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Multi-Valued Argumentation Frameworks  
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Pierpaolo.dondio@dit.ie 

 

Abstract. In this paper we explore how the seminal Dung’s abstract argumenta-
tion framework can be extended to handle arguments containing gradual con-
cepts. We allow arguments to have a degree of truth associated with them and we 
investigate the degree of truth to which each argument can be considered ac-
cepted, rejected and undecided by an abstract argumentation semantics. We pro-
pose a truth-compositional recursive computation, and we discuss examples us-
ing the major multi-valued logics such as Godel’s, Zadeh’s and Łukasiewicz's 
logic. The findings are a contribution in the field of non-monotonic approximate 
reasoning and they also represent a well-grounded proposal towards the introduc-
tion of gradualism in argumentation systems. 

Keywords: Abstract Argumentation, multi-valued Logic, Possibility Theory 

1 Introduction 

The aim of this paper is to extend the well-studied abstract argumentation framework 
by Dung [2] to handle arguments containing graded and vague concepts. An abstract 
argumentation framework is a direct graph where nodes represent arguments and ar-
rows represent the attack relation. These frameworks were introduced to analyse defea-
sible arguments and study conflict resolution strategies among them. To this end, vari-
ous semantics have been proposed to identify the set of acceptable arguments. In this 
work we deal with grounded semantics and we follow the labelling approach proposed 
in [6], where a semantics assigns to each argument a label in, out or undec, meaning 
that the argument is considered consistently acceptable, non-acceptable or undecided. 

In Dung’s original work, arguments are either fully asserted or not asserted at all, 
and as a consequence abstract argumentation results are often too strict and coarse to 
support a decision making process.  

In quest for an argumentation system able to handle numbers, few approaches have 
been proposed to handle various degree of strengths (such as [7]), or gradualism [1]. 

Recent approaches [4,5] have tried to marry abstract argumentation and probability 
calculus. Following a similar conceptual framework, here we investigate how to marry 
abstract argumentation and multi-valued logic to handle vague arguments. In our frame-
work each argument has a degree of truth associated with it, quantifying to which de-



gree it holds. Our last statement - arguments hold to a degree of truth - is at least prob-
lematic. However, there are cases where the structure of arguments is defined in a way 
that makes it reasonable. In general, an argument can be defined as a construct used in 
discussions with a support and a claim that is derived from the support. An argument 
could be an inference rule from a premise (support) to a conclusion (claim). Premises 
and conclusions could be multi-valued propositions containing graded concepts or 
fuzzy terms that satisfy a certain state of affairs to a degree. For instance, the rule “if 
the tomato is rotten, do not eat it” can be used as an argument to avoid eating a specific 
tomato, it has a premise containing the fuzzy term rotten and therefore different toma-
toes can satisfy the premise of the rule to a different degree.  

Arguments containing vague or graded concepts are involved in conflicts, even if 
the nature of the conflict is not as well defined as in the case of Boolean propositions. 
As an example of conflict, let us presume that during a legal trial witness � said that 
“the murderer was thin” and witness � said that “the murderer was tall”. Suspect �� 
is skinny and suspect �� is about 1.9 metres tall.  

Two arguments can be put forward based on the available evidence. One, based on 
witness �’s testimony, is against �� and the other, based on �’s testimony, is against 
��. Each of them is satisfied to a degree. Since both are satisfied, there is an undecided 
situation to some degree �. However, if �� is taller than  �� is thinner, it could be argued 
– to a different degree � – that there is an undefeated argument against �� only. How-
ever, since �� is not completely tall, we might argue – to another degree � probably less 
than � and potentially null – that there is a consistent argument against �� only. How 
the degrees �, �, � can be quantified is the aim of this work. 

The paper is organized as follows. The next section provides the background defini-
tions for abstract argumentation and multi-valued logic. Sections 3 and 4 describe our 
computational framework with the required examples, followed by a description of re-
lated works in section 6. A conclusion summarises the paper and highlight future works. 

2 Abstract Argumentation 

2.1 Background Definitions 

Definition 1 An argumentation framework �
 is a pair (��, ) , where �� is a non-
empty finite set whose elements are called arguments and 	 ⊆ 	��	 × 	�� a binary re-
lation, called the attack relation. If (�, �	) 	 ∈ 	 we say that � attacks � in  . Two argu-
ments a, � are rebuttals iff (�, �	) 	 ∈ 	 ∧ (�, �	) 	∈ 	. 

Definition 2  (conflict-free). ���� is conflict-free iff ∄�, �	 ∈ ����	|	(�, �	) 	 ∈ 	. 

