85 0.72 0.37 0.09
ReutersGIF 0.91 0.91 0.85 0.72 0.37 0.09
ReutersSBC 0.89 0.87 0.84 0.71 0.37 0.11
ReutersGBC 0.89 0.87 0.83 0.71 0.37 0.11
ReutersSIC 0.89 0.90 0.85 0.71 0.37 0.11
ReutersGIC 0.89 0.90 0.85 0.71 0.37 0.11
NSSBF 0.97 0.93 0.86 0.71 0.36 0.03
NSSIF 0.98 0.93 0.86 0.71 0.36 0.01
Spam1 1.00 0.93 0.86 0.71 0.36 0.00
Spam2 0.99 0.93 0.86 0.71 0.36 0.00

Table E.2 further clarifies the results by ranking all of the approaches

from best to worst on each dataset, based on their TOPSIS score. The best
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labelling budget seems to be 0.05, based on the average rank. However, this

conclusion is predicated on equal TOPSIS weights being used.

Table E.2: The rank for differently parameterised versions of DVS based on
TOPSIS score.

DVS-
0.05

DVS-
0.10

DVS-
0.15

DVS-
0.25

DVS-
0.50

DVS-
0.75

20NGSBF 1 2 3 4 5 6
20NGGBF 1 2 3 4 5 6
20NGSIF 1 2 3 4 5 6
20NGGIF 1 2 3 4 5 6
20NGSBC 2 1 3 4 5 6
20NGGBC 3 1 2 4 5 6
20NGSIC 2 1 3 4 5 6
20NGGIC 2 1 3 4 5 6
ReutersSBF 1 2 3 4 5 6
ReutersGBF 1 2 3 4 5 6
ReutersSIF 2 1 3 4 5 6
ReutersGIF 2 1 3 4 5 6
ReutersSBC 1 2 3 4 5 6
ReutersGBC 1 2 3 4 5 6
ReutersSIC 2 1 3 4 5 6
ReutersGIC 2 1 3 4 5 6
NSSBF 1 2 3 4 5 6
NSSIF 1 2 3 4 5 6
Spam1 1 2 3 4 5 6
Spam2 1 2 3 4 5 6

AVG 1.45 1.6 2.95 4 5 6

Table E.3 shows how the average ranks change as the TOPSIS weights

are adjusted, giving an insight into what algorithm parameter values are the

most appropriate for any given value of the weights. Each row shows the

average rank (on all datasets) obtained by an approach for a given labelling

cost weight. The first row shows the ranks when the amount of labelled

data used is not considered (the assumption made by most concept handling

techniques). The opposite situation is when the labelling cost weight is set
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to one, i.e. a scenario where the accuracy is unimportant and the only

consideration is the amount of labelled data used.

The last row shows the average of the average ranks, which gives an

indication of how well an approach does over all the different weight values.

Figure E.1 shows a visual representation of Table E.3.

Figure E.1: The average rank for differently parameterised versions of DVS
while varying the labelling cost weight.

The graph shows that when the TOPSIS scores are calculated using

weights heavily skewed towards accuracy then approaches with a large la-

belling budget have the lowest average rank. Approaches with a small la-

belling budget receive a more competitive average rank as the weights are

moved to place more importance on the labelling cost. The overall narrative

from the ranks in Figure E.1 is that the appropriateness of a given budget

is wholly dependant on the accuracy and labelling cost weights. However,

Figure E.1 suggests that a labelling budget in the 0.05 to 0.15 range seems

to be appropriate in most labelling weight scenarios. The importance of a

low labelling budget can be explained by the average ranks, which show that
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Table E.3: The average rank of each approach while varying the labelling cost weight.

Labelling cost weight: DVS-0.05 DVS-0.10 DVS-0.15 DVS-0.25 DVS-0.50 DVS-0.75

0 6 4.75 3.9 2.9 1.9 1.55
0.1 4.65 3.05 2.10 1.95 3.95 5.30
0.2 3.20 2 1.65 3.15 5 6
0.3 2.25 1.50 2.30 3.95 5 6
0.4 1.60 1.50 2.90 4 5 6
0.5 1.45 1.60 2.95 4 5 6
0.6 1.10 1.90 3 4 5 6
0.7 1.0 2 3 4 5 6
0.8 1.0 2 3 4 5 6
0.9 1 2 3 4 5 6
1 1 2 3 4 5 6

AVG 2.2 2.21 2.8 3.63 4.62 5.53
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the increase in classification accuracy obtained by increasing the labelling

budget is offset by the increase in labels used (except in the scenario where

the labelling cost weight is very low, in this case less than 0.1).

