
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference papers School of Electrical and Electronic Engineering 

2010-01-01 

Economic Risk Assessment using the Fractal Market Hypothesis Economic Risk Assessment using the Fractal Market Hypothesis 

Jonathan Blackledge 
Technological University Dublin, jonathan.blackledge@tudublin.ie 

Marek Rebow 
Technological University Dublin, marek.rebow@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart 

 Part of the Applied Statistics Commons, Finance and Financial Management Commons, Management 

Sciences and Quantitative Methods Commons, Probability Commons, and the Statistical Models 

Commons 

Recommended Citation Recommended Citation 
Blackledge, J., Rebow, M.:Economic Risk Assessment using the Fractal Market Hypothesis. Fifth 
International Conference on Internet Monitoring and Protection, Barcelona, pp.41-47. 

This Conference Paper is brought to you for free and open access by the School of Electrical and Electronic 
Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized 
administrator of ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, 
aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/209?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/631?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/637?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/637?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/212?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/827?utm_source=arrow.tudublin.ie%2Fengscheleart%2F151&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Economic Risk Assessment using the Fractal Market Hypothesis

J. M. Blackledge
School of Electrical Engineering Systems,

College of Engineering
and the Built Environment,

Dublin Institute of Technology,
Dublin, Ireland.

Email: jonathan.blackledge@dit.ie

M. Rebow
College of Engineering

and the Built Environment,
Dublin Institute of Technology,

Dublin, Ireland,
Email: marek.rebow@dit.ie

Abstract—This paper considers the Fractal Market Hypoth-
esis (FMH) for assessing the risk(s) in developing a financial
portfolio based on data that is available through the Internet
from an increasing number of sources. Most financial risk
management systems are still based on the Efficient Market
Hypothesis which often fails due to the inaccuracies of the
statistical models that underpin the hypothesis, in particular,
that financial data are based on stationary Gaussian processes.
The FMH considered in this paper assumes that financial data
are non-stationary and statistically self-affine so that a risk
analysis can, in principal, be applied at any time scale provided
there is sufficient data to make the output of a FMH analysis
statistically significant.

Keywords-Risk assessment of economy, Risk assessment
statistics and numerical data, Fractal Market Hypothesis, ABX
index.

I. INTRODUCTION

Attempts to develop stochastic models for financial time
series, which are essentially digital signals composed of ‘tick
data’1 [1], [2] can be traced back to the early Twentieth
Century when Louis Bachelier [3] proposed that fluctuations
in the prices of stocks and shares (which appeared to
be yesterday’s price plus some random change) could be
viewed in terms of random walks in which price changes
were entirely independent of each other. Thus, one of the
simplest models for price variation is based on the sum of
independent random numbers. This is the basis for Brownian
motion [4] in which the random numbers are considered to
conform to a normal distribution.

II. BROWNIAN MOTION AND THE EFFICIENT MARKET
HYPOTHESIS

Random walk models, which underpin the so called
Efficient Market Hypothesis (EMH) [5]-[12], have been
the basis for financial time series analysis since the work
of Bachelier in the late Nineteenth Century. Although the
Black-Scholes equation [13], developed in the 1970s for
valuing options, is deterministic (one of the first financial

1Data that provides traders with daily tick-by-tick data - time and sales
- of trade price, trade time, and volume traded, for example, at different
sampling rates as required.

models to achieve determinism), it is still based on the
EMH, i.e. stationary Gaussian statistics. The EMH is based
on the principle that the current price of an asset fully
reflects all available information relevant to it and that
new information is immediately incorporated into the price.
Thus, in an efficient market, the modelling of asset prices
is concerned with modelling the arrival of new informa-
tion. New information must be independent and random,
otherwise it would have been anticipated and would not
be new. The arrival of new information can send ‘shocks’
through the market (depending on the significance of the
information) as people react to it and then to each other’s
reactions. The EMH assumes that there is a rational and
unique way to use the available information and that all
agents possess this knowledge. Further, the EMH assumes
that this ‘chain reaction’ happens effectively instantaneously.
These assumptions are clearly questionable at any and all
levels of a complex financial system.