Definition 3 (admissible set). ���� defends an argument �	 ⊆ 	�� iff 
∀�	�	��	���ℎ	�ℎ��	(�, �	) 	∈ 		, ∃	�	�	����	���ℎ	�ℎ��	(�, �	) 	 ∈ 	.  

The set of arguments defended by ���� is denoted 
(����). A set ���� is admis-
sible if ����	 ⊆ 	
(����) and it is complete if ���� = 	
(����) 



An abstract argumentation semantics identifies a set of arguments that can survive 
the conflicts encoded by the attack relation . We follow the labelling approach of [6], 
where a semantics assigns to each argument a label in, out or undec.  

Definition 4 (labelling). Let �
 = (��	, 	�. A labelling is a total function " ∶ 	��	 →
	%&', (��, �')*�+. We write in(L) for %��	��|"��� ! &'+, out(L) for %��	��|"��� !
(��+, and undec(L) for %��	��|"��� ! �')*�+.  

Definition 5 (complete labelling, from definition 5 in [6]). Let ���	, 	� be an argu-
mentation framework. A complete labelling is a labelling that for every �	�	�� holds 
that:1. if � is labeled &' then all attackers of � are labeled (��; 2. if all attackers of � 
are labeled (�� then � is labeled &'; 3. if � is labeled (�� then � has an attacker labeled 
&'; 4. if � has an attacker labeled &' then � is labeled (�� 

Theorem 1 (from [6]) Let L be a labelling of argumentation framework ���	, 	�. It 
holds that L is a complete labelling iff for each argument �	�	�� it holds that: 1. if � is 
labeled &' then all its attackers are labeled (��; 2. if � is labeled (�� then it has at 
least one attacker that is labeled &'; 3. if � is labeled �')*� then it has at least one 
attacker that is labeled �')*� and it does not have an attacker that is labeled &'. 

Theorem 2 (from theorem 6 and 7 in [7]) Given �
 ! ���	, 	�, " is the grounded 
labelling iff L is a complete labelling where undec(L) is maximal (w.r.t. set inclusion) 
among all complete labellings of �
. 

In figure 1 two argumentation graphs are depicted. Grounded semantics assigns the 
status of undec to all the arguments of the argumentation framework on the left, since 
it represents the complete labelling with the maximal set, while in the argumentation 
framework on the right, according to theorem 1, there is only one complete labelling 
(thus grounded), where argument � is in (no attackers), � is out and � is in. Note how 
� reinstates �. 

 
Table 1. Fig. 1. Two Argumentation Graphs (A) and (B) 

2.2 Subgraph Notation and Labelling of Subgraphs of an AF 

As explained in section 3, when uncertainty or gradualism is added to arguments it 
is important to study the behaviour of a semantics over the subgraphs of the starting 
argumentation graph. Given an argumentation framework �
 ! ���, � with |��| !
', and the graph - identified by �� and , we consider the set . of all the subgraphs 
of -. We focus on particular sets of subgraphs, i.e. elements of 2. .  

Given �	 ∈ 	�r, we define: 

� ! %1	 ∈ .	|	�	is	a	node	of	1+     ;     �̅ ! %1 ∈ .	|	�	is	not	a	node	of	1+ 

� and �̅ are respectively the set of subgraphs where argument � is present and the 
complementary set of subgraphs where � is not present. If �� ! %��, . . , �<+, a single 



subgraph ℊ can be expressed by an intersection of ' sets �= or �>?  (& ≤ ') depending on 
whether the &AB argument �= is or is not contained in ℊ. A set of subgraphs can be 
expressed by combining some of the sets ��, . . , �<	, ��CCC, . . , �<CCCC. with the connectives {∪
,∩}. We write �� to denote � ∩ � and � + � for � ∪ �. For instance, in figure 1 left 
the single subgraph with only � and � present is denoted with �̅�G, while the expression 
�� denotes a set of two subgraphs (��G and ��G̅) where arguments � and � are pre-
sent and the status of � (not in the expression	��) is indifferent. 

Given a subgraph 1 ∈ ℋ, the labelling of	1 follows the rules of the chosen seman-
tics. We therefore define a subgraph labelling ℒ as a total function over the Cartesian 
product of arguments in �� and subgraphs in ℋ, therefore ℒ: �� ×ℋ →
{&', (��, �')*�}. When labelling a subgraph, we follow this choice: an argument � is 
automatically labelled (�� in all the subgraphs where 	a is not present (since it does not 
promote any claim) or when it is present but it is labelled (�� by the semantics, repre-
senting the effect on � of the other arguments. This is the only sensible choice: if an 
argument � is not present in a subgraph this means that � does not hold even isolated, 
since in that situation some of its premises are not satisfied. Note how, when an argu-
ment is not in the subgraph, it is a situation of perfect knowledge (we know that some 
of its premises are not satisfied), so it would be incorrect to assign the label undec or 
an unknown status to the argument. In order to be labelled undec, an argument has to 
exist and promote a claim first! 

