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ML-Based Online Traffic Classification for SDNs
Mohammed Nsaif1, Gergely Kovásznai2, Mohammed Abboosh3, Ali Malik4, Ruairı́ de Fréin4

1Department of Information Technology, University of Debrecen, Hungary, 2Department of Computational
Science, Eszterházy Károly Catholic University, Hungary, 3Department of Data Science and Visualization,

University of Debrecen, Hungary, 4School of Electrical and Electronic Engineering, Technological University
Dublin, Ireland (e:ruairi.defrein@tudublin.ie).

Abstract—Traffic classification is a crucial aspect for Software-
Defined Networking functionalities. This paper is a part of an
on-going project aiming at optimizing power consumption in
the environment of software-defined datacenter networks. We
have developed a novel routing strategy that can blindly balance
between the power consumption and the quality of service for
the incoming traffic flows. In this paper, we demonstrate how
to classify the network traffic flows so that the quality of
service of each flow-class can be guaranteed efficiently. This is
achieved by creating a dataset that encompasses different types
of network traffic such as video, VoIP, game and ICMP. The
performance of a number of Machine Learning techniques is
compared and the results are reported. As part of future work,
we will incorporate classification into the power consumption
model towards achieving further advances in this research area.

Index Terms—Machine learning, classification, Software De-
fined Networks, OpenFlow, Traffic Classification

I. INTRODUCTION

Precise traffic classification is one of the essential network-
ing functions that allows network operators to manage the
network resources in an efficient manner. Traffic classification
is particularly beneficial for solving Quality of Service (QoS)
related problems, which are associated with a wide range of
computer networks issues such as power consumption in data
centers. Nowadays, data center networks are considered to be
the backbone of many Internet applications and services in
different forms such as multimedia and gaming. According to
[1], the energy consumption of data center networks accounts
for 1.4% of global electrical energy consumption, with a com-
pound annual growth rate (CAGR) of 4.4% for 2007− 2012.
In fact, this is substantially higher than the forecasted 2.1%
percent rise in world consumption from 2012 to 2040.

As a part of the on-going project on minimizing the power
consumption of data center networks using Software-Defined
Networking (SDN), we recently introduced the Fill Preferred
Link First (FPLF) routing protocol[2]. In FPLF, we designed
an integer programming model and heuristic algorithms for
energy-aware routing which was implemented using SDN.
Since the data and control planes are decoupled in SDN, a
global view of the data plane forwarding elements is possible,
which makes network management and monitoring easier. In
essence, FPLF reduces the usage of data plane links by fitting
the incoming traffic flows to the smallest number of links.
Although FPLF is capable of reducing the power consumption
in data center networks, it is expected that such gains would
come at the cost of reduced QoS for delay sensitive flows like

video, VoIP and online game. Therefore, traffic classification
is crucial for FPLF so that the class of service information
can be identified and become available to the routing and
forwarding scheme. Traffic classification can be achieved by
three techniques, these are: port-based, deep packet inspection
and Machine Learning (ML) [3].

The traffic of modern services is often encrypted or not
even associated with specific ports where that makes both
port-based and deep packet inspection approaches not very
effective [4]. ML-based techniques have been widely ex-
plored to surpass the limitation of the traditional classification
methods. In this paper, we contribute a lightweight real-
time traffic classification model based on ML techniques. We
have implemented and evaluated the proposed method in an
SDN environment and shown its effectiveness in accurately
classifying a wide range of traffic applications in an online
manner.

The paper is organized as follows. Section II introduces var-
ious flow classification techniques from the literature. Traffic
generation and data collection are described in Section III.
The features selection and classification models are presented
in Section IV. The online implementation is presented in
Section V. The discussion of the results, including the per-
formance limitations, is presented in Section VI. Finally,
we summarize the work, the outcomes, and suggest future
research suggestions in Section VII.