The EMH implies independence of price increments and is
typically characterised by a normal of Gaussian Probability
Density Function (PDF) which is chosen because most
price movements are presumed to be an aggregation of
smaller ones, the sums of independent random contributions
having a Gaussian PDF. However, it has long been known
that financial time series do not follow random walks.
The shortcomings of the EMH model include: failure of
the independence and Gaussian distribution of increments
assumption, clustering, apparent non-stationarity and failure
to explain momentous financial events such as ‘crashes’
leading to recession and, in some extreme cases, depression.
These limitations have prompted a new class of methods
for investigating time series obtained from a range of dis-
ciplines. For example, Re-scaled Range Analysis (RSRA),
e.g. [14]-[16], which is essentially based on computing the
Hurst exponent [17], is a useful tool for revealing some well
disguised properties of stochastic time series such as persis-
tence (and anti-persistence) characterized by non-periodic
cycles. Non-periodic cycles correspond to trends that persist
for irregular periods but with a degree of statistical regularity
often associated with non-linear dynamical systems. RSRA



is particularly valuable because of its robustness in the
presence of noise. The principal assumption associated with
RSRA is concerned with the self-affine or fractal nature
of the statistical character of a time-series rather than the
statistical ‘signature’ itself. Ralph Elliott first reported on
the fractal properties of financial data in 1938 (e.g. [18] and
reference therein). He was the first to observe that segments
of financial time series data of different sizes could be scaled
in such a way that they were statistically the same producing
so called Elliot waves.

III. RISK ASSESSMENT AND REPEATING ECONOMIC
PATTERNS

A good stochastic financial model should ideally consider
all the observable behaviour of the financial system it is
attempting to model. It should therefore be able to provide
some predictions on the immediate future behaviour of the
system within an appropriate confidence level. Predicting the
markets has become (for obvious reasons) one of the most
important problems in financial engineering. Although, at
least in principle, it might be possible to model the behaviour
of each individual agent operating in a financial market, one
can never be sure of obtaining all the necessary information
required on the agents themselves and their modus operandi.
This principle plays an increasingly important role as the
scale of the financial system, for which a model is required,
increases. Thus, while quasi-deterministic models can be
of value in the understanding of micro-economic systems
(with known ‘operational conditions’), in an ever increasing
global economy (in which the operational conditions asso-
ciated with the fiscal policies of a given nation state are
increasingly open), we can take advantage of the scale of
the system to describe its behaviour in terms of functions of
random variables.

A. Elliot Waves

The stochastic nature of financial time series is well
known from the values of the stock market major indices
such as the FTSE (Financial Times Stock Exchange) in the
UK, the Dow Jones in the US which are frequently quoted. A
principal aim of investors is to attempt to obtain information
that can provide some confidence in the immediate future
of the stock markets often based on patterns of the past.
One of the principal components of this aim is based on the
observation that there are ‘waves within waves’ and ‘events
within events’ that appear to permeate financial signals when
studied with sufficient detail and imagination. It is these
repeating patterns that occupy both the financial investor
and the systems modeller alike and it is clear that although
economies have undergone many changes in the last one
hundred years, the dynamics of market data do not appear to
change significantly (ignoring scale). For example, Figure 1
shows the re-scaled ‘macrotrends’ (i.e. normalised Gaussian

Figure 1. Evolution of the 1987, 1997 and 2007 financial crashes.
Normalised macrotrends (i.e. where the data has been smoothed and
rescaled to values between 0 and 1 inclusively) of the daily FTSE value
(close-of-day) for 02-04-1984 to 24-12-1987 (blue), 05-04-1994 to 24-12-
1997 (green) and 02-04-2004 to 24-09-2007 (red).

lowpass filtered signals) associated with FTSE Close-of-
Day (COD) illustrating the ‘development’ of three different
‘crashes’, the one of 1987 and that of 1997 and the most
recent crash of 2007. The similarity in behaviour of these
signals is remarkable and clearly indicates a wavelength of
approximately 1000 days. This is indicative of the quest to
understand economic signals in terms of some universal phe-
nomenon from which appropriate (macro) economic models
can be generated. In an efficient market, only the revelation
of some dramatic information can cause a crash, yet post-
mortem analysis of crashes typically fail to (convincingly)
tell us what this information must have been.