In the case of grounded semantics there is only one labelling per subgraph 1, that 
we call ℒ(1) (we omit ��). We call &'(ℒ(1)), (��(ℒ(1)), 	�')*�(ℒ(1)) the sets of 
arguments labelled &', (��, �')*� in the labelling ℒ(1).	In order to study how an ar-
gument behaves across subgraphs in J, we define these sets of subgraphs:  

∀� ∈ ��	(�KL = M1 ∈ ℋ: � ∈ &'Nℒ(1)OP	, �QRS = {1 ∈ ℋ: � ∈ (��(ℒ(1))}, 
�R = {1 ∈ ℋ: � ∈ �')*�(ℒ(1))}	) 

i.e. the sets of subgraphs where � is labelled in, out, undec.  

Example 1. In the graph of figure 1 left, there are 3 arguments and 2T subgraphs; 
argument � is labelled &' in all the subgraphs where � is present and � is not present 
(and � becomes irrelevant), i.e. �KL = ��C . It is �')*� when all the arguments are pre-
sent (the single subgraph �R = ��G) while � is (�� when it is not present or when � 
is present and � is not present, i.e. �QRS = �̅ + ��G̅.  

2.3 Computing UVW 

A brute force algorithm to find �KL (or �QRS) simply computes the grounded seman-
tics in all the subgraphs of �� and select the subgraphs where the required label of � 
holds. In [18] we proposed a recursive algorithm to compute �KL under grounded la-
belling that here we modify1 to make it suitable to our problem. 

                                                           
1 The original algorithm in [18] generates non-overlapping sets of subgraphs containing indiffer-

ent arguments, as explained in section 3. 



Algorithm 1. A is a node, L a label, P is the list of parent nodes of A. 

FindSet(A,L,P): 
if A in P:  
   return empty_set //cycle found 
if L = IN:          
   if A terminal:    
      return a //terminal condition  
   else: 
      add A to P 
      for each child C of A 
         Cset = Cset AND FindSet(C,OUT,P) 
return (a AND Cset)  // condition 1 
if L = OUT:          
   if A terminal:  
      return NOT(a) //terminal condition 
   else 
      add A to P 
      for each child C of A 
  Cset = Cset OR FindSet(C,IN,P) 
      return (NOT(a) OR Cset)     // condition 2    

Given a starting argument � and a label X ∈ %&', (��+, the algorithm traverses the 
transpose graph (a graph with reversed arrows) from � down to its attackers, propagat-
ing the constraints of the grounded labelling. The constraints needed are listed in defi-
nition 5 and theorem 1. If argument � – attacked by n arguments �< – is required to be 
labeled &', we impose the set �KL to be: 

�KL ! �	Y�QRS 	Y�QRS … 	Y<QRS 					 (c. 1) 

i.e. argument � can be labeled in in the subgraphs where: 

1. � is present in the subgraph (i.e. the set �� and 
2. all the attacking arguments �= are (�� (sets Y=QRS�.  

If � is required to be labeled (��, the set of subgraphs is: 

�QRS ! �̅ F Y�KLFY�KL F⋯F Y<KL							(c.	2)	
i.e. � is labeled (�� in all the subgraphs where it is not present or at least one of the 
attackers is labeled &'. Thus we recursively traverse the graph, finding the subgraphs 
that are compatible with the starting label of �. The sets Y<QRS, Y<KL are found when 
terminal nodes are reached. When a terminal node �S is reached the following condi-
tions are applied: 

1. if �S is required to be &' then YSKL = YS 
2. if node �S is required to be (�� then YSQRS = YSCCCC 

Fig. 2. An argumentation graph. 



The way algorithm 1 treats cycles guarantees that only grounded labellings are iden-
tified. If a cycle is detected, the recursion path terminates, returning an empty set that 
also has the effect of discarding all the sets of subgraphs linked by a logical �]^ (in 
condition 1) to the cyclic path.  

Example 2. Referring to figure 2, � is labelled in when: 

�KL = ��QRS = �(�C + K̂L + GKL) = �(�C + ^ + G�QRS) = �(�C + ^). 
Note how G�QRS identifies a cycle and returns the empty set. 