II. RELATED WORK

This section summarizes recent research with a focus on
supervised ML methods, including Support Vector Machines
(SVM), Random Forests (RF), Gradient Boosting (GB) and
Neural Networks (NN). In[5], the authors developed a system
for collecting and selecting a set of flow metrics in SDN
for accurate traffic categorization. The Principal Component
Analysis (PCA) and a Genetic Algorithm (GA) were employed
to find the best features for traffic categorization, SVM was
used as a classification algorithm. To obtain a dataset for val-
idation, the authors install the experiment with three layers of
switches and hosts. The study showed that PCA and GA have
classification accuracy rates over 91% and 88%, respectively.
However, the study focused on finding the optimal subset of
flow features and tested one type of ML algorithm, and there
is no real-time testing, instead, it can be used for analyzing
DDoS, FTP and Video Streaming traffic. The authors in[6]
introduced an SDN-based traffic categorization architecture.
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The OpenFlow protocol is used to collect the statistics from
the forwarding elements for the purpose of feature extraction
where that includes the first incoming five packets, interval
arrival time, packet size, source and destination MAC/Port/IP,
and flow duration. PCA was used to determine the best compo-
nents in order to eliminate feature redundancy. An ensemble
learning approach is applied in[6], in which three essential
classifiers cast a weighted vote on the classification outcome.
Random Forests (RF), Extreme Gradient Boosting (EGB),
and Stochastic Gradient Boosting (SGB) were adopted. The
reported accuracy of the experimental results was 90%. The
main limitation of this approach is that it relies on port
number and payload inspection, This approach is not effective
due to the dynamics of modern traffic. The authors in [7]
suggested to use ML algorithms to recognize network flows.
Four Neural Network estimators were employed, these are:
Feedforward, Multilayer Perceptrons, Levenberg-Marquardt
and Naive Bayes. This method used full-flow data to estimate
features such as five-tuple information, the average number of
packets, and the average bytes in a flow. Data was collected
through instant chatting, video, FTP, HTTP, streaming and
peer-to-peer protocols. These four categorization approaches
achieved an accuracy of 95.6%, 97%, 97%, and 97.6%,
respectively. This approach must capture data from the whole
flow, and such limitations may make it impossible to use
early traffic classification. The authors in [8] introduced Deep-
SDN for predicting traffic flows in short response time. Deep-
SDN has been tested by using Moore dataset and not in
an online fashion. The approach in [9] demonstrated how
features for video traffic can be constructed by explicitly
modeling traffic time series. In this case, a QoS metric is
modelled as a series of falling exponentials. This type of
passive feature modelling approach could easily be extended to
traffic classification instead of congestion detection, which was
the target application in the paper. Finally, due to the dynamic
and encrypted nature of today’s communication, traditional
approaches such as identifying traffic based on port number
and payload inspection are no longer effective. This work
attempts to categorize the traffic flow based on its size and rate
using supervised ML algorithms. It is worth to mention here
that we have collected the data according to the accumulative
value of packets and bytes that pass through the forwarding
elements.

III. D-ITG DATASET

For the purpose of evaluating the proposed classification
methods, we built a dataset using a synthetic traffic generator.
First, a small-scale network topology was created using the
Mininet emulator[10], which consisted of two hosts, one
switch and one central controller. Each host in the network
was connected to an OpenvSwitch (OVS) [11]. The OVS
was connected to a Ryu controller by a secure OpenVFlow
channel. As shown in Fig. 1, we developed two models in the
application layer: (1) a monitoring model, which captures the
instant flows and (2) a collecting model, which archives the
traces that will be divided into training and testing datasets.
Traffic flows were generated by the Distributed Internet Traffic

Fig. 1. The structure of the SDN network in the data collection phase,
including the monitoring and the collecting models. Python is used on the
northbound interface, and OpenFlow is used on the southbound interface.