One cause of correlations in market price changes (and
volatility) is mimetic behaviour, known as herding. In gen-
eral, market crashes happen when large numbers of agents
place sell orders simultaneously creating an imbalance to
the extent that market makers are unable to absorb the other
side without lowering prices substantially. Most of these
agents do not communicate with each other, nor do they
take orders from a leader. In fact, most of the time they are
in disagreement, and submit roughly the same amount of
buy and sell orders. This is a healthy non-crash situation;
it is a diffusive (random-walk) process which underlies the
EMH and financial portfolio rationalization.

B. Non-equilibrium Systems

Financial markets can be considered to be non-equilibrium
systems because they are constantly driven by transactions
that occur as the result of new fundamental information
about firms and businesses. They are complex systems
because the market also responds to itself, often in a highly
non-linear fashion, and would carry on doing so (at least
for some time) in the absence of new information. The
‘price change field’ is highly non-linear and very sensitive
to exogenous shocks and it is probable that all shocks
have a long term effect. Market transactions generally occur



globally at the rate of hundreds of thousands per second. It
is the frequency and nature of these transactions that dictate
stock market indices, just as it is the frequency and nature of
the sand particles that dictates the statistics of the avalanches
in a sand pile. These are all examples of random scaling
fractals [19]-[24].

IV. THE FRACTAL MARKET HYPOTHESIS

Developing mathematical models to simulate stochastic
processes has an important role in financial analysis and
information systems in general where it should be noted
that information systems are now one of the most important
aspects in terms of regulating financial systems, e.g. [25]-
[28]. A good stochastic model is one that accurately predicts
the statistics we observe in reality, and one that is based upon
some well defined rationale. Thus, the model should not only
describe the data, but also help to explain and understand
the system.

There are two principal criteria used to define the char-
acteristics of a stochastic field: (i) The PDF or the Char-
acteristic Function (i.e. the Fourier transform of the PDF);
the Power Spectral Density Function (PSDF). The PSDF
is the function that describes the envelope or shape of the
power spectrum of a signal. In this sense, the PSDF is a
measure of the field correlations. The PDF and the PSDF
are two of the most fundamental properties of any stochastic
field and various terms are used to convey these properties.
For example, the term ‘zero-mean white Gaussian noise’
refers to a stochastic field characterized by a PSDF that
is effectively constant over all frequencies (hence the term
‘white’ as in ‘white light’) and has a PDF with a Gaussian
profile whose mean is zero.

Stochastic fields can of course be characterized using
transforms other than the Fourier transform (from which the
PSDF is obtained) but the conventional PDF-PSDF approach
serves many purposes in stochastic systems theory. However,
in general, there is no general connectivity between the
PSDF and the PDF either in terms of theoretical predic-
tion and/or experimental determination. It is not generally
possible to compute the PSDF of a stochastic field from
knowledge of the PDF or the PDF from the PSDF. Hence,
in general, the PDF and PSDF are fundamental but non-
related properties of a stochastic field. However, for some
specific statistical processes, relationships between the PDF
and PSDF can be found, for example, between Gaussian and
non-Gaussian fractal processes [29] and for differentiable
Gaussian processes [30].

There are two conventional approaches to simulating a
stochastic field. The first of these is based on predicting
the PDF (or the Characteristic Function) theoretically (if
possible). A pseudo random number generator is then de-
signed whose output provides a discrete stochastic field that
is characteristic of the predicted PDF. The second approach
is based on considering the PSDF of a field which, like the

PDF, is ideally derived theoretically. The stochastic field is
then typically simulated by filtering white noise. A ‘good’
stochastic model is one that accurately predicts both the PDF
and the PSDF of the data. It should take into account the
fact that, in general, stochastic processes are non-stationary.
In addition, it should, if appropriate, model rare but extreme
events in which significant deviations from the norm occur.