E.2 Finding the Best Trigger for CDBD

This section contains supplemental material describing how the best trigger

for CDBD was determined. The best trigger is dependent on the relative

importance placed on the two evaluation metrics average class accuracy and

labels used. The number of labels used cannot be set using a parameter as

it can in DVS, but the trigger sensitivity is one of the factors which affects

how much labelled data CDBD will use. TOPSIS will be used to weight and

combine the two metrics into one measure, upon which CDBD using 1/1,

2/3 and 3/5 triggers can be ranked.

The methodology used will follow the methodology outlined in Section 7.3.1,

which can be summarised as: (1) calculate the TOPSIS score using equal

weights, (2) rank the approaches based on TOPSIS score, (3) adjust the la-

belling cost weight from zero to one, while setting the accuracy weight to

1 − labellingCostWeight. For each value of the two weights recalculate the

TOPSIS score for each approach and rank the approaches based on their

score.

Table E.4 shows step one, the TOPSIS score for each version of CDBD on

each dataset when equal weights are used. The average class accuracy and

fraction of labels used for each approach are the values obtained in Chapter 6
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(for more information about the experiment datasets and methodology see

Section 6.3).

Table E.5 shows CDBD with the three different triggers ranked by TOP-

SIS score. CDBD-3-5 is the best approach according to the average rank.

However, this conclusion is predicated on equal TOPSIS weights being used.

Varying the weights between zero and one gives the average ranks listed

in Table E.6. Figure E.2 shows a visual representation of Table E.6.

Figure E.2: The average rank of CDBD with different triggers while varying
the labelling cost weight.

The average ranks remain static for most labelling cost weight values.

The 2/3 trigger is the best trigger when the labelling cost is not considered

(the labelling weight is zero). However, once the labelling cost weight goes

above 0.10 the 3/5 trigger is the best trigger, closely followed by the 2/3

trigger. Overall the 3/5 trigger seems to be the best trigger, yet CDBD-1-1

and CDBD-2-3 might also be appropriate if the 3/5 trigger is too slow at

detecting change.
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Table E.4: TOPSIS score for CDBD using 1/1, 2/3 and 3/5 triggers.

CDBD-1-1 CDBD-2-3 CDBD-3-5

20NGSBF 0.00 0.73 1.00
20NGSIF 0.04 0.64 0.96
ReutersSBF 1.00 0.76 0.00
ReutersSIF 0.00 0.70 0.98
NSSBF 0.03 0.83 1.00
NSSIF 0.00 0.14 1.00
Spam1 0.07 0.86 0.93
Spam2 0.37 1.00 0.00

Table E.5: CDBD using different triggers ranked by TOPSIS score.

CDBD-1-1 CDBD-2-3 CDBD-3-5

20NGSBF 3 2 1
20NGSIF 3 2 1
ReutersSBF 1 2 3
ReutersSIF 3 2 1
NSSBF 3 2 1
NSSIF 3 2 1
Spam1 3 2 1
Spam2 2 1 3

AVG 2.63 1.88 1.50

Table E.6: The average rank of CDBD with different triggers while varying
the labelling cost weight.

Labelling cost weight: CDBD-1-1 CDBD-2-3 CDBD-3-5

0 1.88 1.75 2.38
0.1 2.63 1.75 1.63
0.2 2.63 1.75 1.63
0.3 2.63 1.88 1.50
0.4 2.63 1.88 1.50
0.5 2.63 1.88 1.50
0.6 2.63 1.88 1.50
0.7 2.63 1.88 1.50
0.8 2.63 1.88 1.50
0.9 2.63 1.88 1.50
1 2.83 1.83 1.33

AVG 2.58 1.84 1.59
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Baena-Garćıa, M., Campo-Ávila, J.d., Fidalgo, R., Bifet, A.,
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