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Multi-Valued Argumentation Frameworks

Pierpaolo Dondio

School of Computing, Dublin Institute of Technology,
Kevin Street 2, Dublin 8, Ireland

Pi er paol 0. dondi o@lit.ie

Abstract. In this paper we explore how the seminal Dungstralot argumenta-
tion framework can be extended to handle argumemtsaining gradual con-
cepts. We allow arguments to have a degree of aisghciated with them and we
investigate the degree of truth to which each aentncan be considered ac-
cepted, rejected and undecided by an abstract amgation semantics. We pro-
pose a truth-compositional recursive computatiow, @e discuss examples us-
ing the major multi-valued logics such as Godefadeh’s and tukasiewicz's
logic. The findings are a contribution in the fielinon-monotonic approximate
reasoning and they also represent a well-groundgzbpal towards the introduc-
tion of gradualism in argumentation systems.

Keywords: Abstract Argumentation, multi-valued Logic, Pod#ip Theory

1 Introduction

The aim of this paper is to extend the well-studibdtract argumentation framework
by Dung [2] to handle arguments containing graded \e\ague concepts. An abstract
argumentation framework is a direct graph whereesa@gpresent arguments and ar-
rows represent the attack relation. These frameswwece introduced to analyse defea-
sible arguments and study conflict resolution sgis among them. To this end, vari-
ous semantics have been proposed to identify thefseceptable arguments. In this
work we deal with grounded semantics and we follealabelling approach proposed
in [6], where a semantics assigns to each argumdéattel in, out or undec, meaning
that the argument is considered consistently aabémtnon-acceptable or undecided.

In Dung'’s original work, arguments are either fudlgserted or not asserted at all,
and as a consequence abstract argumentation raseltsten too strict and coarse to
support a decision making process.

In quest for an argumentation system able to hamatkebers few approaches have
been proposed to handle various degree of strefgtbh as [7]), or gradualism [1].

Recent approaches [4,5] have tried to marry alistrgeimentation and probability
calculus. Following a similar conceptual framewdrkre we investigate how to marry
abstract argumentation and multi-valued logic tedhk@avague arguments. In our frame-
work each argument has a degree of truth assoandtkdt, quantifying to which de-



gree it holds. Our last statemertrguments hold to a degree of trutts at least prob-
lematic. However, there are cases where the steuoftarguments is defined in a way
that makes it reasonable. In general, an argun@nbe defined as a construct used in
discussions with a support and a claim that isvédrfrom the support. An argument
could be an inference rule from a premise (supgor§ conclusion (claim). Premises
and conclusions could be multi-valued propositicositaining graded concepts or
fuzzy terms that satisfy a certain state of affaore degree. For instance, the rule “
the tomato is rotten, do not edtdan be used as an argument to avoid eating aftspec
tomato, it has a premise containing the fuzzy testien and therefore different toma-
toes can satisfy the premise of the rule to a diffedegree.

Arguments containing vague or graded conceptsra@hvied in conflicts, even if
the nature of the conflict is not as well definedirathe case of Boolean propositions.
As an example of conflict, let us presume thatryia legal trial witnesd said that
“the murderer was thin’and witnes$ said thatthe murderer was tall’ Suspecs;
is skinny and suspes} is about 1.9 metres tall.

Two arguments can be put forward based on theablaikvidence. One, based on
witnessA’s testimony, is against; and the other, based @ testimony, is against
S,. Each of them is satisfied to a degree. Since amlsatisfied, there is an undecided
situation to some degree However, ifS, is taller thans; is thinner, it could be argued
— to a different degreg — that there is an undefeated argument agé&inshly. How-
ever, sinces, is notcompletelytall, we might argue — to another degegaobably less
thany and potentially null — that there is a consisemgument against; only. How
the degrees, y, z can be quantified is the aim of this work.

The paper is organized as follows. The next segtionides the background defini-
tions for abstract argumentation and multi-valusgid. Sections 3 and 4 describe our
computational framework with the required exampleowed by a description of re-
lated works in section 6. A conclusion summarikeggiaper and highlight future works.

2  Abstract Argumentation

2.1 Background Definitions

Definition 1 An argumentation framewolkF is a pair(Ar, R) , whereAr is a non-
empty finite set whose elements are called argunagict® < Ar X Ar a binary re-
lation, called the attack relation. (f;, b ) € R we say that attacksb in . Two argu-
mentsa, b arerebuttals iff (a,b) € RA(b,a) € R.