2.4 Multi-valued Logic 

In the setting of multi-valued logics, the convention prescribing that a proposition is 
either true or false is changed. A sentence is now not true or false only, but may have a 
truth degree taken from an ordered scale, called truth space S, such as [0,1]. Multi-
valued logic can model situations affected by vagueness, where a statement is satisfied 
to a certain extend and the concepts discussed are graded. This is usual in natural lan-
guage when words are modeled by fuzzy sets, such as tall, young, fast. We identify a 
proposition with a fuzzy set and the degree of membership of a state of affairs to this 
fuzzy set evaluates the degree of fit between the proposition and the state of facts it 
refers to. This degree of fit is called degree of truth of a proposition ϕ. Semantically, 
a many-valued interpretation I maps each basic proposition ϕ,ψ into [0,1] and is then 
extended inductively as follows: 

I(ϕ ∧ ψ) = I(ϕ) ⊗ I(ψ)   ;   I(ϕ ∨ ψ) = I(ϕ)⨁I(ψ) 
I(ϕ → ψ) = I(ϕ) ⊳ I(ψ)    ;   I(ϕ?) =⊖ I(ψ) 

where ⊗, ⨁, ⊳ and ⊖ are called triangular norms, triangular co-norms, implication 
functions, and negation functions, which extend the classical Boolean conjunction, dis-
junction, implication, and negation to the many-valued case. These functions have all 
to satisfy the following properties: tautology, contradiction, commutativity, associativ-
ity and monotonicity, but not all of them satisfy excluded middle (�⨂⊝ � = 0) or 
double negation (⊖⊖x=x). We usually distinguish two main logics: Łukasiewicz's and 
Gödel's logic; the Zadeh's logic is a sublogic of Łukasiewicz's logic. Their operators 
are shown in table 1. For a comprehensive analysis see [16]. 

Table 1.  Combination functions of various fuzzy logics 

 Łukasiewicz's L. Gödel's logic Zadeh's logic 
a⊗b max	 (a+b−1,0) min	 (a,b) min	 (a,b) 

a⊕b min	 (a+b,1) max	 (a,b) max	 (a,b) 
a▷b min	 (1−a+b,1) l 1	&n	� ≤ �

�	(�ℎ*�o&�* max	 (1−a,b) 

⊖a 1−a l	 1	&n	� = 0
0	(�ℎ*�o&�* 1−a 



3 Gradualism, Vagueness and Abstract Argumentation 

Let us presume our argumentation framework includes ' arguments and that each 
argument is an inference rules between propositions of a language. If these propositions 
are affected by uncertainty or/and vagueness, we are not sure if the claim of the argu-
ment can be used in the argumentation process. If the proposition ϕ representing a claim 
is probabilistic, it can hold or not; if ϕ is vague, it partially holds (and partially not). 
The consequence is that multiple scenarios of the same argumentation process are pos-
sible or should be taken into account, each scenario described by a subset of the original 
argumentation framework. 

The case of probabilistic uncertainty has been recently analyzed in [5] and [4]. In a 
probabilistic argumentation framework arguments have a probability attached to them, 
indicating the likelihood of the argument to hold (based on the probability to which its 
premises are true, or are believed to be true). Since the premises are affected by proba-
bilistic uncertainty, the premises are satisfied (and the claim follows) in a subset of 
situations with likelihood �, and they are not satisfied in the complementary set of sit-
uations (with likelihood 1 − �). Given an argumentation graph with ' arguments, there 
are 2< possible situations, each of them identifying a subgraph of the original argumen-
tation graph. Li [4] calls these situations induced argumentation frameworks. Each in-
duced framework behaves as an abstract Dung-style framework and it has a probability 
of existing attached to it, computed using the (joint) probability distribution q defined 
over the arguments. Given a semantics, the probability of an argument � to be labelled 
in (or out or undec) is the sum of the probabilities of all the induced frameworks where 
the chosen semantics produces the required label for �. This computation is referred to 
in [5] as the constellation approach. 

In a multi-valued argumentation setting, arguments have a degree of truth attached 
to them, indicating to which extent their claims are compatible with a state of affair. 
We therefore assume an underlying model of arguments as inference rules between 
multi-valued propositions, each proposition with a degree of truth in [0,1]. A support 
and/or claim of an argument might contain vague or graded terms, and they can there-
fore have a degree of truth when applied to a specific state of affairs. For instance, I can 
argue that “if a tomato is rotten, do not eat it”. The support and therefore the claim of 
the argument assumes different degrees of truth when applied to different tomatoes. 