Generator (D-ITG) tool[12]. We used the D-ITG to replicate
statistical properties of 6 traffic applications including DNS,
telnet, ping, gaming, quake-3 and VoIP. In addition, we
simulated a video traffic by using VLC to generate real-time
video streaming between a VLC server and client. When traffic
passed through the network switch, the monitoring model sent
data to the collecting model that extracted and archived the
statistics of the arrival flows. The collected statistics consists
of the accumulative packet and byte values to forward flows
i.e., data frames, and reverse flows i.e., control frames, from
which we derived other features e.g., average forward/reverse
packets, delta forward/reverse packets, and forward/reverse
instantaneous packets per second. We ran each traffic individ-
ually for approximately 150 minutes. We reported up to 17000
observations and 16 features for each of the experimental
flows.

IV. CLASSIFICATION MODELS

This section presents the implementation of three ML mod-
els, namely logistic regression, SVM and neural network with
different types of solvers. We used Python 3.8 and Windows
10 with Core i7 and 8 GB RAM to implement these models.
The test of the models is performed on a portion of the dataset
(i.e., test data). It is worth mentioning here that we dropped the
features of “forward-byte”, “forward-packets”, “reverse-byte”
and “reverse-packet”. This is due to the cumulative nature of
those features. They may have significantly different values
from those that occur in the training phase. For instance, while
those features start counting from zero in the training phase,
they may start from another initial value in real traffic, which
depends on the dynamic behavior of the network. Therefore,
ML models might be negatively affected by the misleading
information of such features.

A. Logistic Regression model
To construct a Logistic Regression (LR) model, the input

is the dot product between a weight vector θ ∈ Rn and an
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TABLE I
DESCRIPTION OF THE LOGISTIC REGRESSION MODELS

LR model
number

Penalize
level

Solver
type

Iteration
number

Accuracy
(%)

Time (sec) of
convergence

1 Penalty
function/ L2 saga 25 75.31 03.56

2 Penalty
function/ L1 liblinear 40 28.23 11.24

3 Penalty
function/ L2 newton-cg 18 75.29 08.49

4 Penalty
function/ L2 sag 19 75.60 01.67

Fig. 2. Confusion matrix for the LR-SAG model.

input vector x (i.e., input training data xk ∈ Rn) plus a bias
bk. And the output is the probability ŷk ∈ R to select the class
k that maximizes (1), see [13]:

p (yk = 1 | x) = exp (θk · x+ bk)∑N
j=1 exp (θj · x+ bj)

(1)

where, N is the number of classes.
For the purposes of regularization, feature selection, and

providing better long-term predictions, we use Ridge Re-
gression (i.e., ℓ2 Regularization) and Lasso Regression (i.e.,
ℓ1 Regularization)[14], [15]. The inverse of regularization
strength (C) set default value is 1.0.

Table I shows the results of the models’ training based on
the training time and accuracy value. We observed that models
with solvers sag, saga, and newton had approximately the
same accuracy, but different convergence times. On the other
hand, the liblinear solver has inferior accuracy compared to
the above ones. In Fig. 2, the confusion matrix of the sag
model helps to identify where the model is unsuccessful in
accurately determining the target. We observed an apparent
misclassification of game, telnet, quake-3, video, and ping
traffic as DNS traffic. Furthermore, there is a significant
number of the game traffic overlap with voice traffic. This is
reasonable as both of their traffic sources are interactive types
of traffic. This is reflected in the precision value for each class
of traffic. In the first and second columns of the classification
report in Table II. The report shows the precision and recall
values, respectively. The minimum precision value is observed

TABLE II
CLASSIFICATION REPORT FOR THE LR-SAG MODEL.