Definition 2 (conflict-free) Args is conflict-free iffia,b € Args|(a,b) € R.

Definition 3 (admissible set) Args defends an argumenut < Ar iff
Vb € Ar such that (b,a) € R,3 ce Args such that (c,b) € R.

The set of arguments defendedAnys is denoted (Args). A setArgs is admis-
sibleif Args © F(Args) and it is complete ilrgs = F(Args)



An abstract argumentation semantics identifiestafarguments that can survive
the conflicts encoded by the attack relatitariVe follow the labelling approach of [6],
where a semantics assigns to each argument aimaloeit or undec.

Definition 4 (labelling). LetAF = (Ar,R ). Alabelling is a total functioh : Ar —
{in, out,undec}. We write in(L) for{ae Ar|L(a) = in}, out(L) for {ae Ar|L(a) =
out}, and undec(L) fofae Ar|L(a) = undec}.

Definition 5 (complete labellingfrom definition 5 in [6]).Let (Ar,R ) be an argu-
mentation framework. A complete labelling is a libg that for everya ¢ Ar holds
that:1. ifa is labeledin then all attackers ai are labeledut; 2. if all attackers ot
are labelebut thena is labeledin; 3. if a is labeledut thena has an attacker labeled
in; 4. if a has an attacker labeled thena is labeledout

Theorem 1(from [6]) Let L be a labelling of argumentation framewd# , R ). It
holds that L is a complete labellingfor each argumert € Ar it holds that: 1. ila is
labeledin then all its attackers are labeledit; 2. if a is labeledout then it has at
least one attacker that is labelend; 3. if a is labeledundec then it has at least one
attacker that is labeledndec and it does not have an attacker that is labéted

Theorem 2 (from theorem 6 and 7 in [7BivenAF = (Ar,R), L is the grounded
labelling iff L is a complete labelling where unflecis maximal (w.r.t. set inclusion)
among all complete labellings af.

In figure 1 two argumentation graphs are depicG@unded semantics assigns the
status ofundecto all the arguments of the argumentation framéveor the left, since
it represents the complete labelling with the maatiget, while in the argumentation
framework on the right, according to theorem 1rehis only one complete labelling
(thus grounded), where argumenis in (no attackers)y is outandc isin. Note how

a reinstateg.
02080

Table 1.Fig. 1. Two Argumentation Graphs (A) and (B)

2.2  Subgraph Notation and Labelling of Subgraphs of arAF

As explained in section 3, when uncertainty or gedidm is added to arguments it
is important to study the behaviour of a semartigsr the subgraphs of the starting
argumentation graph. Given an argumentation framewé = (Ar, R) with |Ar| =
n, and the graph identified byAr andR, we consider the séf of all the subgraphs
of g. We focus on particular sets of subgraphs, i.enetes of2* .

Givena € Ar, we define:

A={Ah €H |aisanodeof 4} ; A= {h € H |aisnotanodeofA}

A andA are respectively the set of subgraphs where amgumis present and the
complementary set of subgraphs wheres not present. 18r = {a,,..,a,}, a single



subgraphy can be expressed by an intersection eéts4; or 4, (i < n) depending on
whether theit® argumenta; is or is not contained ig. A set of subgraphs can be
expressed by combining some of the #gts., 4, ,4;,..,A,. with the connectivegu
,N}. We writeAB to denoted N B andA + B for A U B. For instance, in figure 1 left
the single subgraph with onbyandc present is denoted withBC, while the expression
AB denotes a set of two subgrapA®( andABC) where arguments andb are pre-
sent and the status of(not in the expressiaAB) is indifferent.

Given a subgraph € ¢, the labelling o4 follows the rules of the chosen seman-
tics. We therefore definesubgraph labellingC as a total function over the Cartesian
product of arguments inAr and subgraphs in#f, therefore L:Ar x H —
{in, out,undec}. When labelling a subgraph, we follow this choiaa:argument is
automatically labelledut in all the subgraphs whereis not present (since it does not
promote any claim@r when it is present but it is labelledt by the semantics, repre-
senting the effect on of the other arguments. This is the only sensibieice: if an
argumenta is not present in a subgraph this meansdtaaes not hold eveisolated
since in that situation some of its premises atesatisfied. Note how, when an argu-
ment is not in the subgraph, it is a situation effgct knowledge (we know that some
of its premises are not satisfied), so it wouldrmrrect to assign the labehdecor
anunknownstatus to the argument. In order to be labaliedec,an argument has to
exist and promote a claim first!

