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Abstract

In this thesis we begin with the development and analysis of hydrodynamical models

as they arise in the theory of water waves and in the modelling of blood flow within

arteries. Initially we derive three models of hydrodynamical relevance, namely the

KdV equation, the two component Camassa-Holm equation and the Kaup-Boussinesq

equation. We develop a model of blood flowing within an artery with elastic walls, and

from the principles of Newtonian mechanics we derive the two-component Burger's

equation as our first integrable model. We investigate the analytic properties of the

system briefly, with the aim of demonstrating the phenomenon of wave breaking for the

system. In addition we construct a pair of diffeomorphisms which allow us to solve the

system explicitly in terms of the initial data. Finally, we show that when we consider

the dynamics of the arterial walls themselves, the pressure within the fluid is seen to

satisfy the KdV equation.

In the following chapter we investigate the trajectories followed by individual fluid

particles in a fluid, as they are subject to the effects of an extreme Stokes wave. In

the case of a regular stokes wave there are no stagnation points or apparent stagnation

points, i.e. locations where the fluid velocity and wave velocity are equal, however

this condition does no remain true in the context of extreme Stokes waves. The result

for the regular Stokes wave then have to be extended to semi-infinite regions with cor-

ners, and in doing so we show that the horizontal component of the fluid velocity field

is strictly increasing along any stream line, which in turn ensures the non-closure of

particle trajectories over the course of a fluid wave.

Next we begin with a review of the inverse scattering transform method of solving

the Kortweg-de Vries equation. We construct the one-soliton solution explicitly. We

then proceed to examine the Qiao equation, a non-linear partial differential equation

with cubic non-linearities. We show that by a suitable change of variables and with a
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change of the spectral parameter of its associated spectral problem that we transform it

into the spectral problem of the KdV equation. Having already analysed this spectral

problem, we then proceed to construct the 1-soliton solution of the Qiao equation with

this modified spectral problem. The soliton solutions decay to a non-zero constant value

asymptotically. We also investigate the peakon solutions of the Qiao equation, and

construct the 1 and 2-peakon profiles, the latter being in the form of travelling M-wave

profile.

We then go on to the analysis of a class of equations whose spectral problem are

more complicated in the sense that the spectral problem has an energy dependant po-

tential. We develop the inverse scattering transformmethod for these spectral problems,

and construct the one-soliton solution explicitly, which in fact turn out to be a breather

type solution. The hydrodynamical relevance of this problem arises from the fact that

by an appropriate choice of one of the physical parameters of the system, we obtain

the Kaup-Boussinesq equation, a partial differential equation with quadratic and cubic

nonlinearities which arises in the theory of water waves in shallow water.
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Introduction

The theory of fluids has provided a rich source of mathematical innovation, in no small

part due to the complexities inherent in the nonlinearities present in virtually all models

of practical value. The presence of these nonlinearities has required mathematicians to

redeploy techniques familiar in other contexts, or to develop entirely new approaches

towards analysing the Euler equation and the approximate models which are derived

from it.

In addition, the theory of fluids has provided for a rich interaction between several

branches of applied and pure mathematics. Among these areas, the nonlinear analysis

of partial differential equations and spectral theory applied to integrable systems will

arise frequently throughout the thesis. These disciplines, while of purely theoretical

interest in their own right, will be applied to several models of physical interest.

In the first chapter we begin with a derivation of the Euler equation from the princi-

ples of Newtonian mechanics, which will provide the starting point for all subsequent

models to be derived. The nonlinear Euler equation will then be approximated to yield

the first of our integrable models, namely the Korteweg-de Vries (KdV) equation. This

is perhaps the archetypal integrable system in the theory of fluids, and is included for

two reasons, the first reason being the relative simplicity of both its derivation from the

Euler equations and the second being its solution via the Inverse Scattering Transform

(IST). The method of derivation will follow closely that outlined in [Joh1997]. Sec-

ondly, it will be shown the Qiao equation, can in certain circumstance, be solved via

xi



INTRODUCTION xii

the inverse scattering transform in an identical manner to the IST solution of the KdV

equation.

The second model we go on to derive is the two component Camassa-Holm equa-

tion, with the derivation following closely the one presented in the work of Ivanov

[Iva2009]. The model is included because over the past two decades both the one and

two component Camassa-Holm equations have been an important source of new results

in the theory of fluids, perhaps one of the most important in relation to this thesis be-

ing the demonstration of the phenomenon of wave-breaking. Moreover, the solution of

the two component Camassa-Holm equation as presented in the work [HI2011] is the

basis of our later treatment of the Kaup-Boussinesq equation via the IST. The Kaup-

Boussinesq equation will be solved via the IST in Chapter 6. The chapter follows the

work presented in [IL2012c].

The third hydrodynamical model derived in Chapter 1 is the Kaup-Boussinesq equa-

tion. The derivation follows closely that in [Iva2009]. It can be seen from the derivation

in this thesis that the model is of hydrodynamical relevance in the context of shallow

water waves. In addition in Chapter 6 we obtain an explicit solution for the system via

the IST. The work in [IL2012c] is a new approach to the inverse scattering transform

for the Kaup-Boussinesq equation, which shares several feature with the IST of the two

component Camassa-Holm equation found in [HI2011]. This chapter will present a

comprehensive construction of the Riemann-Hilbert problem for a class of partial dif-

ferential equations with cubic nonlinearities and the solutions of the inverse problem

for this class of spectral problems. In this chapter we also present an explicit breather

type solution for the Kaup-Boussinesq equation.

In Chapter 2 we undertake a mathematical investigation of blood flow within ar-

teries. In this chapter we first present an original derivation of the dispersionless two

component Burgers equation (this system is also known as the two component Hopf
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equation) in the context of arterial blood flow. Next we construct a pair of diffeomor-

phisms, whereby we can find a solution for the system depending on the initial data for

the fluid velocity and arterial cross section. A similar procedure is carried out for the

so called wrong sign Burger's equation in the next section. In the following section we

present a rigorous demonstration, using the previously constructed diffeomorphisms, of

the phenomenon of wave breaking within the system. The work in this chapter is based

almost entirely on the results presented in [Lyo2012]. We provide an estimate for the

blow up time, which is found to depend on the initial data. Lastly, in this chapter we

present a derivation of the KdV equation for the pressure within an artery, which arises

from the elastic restoring forces in the arterial walls. This provides further impetus to

study the IST solution of the KdV, which we proceed to do in Chapter 4.

In Chapter 3 we investigate the flow of individual fluid elements within a fluid

body. Specifically, we investigate to trajectories followed by fluid particles in an ex-

treme Stoke's wave over infinite depth [Lyo2014]. It is shown that both within the fluid

domain and on the surface of the fluid, the particles undergo a positive drift over the

course of an entire wavelength. The main achievement is in extending the application

of maximum principles to a semi infinite domain with continuous boundary with a cor-

ner. The results of this chapter rely greatly on the hodograph transform, whereby a

free boundary problem is transformed into a nonlinear problem on a domain with fixed

boundary. This concludes the first part of the thesis which was concerned with hydro-

dynamical models in various physical settings.

In the next part of the thesis we investigate the spectral analysis of the models de-

rived earlier via the Inverse Scattering Transform. In Chapter 4 we investigate the KdV

equation presenting a comprehensive overview of the associated spectral problem and

proving that the discrete spectrum contains a finite number of points, and that the scat-

tering coefficients of the problem are analytic with simple zeros in the upper half of
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the complex plane. The Riemann-Hilbert problem for the Jost solutions is constructed,

which in turn allows us to solve KdV equation via the inverse problem. We also con-

struct the 1 soliton solution explicitly. This work follows closely the treatment presented

in [ZMNP1984].

In Chapter 5 we investigate a PDE with cubic nonlinearities, known as the Qiao

equation. It is known that this equation belongs to the bi-Hamiltonian hierarchy of the

Camassa-Holm equation. Initially we begin with a construction of the peakon solu-

tions, and demonstrate the existence of the travelling ``M''-wave solutions, based on

[IL2012a]. We show that under an appropriate change of variables, the spectral prob-

lem of the Qiao equation is equivalent to that of the KdV equation, when the potential

decays to a non-zero constant in the asymptotic region [IL2012c]. Next we employ the

results of Chapter 4 to construct the 1 and 2 soliton solutions of the system.

Finally, Chapter 6 presents an investigation of the spectral problem for another class

of PDE with cubic nonlinearities. Among this class of PDE is the Kaup-Boussinesq

equation, which in Chapter 1 was shown to be a model of hydrodynamical significance

in the shallow water limit. As with the treatment of the KdV equation in Chapter 4 we

begin with the construction of the associated spectral problem. In contrast to the case

of the KdV equation the spectral problem encountered in this chapter has an energy

dependent potential, in that the potential has a term depending on the spectral parameter.

This complication requires us to introduce a pair of ``conjugate'' spectral problems, and

investigate the analytic properties of their associated Jost solutions. Again we construct

a Riemann-Hilbert problem for the bases of Jost solutions, which in turn allows us to

solve the Kaup-Boussinesq equation in terms of the scattering data. Lastly we construct

the explicit 1 soliton solution for the system which is found to be a breather type of

solution. The work in this chapter relies largely on [IL2012b].
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Chapter 1

Fluid Models

1.1 The governing equations

1.1.1 The continuity equation

In this section we develop the general theory of fluids embodied in the continuity equa-

tion and the Euler equation. This pair of equations follows from the principles of New-

tonian mechanics applied to infinitesimal fluid elements and then extended to finite

fluid volumes. The work of this section follows closely that presented in [Joh1997].

We consider an arbitrary fluid body in three dimensional space, contained by some re-

gion Ω ∈ R3, with a closed boundary ∂Ω.We denote by x the position of a point in R3

and by u(x, t) the velocity of the infinitesimal fluid volume contained within d3x at x.

Written in component form, these quantities are denoted by

x = (x, y, z), u = (u, v, w), d3x = dxdydz,

where it is understood u ≡ u(x, t) and similarly for v andw. Let us now suppose that the

fluid density ρ ≡ ρ(x, t) is dependent on position within the fluid body, and furthermore

2



CHAPTER 1. FLUID MODELS 3

the density at some fixed location x varies with time, in which case we have
ˆ
Ω

ρd3x =M (1.1.1)

whereM ≡ M(t) is the mass of fluid contained within Ω. It is clear from the integral

above thatM depends on time in general via the time dependence of ρ(x, t). We now

introduce n̂ ≡ n̂(x, t),which is the unit outward normal to ∂Ω. In this derivationwe shall

treat Ω as a fixed volume with respect to the coordinate axes (x, y, z) and its boundary

is also to be fixed. In this case, the fluid flow in this region is entirely due to the net

flow of fluid through the boundary ∂Ω. It follows that one may write the rate of change

inM as the net flow of fluid through the boundary ∂Ω,

d

dt

ˆ
Ω

ρd3x = −
ˆ
∂Ω

ρn̂ · udσ, (1.1.2)

where dσ is introduced as the infinitesimal surface element on ∂Ω.We may rewrite the

right hand side using Gauss' law, and bringing all terms to one side we obtain

d

dt

ˆ
Ω

ρd3x+

ˆ
Ω

∇ · (ρu)d3x = 0. (1.1.3)

Since the region Ω is fixed, we may take the time derivative inside the integral to yield
ˆ
Ω

[ρt +∇ · (ρu)]dx = 0, (1.1.4)

where ρt ≡ ∂tρ(x, t). Here and throughout variables t, x etc. appearing as subscripts

on a function shall denote partial differentiation of that function with respect to those

variables. Finally, since the region Ω is chosen arbitrarily, the integral above may be

zero in general only if the integrand is zero everywhere,

ρt +∇ · (ρu) = 0. (1.1.5)

The above is referred to as the continuity equation, and in the case of incompressible

fluid flows, which is equivalent to the statement ρ = constant it may be equivalently

written as

∇ · u = 0,
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making u solenoidal.