If a claim has a degree of truth r attached to it, this means that the current state of 
affairs satisfies the claim to a certain degree r but at the same time it also satisfies the 
negation of the claim with a degree quantified by the negation operator ⊖. These values 
are not referring to two distinct situations – as in the case of probabilistic uncertainty - 
but they represent degrees of truth attached to two co-existing situations both compati-
ble with the same state of affairs. In a multi-valued setting, an argument always holds 
partially, always because there is no probabilistic uncertainty involved and partially 
because it can be experienced at different degrees. However, at the same time this is 
also true for the negation of the claim. Going back to the tomato, the tomato is rotten, 
but maybe not so rotten to avoid eating parts of it. 

Given ' arguments with vague claims, there are again 2<  ways to which the set of 
arguments can partially satisfy the same state of affairs, each situation with a degree of 



truth associated. In each situation we consider the degree to which some arguments 
satisfy the state of affairs and the others do not satisfy it. We start by defining a multi-
valued argumentation framework as follows: 

Definition 6 A multi-valued argumentation framework (MVAF) is a tuple 
((��, ), r) where (��, ) is an abstract argumentation framework and r: �� → [0,1] 
assigns a degree of truth to each argument in ��. 

We write ru as a shortcut for r(�). Our aim is to find the degree to which an argu-
ment � is labelled &' (or out or undec), called ruKL (ruQRS , ruR). We stress the crucial 
difference between ru and ruKL. ru is the degree of truth to which the isolated argument 
� holds, before the argumentation process; ruKL is the resulting degree of truth of � 
after having accounted for the effect of the other attacking arguments  

3.1 Computing vwxy 

A starting idea simply translates the approach of probabilistic argumentation (the 
constellation approach) to the case of vagueness. This implies to first find all the sub-
graphs where � is labelled in, and then quantify the degree of truth of the resulting 
disjunction of subgraphs. Each subgraph is a conjunction of vague claims (or their ne-
gation) and its degree of truth is the degree to which this conjunction is satisfied by the 
state of affairs. As an example, let’s consider a simple argumentation graph where ar-
gument � is attacked by �, and � is attacked by �. The constellation approach finds the 
following three subgraphs: �KL = ��G + ��CG + ��GCCCC. The recursive algorithm 1 re-
turns the following set: �KL = ��QRS = �(�C + GKL) = �(�C + G) = ��C + �G.  Note 
how we could also express the set �KL as ��C + ��G	using disjoint sets. In the proba-
bilistic case all the above expressions are equivalent, but this is not the case for vague 
arguments and multi-valued logic. For instance, if ru = 0.8, r{ = 0.3, r} = 0.9, using 
Zadeh’s max and min operators the constellation approach gives a value of 0.3, the 
recursive algorithm 0.7 and the disjoint set notation 0.8. Which computation should be 
preferred? Our answer is two-fold.  

First, we note how the above expressions of �KL are computed using classical sets 
operators, that are adequate if a probabilistic measure is used over arguments. However, 
we are not allowed to further simplify the expression of �KL in case of vague arguments. 
The claims of the arguments are now multi-valued propositions associated to fuzzy sets, 
whose operators do not behave as the classical counterparts. Therefore, while the con-
stellation approach implicitly assumes the classical set theory and cannot be extended 
to the multi-valued case, the recursive algorithm 1 could still generate a correct expres-
sion for �KL if we do not simplify its output but we stop at �KL = �(�C + G). For in-
stance, Łukasiewicz strong operators do not satisfy the distributive property and there-
fore the expression cannot be simplified further.  

Second, it is the role of the arguments indifferent to the labelling of �. We set this 
reasonable principle: if an argument status is indifferent to the label of �, why bother 
considering its degree of truth? If in the probabilistic case the above question is irrele-
vant (since �(�) + �(�C) = 1), it is not when dealing with vague arguments. Let’s con-
sider the constellation approach first. Its expression is �KL = ��G + ��CG + ��GCCCC. In 



the last two terms, (��CG and ��GCCCC),  � is not in the subgraphs, � becomes disconnected 
from � and therefore irrelevant for the labelling of �. Therefore,  �’s degree of truth 
should not alter the degree of truth of �. The same happens with the recursive approach 
using disjoint sets. In the term ��G, why should I consider �? � is labelled out and 
therefore irrelevant for the labelling of �.  

We claim that, in order to assess the degree of truth of �KL, the correct expression is 
the one generated by algorithm 1, i.e. �KL = �(G + �C), where all the arguments indif-
ferent to the labelling of � are removed and multi-valued logic properties are not vio-
lated. Algorithm 1 directly maps the definition of complete grounded labelling as found 
in Caminada [6], its output is independent from the logic employed, and therefore it is 
correct both for the uncertain case (probabilistic or possibilistic) and the vague one. 