In the case of grounded semantics there is onlylaelling per subgraph, that
we callL(#4) (we omitAr). We callin(L(4)), out(L(4)), undec(L(#)) the sets of
arguments labelleth, out, undec in the labellingCL(#). In order to study how an ar-
gument behaves across subgraphg,ime define these sets of subgraphs:

Va € Ar (Ajy = (A € H:a € in(L(A))}, Agur = {#A € H:a € out(L(A))},
Ay ={h € H:a € undec(L(A))})

i.e. the sets of subgraphs whergs labelledn, out, undec.

Example 1.In the graph of figure 1 left, there are 3 arguraeaid2® subgraphs;
argumenta is labelledin in all the subgraphs wheteis present and is not present
(andc becomes irrelevant), i.d;y = AB. It isundec when all the arguments are pre-
sent (the single subgraph, = ABC) while a is out when it is not present or whén
is present and is not present, i.el,yr = A + ABC.

2.3 Computing A,y

A brute force algorithm to find;, (orAoyr) simply computes the grounded seman-
tics in all the subgraphs dfr and select the subgraphs where the required tdhel
holds. In [18] we proposed a recursive algorithntamnputed;, under grounded la-
belling that here we modifjto make it suitable to our problem.

1 The original algorithm in [18] generates non-ospging sets of subgraphs containindiffer-
entarguments, as explained in section 3.



Algorithm 1. Ais a node, L a label, P is the list of parentemdf A.

Fi ndSet (A, L, P):
if Ain P
return enpty_set //cycle found () (®)

if L=IN ;
if Atermnal:
® O,

return a //termnal condition
el se:
add Ato P Fig. 2. An argumentation graph.
for each child C of A
Cset = Cset AND Fi ndSet (C, OUT, P)
return (a AND Cset) // condition 1
if L = QUT:
if Atermnal:
return NOT(a) //terminal condition
el se
add Ato P
for each child C of A
Cset = Cset OR FindSet(C IN,P)
return (NOT(a) OR Cset) /1 condition 2

Given a starting argumemt and a label € {in, out}, the algorithm traverses the
transpose graph (a graph with reversed arrows) raown to its attackers, propagat-
ing the constraints of the grounded labelling. €bastraints needed are listed in defi-
nition 5 and theorem 1. If argumeant- attacked by argumentsc,, — is required to be
labeledin, we impose the set; to be:

Ay = A X147 X2opr - Xnoyr

(c. 1)
i.e. argument can be labeleth in the subgraphs where:

1. a is present in the subgraph (i.e. theAgpaind

2. all the attacking arguments areout (setsX;,.)-

If a is required to be labeladit, the set of subgraphs is:
AOUT :‘4_+X1[N+X21N +"'+Xn1N (C. 2)

i.e. a is labeledout in all the subgraphs where it is not present deast one of the
attackers is labeleth. Thus we recursively traverse the graph, findimg subgraphs
that are compatible with the starting labekofThe sets(, ., X,, are found when
terminal nodes are reached. When a terminal ngde reached the following condi-

tions are applied:

1.if x is required to bén thenXr,, = Xr
2.if nodexy is required to beut thenXr, . = Xr



The way algorithm 1 treats cycles guarantees thigtgrounded labellings are iden-
tified. If a cycle is detected, the recursion pithminates, returning an empty set that
also has the effect of discarding all the setsubfysaphs linked by a logic@ND (in
condition 1) to the cyclic path.

Example 2.Referring to figure 2q is labelledn when:
AIN = ABOUT = A(E + DIN + CIN) = A(E + D + CAOUT) = A(E + D)

Note howCA,yr identifies a cycle and returns the empty set.