1.1.2 Euler's equation

In the previous section we derived an equation to describe the preservation of fluid

mass within a fixed region Ω.Wemust now extend our analysis to include a description

of the balance of forces acting on the same fluid volume. In general there are two

categories of forces acting upon the fluid body which can be considered internal and

external. The external forces are often uniform throughout the body of the fluid, a

prime example being the force of gravity which is certainly relevant to the study of

fluid waves. In addition there are internal forces, which can be largely categorised as

internal pressure, which arises as a result of the action of contiguous fluid element upon

each other throughout the fluid body. The pressure acting on the fluid body Ω can be

though of as the net forces exerted on the body through the boundary ∂Ω. We denote

by F0 ≡ F0(x, t) the external force per unit mass acting on the fluid element at x at

time t. Secondly, P ≡ P (x, t) shall denote the pressure exerted on a unit element of the

boundary ∂Ω. The net forces acting on the fluid body Ω may be expressed as
ˆ
Ω

ρF0d
3x−

ˆ
∂Ω

P n̂dσ = F, (1.1.6)

where F ≡ F(t) denotes the resultant force acting on the entire fluid body. Applying

Gauss' law to the second integral we may write
ˆ
Ω

ρF0d
3x−

ˆ
Ω

∇Pd3x = F. (1.1.7)

We now have an expression for the net external force acting on the fluid volume Ω,

which induces a change of momentum on the fluid body. An additional contribution to

the momentum of this region is due to the net flow of momentum across the boundary

∂Ω, due to fluid elements flowing across the boundary. This may be written as

−
ˆ
∂Ω

ρu(n̂ · u)dσ = ṗ (1.1.8)
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where ṗ ≡ dp
dt
(t), denotes the rate of change of momentum of the fluid body due the

net flux of momentum across ∂Ω. Again, an application of Gauss' law to both factors

of the integrand yields

−
ˆ
Ω

u · ∇(ρu)d3x−
ˆ
Ω

(∇ · u)(ρu)d3x = ṗ (1.1.9)

Finally, the rate of change of momentum of the entire fluid region is simply

d

dt

ˆ
Ω

ρud3x = Ṗ, (1.1.10)

with Ṗ denoting the overall rate of change of momentum of the fluid body in Ω. An

application of Newton's second law requires that the net external forces acting on the

fluid body along with the rate of flow of momentum across the boundary ∂Ω result in

the overall change of momentum of the fluid body, namely
ˆ
Ω

[
ρF0 −∇P

]
d3x−

ˆ
Ω

[
u · ∇(ρu) + (∇ · u)(ρu)

]
d3x =

d

dt

ˆ
Ω

ρud3x

⇔ F+ ṗ = Ṗ. (1.1.11)

Rearranging we find, and taking the time derivative through the second integral we have
ˆ
Ω

[
(ρu)t + u · ∇(ρu) + (∇ · u)(ρu)

]
d3x =

ˆ
Ω

[
−∇P + ρF0

]
d3x. (1.1.12)

Expanding the first derivative in the integrand on the left hand side, and applying the

continuity equation we find
ˆ
Ω

ρ
[
ut + (u · ∇)u

]
d3x =

ˆ
Ω

[
−∇P + ρF0

]
d3x. (1.1.13)

Once again, as the above integral equation is true for an arbitrary region Ω, it follows

that the integrand appearing in both integrals must be equal everywhere, in which case

we find upon dividing both by ρ that

ut + (u · ∇)u = −1

ρ
∇P + F0, (1.1.14)
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which is the conventional form of Euler's equation. The continuity equation and Euler's

equation constitute a coupled pair of nonlinear partial differential equations describing

the motion of a fluid element subject to specific external force, for example the grav-

itational force. It is from these governing equations that all other models considered

herein are derived as approximate models in various physical regimes.

1.1.3 Nondimensionalisation

In many circumstances involving fluid waves there exist natural length scales defined

by the physical setting such as the mean fluid depth and wavelength. In addition in the

case of surface gravity waves, the gravitational acceleration introduces a corresponding

velocity scale and therefore a natural time scale. With these scales one may rewrite the

governing equations in new non dimensional variables, making it much clearer as to how

one may proceed towards approximate models in certain physical regimes. Suppose

we consider the case of a surface gravity wave, whose typical wavelength we denote

by λ. This wave is assumed to flow over a flat bed located at z = 0, with the mean

height of the water surface fixed at z = h. In addition, the typical amplitude of such a

wave is a, where generally a ≪ h. In general the characteristic speed associated with

surface gravity waves is
√
gh, where g is the gravitational acceleration. In contrast,

the velocity scale in the z direction is given by h
λ

√
gh, which is necessary so that the

continuity equation applies to the non dimensional variables. Finally, we will write the

free surface of the fluid as

z = h+ aη(xh, t) (1.1.15)

where xh = {x ∈ R3 : z = h}. With the wave amplitude given by a, its clear that

the function describing the free surface η ≡ η(xh, t) is dimensionless. To avoid the

introduction of an entirely new set of variables for our system of equations we typically

denote the rescaled coordinate by the original variable. We write our nondimension-
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Figure 1.1: The figure shows the propagation of a surface wave of amplitude a and

wavelength λ travelling over a flat bed.

alised coordinates as

x→ λx y → λy z → hz t→ λ√
gh
t

u→
√
ghu v →

√
ghv w → h

√
gh

λ
w, (1.1.16)

so for example in x→ λx, the left hand x is the original dimensional coordinate while

the right hand x is the new scaled dimensionless coordinate. It will also prove conve-

nient to write our pressure as a sum of three contributions,

P = Pa + ρg(h− z) + ρghp, (1.1.17)

with Pa being the constant atmospheric pressure at the free surface, ρg(h−z) the hydro-

static pressure, and ρghp ≡ ρghp(x, t) the pressure away from hydrostatic equilibrium.

When written in nondimensional coordinates in component form, Euler's equation be-

comes

ut + u · ∇u = −px + fx
0

vt + u · ∇v = −py + f y
0

δ2(wt + u · ∇w) = 1− pz + f z
0 , δ =

h

λ
, (1.1.18)
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where we define the (x, y, z)-components of the dimensionless force per unit mass as

follows,

fx
0 =

λ

gh
F x
0 f y

0 =
λ

gh
F y
0 f z

0 =
1

g
F z
0 .

The continuity equation retains its form identically on passing from dimensional to di-

mensionless variables, in which case we simply have

ρt +∇ · (ρu) = 0,

in dimensionless variables. Finally, when written in dimensionless variables, the flat

bed z = 0 and the free surface z = h+ aη become

z = 0, z = 1 + εη; ε =
a

h
. (1.1.19)

The parameters ε and δ are important dimensionless parameters which play an important

role in all derivations of approximate physical models. They are especially important

when investigating weakly nonlinear models, such as the Korteweg-de Vries (KdV)

equation which we shall now derive.

1.2 Shallow water models

1.2.1 The Korteweg-de Vries equation

In this section we derive the prototypical nonlinear partial differential equation of hy-

drodynamical relevance, the Korteweg-de Vries equation, otherwise known as the KdV

equation. The derivation of the KdV presented in this section follows closely that pre-

sented in the work [Joh1997]. During the derivation of all three approximate models

in this and later sections we consider the case of a two-dimensional wave profile mov-

ing in the x-direction with amplitude in the z-direction and whose form is constant in

the y-direction. The fluid flow we consider will be incompressible, yielding a constant
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fluid density which we normalise to unity i.e. ρ = 1. The external body force acting of

the fluid body is simply the gravitational force, in which case we have

F0 = (0, 0,−g). (1.2.1)

It is clear that in the free surface z = 1 + εη the vertical component of velocity of a

fluid element is

w =
dz

dt
= ε(ηt + uh · ∇η), (1.2.2)

wherewe introduce uh ≡ (u, v, 0)x=xh .Meanwhile, the deviation away from hydrostatic

pressure on the free surface is

p = εη z = 1 + εη. (1.2.3)

In both cases each term is scaled by a factor of ε. It is natural to introduce such a scale

factor for all components of u and the variable p throughout the entire fluid body Ω

thereby inducing the change of variables

u → εu, p→ εp, (1.2.4)

which are the scaled nondimensional variables in which we shall work from now on.

When written in these variables, and subject to the conditions described above, the

governing equations, in component form become

ut + ε(uux + wuz) = −px,

δ2[wt + ε(uwx + wwz)] = −pz,

ux + wz = 0, (1.2.5)

with boundary conditions as follows

p = η, w = ηt + εuηx on z = 1 + εη

w = 0 on z = 0. (1.2.6)
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The asymptotic expansion of the governing equations may be carried out in terms of

the nonlinearity parameter ε alone, under the re-scaling

x→ δ√
ε
x t→ δ√

ε
t w →

√
ε

δ
w, (1.2.7)

with all other variables remaining invariant under the re-scaling. The re-scaling intro-

duced yields the following the governing equations

ut + ε(uux + wuz) = −px,

ε[wt + ε(uwx + wwz)] = −pz,

ux + wz = 0, (1.2.8)

while the boundary conditions become

p = η, w = ηt + εuηx on z = 1 + εη

w = 0 on z = 0. (1.2.9)

We consider right moving waves, and in the interest of maintaining uniformity of our

asymptotic expansion, we introduce far-field variables,

ξ = x− t, τ = εt. (1.2.10)

In the far field variables we have

−uξ + ε(uτ + uuξ + wuz) = −pξ,

ε[−wξ + ε(wτ + uwx + wwz)] = −pz,

uξ + wz = 0, (1.2.11)

with boundary conditions

p = η, w = −ηξ + ε(ητ + uηξ) on z = 1 + εη

w = 0 on z = 0. (1.2.12)
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This system gives rise to an asymptotic expansion in ε for each of u,w, p and η of the

form

q(ξ, z, τ ; ε) =
∞∑
n=0

εnqn(ξ, z, τ), η(ξ, z, τ ; ε) =
∞∑
n=0

εnηn(ξ, τ), (1.2.13)

where qn ∈ {un, wn, pn}, and similarly for the functions without subscripts. The gov-

erning equations (1.2.11) along with the boundary conditions (1.2.12) yield

u0 = η0, w0 = −zη0ξ, p0 = η0, (1.2.14)

as the leading order approximation.

At order ε, the boundary conditions yield

p1|z=1 = η1, w1|z=1 = −η1ξ + (η0τ + 2η0η0ξ); w1|z=0 = 0. (1.2.15)

The first of the governing equations (1.2.11) give the result,

u1ξ = p1ξ + η0τ + η0η0ξ, (1.2.16)

while the second member gives,

p1 = η1 +
1

2
(1− z2)η0ξξ. (1.2.17)

The continuity equation requires

w1z = −u1ξ, (1.2.18)

and so upon integrating we find

w1 =

ˆ z′=z

z′=0

w1z′dz
′ = −z

[
η1ξ +

1

6
(3− z2)η0ξξξ + η0τ + η0η0ξ

]
. (1.2.19)

The boundary conditions for w1 at z = 1 then requires η0 to satisfy the following

2η0τ + 6η0η0ξ +
1

3
η0ξξξ = 0. (1.2.20)
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At this order there are no conditions imposed on η1, rather it is at order ε2 that we

obtain a non-linear partial differential equation for this variable. Re-scaling the far-

field variables as follows

ξ → 1√
3
ξ τ → 2√

3
τ,

gives us

η0τ + 6η0η0ξ + η0ξξξ = 0, (1.2.21)

which is the standard form of the KdV equation. In a later chapter we shall discuss

in detail the soliton solutions of this equation obtained via the inverse scattering trans-

form(IST).

1.2.2 Irrotational surface waves

We begin the analysis of irrotational surface waves from the scaled governing equations

presented in(1.2.5) and (1.2.6) and which we repeat here only for convenience, namely

ut + ε(uux + wuz) = −px,

δ2[wt + ε(uwx + wwz)] = −pz,

ux + wz = 0,

with boundary conditions

p = η,

w = ηt + εuηx

 on z = 1 + εη

w = 0 on z = 0,

which again serve to develop asymptotic series in ε and δ2. In addition we require the

flow to be irrotational

uz − wx = 0,
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which in the scaled coordinates becomes

uz − δ2wx = 0. (1.2.22)

In contrast to the derivation of the KdV equation in the previous section, we develop

the asymptotic series above as a two component system in terms of u0 and η0, where to

leading order we have

p = p0, u = u0, w = w0, η ≡ η0. (1.2.23)

The first of the boundary conditions yields

p0 = η +O(ε, δ2), (1.2.24)

while the second governing equation in (1.2.6) requires ηz = 0 ⇒ η ≡ η(x, t). The

irrotational condition requires

u0z = 0 ⇒ u0 ≡ u0(x, t). (1.2.25)

The continuity equation at leading order requires

w0z = −u0x +O(ε, δ2),

and when integrated using the third boundary condition in (1.2.6) we obtain

w0 = −zu0x +O(ε, δ2), (1.2.26)

which is consistent with the second boundary condition at this order. At leading order

we also have

u0t + ηx +O(ε, δ2) = 0, (1.2.27)

which follows from the first governing equation and the previous results. At order

O(ε, δ2) we have

p = η + p1 u = u0 + u1 w = −zu0 + w1, (1.2.28)
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where all factors of ε, δ2 have been absorbed into p1, u1 and w1. The irrotational con-

dition gives to order O(ε, δ2)

u1z = −δ2w0x, (1.2.29)

and so upon integrating with respect to z we find

u = u0 − δ2
z2

2
u0xx +O(ε2, εδ2). (1.2.30)

The previous result along with the continuity equation gives

w1z = −u1x = δ2
z2

2
u0xx,

while the third boundary condition imposes w1|z=0 = 0, and so upon integrating with

respect to z we find

w = −zu0x + δ2
z3

6
u0xxx +O(ε2, εδ2). (1.2.31)

Using the expressions (1.2.30) and (1.2.31) for u andw, along with the second boundary

condition, we find to order ε, δ2

ηt +

[
(1 + εη)u0 − δ2

1

6
u0xx

]
x

+O(ε2, εδ2) = 0. (1.2.32)

The second governing equation gives to first order

pz = δ2zu0xt (1.2.33)

while integrating with respect to z using the first and second boundary conditions we

find

p = η − δ2
(1− z)2

2
u0xt +O(ε2, εδ2). (1.2.34)

Substituting this expression into the first governing equation we obtain(
u0 − δ2

1

2
u0xx

)
t

+ ηx + εu0u0x +O(ε2, εδ2) = 0. (1.2.35)
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Letting ε, δ → 0, in both (1.2.32) and (1.2.27), we are left with

ηt + u0x = 0

u0t + ηx = 0, (1.2.36)

which give us the wave-equation

ηtt − ηxx = 0, (1.2.37)

as a linear approximation. Clearly at leading order we have as approximate solutions

left and right travelling waves of the form

η± ≡ η(x± t). (1.2.38)

We may also make the approximation

η± = ±u0(x− t) +O(ε, δ2), (1.2.39)

which is valid to leading order. In what follows we shall restrict attention to right mov-

ing waves. We introduce a new variable ϱ defined to order O(ε2, εδ2) according to

ϱ = 1 + εαη + ε2βη2 + εδ2γu0xx, (1.2.40)

where α, β and γ are as yet undetermined constant coefficients. Using the approximate

result obtained in (1.2.39) we find to order O(ε2, εδ2)

ϱ = 1 + εαη + ε2βu20 − εδ2γu0xx −O(ε2, ε2δ2), (1.2.41)

We may write η in terms of ϱ and u0 as follows

η =
ϱ− 1

εα
− ε

β

α
u20 − δ2

γ

α
u0xx +O(ε2, εδ2), (1.2.42)

keeping terms of orderO(ε, εδ2). Replacing this expression for η in (1.2.32) and retain-

ing terms of order O(ε, δ2), we find

ϱt
εα

− ε
β

α
(u20)t − δ2

γ

α
u0xxt + [(1 + εη)u0]x − δ2

1

6
u0xxx +O(ε2, εδ2) = 0. (1.2.43)
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Using (1.2.39) we see we may write

ε(u20)t = (ηu0)t +O(ε2, εδ2),

while using (1.2.36), this may be approximated as

ε(ηu0)t = −ε(ηηx + u0u0x) +O(ε2, εδ2),

while with one more application of (1.2.39) we may write

−ε(ηηx + u0u0x) = −ε(u0ηx + ηu0x) +O(ε2, εδ2),

so overall we have to order O(ε, δ2),

ε(u20)t = −ε(ηu0)x +O(ε2, εδ2).

