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Abstract. The power quality of a wind turbine is deter-

mined by many factors but time-dependent variation in the

wind velocity are arguably the most important. After a brief

review of the statistics of typical wind speed data, a non-

Gaussian model for the wind velocity is introduced that is

based on a Lévy distribution. It is shown how this distri-

bution can be used to derive a stochastic fractional diffusion

equation for the wind velocity as a function of time whose

solution is characterised by the Lévy index. A Lévy index

numerical analysis is then performed on wind velocity data

for both rural and urban areas where, in the latter case, the

index has a larger value. Finally, an empirical relationship is

derived for the power output from a wind turbine in terms of

the Lévy index using Betz law.
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1 Introduction

Developing appropriate models for assessing and predict-
ing the quality of power for any renewable energy source
is important throughout the energy industry. Quality of
power modelling is particularly important with regard to
wind energy as the construction of new wind farms is
growing rapidly compared with other renewable energy
systems [1]. By 2030, it is estimated that up to 40%
world energy supply will be based on renewable energy
sources and in countries with an appropriate disposition
to generating energy from wind, wave and tidal power
such as the UK and Ireland, the percentage is expected
to be much higher.

Quality of power modelling is often based on a statisti-
cal analysis of the available wind velocity data which is
used to assess optimum regions for the construction of

wind farms [2]. Although the power generated by a wind
turbine is based on a range of design factors, the wind ve-
locity as a primary factor since, from Betz law, the power
P in Watts is given by [3]

P =
1
2
αρAv3 (1)

where v is the wind speed in metres per second (ms−1),
A is the area of the turbine in m3, ρ is the density of air
in kgm−3 and α < 0.593 is the coefficient of performance.
Although other physical factors such as air temperature
and pressure, angle of attack, etc. are important, the
scaling law of the output power with regard to wind ve-
locity (i.e. P ∝ v3) is the most significant feature for a
given design of a wind turbine with a fixed area and coef-
ficient of performance [4]. Thus, an understanding of the
time variations in the wind velocity for a given geograph-
ical location is of paramount importance with regard to
locating a wind farm and monitoring its performance in
terms of the power quality. This requires stochastic mod-
els to be developed for the power output [5]

The acquisition of wind velocity data over different time
intervals and localities is a common practice together
with a routine statistical analysis of the data. The anal-
ysis is almost exclusively based on the assumption that
time variations in the wind velocity are random Brown-
ian processes and that the rate of change of velocity as a
function of time is Gaussian distributed, i.e. the wind ve-
locity conforms to a process of diffusion. However, this is
not usually the case as discussed in the following section
and in this paper we develop a non-Gaussian stochastic
model for the wind velocity that is based on a Lévy dis-
tribution and a fractional diffusion equation. This allows
us to analyse wind velocity in terms of the Lévy index
and thereby yields an approach to assessing the quality
of power for a wind turbine in terms of this index. We



provide examples of wind velocity data that substantiate
this approach and construct an empirical relationship for
the power output from a wind turbine based on the Lévy
index.

2 Statistical Analysis of the Wind Speed

Figure 1 shows a typical example plots of the wind veloc-
ity and wind direction as a function of time together with
the associated histograms illustrating a marked difference
in their statistical characteristics. This data shows wind
velocities (in metres per second) and wind directions (in
degrees) and consists of 8000 samples recorded at Dublin
Airport, Ireland over intervals of 1 hour from 00:00:00 on
1 January 2008 to 06:00:00 on 29 November 2008. The
The wind velocity v(t) has a typical Rayleigh-type dis-
tribution with a mode of 5ms−1 and a maximum wind
velocity of 21.1ms−1. The wind direction has a marked
statistical bias toward higher angles with a primary mode
of 240 degrees which is characteristic of the prevailing
wind direction for the region.

Figure 1: Plots of the wind velocity (top-left in metres
per second) and wind direction (bottom-left in degrees)
and the associated 22-bin and 360-bin histograms (top-
right and bottom-right), respectively.