2.4  Multi-valued Logic

In the setting of multi-valued logics, the conventprescribing that a proposition is
either true or false is changed. A sentence is moitrue or false only, but may have a
truth degree taken from an ordered scale, callgth spaceS, such as [0,1]. Multi-
valued logic can model situations affected by vagiss, where a statement is satisfied
to a certain extend and the concepts discussegraded. This is usual in natural lan-
guage when words are modeled by fuzzy sets, sutdilagoung, fastWe identify a
proposition with a fuzzy set and the degree of memsitip of a state of affairs to this
fuzzy set evaluates the degree of fit between tbegsition and the state of facts it
refers to. This degree of fit is calleeégree of truttof a propositionp. Semantically,

a many-valued interpretatidmmaps each basic propositigny into [0,1] and is then
extended inductively as follows:

1A =1(d) IW) ; 1(dVY) =1P)BI(Y)
1 -y)=1¢) = 1) ; I(d) =0 1)

where®, @, > and© are called triangular norms, triangular co-norimglication
functions, and negation functions, which extenddhssical Boolean conjunction, dis-
junction, implication, and negation to the manyweal case. These functions have all
to satisfy the following properties: tautology, t@diction, commutativity, associativ-
ity and monotonicity, but not all of them satisfyckuded middle X® © x = 0) or
double negation®® ©x=x). We usually distinguish two main logics: tukasiems and
Godel's logic; the Zadeh's logic is a sublogic akasiewicz's logic. Their operators
are shown in table 1. For a comprehensive anadgsi416].

Table 1. Combination functions of various fuzzy logics

tukasiewicz's L. Gdodel's logic Zadeh's logic
agb max (a+b-1,0) min (a,b) min (a,b)
aédb min (a+b,1) max (a,b) max (a,b)
arb min (1-a+b,1) { lifa<b max (1-a,b)
b otherwise

Sa 1-a { lifa=0 1-a
0 otherwise




3 Gradualism, Vagueness and Abstract Argumentation

Let us presume our argumentation framework includesguments and that each
argument is an inference rules between propositibadanguage. If these propositions
are affected by uncertainty or/and vagueness, e@atr sure if the claim of the argu-
ment can be used in the argumentation procesg [ropositiord representing a claim
is probabilistic, it can hold or not; i is vague, it partially holds (and partially not).
The consequence is that multiple scenarios ofahgesargumentation process are pos-
sible or should be taken into account, each scedascribed by a subset of the original
argumentation framework.

The case of probabilistic uncertainty has beenmécanalyzed in [5] and [4]. In a
probabilistic argumentation framework argumentsehayrobability attached to them,
indicating the likelihood of the argument to holch¢ed on the probability to which its
premises are true, or are believed to be truepeSime premises are affected by proba-
bilistic uncertainty, the premises are satisfiedd(¢he claim follows) in a subset of
situations with likelihoodc, and they are not satisfied in the complementarypf&sit-
uations (with likelihoodl — x). Given an argumentation graph witlarguments, there
are2™ possible situations, each of them identifying lagsaph of the original argumen-
tation graph. Li [4] calls these situatioimsluced argumentation frameworksach in-
duced framework behaves as an abstract Dung-sayteefvork and it has a probability
of existing attached to it, computed using thenfjoprobability distributionP defined
over the arguments. Given a semantics, the prababilan argument to be labelled
in (oroutorundeg is the sum of the probabilities of all the inddédeameworks where
the chosen semantics produces the required label fithis computation is referred to
in [5] as theconstellation approach.

In a multi-valued argumentation setting, arguméatge a degree of truth attached
to them, indicating to which extent their claime @ompatible with a state of affair.
We therefore assume an underlying model of argusnastinference rules between
multi-valued propositions, each proposition witdegree of truth in [0,1]. A support
and/or claim of an argument might contain vagugraded terms, and they can there-
fore have a degree of truth when applied to a fipestate of affairs. For instance, | can
argue thatif a tomato is rotten, do not eat it'The support and therefore the claim of
the argument assumes different degrees of trutimapplied to different tomatoes.

If a claim has a degree of truthattached to it, this means that the cursate of
affairs satisfies the claim to a certain degrebut at the same time it also satisfies the
negation of the claim with a degree quantifiedi®/negation operatép. These values
are not referring to two distinct situations —mashe case of probabilistic uncertainty -
but they represent degrees of truth attached tactmexisting situations both compati-
ble with the same state of affairs. In a multi-ealisetting, an argument always holds
partially, alwaysbecause there is no probabilistic uncertainty ivea andpartially
because it can be experienced at different degkémsever, at the same time this is
also true for the negation of the claim. Going backhe tomato, the tomato is rotten,
but maybenot so rotterto avoid eating parts of it.