Meanwhile, using (1.2.36) we have

δ2u0t = −δ2ηx +O(ε2, εδ2),

while an application of (1.2.39) gives us

δ2ηx = δ2u0x +O(ε2, εδ2),

from which it follows we may write

δ2u0xxt = −δ2u0xxx +O(εδ2, δ4),

to order ε, δ2. Using both approximations we now may write,

ϱt
εα

+ δ2
(
γ

α
− 1

6

)
u0xxx +

[(
1 + ε

(
1 +

β

γ

)
η

)
u

]
x

+O(ε2, εδ2) = 0. (1.2.44)

As the coefficients α, β and γ were undetermined we may choose

γ

α
− 1

6
= 0, (1.2.45)
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in which case the coefficient of u0xxx vanishes and we are left with

ϱt
εα

+

[(
1 + ε

(
1 +

β

γ

)
η

)
u

]
x

+O(ε2, εδ2) = 0. (1.2.46)

We are also free to choose β such that

1 +
β

γ
= α, (1.2.47)

and so upon neglecting terms of order O(ε3, ε2δ2), we are left with

ϱt + εα(ϱu0)x = 0, (1.2.48)

which later on will be rescaled to become one member of the CH2 equation.

1.2.3 The two component Camassa-Holm equation

To derive the second member of the two component Camassa-Holm equation, we in-

troduce

m = u0 − δ2
(
1

2
+ κ

)
u0xx, (1.2.49)

where κ is an as yet undetermined constant. It follows that we may write (1.2.35) as

mt + δ2κu0xxt + ηx − εu0u0x = 0. (1.2.50)

We use (1.2.36) to rewrite εu0t = −εηx and then use (1.2.39) to write εηx = εu0x in

which case we may say εu0xxt = −εu0xxx+O(ε2, εδ2).Up to orderO(ε2, εδ2)we have

ϱ2 = 1 + ε(2α)η + ε2(α2 + 2β)u0u0x + εδ2γu0xx,

which allows us rewrite the ηx term above, to obtain

mt−δ2
(
κ+

γ

α

)
u0xxx+ε

1

3

(
1− α2 + 2β

2α

)
(2mu0x+mxu0)+

1

αε
ϱϱx = 0, (1.2.51)

and where we have used,

εu0u0x = ε
1

3

(
2mu0x +mxu0

)
+O(ε2, εδ2).
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Choosing κ = − γ
α
we see the u0xxx term vanishes, and

m→ u0 − δ2
1

3
u0xx.

Under the change of variables

u0 →
1

εα
u, ϱ→ ρ, x→ δ√

3
x, t→ δ√

3
t,

and choosing α such that

1

3α

(
1− (α2 + 2β)

α

)
= 1, (1.2.52)

the two equations that constitute the CH2 system are

mt + 2mux +mxu+ ρρx = 0; m = u− uxx,

ρt + (ρu)x = 0.
(1.2.53)

The system of equations (1.2.45), (1.2.47) and (1.2.52) determine the coefficients α, β

and γ exactly and so we find

α =
4

13

β = − 3

169

γ =
2

39
,

(1.2.54)

while κ = − γ
α
= −1

6
.

The CH2 system was initially introduced in [OR1996] as a tri-Hamiltonian (inte-

grable) system and was studied further by others, see for example [ELY2007,Hen2009,

LZ2005, CLZ2006, Fal2006, Iva2006, CI2008, HT2009, GL2010]. In the Figure (1.2)

the system was integrated numerically by J. Percival who considered the evolution of

the system from the so called ``dam-break'' initial conditions. The results shown figures

display the development of soliton solutions for (1.2.53) after an initial dam-break. The

initial conditions satisfied by the two components of the system are,

u(x, 0) = 0,

ρ(x, 0) = 0.1(1 + tanh(x+ 0.5)− tanh(x− 0.5)), (1.2.55)
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where the variable x is periodic over a domain of width 100.

Figure 1.2: Dam-break results for the CH2 system in (1.2.53) arising from initial con-

ditions (1.2.55) in a periodic domain. Figures are courtesy of J. Percival.

The variablem in the CH2 may be interpreted as the momentum associated with the

system while the function ρ corresponds to the fluid elevation above the mean surface

height. The system is known to be Hamiltonian in the sense that the evolution of the

each variable m and ρ may be obtained from a Poisson structure and as such we may

write

mt = {m,H} ρt = {ρ,H}, (1.2.56)

whereH is a Hamiltonian for the system. The Poisson bracket {·, ·} is linear and skew
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symmetric in its entries and also satisfies the Leibnitz condition

{A, (BC)} = B{A, C}+ {A,B}C (1.2.57)

and the Jacobi identity

{A, {B, C}}+ {B, {C,A}}+ {C, {A,B}} = 0, (1.2.58)

where A, B and C are functionals of the physical variablesm and ρ.

Indeed the CH2 system is known to be integrable with a bi-Hamiltonian structure

meaning it possess two compatible Poisson brackets. The first Poisson bracket between

two functionals F and G of the variablesm and ρ is given by

{F ,G}1 = −
ˆ [

δF
δm

(m∂ + ∂m)
δG
δm

+
δF
δm

ρ∂
δG
δρ

+
δF
δρ
∂ρ
δG
δm

]
dx (1.2.59)

and has a Hamiltonian

H1 =
1

2

ˆ
(um+ ρ2)dx. (1.2.60)

The second Poisson bracket is given by

{F ,G}2 = −
ˆ [

δF
δm

(∂ − ∂3)
δG
δm

+
δF
δρ
∂
δG
δρ

]
dx (1.2.61)

with associated Hamiltonian

H2 =
1

2

ˆ
(uρ2 + u3 + uu2x)dx. (1.2.62)

Meanwhile the compatibility of the Poisson structures {·, ·}1 and {·, ·}2 means that the

sum

k1{·, ·}1 + k2{·, ·}2

for any constants k1 and k2, has all the properties of a Poisson structure. In general

given any function f of the dynamical variables we may write

d
dt
f = {f,Hi} , (1.2.63)
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in which case given any conserved quantity Hn we may write

{Hn, Hi} = 0. (1.2.64)

As such a sequence of conserved quantities for the two component Camassa-Holm equa-

tion may be constructed as in [Iva2006], see also [Mag1978].

In the context of shallow water waves propagating over a flat bottom, u can be in-

terpreted as the horizontal fluid velocity and ρ is the water elevation in the first approx-

imation [CI2008, Iva2009]. In the shallow water regime there are scale characteristics,

one of which is δ = h/λ.With these scale factors, if u = O(1), then m = u − δ2uxx,

see e.g. [CI2008, Iva2009]. In the limit λ >> h or δ → 0, we have m → u while the

CH2 system in (1.2.53) becomes

ut + 3uux + ρρx = 0,

ρt + (ρu)x = 0, (1.2.65)

which we call the two component Hopf equation. The first Poisson bracket (1.2.61)

remains valid in the case m = u with Hamiltonian H1. Meanwhile in the limit δ → 0

the second Poisson bracket in (1.2.61) becomes

{F,G}2 = −
ˆ [δF

δu
∂
δG

δu
+
δF

δρ
∂
δG

δρ

]
dx, (1.2.66)

and the corresponding Hamiltonian is H2 =
1
2

´
(uρ2 + u3)dx. Dispersionless systems

like that above also arise in the context of very long water waves, in particular in the

modelling of tsunamis as they approach the shore [CJ2008].

1.2.4 The Kaup-Boussinesq Equation

The final system we shall derive in the context of shallow water models is the Kaup-

Boussinesq equation which was derived in [Bou1871] and shown to be completely in-

tegrable in [Kau1975]. Like the two component Camassa-Holm equation previously
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discussed this is also a two component system. The derivation of this system in the

hydrodynamical setting follows that presented in [Iva2009]. It will be shown later that

this system like the KdV equation is exactly solvable, in the sense that we may construct

explicit soliton solutions for it via the inverse scattering transform method. Unlike the

KdV spectral problem however there is an added complication that the spectral problem

for Kaup-Boussinesq equation is energy dependent in that the potential has a term in

which the spectral parameter appears as a factor. This complication will be discussed

in a later chapter but for now we shall concentrate on the hydrodynamical significance

of the system. We begin by introducing

V = u0 − δ2
1

2
u0xx,

which we may use to rewrite (1.2.32) as

Vt + εVVx + ηx +O(ε2, εδ2) = 0. (1.2.67)

Under a shift of the variable η given by

η → η − 1

ε
,

equation (1.2.35) transforms to

ηt + ε(ηV)x − δ2
1

6
Vxxx +O(ε2, εδ2) = 0. (1.2.68)

Finally we introduce the change of variables

x→ δ

√
2

3
x, t→ δ

√
2

3
t, V → 1

ε
V , η → 1

ε
η,

under which the system of equations above becomes

Vt + VVx + ηx = 0

ηt + (ηV)x −
1

4
Vxxx = 0, (1.2.69)
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where we have neglected terms of order O(ε2, εδ2) and higher. The coupled system

in (1.2.69) is the Kaup-Boussinesq equation. This system was investigated by Kaup in

[Kau1975], where he investigated its integrability and the inverse scattering method for

the system.

In Chapter 6 we are going to investigate the solution of this system via the inverse

scattering transformmethod. In fact we are going to investigate the solution of a general

class of partial differential equations with cubic nonlinearities, the Kaup-Boussinesq be-

ing a particular member of this class. While the Kaup-Boussinesq equation itself pos-

sesses only quadratic nonlinearities, it belongs to a family of equations whose spectral

problem depends on a physical parameter κ.Without any restrictions on κ the compat-

ibility condition applied to the Lax pair yields a family of nonlinear PDE with cubic

nonlinearities. With a particular value assigned to κ this compatibility condition yields

the Kaup-Boussinesq equation and thereby removes the cubic nonlinearities. The par-

ticular difficulty of solving this class of equations is in relation to the associated spectral

problem, specifically in relation to the energy dependence of the spectral problemwhich

leads to some extra complications when compared to the spectral problems of the KdV

equation. The method developed in Chapter 6 allow us to solve the nonlinear system

for arbitrary values of κ and so the method may be applied to a family of equations with

cubic nonlinearities.

1.3 Conclusion

In this chapter we have introduced the governing equations of fluid dynamics as consti-

tuted by the Euler equation and the continuity equation. We presented a brief derivation

of theses equations as they are presented in many textbooks, in particular we followed

[Joh1997] quiet extensively. We went on to develop nonlinear models from these gov-

erning equations via nondimensionalisation. In particular we presented a derivation of
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the KdV equation in line with that presented in [Joh1997] along with a derivation of the

CH2 equation and the Kaup-Boussinesq equation both of which followed closely the

derivation presented in [Iva2009].



Chapter 2

Blood Flow

2.1 Modeling Newtonian fluids in elastic tubes

The two component Burgers equation, and related systems, are well understood quasi

linear systems arising in many physical applications, for example as a model of shock

waves in gas dynamics (see e.g. [Str1990], Section 13.2). In this paper we give a

derivation of the following system

ut + uux = −Px (2.1.1)

At + (uA)x = 0, (2.1.2)

in the context of a Newtonian fluid within an elastic tube, modelling the flow of blood

within arteries. The model is quasi linear in the dynamical variables, u and A the fluid

velocity and tubes cross section respectively. The physiological phenomenon which is

the focus of the current chapter is the so called pistol shot pulse a discussion of which

may be found in the work [Ped2003]. This is a popular term for a phenomenon reported

by clinicians in which a loud cracking sound is heard by the stethoscope over an artery,

caused by a large distension followed by an abrupt collapse of the artery wall. This

phenomenon is known to occur in large arteries during aortic regurgitation, a condition

25
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in which some blood leaks back into the left ventricle during systole.