We now show that the output of algorithm 1 does not contain indifferent arguments.  
The reasons for an argument � to be indifferent to the grounded labelling of � are the 
following: 

1. � is disconnected from �.  
2. � is in the subgraph but labeled out (Boella 2009).  
3. If ' in-labeled nodes are attacking an (�� node, only one attacking argument at a 

time is needed to label �, while the others are indifferent. 

Points 1 and 3 are respected by algorithm 1. Disconnected arguments are never con-
sidered by algorithm 1 since they are simply not visited by the recursive algorithm, 
while the disjunction in condition 2 of algorithm 1 guarantees that only one of the at-
tackers is considered in each term. This allows us to stress a key advantage of algorithm 
1 compared to the constellation approach. While the constellation approach computa-
tion fragments the structure of the argumentation graphs in a collection of subgraphs, 
Algorithm 1 is a path-based traversal of the graph and it preserves the topology of the 
graph. 

Point 2 is also verified by algorithm 1, since the last line of the algorithm (return 
NOT(a) OR Cset ) is not considering argument � in its second term (since � is always 
labelled out in that case). Algorithm 1 guarantees to find a set of set subgraphs that is 
complete [18], i.e. its union covers all the possible subgraphs where a certain labelling 
of � holds.   

We then exploit the fully truth-compositional nature of multi-valued logic operators. 
Unlike probability or possibility calculus the three multi-valued logic proposed have 
truth-functional operators, i.e. the degree of truth of an expression is fully determined 
by the degree of truth of its components. As stressed by Dubois [20], we are allowed to 
use truth-functional operators as long as we are dealing with gradual properties with no 
uncertainty involved, otherwise possibility theory has to be applied and the truth-com-
positional property is lost. 

Therefore degrees of truth can be computed during the recursive visit of algorithm1. 
Degrees of truth of arguments are found when terminal conditions are reached and the 
values are propagated back to the recursive step and combined with the truth-functional 
multi-valued logic operators. We use as conjunction, disjunction and negation the op-
erators ⨁,⨂,⊖ of the multi-valued logic employed, and replacing arguments with their 
degrees of truth when terminal conditions are met. The truth-compositional property of 



multi-valued operators makes computing degrees of truth under grounded semantics 
having the same complexity class as a recursive tree traversal, i.e. a linear complexity 
proportional to the number of nodes and links, while the constellation approach is ob-
viously of above-polynomial complexity. 

Example 3 Let us continue example 2. If  μ� =	μ� =	μ� = 	0.8, μ� ! 0.6 then 
μ��� is given by the following recursive tree: 

 

 

Note how degree of truth are computed and propagated during the recursive steps 
exploiting the truth-compositional property of multi-valued operators applied to grad-
ual properties with no uncertainty involved. The computation seems to consistently use 
both argumentation semantics and multi-valued logic. 

4 Attack, Reinstatement, Accrual and Rebuttals 

The following examples illustrate, for all the three logics considered, the behavior 
of our frameworks w.r.t. fundamental situations that any argumentation framework has 
to handle, namely attack, reinstatement, accrual of arguments and reinstatement.  

 

Fig. 3. Argumentation graphs for the examples 4, 5, 6, 7, 8. 

Example 4 Attack. If argument � is attacked by �, how is the degree of � modified? It 
is �KL ! ��C . Using Zadeh’s operators, it is 	ruKL ! min	�ru, 1 p r{�. In general with 
Zadeh’s operators ru�� � ru (degree of truth is diminished), but it remains the same 



when ru < 1 − r{. Therefore, the degree of truth of � could remain unchanged and the 
attack from � neglected if ru + r{ < 1. This imposes a minimum degree of truth on 
the attacker to activate the attack. Note how this finding seems to justify the notion of 
a threshold for attack activation present in [1]. Using Łukasiewicz's logic it is: 

ruKL = min(ru + 1 − r{ − 1,0) = min	(ru − r{, 0) = �ru − r{ 	&n	ru > ru
0	&n	ru ≤ r{  

Therefore � is always diminished, and totally defeated if the degree of the attacker 
is greater than ru. Interestingly, this is the exact behaviour proposed by Pollock [7], 
whose proposal was not grounded in any multi-valued logic system.  

Note how, using Zadeh’s  min operator, an argument can be totally defeated only if 
r{ = 1, while using Łukasiewicz's logic it is totally defeated every time ru ≤ r{. 