Givenn arguments with vague claims, there are agdinways to which the set of
arguments can partially satisfy the same statéfafs, each situation with a degree of



truth associated. In each situation we considerdggree to which some arguments
satisfy the state of affairs and the others dosatsfy it. We start by defining a multi-
valued argumentation framework as follows:

Definition 6 A multi-valued argumentation framework (MVAF) is taple
((Ar, R), ) where(Ar, R) is an abstract argumentation framework andir — [0,1]
assigns a degree of truth to each argumentrin

We writeu, as a shortcut fqu(a). Our aim is to find the degree to which an argu-
menta is labelledin (oroutorundeg, calledu,,, (1ayyp Hay)- We stress the crucial
difference between, andu,,, - 14 is the degree of truth to which the isolated argnm
a holds,beforethe argumentation process;,, is the resulting degree of truth of
after having accounted for the effect of the otitésicking arguments

3.1 Computing papy

A starting idea simply translates the approachrobabilistic argumentation (the
constellation approadhto the case of vagueness. This implies to firat &ll the sub-
graphs where is labelledin, and then quantify the degree of truth of the ltegy
disjunction of subgraphs. Each subgraph is a catipm of vague claims (or their ne-
gation) and its degree of truth is the degree t@hvthis conjunction is satisfied by the
state of affairs. As an example, let's consideingpfe argumentation graph where ar-
gumenta is attacked by, andb is attacked by. The constellation approach finds the
following three subgraphst,y = ABC + ABC + ABC. The recursive algorithm 1 re-
turns the following setd;y = AByyr = A(B + C;y) = A(B + C) = AB + AC. Note
how we could also express the 4gt asAB + ABC using disjoint sets. In the proba-
bilistic case all the above expressions are egemiabut this is not the case for vague
arguments and multi-valued logic. For instancayif= 0.8, ug = 0.3, u- = 0.9, using
Zadeh’smaxandmin operators the&onstellation approaclyives a value of 0.3, the
recursive algorithm 0.7 and the disjoint set notaf.8. Which computation should be
preferred? Our answer is two-fold.

First, we note how the above expressiond gf are computed using classical sets
operators, that are adequate if a probabilisticsumesis used over arguments. However,
we are not allowed to further simplify the expressdf4,, in case of vague arguments.
The claims of the arguments are now multi-valuegbpsitions associated to fuzzy sets,
whose operators do not behave as the classicaterpants. Therefore, while thw®n-
stellation approachmplicitly assumes the classical set theory amthoabe extended
to the multi-valued case, the recursive algorithoodld still generate a correct expres-
sion for 4,y if we do not simplify its output but we stop 4ty = A(B + C). For in-
stance, tukasiewicz strong operators do not sattighydistributive property and there-
fore the expression cannot be simplified further.

Second, it is the role of the argumeimtdifferentto the labelling ofz. We set this
reasonable principle: if an argument status isfieidint to the label oft, why bother
considering its degree of truth? If in the probiabd case the above question is irrele-
vant (sincep(a) + p(a) = 1), itis not when dealing with vague arguments.d.ebn-
sider theconstellationapproachfirst. Its expression id;y = ABC + ABC + ABC. In



the last two termsABC andABC), b is not in the subgraphs becomes disconnected
from a and therefore irrelevant for the labellingamfTherefore, c’'s degree of truth
should not alter the degree of truthaofThe same happens with the recursive approach
using disjoint sets. In the terdBC, why should | consideb? b is labelledout and
therefore irrelevant for the labelling of

We claim that, in order to assess the degree tf &4, ,, the correct expression is
the one generated by algorithm 1, Ugy = A(C + B), where all the arguments indif-
ferent to the labelling o are removed and multi-valued logic propertiesravevio-
lated. Algorithm 1 directly maps the definitionafmplete grounded labelling as found
in Caminada [6], its output is independent fromlthgic employed, and therefore it is
correct both for the uncertain case (probabilistipossibilistic) and the vague one.

We now show that the output of algorithm 1 doesaowttainindifferentarguments.
The reasons for an argumeénto be indifferent to the grounded labellingao#ire the
following:

1. b is disconnected from.

2. b is in the subgraph but labeledt (Boella 2009).

3. If n in-labeled nodes are attacking esmat node, only one attacking argument at a
time is needed to label while the others are indifferent.