To establish a model of arterial blood flow, we consider a simplified model of blood

itself, in the sense that it will be modelled as an incompressible, inviscid and irrotational

Newtonian fluid. The derivation we present is an original work but follows closely that

presented in [Lyo2012]. The artery is modeled as an axially symmetric elastic tube, with

cross section A which depends on the axial coordinate x and time t. Being elastic the

artery experiences a restoring force when expanded from it's equilibrium cross section

and as such exerts additional pressure on the blood contained within.

A(x+ dx, t)

u(x+ dx, t)
A(x, t)

u(x, t)

x-axisx x+ dx

Figure 2.1: The propagation of a pressure wave within an artery. The pressure wave

causes a change in the fluid velocity of the blood and an expansion of the artery.

The volume of blood contained in the infinitesimal volume of artery between the

axial locations x and x+dx at a fixed instant t is dV = A(x, t)dx. In addition the mass

content in that same volume of blood will be the material density at the location at that

instant ρ̃(x, t) times the volume itself

dM(t) = ρ̃(x, t)dV = ρ̃(x, t)A(x, t)dx.

We denote the mass by dM(t) to indicate the blood content at a fixed instant of time t.

Since we model the blood as an incompressible fluid then the density must be homoge-

nous at all times and so in our model the blood density is a fixed constant ρ̃. Within

a finite volume of the artery between the axial locations a and x, with a < x at some
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fixed moment t, it follows that the mass content is
ˆ x

a

dM(t) = ρ̃

ˆ
Vax

dV = ρ̃

ˆ x

a

Adξ,

where Vax denotes the volume between the axial locations a and x.

The velocity of the blood through the artery at a fixed axial coordinate x and time t

will be uniform over the cross section at that location and time. During an infinitesimal

time dt the blood content at the location x will be displaced by a distance dX = udt.

In this time interval the total mass of blood to traverse the cross section A will be

dM = ρ̃AdX = ρ̃Audt.

Note that here we do not write dM as dM(t) since we are considering the change in

mass content over a time interval dt and so dM doe not refer to a mass quantity at a fixed

instant. It follows that the change in the blood content in the arterial volume between

a and x in the time interval dt is the total blood displacement into the volume across

A(a, t) less the total blood displacement out of the volume across A(x, t). Hence we

may write,

dM |xa = ρ̃u(a, t)A(a, t)dt− ρ̃u(x, t)A(a, t)dt.

Wemay rewrite the above equation as one involving the rate of change of blood content

within a finite arterial volume as follows,

∂t

(ˆ x

a

dM(t)

)
= ∂t

(
ρ̃

ˆ x

0

Adξ

)
= ρ̃u(0, t)A(0, t)− ρ̃u(x, t)A(x, t).

Operating on this equation with ∂x the fundamental theorem of calculus applied to the

left hand side gives us

∂x∂t

(
ρ̃

ˆ x

a

Adξ

)
= ρ̃∂t

(
∂x

ˆ x

a

Adξ

)
= ρ̃∂tA(x, t),

while ∂x applied to the right hand side gives us −ρ̃∂x(uA), and so we arrive at the

continuity equation (2.1.2).
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The physical interpretation of this equation is as follows. In an infinitesimal time

interval dt the infinitesimal increase (decrease) in the blood content dM at x causes an

increase (decrease) of the blood volume since the blood itself is incompressible. As the

walls of the artery are elastic, this increase (decrease) in blood volume is accommodated

by an expansion (contraction) of the artery which is realised as an increase (decrease)

in its cross section A.

dX = u(x, t)dt

M(t)

u(x, t)

P (x, t)

P (x+ dX, t+ dt)

u(x+ dX, t+ dt)

M(t+ dt)

Figure 2.2: The figure illustrates the changing mass, cross section and velocity of an

infinitesimal fluid mass as it propagates.

Newton's laws dictate that any forces acting upon the blood will cause a correspond-

ing change of momentum of the blood. In the case of fluids the forces acting upon any

individual element may be separated into two categories:

• The external forces acting on the fluid elements, which in this case will be the

restoring forces present in the artery walls, thereby exerting an external pressure

on the blood at a given location x and some instant t,

• The internal forces acting upon a fluid element caused by contiguous fluid ele-

ments.

Both external and internal forces are found to cause an overall change in the linear
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momentum of an individual fluid element, in accordance with Newton's second law.

The linear momentum of an infinitesimal volume of blood at some location x and

instant t is ρ̃udVx = ρ̃uAdx, that is the infinitesimal mass element times the veloc-

ity thereof. The rate of change of this momentum with respect to time is given by

ρ̃∂t(uA)dx and will appear as the left hand side of Newton's second law. Extending

this to the case of a finite volume of blood we find

ρ̃∂t

(ˆ x

a

uAdξ

)
,

which is the rate of change in momentum of the blood contained within the artery be-

tween a and x at the instant t. As we have already seen, an infinitesimal time displace-

ment causes a corresponding spatial displacement of the blood at x by an amount dX.

However in moving this distance the velocity of that blood will change by the amount

uxdX = uuxdt.

It follows that the corresponding change in linear momentum of this blood will be its

mass times the change in velocity, or

ρ̃uuxAdx,

which for a finite volume becomes

ρ̃

ˆ x

a

uuξAdξ.

Thus we have established the change in linear momentum of a finite volume of blood

due to the spatial displacement thereof during an infinitesimal time increment dt.

Next we must also include the possibility that the linear momentum of the blood

will change in an infinitesimal time dt, due to a change in the blood content. Suppose

at some instant t the blood flow at x is uA, while the blood flow at x+ dx is

−uA|(x+dx,t) ≃ −uA− uxAdx− uAxdx.
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It follows that the net of change of the mass will be

−ρ̃(uA)xdx,

and the corresponding change in the linear momentum will be

−ρ̃(uA)xudx.

In the case of a finite volume of blood the change in linear momentum becomes

−ρ̃
ˆ x

a

u(uA)ξdξ.

This accounts for all internal forces acting upon an individual fluid element within the

artery.

Next we need to investigate the effects of external forces on a fluid element. In

this case the external forces are provided by the restoring forces within the arterial wall

which exerts a force on the blood. Between the axial locations x and x+dx, the internal

surface of the artery has a directed area element n̂dS, with n̂ being the outward normal

and dS being the magnitude of the infinitesimal area element. The force exerted by the

distended artery on the blood is −Pn̂dS, where P denotes the pressure exerted due to

the restoring force of the artery acting on the blood at time t and location x. In the case

of a finite volume V between a and x, we find the corresponding force exerted by the

artery with surface area S to be

−
ˆ
S

Pn̂dS.

Applying Gauss' law we may write this as

−
ˆ
S

Pn̂dS = −
ˆ
V

∂ξPdV = −
ˆ x

a

PξAdξ.

This accounts for all the forces acting on the blood contained within the artery between

axial locations a and x.
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Having established the rate of change of momentum along with the various con-

tributing forces we require an equation of motion for the finite fluid element. On ap-

plying Newton's second law to the above acceleration and forces we obtain

ρ̃∂t

ˆ x

a

uAdξ = ρ̃

ˆ x

a

[uuξA− u∂ξ(uA)]dξ −
ˆ x

a

PξAdξ.

Dividing both sides by ρ̃, operating on the resulting equation with ∂x and applying the

fundamental theorem of calculus to both sides we obtain

(uA)t = uuxA− u(uA)x −
1

ρ̃
PxA.

Expanding the derivatives on each side, applying the continuity equation (2.1.2) and

dividing by A(x, t) we find

ut + uux +
1

ρ̃
Px = 0. (2.1.3)

We see that in our model the blood flow will satisfy Euler's Equation for an incompress-

ible, inviscid and irrotational fluid.

In general it is difficult to obtain from first principles an explicit expression for

the transmural pressure P (x, t). However a large body of experimental data exists to

suggest a plausible correspondence between the pressure and the cross section of the

tube itself. Indeed, a standard example is the so calledWindkessel model [KS2009], in

which the pressure is related linearly to the cross section,

P ≡ P (A) = kW · A.

The constant kW relates the elastic restoring force of the tube when distended to cross

section A to the pressure exerted on the blood, and it is determined from clinical data.

TheWindkessel model may be solved via the method of characteristics and is a well un-

derstood model of blood flowing in arteries, [Ped2003]. In this chapter we will adopt a

slightly more complicated model, whereby the relationship between pressure and aortic
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cross section is quadratic, namely

P ≡ P (A) = κA2

ut + uux + kAAx = 0, k =
2κ

ρ̃

(2.1.4)

In [PL1998] Figure 1 displays a plot of transmural pressure versus cross section for a

collapsible tube. It is found that for a ceratin range of values of A the corresponding

transmural pressure is closely approximated by a quadratic relationship. Furthermore

in [Ped2003] the author presents a table data obtained from clinical experiments on

dogs which corroborates this quadratic relationship for a range of values of arterial

blood pressure. The equations (2.1.2) and (2.1.4) when taken together constitute a two

component dispersionless Burgers equation.

2.2 Solutions when k > 0

In this section we consider in more detail the behaviour of the system (2.1.2) and (2.1.4).

To simplify matters we also introduce the scaling

A→ 1√
|k|
A,

whereby the Euler equation becomes

ut + uux + AAx = 0

At + (uA)x = 0,
(2.2.1)

and where we have chosen k > 0.Aswe alreadymentioned one of the main motivations

for investigating this system is that it may be solved directly by the method of charac-

teristics. To illustrate this we shall define a pair of diffeomorphisms ψ± ≡ ψ±(x, t) by

the following criteria:

∂tψ± = u(ψ±, t)± A(ψ±, t),

ψ±(x, 0) = x.
(2.2.2)
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In this analysis we are considering the propagation of pressure wave in an artery over

the half line x ≥ 0 an so strictly speaking the mappings ψ± are diffeomorphisms only

when x > 0. Applying ∂t once more to (2.2.2) and using (2.2.1) we find

∂2t ψ± = 0, (2.2.3)

and as such it follows that ∂tψ± depends on x only.

Using this and the definition supplied in (2.2.2), we see that the physical variables

evaluated along the flow of ψ±(x, t) are conserved, namely

u(ψ±, t)± A(ψ±, t) = u0 ± A0, (2.2.4)

where u0 ≡ u(x, 0) and A0 ≡ A(x, 0) are obviously time independent. Moreover

(2.2.3) requires ψ± be linear in t while the second equation in (2.2.2) imply ψ± satisfy

ψ± = x+ tγ
(±)
0 ,

where it is understood γ(±)
0 depends only on x. Applying ∂t to ψ± as it is given in this

expression and comparing to (2.2.2) and (2.2.4), we see that the functions γ(±)
0 may be

written in terms of the initial data as follows

γ
(±)
0 = u0 ± A0.

So we see that we may solve (2.2.2) to find

ψ± = x+ t(u0 ± A0). (2.2.5)

allowing us to express ψ± in terms of the given initial data u0 and A0.

Since 2.2.2 are diffeomorphisms, at least for appropriately chosen initial data, it is in

principle possible to invert (2.2.5), and upon doing so one may obtain explicit solutions

for the physical variables u and A in terms of the initial data (u0, A0) : R2 → R2,

u(x, t) =
1

2

[
u0(ψ

−1
+ ) + u0(ψ

−1
− )
]
+

1

2

[
A0(ψ

−1
+ )− A0(ψ

−1
− )
]
,

A(x, t) =
1

2

[
u0(ψ

−1
+ )− u0(ψ

−1
− )
]
+

1

2

[
A0(ψ

−1
+ ) + A0(ψ

−1
− )
] (2.2.6)
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where it is understood that ψ−1
± ≡ ψ−1

± .

Example: We consider a solution in which our initial data is of the form u0 ∼ A0 ∼ x
1
3 .

Specifically, the initial data is defined by

u0 ± A0 = a±x
1
3 , (2.2.7)

where a± are constants. It follows from (2.2.5) that the diffeomorphisms ψ± may be

written as,

ψ± = x+ a±tx
1
3 . (2.2.8)

Making the invertible substitution x → w3 and with the corresponding change of vari-

ables ψ±(x, t) → y±(w, t) we may rewrite the diffeomorphisms in (2.2.8)

y±(w, t) = w3 + a±tw.

We now have a pair of monic polynomials with argument w ∈ R, namely

w3 + a±tw − y3±(w, t) = 0, (2.2.9)

the discriminants of which are given by

D = −4(a±t)
3 − 27. (2.2.10)

The values of the discriminant determine the quantity and nature of solutions for w. In

particular we are interested in real solutions w(y±, t).

Equivalently this solution allows us to solve for x in terms of ψ± and t, that is it

offers us an expression for ψ−1
± . Depending on the discriminantD we may have several

real roos all of which may be distinct or some of which may be equal. In the caseD = 0

we have two equal real roots for a± ∈ R and real ψ±.Moreover the discriminant allows

us to explicitly calculate the time at which the wave breaking occurs and corresponds

to the value of t for which the discriminant has no real roots, namely

T± = − 3
3
√
4a±

. (2.2.11)
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In this case the functions ψ± do not have unique inverses and so no longer behave

as diffeomorphisms. Furthermore the corresponding solutions u and A as defined by

(2.2.6) will no longer satisfy |ux| < ∞ and |Ax| < ∞, since ψ± are no longer strictly

monotone increasing functions of x for all t > 0.

Remark The functions ψ± are diffeomorphisms only in the case where wave break-

ing does not occur. We assume (u0, A0) ∈ C1 × C1 and also u0 and A0 are bounded,

that is

sup
x∈R

(|u0|+ |A0|) <∞.