Traffics Precision Recall F-score Support

DNS 0.99 0.51 0.67 17830
game 0.15 0.80 0.25 1684
ping 0.97 0.98 0.98 8843

quake-3 0.66 1.0 0.80 5880
telnet 0.69 0.99 0.81 6184
video 8.88 0.98 0.89 5817
voice 0.97 0.64 0.77 13450

Accuracy 0.75 59688
Macro avg 0.76 0.83 0.74 59688

Weighted avg 0.89 0.75 0.78 59688

in the case of game traffic, and the maximum in the case of
DNS traffic, since a lot of the game’s flow are classified as
DNS or voice traffic. On the other hand, the maximum recall
provided for quake-3 traffic, and the minimum is for DNS
traffic, due to the fact that many flows are misclassified as
DNS traffic. The F-score (2) combines precision and recall to
have an overall score that depicts our model’s performance.

F-score =
2

1/ precision + 1/ recall
(2)

Ping traffic gets the highest F-score, because it has the highest
precision and recall scores.

B. SVM model

Like in LR model, we train the SVM model with input
training data xk ∈ Rn and output label data yk ∈ R with
(N = 7) classes mentioned in the Table II to construct the
Support Vector Classifier (SVC) in the form [16]:

y(x) = sign

[
N∑

k=1

αkykψ (x, xk) + bk

]
(3)

where αk is a positive real constant, ψ (x, xk) represents the
kernel, and bk is the bias. In order to get the best decision
boundary between classes, we use four different kernels as
follows:

1) Linear kernel:
ψ (x, xk) = xTk x

2) Polynomial-kernel:

ψ (x, xk) =
(
xTk x+ r

)d
3) Radial Basis Function (RBF) kernel:

ψ (x, xk) = exp
{
−∥x− xk∥22 /σ

2
}

4) Sigmoid kernel:

ψ (x, xk) = tanh
[
γxTk x+ r

]
where r, d, σ and γ are the kernel parameters used to maintain
the separation line between classes.

According to Table III, the sigmoid kernel reported sig-
nificantly less accuracy compared to the other kernels. De-
spite that the linear kernel achieved 80.64% accuracy, the
performance in online real test cannot be guaranteed due to
the possibility of nonlinearity of the data. Thus, the use of
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Fig. 3. Confusion Matrix for the SVM (RBF kernel) model.

TABLE III
CLASSIFICATION REPORT FOR THE SVM MODELS

SVM model
number

Kernel
type

Trade-off
parameter (C value)

Accuracy
(%)

Training
Time (sec)

1 Linear 1 80.64 82
2 Polynomial 3 72.77 144
3 RBF 1 85.35 48
4 Sigmoid 1 62.36 107

sigmoid and the linear kernel is not the best choice. Although
the polynomial and RBF kernel are preferred for non-linear
hyper-plane and separation of high dimensional classes, the
polynomial has achieved less accuracy compared to RBF ker-
nel and consumed more time than other kernels. The C value
is used to preserve the regularization and to control the trade-
off between margins and misclassification term. We believe
that the misclassification in polynomial kernel is coming from
the higher trade-off C parameter, which leads to larger margin
hyper-plane and makes the classification even more difficult
in this model. Interestingly, the RBF achieved the highest
accuracy in shorter time compared to the rest of the models.
This can be clearly seen in the confusion matrix for the RBF
kernel, that is illustrated in Fig. 3, in which the most predicted
classes were labelled correctly.

It is apparent from Fig. 3 that game, DNS and voice
traffic are overlapping with each other, which leads to false
labeling as Table IV shows that DNS, game and voice resulted
the lowest precision and F-score. In summary, the results
indicate that for certain parameters, the linear kernel can get
higher accuracy as the RBF kernel, however, this comes at an
additional cost in training time.

C. Neural Network model

In order to construct a Neural Network (NN) model for the
classification task, we stack 7 sequential layers as shown in
Table V. The model consists of the following layers:

(1) Layer normalization [17] to scale and shift input values
with zero mean and unit variance. The layer normal-

TABLE IV
CLASSIFICATION REPORT FOR SVM (RBF KERNEL) MODEL.