Points 1 and 3 are respected by algorithm 1. Disected arguments are never con-
sidered by algorithm 1 since they are simply naited by the recursive algorithm,
while the disjunction in condition 2 of algorithmguarantees that only one of the at-
tackers is considered in each term. This allows stress a key advantage of algorithm
1 compared to theonstellation approachWhile the constellation approach computa-
tion fragments the structure of the argumentati@plgs in a collection of subgraphs,
Algorithm 1 is a path-based traversal of the grapti it preserves the topology of the
graph.

Point 2 is also verified by algorithm 1, since thst line of the algorithmréturn
NOT(a) OR Cselis not considering argumeatin its second term (sinaeis always
labelledoutin that case). Algorithm 1 guarantees to find tao§eset subgraphs that is
complete [18], i.e. its union covers all the poks#gubgraphs where a certain labelling
of a holds.

We then exploit the fully truth-compositional natwf multi-valued logic operators.
Unlike probability or possibility calculus the tlrenulti-valued logic proposed have
truth-functional operators, i.e. the degree ofttrot an expression is fully determined
by the degree of truth of its components. As se@&s/ Dubois [20], we are allowed to
use truth-functional operators as long as we aaéirdpwith gradual properties with no
uncertainty involved, otherwise possibility thedigs to be applied and the truth-com-
positional property is lost.

Therefore degrees of truth can be computed duhiagecursive visit of algorithm1.
Degrees of truth of arguments are found when teahtianditions are reached and the
values are propagated back to the recursive stépanbined with the truth-functional
multi-valued logic operators. We use as conjungtéisjunction and negation the op-
eratorsd, ®,6 of the multi-valued logic employed, and replacamguments with their
degrees of truth when terminal conditions are ifie¢ truth-compositional property of



multi-valued operators makes computing degreesutii tunder grounded semantics
having the same complexity class as a recursieettezversal, i.e. a linear complexity
proportional to the number of nodes and links, aliile constellation approach is ob-
viously of above-polynomial complexity.

Example 3 Let us continue example 2. Ifiy = pc = pp = 0.8,ug = 0.6 then
Ha,y IS given by the following recursive tree:

May = H(ABoyr)= H(A)®u(Boyr) = min(u(A), u(Boyr)) = 0.6

L

W(B + Diy + Cpy) = p(BYORDNBR(Ciy) =
= max(u(B), p(Diy), n(Cry)) =0.6

4

‘ n(Dy) = pp = 0.6
‘ uB)=1-pg =04 ‘ Loop with 4 —
Hey =0

0.8

\ n(A) =pp =08 ‘

Note how degree of truth are computed and propdgéteing the recursive steps
exploiting the truth-compositional property of minialued operators applied to grad-
ual properties with no uncertainty involved. Thenputation seems to consistently use
both argumentation semantics and multi-valued logic

4 Attack, Reinstatement, Accrual and Rebuttals

The following examples illustrate, for all the tarkbgics considered, the behavior
of our frameworks w.r.t. fundamental situationd tiay argumentation framework has
to handle, namely attack, reinstatement, accruatgdiments and reinstatement.

Fig. 3. Argumentation graphs for the examples 4, 5, 8, 7,

Example 4 Attack If argument is attacked by, how is the degree af modified? It
is A;y = AB. Using Zadeh’s operators, it 184,y = min(uy,, 1 — pg). In general with
Zadeh’s operatorg,,, < p, (degree of truth is diminished), but it remaine #ame



whenu, < 1 — ug. Therefore, the degree of truthao€ould remain unchanged and the
attack fromb neglected ifu, + up < 1. This imposes a minimum degree of truth on
the attacker to activate the attack. Note howfihding seems to justify the notion of
a threshold foattack activatiorpresent in [1]. Using tukasiewicz's logic it is:
fay = min(u, + 1 — g — 1,0) = min(uy — pp, 0) = {”A 0 ZCBIZ i’*ﬂz Ha

Thereforea is always diminished, and totally defeated if tlegree of the attacker
is greater tham,. Interestingly, this is the exact behaviour praabby Pollock [7],
whose proposal was not grounded in any multi-valogit system.

Note how, using Zadeh’snin operator, an argument can be totally defeated ibnly
ug = 1, while using tukasiewicz's logic it is totally égited every timg, < ugp.

Finally, Godel’s logic negation operator alwaysigss a null degree of truth o5 4
if uy > 0. In practical terms, this implies removing the aiegl terms from the output
of algorithm 1. This means that, using groundedas#in only one out of the three
quantitiesi, ., Layyp Hay Nas a not null value. In the casebadttackinga, it is obvi-

ously py,, = 0.