Therefore our solutions blow up only if u′0±A′
0 < 0 at some point and t > 0 otherwise

the solutions are global.

2.3 Solutions when k < 0

A related system is the so called ``wrong'' sign Burgers equation, given by,

ut + uux − (A2)x = 0

At + (uA)x = 0,
(2.3.1)

which differs from (2.1.1, 2.1.2) by the sign of the (A2)x term. In analogy to the case

of solution via characteristics we may construct a pair of complex conjugate mappings

χ± which are formally defined by,

∂tχ±(x, t) = u(χ±, t)± iA(χ±, t). (2.3.2)

As in the case of (2.2.4) we find the analogous relations

u(χ±, t)± iA(χ±, t) = u0 ± iA0, (2.3.3)

where u0 ≡ u(x, 0) and similarly for A0. The construction of such a pair of solutions

was given in [KK2002] wherein the authors obtained solutions by the method of Rie-
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mann invariants with the mappings χ± given by

χ± = x− t(1± i
√
3)
(x
λ

) 1
3

= x− 2te±
iπ
3

(x
λ

) 1
3
,

(2.3.4)

It follows that the initial data corresponding to each of these mappings is given by

u0(x) = −
(x
λ

) 1
3

A0(x) = ∓
(x
λ

) 1
3
, (2.3.5)

with the parameter λ being freely adjustable.

The corresponding solutions are found to be

A(χ±, t) =

√
8t

λ
+ 3u2(χ±, t), (2.3.6)

where the solution u(·, t) is the real root of the cubic polynomial

λu3(ξ, t) + 2tu(ξ, t) + ξ = 0, (2.3.7)

for arbitrary ξ ∈ R.

Having an explicit expression for A(χ±, t) in term of u(χ±, t) we now require an

explicit expression for u(χ±, t) in terms of x and t. To proceed, we notice from (2.3.3)

that our solution u(χ±(x, t), t) must satisfy

u(χ±) = u0(x)± iA0(x)∓ iA(χ±(x, t), t). (2.3.8)

It follows from (2.3.5) and (2.3.6) that the solutions u(χ±, t) may be written as,

u(χ±, t) = −2e±
iπ
3

(x
λ

) 1
3 ∓

√
8t

λ
+ 3u2(χ±(, t). (2.3.9)

Substituting this expression into the cubic polynomial in (2.3.7), we find,

u(χ±, t) = −e
±i 2π

3

2

(x
λ

) 1
3 ±

√
−3e±iπ

3

8

(x
λ

) 2
3 − t

λ
, (2.3.10)

and so we also have explicit solutions for A(χ±, t) in terms of x and t, as follows from

(2.3.6).
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2.4 Bounded solutions and wave breaking

The phenomenon of wave breaking was one of the most interesting and exciting aspects

of the Camassa-Holm equation to be investigated following its discovery in the work

[CH1993]. In this article, although we have focussed on somewhat more simplified

system to model the flow of blood in arteries, and we would still like to investigate the

possibility of the wave breaking phenomenon arising in the context of this model. A

clinical interpretation of this is in relation to the phenomenon of the pistol shot pulse.

Such behaviour arises during systole of patients with aortic insufficiency, when blood

ejected into the artery is regurgitated back through the aortic valve, into the ventricles.

To maintain systole pressure, the heart will contract more during ventricular systole,

thereby ejecting blood into the artery with greater pressure. After systole, the ejected

blood will induce a pressure gradient along the radial artery, however, owing to the

initial aortic regurgitation, there will be insufficient blood mass to maintain the pressure

throughout the length of the artery. This in turn will cause a sudden increase followed

by a rapid decrease in the aortic cross section, which is observed as the femoral pistol

shot pulse.

In this section we aim to establish the conditions under which a sudden expansion

in the aortic cross section is followed by a collapse thereof, in rapid succession. We

aim to show that the phenomena of wave breaking arising in the system (2.1.1)-(2.1.2),

which we are using as a simplified model of aortic blood flow, is sufficient to account

for this clinical phenomenon. Mathematically speaking, wave breaking occurs when

our solutions u(x, t) and A(x, t) remain bounded for all (x, t) ∈ R × [0, T ), while the

magnitude of their gradients become singular in finite time [CE1998,Whi1980],

|ux|+ |Ax| → ∞, t→ T.
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We begin by constraining our initial data, such that,

(u0, A0) ∈ H1 ×H1 ⊂ C1 × C1.

We will show that continuous solutions u and A do indeed remain finite, if their slopes

remain finite. To do so, we first multiply each member of the system in (2.2.1) by u and

A respectively. Then integrating over R and imposing the boundary conditions

lim
x→±∞

u = 0, lim
x→±∞

A = 0, (2.4.1)

we find the following conditions

1

2

d

dt

ˆ
u2dx =

1

2

ˆ
uxA

2dx

1

2

d

dt

ˆ
A2dx = −1

2

ˆ
uxA

2dx.

(2.4.2)

Indeed we see from this result that the quantity

H =
1

2

ˆ
(u2 + A2)dx,

is an integral of motion and acts as a Hamiltonian for our system. Analogous to the

case of the CH2 equation the Hamiltonian above may be used to find the equations of

motion for u and A using the Poisson structure

{A,B} =

ˆ [
δA
δu

δB
δA

− δA
δA

δB
δu

]
dx,

where A and B are functionals of u and A.

We apply the operator ∂x to each member of (2) and multiply by ux and Ax re-

spectively. Upon Imposing the boundary conditions (2.4.1) and integrating over R we

find

1

2

d

dt

ˆ
u2xdx = −1

2

ˆ
u3xdx−

ˆ
uxA

2
xdx−

ˆ
uxAAxxdx

1

2

d

dt

ˆ
A2

xdx =

ˆ
uxAAxxdx−

1

2

ˆ
uxA

2
xdx.

(2.4.3)
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Using (2.4.2) and (2.4.3) we find that

1

2

d

dt

ˆ
(u2 + u2x + A2 + A2

x)dx = −1

2

ˆ
ux(u

2
x + 3A2

x)dx. (2.4.4)

It follows from (2.4.4) that

d

dt

ˆ
(u2 + u2x + A2 + A2

x)dx ≤ 3M1

ˆ
(u2 + u2x + A2 + A2

x)dx, (2.4.5)

where sup
x∈R

|ux| =M1.

Gronwall's inequality [BN1969] states that for a pair of functions f(t) and g(t) con-

tinuous on some interval α ≤ t < β and with f differentiable on (α, β) and such that

f ′ ≤ fg, t ∈ (α, β) ⇒

f(t) ≤ f(α) exp
(ˆ t

α

g(ξ)dξ

)
.

(2.4.6)

Upon applying Gronwall's inequality to (2.4.5) we find that
ˆ
(u2 + u2x + A2 + A2

x)dx ≤ K1e
3M1t <∞, t ∈ [0, T ). (2.4.7)

Here we introduceK1 =

ˆ
R
(u20+u

′2
0 +A

2
0+A

′2
0 )dx,with u0(x) ≡ u(x, 0) andA0(x) ≡

A(x, 0).Moreover for any function u ∈ H1 we have

|u|2 ≤ ∥u∥1 =
ˆ
R
(u2 + u2ξ)dξ.

Since we assumed (u,A) ∈ H1(R)×H1(R) it follows from this inequality along with

the result in (2.4.7) that

|u|2 + |A|2 ≤ ∥u∥2H1 + ∥A∥2H1 ≤ K1e
3M1t, (x, t) ∈ R× [0, T ), (2.4.8)

It follows that the solutions |u| and |A| remain bounded for all (x, t) ∈ R × [0, T ) if

|ux| and |Ax| remain bounded for the same values of x and t.

Next we would like to establish under what conditions the functions ux(x, t) and

Ax(x, t) actually become singular while u(x, t) andA(x, t) remain bounded. We return
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to the diffeomorphisms introduced in Section 3 in particular (2.2.4). Differentiating this

once with respect to x we find

[ux(ψ±, t)± Ax(ψ±, t)] · ψ±,x = u′0 ± A′
0. (2.4.9)

Substituting (2.2.5) into this we find

ux(ψ±, t)± Ax(ψ±, t) =
u′0 ± A′

0

1 + t · (u′0 ± A′
0)
. (2.4.10)

Under the condition (u0, A0) ∈ H1 ×H1 and with inf
x∈R

[u′0 ± A′
0] < 0, it follows that

ux(ψ±, t)± Ax(ψ±, t) → −∞, t→ inf
x∈R

1

|u′0 ± A′
0|
. (2.4.11)

It follows that with these initial conditions the system (2.1.1)-(2.1.2) develops wave

breaking. Conversely for u0 ±A0 > 0, x ∈ R, we see that the denominator is nonzero

for all t > 0. In this case the functions ψ± are invertible for all (x, t) ∈ R× [0,∞). In

this case the functions in (2.4.10) remain bounded so that

|ux(ψ±, t)± Ax(ψ±, t)| <∞, t > 0. (2.4.12)

The solutions u and A are global if our initial data satisfies u′0 ± A′
0 > 0, x ∈ R.

We include here a graph illustrating the development of breaking waves for the dam

break scenario applied to the two component Burger's equation, cf. Figure 1.2 where

the dam break scenario is illustrated for the two component Camassa-Holm equation.

The solutions illustrated above arise from the initial data given by

u (x, 0) = 0,

ρ (x, 0) = 0.1 (1 + tanh (x+ 5)− tanh (x− 5)) ,
(2.4.13)

which is repeated periodically in x with periodicity 100. As can be seen the solution

has steepening wavefront whose slope eventually becomes unbounded in a finite time

cf. equation (2.4.10). In Figure (1.2) relating to the two component Camassa-Holm

equation under the same initial conditions it was seen that a train of solitons develop.
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Figure 2.3: Dam break results for the two component Burger's system in (2.1.1-2.1.2)

arising from initial conditions (2.4.13) in a periodic domain. Figures are courtesy of J.

Percival.

2.5 KdV from arterial blood flow

The preceding discussion concerned the two component Hopf equation as it arises in the

theory of arterial blood flow. The system is quasi linear in that there are no dispersion

terms present. This restricts the possible solutions to the system and as we saw under

certain initial conditions there are no global solutions. That is to say the nonlinearities

in the system are not counter balanced by the effects of dispersion and so lead to the

phenomenon of wave breaking. We have already presented a derivation of the KdV

equation as it arises in the theory of shallow water wave. The KdV is perhaps the

archetypal and best understood example of a nonlinear system with dispersion. The
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presence of dispersion and nonlinearities together allow for a completely new class of

solutions that are not possible in either linear or quasi linear systems, namely soliton

solutions.

In this regard we shall now present a derivation of the KdV equation as it arises in

the theory of arterial blood flow, thereby allowing for the possibility of solutions which

are global and therefore more realistic in the context. Moreover, the derivation relies on

the inclusion of effects so far neglected in our previous derivation of the Hopf equation,

namely the inclusion of the elastic restraining forces acting on the arterial wall itself.

The figure which follows is a simple diagram illustrating the effects of arterial distension

on the arterial wall due to its own internal restoring forces. The material presented in

this section is included for the sake of continuity in that we see the emergence of a

nonlinear system with dispersion arising in the physical setting of arterial blood flow.

In this regard there are no original results presented and the material follows closely the

derivation presented in [DP2006].

T⃗

l

h
r

r̂

θ

Figure 2.4: The elastic restoring forces in an artery.

The blood contained within the artery exerts a force along the line r̂ on the region
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contained between the opening of angular width θ. The magnitude of force exerted on

this area is simply the pressure time the area itself, in which

F⃗ (P ) = Prlθr̂. (2.5.1)

The pressure P is the difference within the artery between systolic and diastolic pres-

sure. Letting the ring have a an equilibrium radius of r0 during diastole, the expansion

of the artery to radius r during diastole induces elastic restoring forces within the arterial

wall. The arc lengths subtending the angle θ during diastole and systole are

A(r0) = r0θ & A(r) = rθ (2.5.2)

respectively. Consequently there is a relative stretching of this section of the arterial

wall given by
rθ − r0θ

r0θ
=
r − r0
r0

The elastic restoring forces within the wall ensure the remainder of the arterial section

exert a force T⃗ on the section illustrated. If we denote by Y0 the Young modulus of the

arterial tissue, then Y0 and the associated tensile force T are related by

Y0
r − r0
r0

=
T

lh
. (2.5.3)

The tensile force has a radial component

F⃗T = −T sin θr̂ ∼ −Tθr̂ = −YO
r − r0
r0

lhθr̂,

which acts to restore the illustrated section to its equilibrium radius.

We suppose the arterial tissue has a uniform density ρ0, in which case the mass of

the arterial section is given by

m(θ) = ρ0r0lhθ. (2.5.4)
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The mass of the section times its radial acceleration must be equal to the net force

exerted on the section, and so after simplifying we find

ρ0r0h
d2r

dt2
= Pr − Y0h

r − r0
r0

, (2.5.5)

which is a statement of Newton's second law.

The arterial cross section is simply

A(r) = πr2,

and the second time derivative of A is

Att(r) =
d2A

dt2
(r) = 2π

(
r
d2r

dt2
+

(
dr

dt

)2
)
.