Traffics Precision Recall F-score Support

DNS 0.49 0.96 0.65 7209
game 0.86 0.07 0.12 7104
ping 0.95 0.97 0.96 7198

quake-3 0.99 0.71 0.83 7142
telnet 0.99 0.70 0.82 7043
video 1.00 0.89 0.94 4826
voice 0.62 0.99 0.76 7228

Accuracy 0.75 47750
Macro avg 0.84 0.75 0.73 47750

Weighted avg 0.83 0.75 0.72 47750

TABLE V
DESCRIPTION OF THE NN MODEL.

Layer type Output Shape Param #
Normalization (None, 12) 25

Dense (None, 24) 312
Dense (None, 48) 1200

Dropout (None, 48) 0
Dense (None, 28) 1372
Dense (None, 14) 406
Dense (None, 7) 105

Total params: 3420
Trainable params: 3395

Non-trainable params: 25

TABLE VI
CLASSIFICATION REPORT FOR THE NN MODELS.

NN model
number

Dropping
rate

Optimizer
type

Epoch
number

Accuracy
(%)

Time (sec) of
convergence

1 0.5 Adam 10 89 31.00
2 0.5 SGD 10 79.94 32.00

ization statistics are computed over all the input values
x1, . . . , xn as follows:

µ =
1

n

n∑
i=1

xi σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2

(2-3) Densely connected layers of size 32 and 64, respectively,
using the Rectifier Linear Unit (ReLU) activation function
f(x) = max(0, x).

(4) A dropout layer with 50% dropping rate, for the sake of
regularization and to avoid overfitting.

(5-6) Densely connected layers of size 28 and 14, respectively,
using ReLU.

(7) A densely connected layer of size 7, followed by a
softmax activation (4), which outputs one of the N = 7
class labels.

σ(x)i =
exp(xi)∑N
j=1 exp(xj)

(4)

During training, we use the sparse categorical cross entropy
loss function to cope with this multi-class classification prob-
lem where labels are provided as integers. As an optimization
technique for gradient descent, we run the experiments with
the Stochastic Gradient Descent (SGD) method as well as the
Adaptive Moment Estimation (Adam) algorithm.

Table VI shows the results of the NN models’ training and
validation, including the accuracy values and training time.



5

Fig. 4. Confusion Matrix for the NN model.

TABLE VII
CLASSIFICATION REPORT FOR THE NN (ADAM OPTIMIZER) MODEL.

Traffics Precision Recall F-score Support

voice 0.94 0.86 0.90 3030
telnet 1.00 0.71 0.83 3026
game 0.75 0.82 0.79 2918
video 1.00 1.00 1.00 1993
ping 0.99 0.97 0.98 3002

quake-3 0.93 0.88 0.90 2956
DNS 0.73 0.99 0.84 3075

Accuracy 89 20000
Macro avg 0.91 0.89 0.89 20000

Weighted avg 0.90 0.89 0.89 20000

According to Table VI, we observed that both SGD and
Adam optimizers had approximately the same convergence
time, but different accuracy. Therefore, we employ the Adam
optimizer to test our approach in real-time action in Section V.
Fig. 4 shows the confusion matrix for the model using Adam
optimizer. We observed a significant number of games flows
categorized as telnet, quake-3 and DNS traffic. Furthermore,
there is a slight overlap between telnet and DNS traffic. This
is reflected in the F-score values for each class of traffic, as
shown by the classification report in Table VII.

On one hand, the minimum precision value was reported in
the case of DNS traffic. On the other hand, the minimum recall
value was reported in the case of game traffic. This is due to
many flows being misclassified as DNS, quake-3, voice, and
telnet traffic. Therefore, game, telnet, and DNS traffic resulted
in a lower F-score value than other types of traffic did.