Regardingu, ., itis Agyr = A + B. For Godel's logic the resulting degree is the
degree of the attacké, for Zadeh's logig., .. remains equal tp, iff 1 —p, < pg
and under tukasiewicz's logig, , . = 1 (a totally defeated) whepy = u,.

Example 5. Reinstatement ChainA chain of 3 arguments helps to reason about
reinstatement. It id;y = A(B + C).

Under Godel’s logic, onlyC has a not null degree of truth ang, = min(uy, pic)-

Thus the argument is fully reinstatedujf > u, or it is reinstated to the degree equal
to its defendec.

Using Zadeh’s logiqy,,,, is given by the expressianin(u,, max(1 — g, p¢)). We
note that, ifl — ug > uc, nothing changes from example 4 and no reinsteitrap-
pens, while, wherl — ug < p¢c, py,, could be increased w.r.t. example 4. Both Za-
deh’s and Godel’s logic fully reinstatesf u. > u,. Arguably, whenu, > u, the two
logic systems neglect the degree of truth of tkeckerb.

Using tukasiewicz's logi@ is fully reinstated ifl — pug + ue > 1, i.e. ye > ug,
which seems a reasonable result and again it isatime behaviour as Pollock [7].

The reinstatement example provides evidence inuiawgb our recursive algorithm
and our choices of neglecting indifferent argumeamd respecting the multi-valued
logic properties when simplifying the expressiorgf. In fact, if we had further sim-
plified the expression of, into 4;y = AB + AC, using tukasiewicz's logic, it could
have been that,,, resulted more tham,! If u, = 0.5,u5 =0.1,u, = 0.9, it is
ta;y = min(max(0.5 + 0.9 — 1,0) + max(0.5 + 0.9 — 1,0), 1) = 0.8! We wonder if
the reason why, ,, > 1, is because we neglected thet-labelled argumend in the
expressiond;y = AB + AC, and the right expression should &g = AB + ABC or
the constellation approaclexpressiom,;y = ABC + ABC + ABC. Both these two ex-

pressions guarantee thaf,, < u,, but their behaviour is still counter-intuitiveeito



the fact that longer conjunctive expressions arddreo satisfy and the resulting degree
of truth decreases rapidlyFor instance, i, = 0.5, up = 0.5, uc = 1 we havey,,, =

0 (even ifa is defended by an argument with the maximum degfémith, there is no
reinstatement).

Example 6. Accrual of attacks The example clarifies the accrual of attackss It
Ay = ABC andA,yr = A + C + B. Consideringd,yr, both Godel's and Zadeh’s op-
erators do not accrue arguments, since it igriagof the two arguments that is con-
sidered, as in Pollock [7]. Arguments accrue wittkésiewicz's logic, since its disjunc-
tion operator does.

Example 7, Rebuttal.In case of two rebuttal arguments, grounded secwmugives
Ay = By = AB, A,y = AB, B,y = BA. Figure 4 shows the behaviour of the three multi-
valued logics discussed. Godel and Zadeh alwaygraasnot null value to thendec
situation equal t@u,,, = ug, = min(u,, 4g), while with tukasiewicz's operators it is
Ha, = max(u, + ug — 1,0), and thereforei,,, > 0 only when py + pp > 1. Intui-
tively, using tukasiewicz, two conflicting argumentan coexist if their degrees of
truth are small enough to avoid overlapping.

Regardingu,  andug,,, Godel's system assigns a null degree of trutotb; while
Zadeh's logic always assigns a not null degred,htha an upper bound in the degree
to which the other conflicting argument is negatagkasiewicz’'s logic assigns a not
null degree equal tu, — pg| to the argument with the highest degree, and ladedl
gree to the other. Each of this behaviour seenii smme but not all the situations
where gradual arguments conflict and the authdesstesystematically investigate this
issue in the next future work.

I Zadeh I A

|tukasnewicz | A

| |[2 |

| 1
I T
1|
[ 1
by, !

Hag Mg, =0

Fig. 4. Rebuttals with different multi-valued logic

Example 8 Multi-valued operators do not always verify theleded middle principle.
This could lead to controversial situations wherdthrvalued argumentation strongly
differs from the classical logic case. Let us cdasithe argumentation graph in figure
3 (last on the left). If we are using Zadeh'’s logie excluded middle principle is not
verified and an argument can be at the same tiegept and not present in the argu-
mentation process. It isuy,,, = u(A®Boyr®Coyr) = n(ARBR(COB)) =

2 A similar remark was done by Pollock [7] agairst tise of the product rule of probability in
defeasible reasoning.



u(A®(B®C + B®B)) where we applied the distributive property (alloveith Za-
deh’s logic) to show the presence of the not-rarlintB®B.