Finally, Godel’s logic negation operator always assigns a null degree of truth to r⊖u 
if ru > 0. In practical terms, this implies removing the negated terms from the output 
of algorithm 1. This means that, using grounded semantic only one out of the three 
quantities ruKL , ruQRS , ruR has a not null value. In the case of � attacking �, it is obvi-
ously  ruKL = 0.  

Regarding ruQRS, it is �QRS = �̅ + �. For Godel’s logic the resulting degree is  the 
degree of the attacker �, for Zadeh's logic ruQRS remains equal to ru iff 1 − ru < r{ 
and under Łukasiewicz's logic ruQRS = 1 (� totally defeated) when r{ ≥ ru.  

Example 5. Reinstatement Chain. A chain of 3 arguments helps to reason about 
reinstatement. It is �KL = �(�C + G).  

Under Godel’s logic, only �G has a not null degree of truth and ru�� = min	(ru, r}). 
Thus the argument is fully reinstated if r} > ru  or it is reinstated to the degree equal 
to its defender �.  

Using Zadeh’s logic, ru�� is given by the expression min	(ru, max(1 − r{ , r})). We 
note that, if 1 − r{ > r}, nothing changes from example 4 and no reinsteitment hap-
pens, while, when 1 − r{ < r},  ru�� could be increased w.r.t. example 4. Both Za-
deh’s and Godel’s logic fully reinstates � if r} > ru. Arguably, when r} > ru the two 
logic systems neglect the degree of truth of the attacker �. 

Using Łukasiewicz's logic � is fully reinstated if 1 − r{ + r} > 1, i.e. r} > r{, 
which seems a reasonable result and again it is the same behaviour as Pollock [7]. 

The reinstatement example provides evidence in favour of our recursive algorithm 
and our choices of neglecting indifferent arguments and respecting the multi-valued 
logic properties when simplifying the expression of �KL. In fact, if we had further sim-
plified the expression of �KL into �KL = ��C + �G, using Łukasiewicz's logic, it could 
have been that ruKL resulted more than ru! If ru = 0.5, r{ = 0.1, r} = 0.9, it is 
ruKL = min(max(0.5 + 0.9 − 1,0) + max(0.5 + 0.9 − 1,0), 1) = 0.8! We wonder if 
the reason why ruKL > ru is because we neglected the out-labelled argument � in the 
expression �KL = ��C + �G, and the right expression should be �KL = ��C + ��G or 
the constellation approach expression �KL = ��CG + ��CG̅ + ��G. Both these two ex-
pressions guarantee that ruKL ≤ ru, but their behaviour is still counter-intuitive due to 



the fact that longer conjunctive expressions are harder to satisfy and the resulting degree 
of truth decreases rapidly2. For instance, if  ru = 0.5, r{ ! 0.5, r} ! 1 we have ruKL !
0 (even if � is defended by an argument with the maximum degree of truth, there is no 
reinstatement).  

Example 6. Accrual of attacks. The example clarifies the accrual of attacks. It is 
�KL ! ��CG̅ and �QRS ! �̅ F G F �. Considering �QRS, both Godel’s and Zadeh’s op-
erators do not accrue arguments, since it is the max of the two arguments that is con-
sidered, as in Pollock [7]. Arguments accrue with Łukasiewicz's logic, since its disjunc-
tion operator does. 

Example 7, Rebuttal. In case of two rebuttal arguments, grounded semantics gives 
�R ! �R ! ��, �KL ! ��C, �KL ! ��̅. Figure 4 shows the behaviour of the three multi-
valued logics discussed. Godel and Zadeh always assign a not null value to the undec 
situation equal to ru� ! r{� ! min	�ru, r{�, while with Łukasiewicz's operators it is 
ru� ! max	�ru F r{ p 1,0�, and therefore ru� � 0 only when  ru F r{ � 1. Intui-
tively, using Łukasiewicz, two conflicting arguments can coexist if their degrees of 
truth are small enough to avoid overlapping. 

Regarding μ��� and μ���, Godel’s system assigns a null degree of truth to both; while 
Zadeh’s logic always assigns a not null degree, that has an upper bound in the degree 
to which the other conflicting argument is negated. Łukasiewicz’s logic assigns a not 
null degree equal to |μ� p μ�| to the argument with the highest degree, and a null de-
gree to the other. Each of this behaviour seems to fit some but not all the situations 
where gradual arguments conflict and the author seeks to systematically investigate this 
issue in the next future work. 

 

Fig. 4. Rebuttals with different multi-valued logic 

Example 8. Multi-valued operators do not always verify the excluded middle principle. 
This could lead to controversial situations where multi-valued argumentation strongly 
differs from the classical logic case. Let us consider the argumentation graph in figure 
3 (last on the left). If we are using Zadeh’s logic, the excluded middle principle is not 
verified and an argument can be at the same time present and not present in the argu-
mentation process. It is ru�� ! r��⨂�QRS⨂GQRS� ! r��⨂�C⨂�G̅⨁��� !