One explanation for crashes involves a replacement for
the EMH by the Fractal Market Hypothesis (FMH) which is
the basis of the model considered in this paper. The FMH
proposes the following: (i) The market is stable when it
consists of investors covering a large number of investment
horizons which ensures that there is ample liquidity for
traders; (ii) information is more related to market sentiment
and technical factors in the short term than in the long
term - as investment horizons increase and longer term
fundamental information dominates; (iii) if an event occurs
that puts the validity of fundamental information in question,
long-term investors either withdraw completely or invest on
shorter terms (i.e. when the overall investment horizon of
the market shrinks to a uniform level, the market becomes
unstable); (iv) prices reflect a combination of short-term
technical and long-term fundamental valuation and thus,
short-term price movements are likely to be more volatile
than long-term trades - they are more likely to be the result
of crowd behaviour; (v) if a security has no tie to the
economic cycle, then there will be no long-term trend and
short-term technical information will dominate. Unlike the
EMH, the FMH states that information is valued according
to the investment horizon of the investor. Because the
different investment horizons value information differently,
the diffusion of information will also be uneven. Unlike most
complex physical systems, the agents of the economy, and
perhaps to some extent the economy itself, have an extra
ingredient, an extra degree of complexity. This ingredient is
consciousness.

V. MATHEMATICAL MODEL FOR THE FMH

We consider an economic times series to be a solution to
the fractional diffusion equation [31]-[36](

∂2

∂x2
− σq ∂

q

∂tq

)
u(x, t) = δ(x)n(t)

where σ is the fractional diffusion coefficient and q > 0 is
the ‘Fourier dimension’ and n(t) is ‘white noise’ Let

u(x, t) =
1

2π

∞∫
−∞

U(x, ω) exp(iωt)dω

and

n(t) =
1

2π

∞∫
−∞

N(ω) exp(iωt)dω.



Then, using the result

∂q

∂tq
u(x, t) =

1
2π

∞∫
−∞

U(x, ω)(iω)q exp(iωt)dω

we can transform the fractional diffusion equation to the
form (

∂2

∂x2
+ Ω2

q

)
U(x, ω) = f(x)N(ω)

where we take
Ωq = i(iωσ)

q
2

and ignore the case for Ωq = −i(iωσ)
q
2 . Defining the

Green’s function g [37] to be the solution of(
∂2

∂x2
+ Ω2

q

)
g(x | x0, ω) = δ(x− x0)

where δ is the delta function, we obtain the following
solution:

U(x0, ω) = N(ω)

∞∫
−∞

g(x | x0, ω)δ(x)dx

= N(ω)g(| x0 |, ω)

where [38]

g(x | x0, k) =
i

2Ωq
exp(iΩq | x− x0 |)

under the assumption that u and ∂u/∂x → 0 as x→ ±∞.
Simplification of this result can be obtained by considering
the frequency response of U close to the origin x0. Thus as
x0 → 0

U(ω) =
iN(ω)
2Ωq

=
1

2σ
q
2

N(ω)
(iω)

q
2

The time series if then given by Fourier inverting this
equation to give (ignoring scaling parameters)

u(t) =
1

t1−q/2
⊗ n(t)

This equation is the RiemannLiouville transform (ignoring
scaling) which is a fractional integral and defines a random
scaling fractal signal u(t).

A. Rationale for the Model

Hurst process describe fractional Brownian motion and
are based on the generalization of Brownian motion quanti-
fied by the equation A(t) = a

√
t to

A(t) = atH , H ∈ (0, 1]

where a is the length of each random step in the plane
and A is the most likely position in the plane after time
t with respect to the position at t = 0. Given that random
walks with H = 0.5 describe processes whose macroscopic
behaviour is characterised by the diffusion equation, then,

by induction, Hurst processes should be characterised by
generalizing the diffusion operator

∂2

∂x2
− σ ∂

∂t

to the fractional form

∂2

∂x2
− σq ∂

q

∂tq

where q ∈ (0, 2] and D = 1/σ is the fractional diffusivity.
Fractional diffusive processes can therefore be interpreted
as intermediate between classical diffusive (random phase
walks with H = 0.5; diffusive processes with q = 1) and
‘propagative process’ (coherent phase walks for H = 1;
propagative processes with q = 2), e.g. [39]-[41].