Aswe are looking for a mathematical description of regular blood flowwe are interested

in relatively small radial velocities of the arterial wall in which case the second term on

in the right hand side above may be neglected. Thus we make the approximation

Att(r) ∼ 2πr
d2r

dt2
. (2.5.6)

Meanwhile since the variation in radius is small, it follows that the variation in cross

section may be written as

A(r)− A(r0) ∼ 2πr0(r − r0), (2.5.7)

and so we may approximately rewrite (2.5.5) as

ρ0hAtt(r) = 2πr0P +
Y0h

r20
[A(r)− A(r0)]. (2.5.8)

The forces exerted net forces acting on the wall must be considered in conjunction with

the forces actin on the blood within the artery to provide a complete description of the

dynamics.
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Like the derivation of the Hopf equation earlier we will suppose that significant

variation in blood pressure and blood velocity take place alone the axial direction only.

In the axial direction along the x-axis, the Euler equation is

ut + uux = −Px,

while the equation of mass conservation requires

At + (uA)x = 0,

as before. We assume that blood has a uniform density ρ = 1 in the units we are working

in.

Under the change of variables

A→ πr20A, P → Y0h

2r0
P, u→ λωu, x→ λx, t→ 1

ω
t (2.5.9)

where we introduce

λ =

√
ρ0r0h

2
, ω =

√
Y0
ρ0r20

,

equation (2.5.8) along with the two component Hopf equation become

Att + A = p+ 1,

ut + uux = −px,

At + (Au)x = 0, (2.5.10)

which is the system in non-dimensional variables.

The equilibrium values of the variables are

A0 = 1, P0 = 0, u0 = 0,

and so we expand each of the variables according to

A = 1 + a P = p u = ũ, (2.5.11)
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where A, p and ũ etc are small perturbation about the equilibrium values. Neglecting

nonlinear terms the system (2.5.9) becomes

att + a = p,

ũt = −px,

at + ũx = 0. (2.5.12)

when expanded about the equilibrium values.

The system in (2.5.12) has plane wave solutions

a = a0e
i(νt−kx), p = p0e

i(νt−kx), p = p0e
i(νt−kx), (2.5.13)

provided we have the dispersion relation

ν2 =
k2

1 + k2
. (2.5.14)

It follows that the phase velocity is

vϕ =
1√

1 + k2
, (2.5.15)

which depends on k, making the system dispersive.

As with the derivation of KdV in the shallow water regime we consider weakly

nonlinear solutions

a = εa1 + ε2a2 ũ = εu1 + ε2u2 p = εp1 + ε2p2. (2.5.16)

We require terms of order ε2 since solution to order ε correspond to the linear solu-

tions already discussed. In addition we consider the system in the moving frame whose

coordinates are given in terms of (x, t)-coordinates by

ξ = ε1/2(x− t), τ = ε3/2t.

The system (2.5.10) yields to order ε2 in the moving frame

p1,τ +
3

2
p1p1,ξ +

1

2
p1,xxx = 0,
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and with τ → 2τ we obtain

p1,τ + 3p1p1,ξ + p1,xxx = 0, (2.5.17)

which is the KdV equation for p1 in the (ξ, τ)-coordinate system.

2.6 Conclusion

In this chapter we have examined our first nonlinear model, namely the two-component

Hopf equation, as it arises in the modelling of arterial blood flow. We have seen that it is

possible to solve the system in terms of the initial data via the method of characteristics

and from there demonstrated the phenomenon of wave breaking. We also demonstrated

the necessary conditions under which the solutions remain bounded. The system while

nonlinear possessed no dispersion terms and so for this reason we consider it a quasi-

linear system, lacking some of the structure necessary to allow for global solutions. In

the final section we have shown that if one includes the nonlinearities induced by the

elastic restoring forces in the wall then we arrive at the KdV equation as a model, which

will be studied in much greater detail in Chapter 4.



Chapter 3

Particle Trajectories

3.1 Introduction

In the current chapter we analyse qualitative properties of the underlying motion for

the Stokes wave of greatest height, over a fluid of infinite depth. A Stokes wave is a

symmetric wave profile over an irrotational flow, which rises and falls exactly once per

period between crest and trough. The wave of greatest height or extreme wave shares

many features of a regular Stokes wave, but crucially from a mathematical perspective

it displays certain irregularities at the surface. Specifically at the wave crest a cusp

develops, whereby the profile is continuous but it is no longer differentiable. Physically

this is due to the presence of a so-called stagnation point where the horizontal velocity

of the particle equals the wave speed.

The existence of the extreme wave was first conjectured by Stokes [Sto1880], and

has been the subject of an extensive body of research over for a century and was rig-

orously established in [AFT1982] (cf. [Tol2006] for an overview of Stokes waves in

general). Subsequently a number of further interesting features of the extreme wave

have been established, for example [Con2012,PT2004], and from both a mathematical

and physical point of view the extreme wave remains a subject of great interest.

48
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The aim of this chapter is to provide a clear qualitative picture of the particle tra-

jectories throughout the fluid domain for an infinitely deep extreme Stokes wave. It

had been assumed for many years that the trajectories followed by fluid particles in

regular waves should be closed, either in the form of ellipses for water of finite depth,

or approaching circular paths at infinite depth [Joh1997]. However in contrast it has

been shown that in a periodic surface gravity wave there are no closed particle trajec-

tories in the linear approximation, see [CEV2008,CV2008]. In recent years there have

been several papers which dealt with various aspects of the flow beneath a regular trav-

elling water wave, in irrotational flow or in a flow with vorticity, see discussions in

[Con2001,CE2004,CE2007,CE2011,CS2010,CV2011,Ehr2008,Hen2008,Var2007].

The analysis employed in these papers is not transferable to the case of the extreme

wave, since the presence of a stagnation point at the crest generates a number of insur-

mountable mathematical difficulties.

Rather, a different approach must be employed, and in [Con2012] an analysis of

the particle trajectories for the finite depth extreme Stokes wave was undertaken. In

this chapter we extend the analysis of particle trajectories for extreme Stokes waves to

the setting of infinitely deep fluid, thereby completing the work which was initiated in

[Hen2006,Hen2008]. Despite the cusp at the wave crest, the velocity field is shown to

be continuous throughout the closure of the fluid domain. We then use techniques from

conformal mapping theory, together with the approach developed for regular Stokes

waves, to prove that the particle trajectories in deep-water extreme Stokes are not closed,

but rather undergo a positive drift in the direction of wave propagation.
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3.2 Preliminaries

3.2.1 The governing equations

We consider a two-dimensional flow, periodic in the horizontal direction, which moves

with a constant speed c > 0. The flow is assumed to be irrotational and propagates

in an infinitely deep body of water. The fluid body is given by Ω = {(X,Y ) ∈ R ×

(−∞, η(X, t))}, where η(X, t) is the surface profile of the fluid. In addition, the fluid

is considered to be inviscid, incompressible and of constant density ρ = 1, with the

flow being subject to a gravitational acceleration g. The Euler equations are

ut + uuX + vuY = −PX ,

vt + uvX + vvY = −PY − g for (X, Y ) ∈ Ω.
(3.2.1)

The incompressibility of the fluid flow is expressed by

uX + vY = 0, for (X, Y ) ∈ Ω, (3.2.2)

while the irrotational character of the flow is described by

uY − vX = 0, for (X,Y ) ∈ Ω. (3.2.3)

In the absence of surface tension, the boundary conditions for the flow are given by

v = ηt + uηX ,

P = P0 on Y = η(X, t), (3.2.4)

(u, v) → (0, 0) uniformly in X as Y → −∞. (3.2.5)

In the boundary condition (3.2.4) above, P0 is the constant pressure exerted by the at-

mosphere on the free surface. Each of the unknown functions u, v, P and η is required

to be periodic in the variableX, with a period L > 0.Moreover each function assumes

the form of a travelling wave profile and so depends on the (X, t)-variables via the
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combination X − ct. Without loss of generality we assume the solutions have period

L = 2π. The decay of the velocity field deep down as in (3.2.5), is interpreted as the

statement that at great depth there is very little fluid motion.

λ = 2π

X

Y

Y → −∞

2π
3

Figure 3.1: An extreme Stokes wave of wavelength 2π over an infinite depth as seen in

the laboratory frame.

3.2.2 The moving frame

It will be convenient for us to analyse the system in the moving frame, namely the frame

of reference in which the free surface assumes a stationary wave form. The transforma-

tion to this frame of reference is induced by the following change of coordinates

x = X − ct, y = Y, t = t. (3.2.6)

Under this change of coordinates the Euler equations in (3.2.1) transform as

(u− c)ux + vuy = −Px,

(u− c)vx + vvy = −Py − g for (x, y) ∈ R× (−∞, η(x)),
(3.2.7)
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while the incompressibility and irrotationality conditions (3.2.2)-(3.2.3)become

ux + vy = 0,

vx − uy = 0 for (x, y) ∈ R× (−∞, η(x)).
(3.2.8)

The boundary conditions (3.2.4)-(3.2.5) in the moving frame are

v = (u− c) · η′,

P = P0 on y = η(x), (3.2.9)

(u− c, v) → (−c, 0) uniformly in x as y → −∞. (3.2.10)

The system of equations (3.2.7)-(3.2.8) along with the boundary conditions (3.2.9)-

(3.2.10) serve to define the free boundary problem in the moving frame. In addition

to the boundary conditions (3.2.9), there are several symmetries of the functions that

apply in the moving frame: η is symmetric with respect to the crest line x = 0, while u

is even and v is odd in the x-variable. The advantage of transferring the free boundary

problem to the moving frame is that the system of equations now has no explicit time

dependence.

In the case of a smooth Stokes wave we always have the condition

u(x, y) < c, (3.2.11)

for all points in the fluid domain and its boundary. In the case of an extreme Stokes

wave we have

u(x, y) ≤ c, (3.2.12)

where equality is achieved at the wave crest. Equations (3.2.7) and (3.2.8) ensure that

u, v, η, and P are analytic in the interior of the fluid domain, while (3.2.9) and (3.2.12)

ensure that these functions are merely continuous on the free surface. In the moving

frame, we may say that the wave crest is located at x = 0, y = η(0), while the tangent
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lines to the profile at the cusp create an opening of 120◦. For a discussion of these facts,

see [BT2003].

The irrotationality condition in (3.2.8) implies
ˆ π

−π

ˆ y1

y0

[uy − vx]dydx = 0,

for any fixed depths y = y0 and y = y1 below the trough level. Integrating we find
ˆ π

−π

u(x, y1)dx−
ˆ π

−π

u(x, y0)dx = 0,

where we have reversed the order of integration in the second integral and used v = 0

along the trough lines ((±π,−∞), (±π, η(±π))]. The relation

κ =
1

2π

ˆ π

−π

u(x, y0)dx < c (3.2.13)

follows at once, with the situation being similar to that encountered in the case of a flat

bed cf. [Con2013]. It is clear that κmay be interpreted as the average horizontal current

of the fluid body. In this chapter it will be assumed that κ = 0.

3.3 The hodograph transform

It follows from (3.2.8) that we may introduce a stream function ψ(x, y) defined by

ψy = u− c, (3.3.1)

ψx = −v. (3.3.2)

Differentiating (3.3.1)-(3.3.2) with respect to y and x respectively and applying (3.2.8),

we deduce ψ(x, y) is harmonic throughout the fluid domain. Integrating (3.3.1)-(3.3.2)

we obtain

ψ(x, y) = ψ(0, y0) +

ˆ y

y0

[u(x, ζ)− c]dζ −
ˆ x

0

v(ξ, y0)dξ y ∈ (−∞, η(x)], (3.3.3)
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where y0 is some fixed depth below the trough level. The 2π-periodicity in x of u(x, y),

along with the fact v(x, y) is odd in the x-variable together ensure that ψ(x, y) also has

a period of 2π in the x-variable at any fixed depth below the free surface.

The first boundary condition in (3.2.9) gives us

d
dx
ψ(x, η(x)) = −v(x, η(x)) + (u(x, η(x))− c) · η′ = 0, (3.3.4)

and so the stream function is constant along the free surface. Since ψ(x, y) is harmonic

in the fluid domain the stream function must attain its maximum and minimum on the

boundary. Furthermore by (3.2.11) - (3.2.12) we have ψy ≤ 0 along the free surface

y = η(x), in which case the minimum of ψ(x, y) must occur on the surface, since

ψy → −c as y → −∞.

In the fluid domain the Euler equations are alternatively stated using Bernoulli's law

(u− c)2 + v2

2
+ gy + P = Q, (3.3.5)

where Q is constant. Using Bernoulli's law we may reconstruct Euler's equations in

(3.2.7) along with the boundary conditions (3.2.9), in terms of the stream function

ψ(x, y) and height function η(x), both of which are periodic and even in the x-variable.

The free boundary problem (3.2.7) and (3.2.9), when expressed in terms of η(x) and

ψ(x, y) using (3.3.5) may be written as

∆ψ = 0 in −∞ < y < η(x),

1

2
|∇ψ|2 + gy + P0 = Q on y = η(x),

ψ = 0 on y = η(x),

∇ψ → (0,−c) uniformly in x as y → −∞.