V. ONLINE TESTING

In this section, we discuss the evaluation the NN model in
the context of predicting the labels of the newly arrival flows
in a real-time network scenario. To do so, we integrated and
incorporated the NN model with the SDN controller. Then,
we simulated each traffic type for approximately 10 minutes
following a burst of 1000 flows of each traffic type. The
testbed was built using a Linux 20.0.4 LTS, 8 GB RAM,
Core i7 machine. We created the network topology based

100quake-3

99.1DNS

97.6video

93.4ping

86.1voice

64.1telnet

13.6game

0 10 20 30 40 50 60 70 80 90 100

Fig. 5. Result of SDN testing

42.6%voice

42.6%

DNS

13.8%

game

1%
other

Fig. 6. SDN testing on game traffic

on the Mininet emulator with some other modules including
monitoring and topology discovering. We adopted Ryu as a
network controller.

Fig. 5 shows the percentage of accurate labels for each
traffic class. It can be clearly seen that the classification model
has 100% accuracy when predicting quake-3 traffic. Similarly,
the model performs well to predict the traffic class of DNS,
video and ping. According to Fig. 5, the accuracy of predicting
DNS is up to 99%, while the accuracy is up to 97% for video
and up to 93% for ping. For VoIP traffic, the classification
model fails to classify up to 14% from the injected traffic. In
the same vein, the model does not perform well in case of
telnet traffic since up to 35% of the generated telnet traffic
has been wrongly classified. Finally, the performance of the
classification model was reported as the lowest in terms of
predicting game traffic since the accuracy was up to 13%.

VI. DISCUSSION

In this section, we compare the results that were obtained
from the training and validation phase with the results of
the online testing for the NN model (with Adam optimizer).
On one hand, during the online testing, the worst case was
provided by the class of game traffic, as illustrated by Fig. 6,
while, in the validation phase, game traffic provided the
least F-score of 79%. On the other hand, during the online
testing, we reported the best results for both quake-3 and
video traffic approximately without any misclassification. By
considering the validation phase, we can see that both quake-3
and video traffics had a high F-score value, namely 0.90 and 1,
respectively. Furthermore, we observed the same impact and

correlation in the case of telnet traffic, where online testing
resulted in 64.1% and validation resulted in an F-score of 0.83.

In this work, the lightweight approach to classify/predict the
network arrival traffic based on the packets bit rate only with-
out the need of any further inspection such as decapsulation
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the packet’s header to retrieve additional data. This is a big
challenging problem due to the fact that all the derived features
are based on the size and the speed of flow packets. Although
the proof of concept design works well, it is limited in some
cases since some of the features measure the average packet
and the size. Scenarios in which flows are interrupted due to
network incidents might decrease the values of those features
and, consequently, reduce the accuracy of the proposed model.

VII. CONCLUSION

This paper demonstrated the promise of applying machine
learning approaches to the problem of traffic classification for
SDNs. Three machine learning models LR, SVM and NN
were implemented and evaluated in the context of classifying
network traffic of different classes based on 16 selected
features. We used the D-ITG in order to built a synthetic
traffic dataset for this purpose. After having the three models
tested, we incorporated only the NN model in a SDN imple-
mentation so that further measurements could be conducted
in an online manner. Four metrics were used in the process
of evaluation, these are: accuracy, precision, recall and F-
measure. The experimental findings revealed that the NN
model was capable of identifying wide range of traffic classes
with high accuracy, however, it reported low accuracy for some
classes. Since in this work we depend on MAC addresses as
identifiers of hosts in the SDN, hence we did not consider
parallel traffics between the same hosts. However, as future
work, we can adopt new functionality in the upper network
layers, i.e., transport and network layers. We used LASSO/L1
regression, which performs feature selection by driving certain
weights to zero. Furthermore, we could apply more future
investigations to the features to derive other features which
might improve performance. As a future plan, we intend to
combine the proposed model with our FPLF algorithm [2] in
order to optimize the power consumption of software-defined
data center networks and wireless networks [18], [19].
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