Figure 2 compares the velocity gradient dtv(t) (which rep-
resents the force generated by the wind for a unit mass
computed using a forward differencing scheme) with the
output from a zero-mean Gaussian distributed random

number stream. By comparing these signals, it is clear
that the statistical characteristics of dtv(t) are not Gaus-
sian. The plot of dvt obtained from the wind velocity
data clearly shows that there are a number of rare but
extreme events corresponding to short periods of time
over which the change in wind velocity is relatively high.
This leads to a distribution with a narrow width but
longer tail when compared to a normal (Gaussian) dis-
tribution. Non-Gaussian distributions of this type are
typical of Lévy processes which are discussed in the fol-
lowing section.

Figure 2: Plots of a zero-mean Gaussian distributed
stochastic signal obtained using MATLAB V7 randn
function (above) and the gradient of the wind velocity
given in Figure 1 (below).

3 Lévy Processes

Lévy processes are random walks whose distribution has
infinite moments. The statistics of (conventional) phys-
ical systems are usually concerned with stochastic fields
that have PDFs (Probability Density Functions) where
(at least) the first two moments (the mean and variance)
are well defined and finite. Lévy statistics is concerned
with stochastic processes where all the moments (start-
ing with the mean) are infinite. Many distributions exist
where the mean and variance are finite but are not repre-
sentative of the process, e.g. the tail of the distribution is
significant, where rare but extreme events occur. These
distributions include Lévy distributions [6]. Lévy’s orig-
inal approach to deriving such distributions is based on
the following question: Under what circumstances does



the distribution associated with a random walk of a few
steps look the same as the distribution after many steps
(except for scaling)? This question is effectively the same
as asking under what circumstances do we obtain a ran-
dom walk that is statistically self-affine. The character-
istic function P (k) of such a distribution p(x) was first
shown by Lévy to be given by (for symmetric distribu-
tions only) [6]

P (k) = exp(−a | k |γ), 0 < γ ≤ 2 (2)

where a is a constant and γ is the Lévy index. For γ ≥ 2,
the second moment of the Lévy distribution exists and the
sums of large numbers of independent trials are Gaussian
distributed. If a stochastic process is characterised by a
random walk with a step length distribution governed by
p(x) with γ = 2, then the result is normal (Gaussian)
diffusion, i.e. a Brownian random walk process. For γ <
2 the second moment of this PDF (the mean square),
diverges and the characteristic scale of the walk is lost.
For values of γ between 0 and 2, Lévy’s characteristic
function corresponds to a PDF of the form

p(x) ∼ 1
x1+γ

, x→∞

Furthermore, Lévy processes characterised by a PDF of
this type conform to a fractional diffusion equation as we
shall now show [7].

The evolution equation for random walk processes that
generating a macroscopic field denoted by v(x, t) is given
by

v(x, t+ τ) = v(x, t)⊗x p(x)

where ⊗x denotes the convolution integral over x and
p(x) is an arbitrary PDF. From the convolution theorem,
in Fourier space, this equation becomes

V (k, t+ τ) = V (k, t)P (k)

where V and P are the Fourier transforms of v and p
respectively. From equation (2), we note that

P (k) = 1− a | k |γ , a→ 0

so that we can write

V (k, t+ τ)− V (k, t)
τ

' −a
τ
| k |γ V (k, t)

which for τ → 0 gives the fractional diffusion equation

σ
∂

∂t
v(x, t) =

∂γ

∂xγ
v(x, t), γ ∈ (0, 2] (3)

where σ = τ/a and we have used the result

∂γ

∂xγ
v(x, t) = − 1

2π

∞∫
−∞

| k |γ V (k, t) exp(ikx)dk

The solution to this equation with the singular initial
condition v(x, 0) = δ(x) is given by

v(x, t) =
1

2π

∞∫
−∞

exp(ikx− t | k |γ /σ)dk

which is itself Lévy distributed. This derivation of the
fractional diffusion equation reveals its physical origin in
terms of Lévy statistics.