(3.3.6)

The level sets of the steam function provide a foliation of the closure of the fluid domain

Ω̄, with ψ = 0 on the surface.
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We divide the fluid domain Ω into distinct regions as follows

Ω+ =
{
(x, y) ∈ R2 : x ∈ (0, π), −∞ < y < η(x)

}
,

Ω− =
{
(x, y) ∈ R2 : x ∈ (−π, 0), −∞ < y < η(x)

}
,

(3.3.7)

which are two halves of the fluid domain in one period. In addition we have the two

halves of the surface over one period given by

S+ = {x ∈ (0, π), y = η(x)} ,

S− = {x ∈ (−π, 0), y = η(x)} .
(3.3.8)

The regions Ω± are separated by the crest line ((0,−∞), (0, η(0))] and are bounded

laterally by the trough lines ((±π,−∞), (±π, η(±π))] . The height function η is even

in x, in which case η(−π) = η(π), while η′ ≤ 0 on S+ and η′ ≥ 0 on S−.

The irrotationality condition in (3.2.8) allows us to introduce a velocity potential

ϕ(x, y) such that

ϕx = u− c, ϕy = v, (3.3.9)

with ϕ = 0 along the crest line. Integrating (3.3.9) we find

ϕ(x, y) =

ˆ x

0

[u(ξ, y0)− c]dξ +
ˆ y

y0

v(x, ζ)dζ, (3.3.10)

where y0 is a fixed depth below the trough level. It is clear from this integral represen-

tation that ϕ(x, y) + cx is 2π-periodic in x. In particular we have

ϕ(2π, y) =

ˆ 2π

0

[u(ξ, y)− c]dξ = −2cπ,

for all y below the trough level.

We can use the steam function and the potential function to perform a conformal

hodograph transform induced by the change of variables

q = −ϕ(x, y),

p = −ψ(x, y).
(3.3.11)
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The image of the semi infinite strip Ω± is

Ω̂+ =
{
(p, q) ∈ R2 : q ∈ (0, cπ), p ∈ (−∞, 0)

}
,

Ω̂− =
{
(p, q) ∈ R2 : q ∈ (−cπ, 0), p ∈ (−∞, 0)

}
,

(3.3.12)

while the free surface region S± transforms as

Ŝ+ = {q ∈ (0, cπ), p = 0} ,

Ŝ− = {q ∈ (−cπ, 0), p = 0} ,
(3.3.13)

under the conformal mapping in (3.3.11).

y = y0 p =M

Ω− Ω+ Ω̂− Ω̂+

x = 0 q = 0

y = 0 p = 0

x = −π x = π q = −cπ q = cπ

S− S+ Ŝ− Ŝ+

Figure 3.2: The transformation of the fluid domain under the hodograph transform to a

domain with fixed boundary.

We introduce a new harmonic function h(q, p), written in terms of the new variables

such that

h(q, p) = y. (3.3.14)

In terms these new variables the free boundary problem may be alternatively written as

a new nonlinear fixed boundary problem

△q,ph = 0, for q ∈ (−cπ, cπ), p ∈ (−∞, 0],

2(E0 − gh)(h2p + h2q) = 1, p = 0,

∇ψ →
(
0,

1

c

)
, uniformly in q ∈ (−cπ, cπ) as p→ −∞.

(3.3.15)
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The function h is even and 2πc-periodic in the q-variable.

We introduce the relations

∂q = hp∂x + hq∂y, ∂x = (c− u)∂q + v∂p,

∂p = −hq∂x + hp∂y, ∂y = −v∂q + (c− u)∂p,
(3.3.16)

from which it follows

hq = − v

(c− u)2 + v2
= −∂x

∂p
=
∂y

∂q
,

hp =
c− u

(c− u)2 + v2
=
∂x

∂q
=
∂y

∂p
.

(3.3.17)

While in the above wemay use the same symbol to denote h, u etc. in either the moving

frame coordinates (x, y) or its transformation under (3.3.11) with coordinates (p, q), it

should be under stood the u(p, q) does not have the same functional form as u(x, y) and

like wise for v, h etc. Rather it should be understood that u(p, q) depends on the (x, y)

coordinates via u(ϕ(x, y), ψ(x, y)). Similar considerations apply to functions such as v

and h etc.

3.4 The velocity field of an extreme Stokes wave

We introduce the function f : Ω̂+ → Ω+ defined by f : ξ 7→ x + iy, with ξ = q + ip,

where f is analytic in Ω̂+ and continuous on the closure Ω̂+ ∪ ∂Ω̂+. Furthermore the

function has analytic continuation to any point on ∂Ω̂+ except the point (0,0). However

due to the cusp in the wave crest the behaviour of f ′ is singular at the point ξ = 0.

Nevertheless the fact that the fluid domain Ω has a corner with two Hölder contin-

uous curves issuing from f(0), the tangents of which form an angle of 2π
3
at the cusp,

ensures that the function ξ 7→ ξ1/3f ′(ξ) is continuous on the closure of Ω̂+. Specifically

we may say that

lim
ξ→0

ξ1/3f ′(ξ) = ξ0 ̸= 0, (3.4.1)
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where ξ0 is constant, cf. [Pom1992]. Using the results of (3.3.17) along with the defi-

nition of f(ξ) we see that

1

f ′(ξ)
=

1

xq + iyq
= (c− u) + iv. (3.4.2)

Meanwhile (3.4.1) ensures 1
f ′(ξ)

is continuous in the closure of Ω̂+, which together with

(3.4.2) imply [(c− u) + iv] is also continuous in the closure of Ω̂+.

In fact we may specifically write

(c− u) + iv

ξ1/3
→ 1

ξ0
as ξ → 0, (3.4.3)

and so it follows that

lim
ξ→0

[(u− c) + iv]ξ2/3 − 0

ξ
= lim

ξ→0
[(u− c) + iv]ξ−1/3 =

1

ξ0
. (3.4.4)

The function [(u− c) + iv]ξ2/3 is therefore differentiable at ξ = 0.

Evaluating the derivative of ξ2/3

f ′(ξ)
along ξ = ip with p ↑ 0, i.e. where v = 0, we see

that Re[ξ0] ̸= 0 and Im[ξ0] ̸= 0. It follows from this and evaluating the same derivative

along ξ = q, that the limit of [c − u(q, 0)]q−1/3 as q ↓ 0 is also non-zero. As such the

map q 7→ u(q, 0) is continuous and periodic in R but does not belong to the Sobolev

spaceW 1,k(0, 1) for k ≥ 3/2.However if this were so then u(0, 0)− c = 0 would yield

lim
q→0

(
[c− u(q, 0)]q−1/3

)
= 0,

which we see from,

0 ≤ c− u(q, 0) =

ˆ q

0

|uq(s, 0)|ds ≤ q(k−1)/k

(ˆ q

0

|uq(s, 0)|kds
)1/k

,

as lim
q↓0

ˆ q

0

|uq(s, 0)|k ds = 0.

3.4.1 The vertical velocity

In the case of almost extreme water waves we have that v > 0 in Ω̂+ cf. [CS2010],

while for the extreme Stokes wave we have v ≥ 0 in Ω̂+ with equality achieved on
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the boundary see [Con2012]. In both cases Ω̂+ is a bounded domain since the fluid

domain is of finite depth. In our present case we would like to extend these results to

the case when Ω̂+ is a semi infinite domain, corresponding to the case of an infinitely

deep Stokes wave.

To begin we assume there exists a point (q0, p0) ∈ Ω̂+ such that v(q0, p0) = 0

for the extreme Stokes wave. We may choose ε ∈ (0,
√
q20 + p20) and consider the

modified region Ω̂ε
+, which is the region Ω̂+ with a quarter disc of radius ε and centre

(0, 0) removed. Clearly (q0, p0) is an interior point of Ω̂ε
+ in which case the harmonic

function v attains its minimum at an interior point Ω̂ε
+. Maximum principles then require

v ≡ 0 throughout this region cf. [GT2001].

We also see from (3.2.7) that

∇2P = −2(u2x + u2y) ≤ 0 in Ω, (3.4.5)

in which case P is superharmonic. The weak maximum principle and the periodicity

of P then ensure that the minimum must be attained on the free surface y = η(x) cf.

[GT2001]. Furthermore since P = P0 all along the free surface it follows that P attains

its minimum all along the free surface.

Supposing there exists a point (q0, 0) with q0 ∈ (0, π) where the harmonic function

v = 0, then this corresponds to a point (x0, η(x0)) ∈ Ω+ where v = 0. The mapping

x 7→ η(x) is strictly decreasing for all x ∈ (0, π) in which case η′(x0) < 0. Since v

is harmonic in the region Ωε
+, where Ωε

+ is the pre-image of Ω̂ε
+ under the conformal

transformation (3.3.11), it follows that (x0, η(x0))must be a minimum point of v inΩε
+.

Hopf's maximum principle then requires that vy(x0, η(x0)) < 0 cf. [Fra2000].

However the first member of (3.2.8) now requires ux > 0 at (x0, η(x0)) which

together with (3.2.12) gives (u− c)ux ≤ 0 at (x0, η(x0)). It follows that

Px = (c− u)ux ≥ 0 at (x0, η(x0)). (3.4.6)
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Since P = P0 on the free surface and combined with the maximum principle requires

Px + Pyη
′ = 0,

Py < 0 on y = η(x),
(3.4.7)

and so it follows from η′ < 0 on x ∈ (0, π) that Px < 0 at (x0, η(x0)), thus (3.4.6) is a

contradiction. It follows that the velocity component v is strictly positive in Ω+ except

at the wave crest and wave trough.

(0, 0) p = 0

q = −cπ q = cπ

ε

p =M

p→ −∞

Ω̂ε
+

Figure 3.3: The region Ω̂+ with the quarter disc of radius ε and centre (0, 0) removed.

3.4.2 The horizontal velocity

Along the lateral sides of the excised region Ωε
+ we have v = 0, therefore v is also zero

along the lateral edges of its image Ω̂ε
+. Furthermore we now know v > 0 in the interior

of Ω̂+ which together with Hopf's maximum principle requires

vq(0, p) > 0 vq(cπ, p) < 0,

for p ∈ (−∞, 0]. The incompressibility and irrotationality of the flow in (3.2.8) along

with the relations in (3.3.16) give

uq + vp = 0, up − vq = 0. (3.4.8)
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We see that up(0, p) = vq(0, p) > 0 and up(cπ, p) = vq(cπ, p) < 0, and so u decreases

as we descend along the crest line while u increases as we descend the trough line of

Ω̂ε
+ cf. [Con2012]. Moreover the relations (3.3.16)-(3.3.17) give us

uq =
(c− u)ux − vuy
(c− u)2 + v2

, (3.4.9)

which is well defined for all points of the fluid domain and its boundary except at the

wave crest. Therefore along the lateral edges of Ω̂ε
+ where v = 0, it follows that

uq =
ux
c− u

= − vy
c− u

= 0, (3.4.10)

and so uq is also zero along the lateral edges of Ω̂ε
+. In addition since the transformation

(3.3.11) is a conformal mapping, while u is harmonic in the fluid domain Ωε
+, it follows

that u is also harmonic in the domain Ω̂ε
+.

The first of the Euler equations gives us

Px = (c− u)ux − vuy,

which together with the relations (3.3.16)-(3.3.17) give

uq =
Px

h2q + h2p
, (3.4.11)

which holds at all points in the fluid domain and along the free boundary except at the

wave crest. Along the free surface it was previously found that

Px < 0 on y = η(x),

except at the wave crest and wave trough where Px = 0. It follows that

uq(q, 0) < 0 for q ∈ (0, cπ), (3.4.12)

in which case u is strictly decreasing along the free surface, except at the wave crest

and wave trough cf. [Con2012].
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Since u is harmonic in Ω̂ε
+, then uq is also harmonic in the same region and so at-

tains its maximum and minimum values along the boundary ∂Ω̂ε
+. If we suppose that

uq(q0, p0) = m > 0, where (q0, p0) is an interior point of Ω̂ε
+, then we have a contra-

diction of the maximum principle. To see this we note that since (u, v) → (0, 0) as

p → −∞, we may choose p1 < p0 such that uq(q, p1) < m. On the bounded region

consisting of Ω̂ε
+ truncated by the line p = p1 uq is larger at an interior point than on

the boundary, which is a contradiction and so uq ≤ 0 in the interior of Ω̂ε
+. The strong

maximum principle also requires that if uq = 0 at some interior point, then uq ≡ 0

throughout Ω̂ε
+ contradicting (3.4.12). Thus we conclude uq < 0 in the interior of Ω̂ε

+

cf. [Hen2008,Hen2011].

Along the streamline defined via ψ(x, y(x)) = ψ0 < 0 by definition we have

ψx(x, y(x)) +ψy(x, y(x))y
′(x) = 0 and so using (3.3.17) we find y′(x) = − v

c−u
= hq

hp
.

Differentiating u along the streamline and using (3.3.16) we find

d
dx
u(x, y(x)) =

uq
hp

< 0, (3.4.13)

since hp > 0 and uq < 0 in the interior ofΩε
+. As such u is strictly decreasing along any

streamline in the interior of Ωε
+. By a limiting process we therefore deduce that uq ≤ 0

in the interior of Ω̂+ for the wave of greatest height cf. [Con2012]. Maximum principles

now ensure a strict inequality in the interior since uq is harmonic. Consequently, along

any streamline u is strictly decreasing between the crest line and a successive trough

line.