                                                           
2 A similar remark was done by Pollock [7] against the use of the product rule of probability in 

defeasible reasoning. 



r(�⨂(�C⨂G̅ + �C⨂�)) where we applied the distributive property (allowed with Za-
deh’s logic) to show the presence of the not-null term �C⨂�. 

5 Related Works 

Conceptually, our framework is closer to the work done in the context of probabil-
istic argumentation frameworks.  The idea of merging probabilities and abstract argu-
mentation was first presented by Dung [2], and a more detailed formalization was pro-
vided by Li [4], along with the works by Hunter [5] and Thimm [12]. [4] introduces the 
notion of constellation approach. [12] and [5]  in his epistemic approach, start from a 
complementary angle. Both authors assume that there is already an uncertainty measure 
– potentially not probabilistic – defined on the admissibility set of each argument and 
they study which properties this uncertainty measure should satisfy in order to be ra-
tional. Regarding works that explicitly define fuzzy argumentation systems, we should 
mention the framework by Janssen [13] where fuzzy labels may be interpreted as fuzzy 
membership to an extension. However, [13]’s approach differs significantly from ours 
by the fact that the attack relation that defines the framework is taken to be fuzzy and 
the conflict-free and admissibility definitions are changed accordingly. In [14] a certi-
tude factor is added to the labels in, out and undec as we do. The work proposes an 
equational approach to abstract argumentation, where arguments degrees have to sat-
isfy a set of properties modelled as equations, properties that might not have any link 
to a fuzzy logic system. On the contrary, our computation of degrees of truth is a more 
consistent approach exploiting both argumentation semantics and multi-valued logics. 

Regarding other works investigating gradualism in argumentation, we first mention 
Pollock’s work on degrees of justification [7]. Pollock considers the strengths of argu-
ments as cardinal quantities that can be subtracted. The accrual of arguments is denied 
and it is the argument with the maximum strength that defines the attack. It is interesting 
to notice how Pollock's computation is not grounded in any logic systems, but his attack 
function behaves like our framework using Łukasiewicz's logic, while his accrual be-
haves like Zadeh's and Godel's logics. The vs-defence model, by Cayrol  [1], is an ex-
tension of abstract argumentation where attacks have a strength associated with them. 
Argument admissibility status is the result of the comparisons of attack strengths, in a 
way similar to our frameworks with Łukasiewicz's logic (example 1). However, there 
is no description about the nature and the computation of such strength. We also men-
tion [10] that first extended Dung’s framework introducing different levels of attacks. 
[9] proposed weighted argument systems, where  attacks can have weights, and such 
weights might have different interpretations: an agent-based priority voting, or a meas-
ure of how many premises of the attacked argument are compromised. 

6 Conclusions 

In this paper we explored how Dung’s abstract argumentation framework can be ex-
tended to handle arguments affected by vagueness. We studied some basic properties 
and provided examples using Godel’s, Łukasiewicz's and Zadeh’s multi-valued logic. 



The findings are a contribution in the field of approximate reasoning and they also rep-
resent a well-grounded proposal towards the introduction of gradualism in argumenta-
tion systems. We believe to have provided a novel synthesis between argumentation 
semantics and gradualism, providing the theoretical foundation of a framework for rea-
soning under uncertainty that has both the soundness of argumentation semantics w.r.t. 
the identification of a consistent set of arguments, and the ability to handle gradual and 
vague properties proper of multi-valued logics. 
The present work represents the first theoretical foundation of our framework and it 
opens numerous opportunities and open issues for future studies. 

First, we aim to extend our frameworks to other semantics, starting from complete 
semantics such as stable and preferred. 

Second, this paper presents a limited investigation and discussion on the meaning of 
gradual arguments and it focuses on theoretical aspects of the frameworks. What does 
the notion of attack with gradual arguments really mean? 

A comprehensive answer requires a more structured definition of arguments and 
types of attacks. Further studies have to be done in investigating the various multi-value 
logics proposed here. In particular, the meaning of the degrees of truth computed by 
each multi-valued logic and which kind of vagueness each logic system is more suitable 
to model. It seems to the author that none of the systems studied here could reasonably 
handle all the situations involving vague arguments, but rather each of them captures 
specific situations.  

Finally, work has to be done in investigating how to handle situations in which prob-
abilistic and vague arguments coexist in the same argumentative process. 
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