For normalized units σ = 1 we consider equation (3) for
a ‘white noise’ source function n(t) and a spatial impulse
function −δ(x) so that

∂γ

∂xγ
v(x, t)− ∂

∂t
v(x, t) = −δ(x)n(t), γ ∈ (0, 2]

which, ignoring (complex) scaling constants, has the
Green’s function solution [8]

v(t) =
1

t1−1/γ
⊗t n(t) (4)

where ⊗t denotes the convolution integral over t and
v(t) ≡ v(0, t). The function v(t) has a Power Spectral
Density Function (PSDF) given by (for scaling constant
c)

| V (ω) |2=
c

| ω |2/γ

where

V (ω) =

∞∫
−∞

v(t) exp(−iωt)dt

and a self-affine scaling relationship

Pr[v(at)] = a1/γPr[v(t)]

for scaling parameter a > 0 where Pr[v(t)] denotes the
PDF of v(t). This scaling relationship means that the
statistical characteristics of v(t) are invariant of time ac-
cept for scaling factor a1/γ . Thus, if v(t) is taken to be
the wind velocity as a function of time, then the statis-
tical distribution of this function will be the same over
different time scales whether, in practice, it is sampled in
hours or seconds, for example.

4 Lévy Index Analysis

The PSDF | V (ω) |2 provides a method of computing γ
using the least squares method based on minimizing the
error function

e(c, γ) = ‖2 ln | V (ω) | − ln c− 2γ−1 ln | ω | ‖22, ω > 0

Figures 3 and 4 show the computation of γ(t) for a mov-
ing window of size 1024 elements. The accompanying ta-
bles (Table 1 and Table 2) provide some basic statistical



information with regard to γ(t) for these data sets. Ap-
plication of the Bera-Jarque parametric hypothesis test
of composite normality is rejected (i.e. ‘Composite Nor-
mality’ is of type ‘Reject’) and thus γ(t) is not normally
distributed.

Figure 3: Cork Airport (12/11/2003-1/1/2007) for hourly
(averaged) sampled data. Above: Normalised wind veloc-
ity data v(t) (blue) and the Lévy index γ(t) (red) for a
look-back moving window of 1024 elements. Below: 100-
bin histogram of γ(t).

Table 1: Statistical parameters associated with the Lévy
index function given in Figure 3.

Statistical Parameter Value for γ(t)
Minimum Value 1.3001
Maximum value 1.8142
Range 0.5141
Mean 1.5615
Median 1.5613
Standard Deviation 0.0569
Variance 0.0032
Skewness 0.0759
Kertosis 3.1966
Composite Normality ‘Reject’

These result illustrates that the wind velocity function
is a self-affine stochastic function with a mean Lévy in-
dex of ∼ 1.5. Based on these results, Figure 5 shows a
simulation of the wind velocity based on the computa-
tion of v(t) in equation (4) for γ = 1.5. The simulation
is based on transforming equation (4) into Fourier space
and using a Discrete Fourier Transform. The function

n(t) is computed using MATLAB (V7) uniform random
number generator rand for seed = 1.

Figure 4: Knock Airport (12/11/2003-1/1/2005) for
hourly (averaged) sampled data. Above: Normalised
wind velocity data v(t) (blue) and the Lévy index γ(t)
(red) for a look-back moving window of 1024 elements.
Below: 100-bin histogram of γ(t).

Table 2: Statistical parameters associated with the Lévy
index function given in Figure 4.

Statistical Parameter Value for γ(t)
Minimum Value 1.3846
Maximum value 1.7600
Range 0.3754
Mean 1.5777
Median 1.5788
Standard Deviation 0.0510
Variance 0.0026
Skewness -0.1538
Kertosis 3.0764
Composite Normality ‘Reject’

The results given in Figure 3 and Figure 4 are for wind
velocity data obtained in rural areas, i.e. at Cork and
Knock airports, respectively. It is interesting to note
that, in urban areas, the Lévy index may be expected
to increase as a result of the further ‘diffusion’ of the
wind velocity through ‘random scattering’ of the wind
from buildings in the local vicinity when, according the
model being considered, γ → 2. An example of this is
given in Figure 6 and Table 3 in which the average Lévy
index is ∼ 1.72 thereby confirming this expectation.