B. Non-stationary Model

The fractional diffusion operator given above is appro-
priate for modelling fractional diffusive processes that are
stationary. For non-stationary fractional diffusion, we could
consider the case where the diffusivity is time variant as de-
fined by the function σ(t). However, a more interesting case
arises when the characteristics of the diffusion processes
change over time becoming less or more diffusive. This is
illustrated in terms of the random walk in the plane given in
Figure 2. Here, the walk starts off being fully diffusive (i.e.
H = 0.5 and q = 1), changes to being fractionally diffusive
(0.5 < H < 1 and 1 < q < 2) and then changes back to
being fully diffusive. In terms of fractional diffusion, this is
equivalent to having an operator

∂2

∂x2
− σq ∂

q

∂tq

where q = 1, t ∈ (0, T1]; q > 1, t ∈ (T1, T2]; q = 1, t ∈
(T2, T3] where T3 > T2 > T1. If we want to generalise
such processes over arbitrary periods of time, then we should
consider q to be a function of time. We can then introduce
a non-stationary fractional diffusion operator given by

∂2

∂x2
− σq(t) ∂

q(t)

∂tq(t)
.

This operator is the theoretical basis for the Fractal Market
Hypothesis considered in this paper.

If we consider the case where the Fourier dimension is
a relatively slowly varying function of time, then we can
legitimately consider q(t) to be composed of a sequence
of different states qi = q(ti). This approach allows us to
develop a stationary solution for a fixed q over a fixed period
of time. Non-stationary behaviour can then be introduced by
using the same solution for different values of q over fixed
(or varying) periods of time and concatenating the solutions
for all q.



Figure 2. Non-stationary random phase walk in the plane.

VI. FINANCIAL DATA ANALYSIS

We consider the basic model for a quasi-stationary seg-
ment of a financial signal to be given by

u(t) =
1

t1−q/2
⊗ n(t), q > 0

which has characteristic spectrum

U(ω) =
N(ω)

(iω)q/2

The PSDF is thus characterised by ω−q, ω ≥ 0 and our
problem is thus, to compute q from the data P (ω) =|
U(ω) |2, ω ≥ 0. For this data, we consider the PSDF

P̂ (ω) =
c

ωq

or
ln P̂ (ω) = C + q lnω

where C = ln c. The problem is therefore reduced to
implementing an appropriate method to compute q (and C)
by finding a best fit of the line ln P̂ (ω) to the data lnP (ω).
Application of the least squares method for computing q,
which is based on minimizing the error

e(q, C) = ‖ lnP (ω)− ln P̂ (ω, q, C)‖22
with regard to q and C, leads to errors in the estimates for
q which are not compatible with market data analysis. The
reason for this is that relative errors at the start and end
of the data lnP may vary significantly especially because
any errors inherent in the data P will be ‘amplified’ through
application of the logarithmic transform required to linearise
the problem. In general, application of a least squares
approach is very sensitive to statistical heterogeneity [42]
and in this application, may provide values of q that are not
compatible with the rationale associated with the FMH (i.e.
values of 1 < q < 2 that are intermediate between diffusive
and propagative processes). For this reason, an alternative
approach must be considered which, in this paper, is based
on Orthogonal Linear Regression (OLR).

A. Moving Window Data Analysis

Applying a standard moving window, q(t) is computed by
repeated application of OLR based on the m-code available
from [43]. This provides a numerical estimate of the function
q(t) whose values reflect the state of a financial signals
(assumed to be a non-stationary random fractal) in terms of
a stable or unstable economy, from which a risk analysis can
be performed. Since q is, in effect, a statistic, its computation
is only as good as the quantity (and quality) of data that is
available for its computation. For this reason, a relatively
large window is required whose length is compatible with
the number of samples available.

The approach has been software engineered using MAT-
LAB to develop a prototype system that is currently available
at http://eleceng.dit.ie/arg/downloads/FMH.zip The system
has been designed to use financial data that is readily
available from Yahoo finance http://uk.finance.yahoo.com/.

An example of the system output using a 1024 element
window is given in Figure 3 which includes q(t) after it has
been smoothed using a Gaussian low-pass filter to reveal the
underlying macrotrends of q(t). Inspection of the signals
illustrates a qualitative relationship between trends in the
financial data and q(t) in accordance with the theoretical
model considered. In particular, over periods of time in
which q increases in value, the amplitude of the financial
signal u(t) decreases. Moreover, and more importantly, an
upward trend in q appears to be a pre-cursur to a downward
trend in u(t), a correlation that is compatible with the idea
that a rise in the value of q relates to the ‘system’ becoming
more propagative, which in stock market terms, indicates the
likelihood for the markets becoming ‘bear’ dominant in the
future.