5 Related Works

Conceptually, our framework is closer to the wodne in the context of probabil-
istic argumentation frameworks. The idea of megginobabilities and abstract argu-
mentation was first presented by Dung [2], and aendetailed formalization was pro-
vided by Li [4], along with the works by Hunter [&hd Thimm [12]. [4] introduces the
notion of constellation approach. [12] and [5] his epistemic approach, start from a
complementary angle. Both authors assume that ihahesady an uncertainty measure
— potentially not probabilistic — defined on thevasksibility set of each argument and
they study which properties this uncertainty measimould satisfy in order to be ra-
tional. Regarding works that explicitly define fyzargumentation systems, we should
mention the framework by Janssen [13] where fuabgls may be interpreted as fuzzy
membership to an extension. However, [13]'s apgrddiffers significantly from ours
by the fact that the attack relation that definesftamework is taken to be fuzzy and
the conflict-free and admissibility definitions atenged accordingly. In [14] a certi-
tude factor is added to the labéts out andundecas we do. The work proposes an
equationalapproach to abstract argumentation, where arguntEgrees have to sat-
isfy a set of properties modelled as equationspgntees that might not have any link
to a fuzzy logic system. On the contrary, our cotapon of degrees of truth is a more
consistent approach exploiting both argumentat@nantics and multi-valued logics.

Regarding other works investigating gradualismrguanentation, we first mention
Pollock’s work on degrees of justification [7]. Rk considers the strengths of argu-
ments as cardinal quantities that can be subtrattezlaccrual of arguments is denied
and it is the argument with the maximum streng#t tlefines the attack. It is interesting
to notice how Pollock's computation is not grountheahny logic systems, but his attack
function behaves like our framework using tukastzig logic, while his accrual be-
haves like Zadeh's and Godel's logics. The vs-defamdel, by Cayrol [1], is an ex-
tension of abstract argumentation where attacke hastrength associated with them.
Argument admissibility status is the result of tmenparisons of attack strengths, in a
way similar to our frameworks with tukasiewicz'gio (example 1). However, there
is no description about the nature and the comioutaif such strength. We also men-
tion [10] that first extended Dung’s framework ducing different levels of attacks.
[9] proposed weighted argument systems, whereclattean have weights, and such
weights might have different interpretations: arragbased priority voting, or a meas-
ure of how many premises of the attacked argunent@mpromised.

6 Conclusions

In this paper we explored how Dung’s abstract amgutation framework can be ex-
tended to handle arguments affected by vaguenesstiddied some basic properties
and provided examples using Godel's, tukasiewigats Zadeh’'s multi-valued logic.



The findings are a contribution in the field of amgmate reasoning and they also rep-
resent a well-grounded proposal towards the inttidn of gradualism in argumenta-
tion systems. We believe to have provided a noyeth&sis between argumentation
semantics and gradualism, providing the theoretinaddation of a framework for rea-
soning under uncertainty that has both the soursdofesrgumentation semantics w.r.t.
the identification of a consistent set of argumgeaitsl the ability to handle gradual and
vague properties proper of multi-valued logics.

The present work represents the first theoretiocahdlation of our framework and it
opens numerous opportunities and open issuestimefstudies.

First, we aim to extend our frameworks to other @etios, starting froncomplete
semantics such aableandpreferred

Second, this paper presents a limited investigatimhdiscussion on the meaning of
gradual arguments and it focuses on theoreticacspf the frameworks. What does
the notion of attack with gradual arguments realBan?

A comprehensive answer requires a more structuedidition of arguments and
types of attacks. Further studies have to be doiméstigating the various multi-value
logics proposed here. In particular, the meaninthefdegrees of truth computed by
each multi-valued logic and which kind of vagueressh logic system is more suitable
to model. It seems to the author that none of ystess studied here could reasonably
handle all the situations involving vague argumgehbtg rather each of them captures
specific situations.

Finally, work has to be done in investigating havihindle situations in which prob-
abilistic and vague arguments coexist in the saigenaentative process.
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