5 Power Quality Estimation for Wind
Energy Generation

Given equation (1) and equation (4), we can obtain an
expression for the power output by a wind turbine in
terms of the Lévy index γ as a function of time. Let the
noise function in equation (4) be a simple impulse at an
instant in time so that n(t) = δ(t). Then

v(t) =
1

t1−1/γ

and, from equation (1),

P (t) =
β

t3(1−1/γ)

where β = αρA/2 so that

lnP (t) = lnβ − 3 ln t+
3
γ

ln t

Given that β is a constant, it is then clear that, for any
time t, the magnitude of lnP is determined by γ−1. In
this sense, γ−1 is a coefficient of power quality as a func-
tion of time and we see that, according to this model,
power output increases as γ decreases. Thus, the signal
γ(t) given in Figure 3 and Figure 4, for example, repre-
sents a time varying measure of the averege output power
at a time τ according to the scaling law

〈lnP (t)〉τ = A+
B

γ(τ)

where 〈lnP (t)〉τ denotes the (moving) average value of
lnP (t) at a time τ and A and B are scaling constants
associated with a given wind turbine obtained by cali-
bration.

Table 3: Statistical parameters associated with the Lévy
index function given in Figure 6.

Statistical Parameter Value for γ(t)
Minimum Value 1.3209
Maximum value 2.1358
Range 0.8149
Mean 1.7236
Median 1.7204
Standard Deviation 0.0944
Variance 0.0089
Skewness 0.1939
Kertosis 3.0374
Composite Normality ‘Reject’

Figure 5: Simulated normalised wind velocities computed
for a Lévy index γ = 1.5 (above) and the corresponding
100-bine histogram (below)

Figure 6: Example of urban data analysis using wind ve-
locities recorded at Dublin Institute of Technology, Kevin
Street, Dublin 8 from 14 September 2010 at 22:20:44 to
15 September 2010 at 10:11:51 and sampled in seconds.
Above: Normalised wind velocity data v(t) (blue) and
the Lévy index γ(t) (red) for a look-back moving window
of 1024 elements. Below: 100-bin histogram of γ(t).



6 Energy Quality Estimation for Wave
Power Generation

From equation (4), the force generated for a unit mass is
given by

f(t) = dtv(t) =
1

t1−1/γ
⊗t dtn(t)

Working in a one-dimensional space, the wave equation
is then given by (for unit wave speed)(

∂2

∂x2
− ∂2

∂t2

)
u(x, t) = δ(x)f(t)

where we considered a source function with a spatial im-
pulse δ(x). The Green’s function solution to this equation
is given by (ignoring scaling constants)

u(t) =
1
π

sin(Ωt)
Ωt

⊗t v(t), Ω→ 0 ∀x (5)

where Ω is the bandwidth of the wave spectrum. The
PSDF of u(t) is therefore given by (for scaling constant
c)

P (ω) =| U(ω) |2=
c

| ω |2/γ
, | ω |≤ Ω

and for a fixed bandwidth Ω, it is clear that the power
output depends upon γ associated with the wind veloc-
ity according to the model compounded in equation (5).
Thus we can consider a time dependent wave power scal-
ing relationship of the form

〈lnP (ω)〉τ = A− B

γ(τ)

where A and B are scaling constants for a given wave
energy converter determined by calibration.

7 Summary

We have considered a Lévy distributed model and con-
structed a fractional diffusion equation for the wind ve-
locity whose temporal solution is characterised by the
Lévy index. Analysis of wind velocity data (some exam-
ples of which have been provided in this paper) according
to this model shows that the Lévy index is a time vary-
ing non-Gaussian stochastic function. Based on the data
analysed to date, the index appears to be larger ∼ 1.7
for urban areas compared to rural areas when γ ∼ 1.5.
These results are consistent with the underlying ratio-
nale associated with the model, where, as γ → 2, the
stochastic processes become increasingly diffusive. The
model presented allows times series for wind velocity to
be simulated whose statistical properties are consistent
with experimental data (e.g. Figure 5. Moreover, based
on the calculations performed in Sections 5 and 6, the

Lévy index may provide a useful measure on the power
quality of wind turbines and wave energy generators re-
spectively. Further investigation are required to ascertain
whether it may be possible to use the signal γ(t) for short
term predictive analysis on power quality following meth-
ods developed for financial risk management [9].
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