Figure 3. Application of the FMH using a 1024 element window for
analysing financial time series composed of Dow Jones close-of-day values
from 01-10-1928 to 25-03-2009 The plot shows the Dow Jones data (blue
signal above) and the time varying Fourier Dimension q(t) (green signal
below) onto which is superimposed a Gaussian low-pass filtered version of
the signal (red).



The results of using the method discussed above not only
provides for a general appraisal of different macroeconomic
financial time series, but, with regard to the size of selected
window used, an analysis of data at any point in time.
The output can be interpreted in terms of ‘persistence’
and ‘anti-persistence’ and in terms of the existence or
absence of after-effects (macroeconomic memory effects).
For those periods in time when q(t) is relatively constant,
the existing market tendencies usually remain. Changes in
the existing trends tend to occur just after relatively sharp
changes in q(t) have developed. This behaviour indicates
the possibility of using the time series q(t) for identifying
the behaviour of a macroeconomic financial system in terms
of both inter-market and between-market analysis. These
results support the possibility of using q(t) as an independent
macroeconomic volatility predictor.

VII. DISCUSSION

The non-stationary nature of the model presented in this
paper is taken to account for stochastic processes that can
vary in time and are intermediate between diffusive and
propagative or persistent behaviour. Application of Orthog-
onal Linear Regression to macroeconomic time series data
provides an accurate and robust method to compute q(t)
when compared to other statistical estimation techniques
such as the least squares method. As a result of the phys-
ical interpretation associated with the fractional diffusion
equation and the ‘meaning’ of q(t), we can, in principal,
use the signal q(t) as a predictive measure in the sense
that as the value of q(t) continues to increases, there is a
greater likelihood for volatile behaviour of the markets. This
is reflected in the data analysis based on the example given
in Figure 3 and other financial data, the results of which
lie beyond the scope of this paper2. It should be noted that
because financial time series data is assumed to be self-
affine, the computation of q(t) can be applied over any time
scale.

In a statistical sense, q(t) is just another measure that may,
or otherwise, be of value to market traders. In comparison
with other statistical measures, this can only be assessed
through its practical application in a live trading environ-
ment. However, in terms of its relationship to a stochastic
model for macroeconomic data, q(t) does provide a measure
that is consistent with the physical principles associated with
a random walk that includes a directional bias, i.e. fractional
Brownian motion. The model considered, and the signal
processing algorithm proposed, has a close association with
re-scaled range analysis for computing the Hurst exponent
H [33]. In this sense, the principal contribution of this paper
has been to consider a model that is quantified in terms of
a physically significant (but phenomenological) model that
is compounded in a specific (fractional) partial differential

2Similar results being observed for other major stock markets.

equation. As with other financial time series, their deriva-
tives, transforms etc., a range of statistical measures can be
used to characterise q(t), an example being given in Figure
3 where q(t) has been smoothed to provide a measure of
the underlying trends.

VIII. CONCLUSION

In terms of the non-stationary fractional diffusive model
considered in this work, the time varying Fourier dimension
q(t) can be interpreted in terms of a ‘gauge’ on the character-
istics of a dynamical system. This includes the management
processes from which all modern economies may be as-
sumed to be derived. In this sense, the FMH is based on three
principal considerations: (i) the non-stationary behaviour
associated with any system undergoing continuous change
that is driven by a management infrastructure; (ii) the cause
and effect that is inherent at all scales (i.e. all levels of
management hierarchy); (iii) the self-affine nature of out-
comes relating to points (i) and (ii). In a modern economy,
the principal issue associated with any form of financial
management is based on the flow of information and the
assessment of this information at different points connecting
a large network. In this sense, a macroeconomy can be
assessed in terms of its information network which consists
of a distribution of nodes from which information can flow in
and out. The ‘efficiency’ of the system is determined by the
level of randomness associated with the direction of flow of
information to and from each node. The nodes of the system
are taken to be individuals or small groups of individuals
whose assessment of the information they acquire together
with their remit, responsibilities and initiative, determines
the direction of the information flow from one node to
the next. The determination of the efficiency of a system
in terms of randomness is the most critical in terms of
the model developed. It suggests that the performance of
a business is related to how well information flows through
an organisation.
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