3.5 Particle trajectories

Along a stream line (x(t), y(t)) we have ψ(x(t), y(t)) = ψ0, in which case we also

have ∂tψ(x(t), y(t)) = 0. Along the image of the stream line p is constant and so we

may write p(t) = p(0) = p0. Furthermore since we always have the strict inequality
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u − c < 0 in the fluid domain except at the wave crest, it follows that x(t) goes from

+∞ to −∞ as t goes from −∞ to +∞. It follows that there exist a time t0 such that

x(t0) = 0 if we are beneath the free surface. Moreover there also exists a time say

t = 0 when x(0) = π, and a later time t = θ such that x(θ) = −π. Since x(0) = π and

x(θ) = −π are the endpoints of one period, it follows that θ is the time required for a

particle to traverse one period in the moving frame. That is to say θ is the elapsed time

per period along a stream line beneath the surface.

It follows that in the region Ω̂+ with p < 0 we have

dq
dt

= q̇ = −ϕxẋ− ϕyẏ = −(c− u)2 − v2 < 0, (3.5.1)

while at the endpoints we have,

q(0) = cπ > 0, q(θ) = −cπ < 0. (3.5.2)

From (3.5.1) we see that dt = − 1
(u−c)2+v2

dq. Along the particle path the vertical dis-

placement over time θ is given by

y(θ)− y(0) =

ˆ θ

0

v(x(t), y(t))dt =

ˆ cπ

−cπ

v

(u− c)2 + v2
dq = 0, (3.5.3)

since v is odd in q while the denominator in the integrand is even in q. In addition the

period along a streamline p may be written as

θ(p) =

ˆ θ

0

ẋ

u(x(t), y(t))− c
dt =

ˆ π

−π

1

c− u(x, y(x))
dx, (3.5.4)

which we now use to demonstrate θ(p) > 2π
c
when p ∈ (−∞, 0).

To begin we note that the Cauchy-Schwarz inequality gives[ˆ π

−π

1

c− u(x, y(x))
dx
] [ˆ π

−π

(c− u(x, y(x)))dx
]
≥
[ˆ π

−π

dx
]2

= 4π2. (3.5.5)

We now consider the region D ⊂ Ω+, which is bounded above by the stream line

{(x, y(x)) : x ∈ (−π, π), ψ(x, y(x)) = ψ0 < 0} and below by the line segment
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{(x, y0) : x ∈ (−π, π)}, while it is laterally bounded by the line segments {(−π, y) :

y ∈ (y0, y(−π))} and {(π, y) : y ∈ (y0, y(π))}. The divergence theorem applied to the

vector field (v, u− c) in the region D gives

2πc =

ˆ π

−π

[c− u(x, y(x))][1 + y′(x)2]dx >
ˆ π

−π

[c− u(y(x))]dx. (3.5.6)

Taken together the relations (3.5.4), (3.5.5) and (3.5.6) imply

θ(p) ≥ 4π2´ π

−π
[c− u(x, y(x))]dx

>
2π

c
, (3.5.7)

the inequality being strict since [c− u(x, y(x))] only achieves a constant value as y →

−∞.

The horizontal drift of a particle is defined as the net horizontal distance moved by

the particle between two consecutive trough lines. That is to say,

X(θ)−X(0) = cθ − 2π = X(t+ θ)−X(t), t ∈ R, (3.5.8)

which corresponds to the motion of a particle over one period in the stationary frame.

In the (X,Y)-frame the particle trajectory is governed by the system

Ẋ(t) = u(X(t), Y (t)),

Ẏ (t) = v(X(t), Y (t)), (3.5.9)

in which case a solution of (3.5.9) of period θ = 2π
c
corresponds to a closed trajectory

in the physical frame (X, Y ).

3.5.1 Particle trajectories beneath the free surface

It is clear from (3.5.7) and (3.5.9) that the particle drift in the stationary frame is in

the positive X-direction. The level set {u = 0}, consists of a continuous curve C+

in Ω+ that intersects each streamline ψ = p exactly once where p ∈ (−∞, 0]. The
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corresponding level set C− in Ω− where {u = 0} is the reflection of C+ about the line

x = 0.As there is a unique point along each streamline inΩ+ at which u = 0, it follows

that u < 0 between C+ and x = π. Similarly between x = −π and C− we have u < 0,

while between the two level sets C− and C+ we have u > 0.

We consider a particle initially located at a = (π, y0) when t = 0 which moves to

the left and intersects the level set C+ at point b, and later intersects the crest line at point

c before moving on to intersect C− at point d, and finally intersecting the trough line at

e = (−π, y0) at time t = θ(y0) = θ.

Between the trough lines and the level sets we have u < 0, in which case the motion

of the particle between the points a and b and the points d and emust be in the negative

X-direction when viewed from the (X,Y)-frame. While moving from b to d in the

moving frame we have u > 0. Thus between b and d the particle trajectory in the

stationary frame is in the positive X-direction.

In Section 3.4.1 it was demonstrated that v > 0 in Ω+, and when combined with the

antisymmetry of v about the crest line it follows that v > 0 between a and c, while v < 0

between c and e. Therefore we deduce that the particle experiences no net vertical drift

over the course of one period. The initial particle position is (X(0), Y (0)) = (π, Y0)

while the final location is (X(θ), Y (θ)) = (−π + cθ, Y0), which together with (3.5.7)

implies X(θ) > π. Consequently X(θ) > X(0), thereby indicating a drift to the right

experienced by the particle after one complete period. Thus beneath the free surface the

particle trajectory along any streamline is not a closed loop, but rather drifts to the right

over the course of one period when observed in the (X, Y )-frame.

3.5.2 Particle trajectories on the free surface

In order to demonstrate the existence of non-trivial solutions on the free surface we want

to show that if a particle is initially located at (x0, η(x0)) when t = 0 and x0 ∈ (0, π)
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Figure 3.4: The trajectory followed by a fluid particle in an extreme Stokes wave in the

fluid body

then it will always reach the wave crest (0, η(0)) in finite time. If there exists a time τ

such that for all t ∈ (0, τ) we have x(t) ̸= 0, then we also have

ẋ(t) = u(x(t), η(x(t)))− c < 0, t ∈ (0, τ), (3.5.10)

as u ≤ c except at the wave crest (0, η(0)). Integrating (3.5.10) we obtain,

τ =

ˆ x0

x(τ)

1

c− u(ξ, η(ξ))
dξ. (3.5.11)

At the wave crest (0, η(0))we have a symmetric cusp whose tangents form an angle

of 2π
3
and so the magnitude of opening between the horizontal and each tangent is π

6
, in

which case

lim
x→0

[η′(x)]2 = lim
x→0

v2(x, η(x))

[u(x, η(x))− c]2
= tan2

(π
6

)
=

1

3
. (3.5.12)

In addition the free boundary problem (3.3.6) implemented at the wave crest requires

gη(0) + P0 = Q. (3.5.13)

Applying Bernoulli's law in (3.3.5) then gives us

[u(x, η(x))− c]2 + v2(x, η(x)) = 2[Q− P0 − gη(x)] = 2g[η(0)− η(x)], (3.5.14)
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which implies

lim
x→0

[u(x, η(x))− c]2 + v2(x, η(x))

|x|
= 2g lim

x→0

η(0)− η(x)

|x|
=

2g√
3
. (3.5.15)

The velocity components of a fluid particle approaching the cusp are related through

(3.5.12) which together with (3.5.15) gives

lim
x→0

[c− u(x, η(x))]2

|x|
=
g
√
3

2
. (3.5.16)

From relation (3.5.16) we conclude
ˆ π

0

1

c− u(s, η(s))
ds <∞, (3.5.17)

thus the time it takes the particle to travel from the initial location (x0, η(x0)) to the

wave crest (0, η(0)) is finite. Physical considerations require that the particle can only

occupy the crest point (0, η(0)) for an instant before it is replaced by a new particle,

since particles resting there for a finite time would accumulate, something which is not

observed. It is clear then that the crest is an apparent stagnation point.

With these issues resolved arguments analogous to those presented in Section 3.5.1

allow us to define the elapsed time θ(0) along with the horizontal drift cθ(0)− 2π over

one period for a particle travelling on the free surface. Evaluating the relations (3.5.4)

and (3.5.8) in the limit p ↑ 0, we find

θ(0) ≥ 2π

c
,

ˆ π

−π

[c− u(ξ, η(ξ))]dξ ≤ 2π. (3.5.18)

On the other hand the Cauchy-Schwarz inequality (3.5.5) imposes[ˆ π

−π

1

c− u(x, η(x))
dx
] [ˆ π

−π

(c− u(x, η(x)))dx
]
≥ 4π2, (3.5.19)

with equality possible only if c − u(x, η(x)) is constant over x ∈ [−π, π]. In contrast

to particle trajectories beneath the free surface there are no horizontal tangents at the

wave crest, but rather a pair of tangents which create an opening of 120◦. The same

observation remains true upon passing from the moving frame to the (X, Y )-frame cf.

[Con2012].
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3.6 Conclusion

The main result of this chapter has been the demonstration of non-closed particle tra-

jectories in an extreme Stokes wave over infinite depth. This result followed from the

application of maximum principles to the components of the velocity field within the

fluid body which ensured that the particle velocity was strictly increasing along any

streamline in the fluid domain. In addition the vertical velocity was fond to be anti-

symmetric in the x variable and strictly positive within the fluid body except along the

crest and trough lines. These results allowed us to obtain strict inequalities for the pe-

riod of a particle trajectory during its motion through one entire wavelength, thereby

leading the non-closure of particle paths, when observed in the (X, Y )-frame. These

results followed an extension of results for the case of almost extreme Stokes wave,

of which the extreme stokes wave may considered a limiting example. It remains an

open question however as to whether every extreme wave can be obtained form such a

limiting procedure.
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Chapter 4

Spectral Theory of the KdV Equation

The inverse scattering transform (IST) is a method of solving nonlinear Cauchy prob-

lems. In the case of rapidly decreasing functions as one approaches the asymptotic re-

gion of the spatial coordinate, the inverse scattering method is the analogue of Fourier's

method for solving linear partial differential equations. In the case of linear partial

differential equations, the Fourier transform of the system converts the system into a

system of linear ordinary differential equations. Furthermore, when the coefficients of

the original linear PDE are constant, the Fourier transform consists of a linearly inde-

pendent set of ODE for the Fourier harmonics which are readily integrated.

In the inverse scattering method, there is an analogous process at work, whereby

a linear differential operator whose coefficients depend a priori on space and time are

transformed into a set of scattering data. In the case of current interest, the KdV equation

is obtained via a consistency condition applied to a pair of spectral operators, one of

which is simply the Schrödinger operator familiar from quantum mechanics,

−d
2ψ

dx2
+ uψ = k2ψ,

The potential u(x, t) ≡ u is transformed into a reflection coefficient r(k, t) ≡ r via the

IST. The KdV equation itself then allows us to obtain the time evolution of the reflection

70
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coefficient, which will later be show to be

r(k, t) = r(k, 0)e−8ik3t.

Solving the KdV then becomes a case of reconstructing the potential u(x) from the time

dependant scattering coefficient r(k, t), which is the so called inverse problem.

The potential u depends on the variables x and twhile the function r depends on the

spectral parameter k ant time t. In addition the spectral functions ψ ≡ ψ(x, t; k) depend

on all three variables. In general the variables on which each function depends will be

suppressed until needed. In what follows from Sections (4.1)-(4.5) all considerations

will only be concerned with the x dependence of the potential u, the k dependence of

the scattering coefficient r and the (x, k) dependence of the spectral functions ψ. In

Section (4.6) the explicit time dependence of the scattering coefficient r will be investi-

gated thereby introducing the time dependence of the spectral functions. Upon solving

the Riemann-Hilbert problem we will then obtain the explicit time dependence of the

potential u. Thus until Section (4.6) there shall be no consideration of time dependence

but it should be kept in mind that time dependence is implicit for all functions consid-

ered.

The material presented in this chapter is well known and is included to provide a

comprehensive background. There are many textbooks in which the IST for the KdV is

treated, it being the archetypal example of a nonlinear system solvable by this method.

The treatment presented in this chapter closely follows that found in [ZMNP1984].

4.1 The spectral problem

The solutions u of the KdV which we seek are smooth in x ∈ R and such that u and

its derivatives to all orders vanish more rapidly than any finite power of x.We consider
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the eigenvalue problem

−d
2ψ

dx2
+ uψ = k2ψ, (4.1.1)

where we have made the replacement λ→ k2 from the usual version of the Schrödinger

equation. The special problem consists of two distinct regions, the continuous spectrum

which consists of all k ∈ R and the discrete spectrum. The discrete spectrum in the

case of KdV at least consists of a finite number of imaginary eigenvalues k = iκn, with

n ∈ {1, . . . , N} and where κn > 0.

The basis of Jost solutions are defined asymptotically according to

ψ1(x; k) → e−ikx

ψ2(x; k) → eikx

 as x→ ∞,
ϕ1(x; k) → e−ikx

ϕ2(x; k) → eikx

 as x→ −∞,

(4.1.2)

for all k ∈ R.We see from (4.1.1) that in either basis of solutions in (4.1.2) one member

must be the complex conjugate of the other. It follows that

ψ1(x; k) = ψ̄2(x; k), ϕ1(x; k) = ϕ̄2(x; k). (4.1.3)

Given k ∈ R it is also apparent that

ψ1(x; k) = ψ2(x;−k), ϕ1(x; k) = ϕ2(x;−k). (4.1.4)

Moreover since {ϕ1, ϕ2} and {ψ1, ψ2} both form independent bases for any particular

k ∈ R, we may write

ϕa(x; k) =
2∑

b=1

Tab(k)ψb(x; k), a ∈ {1, 2}, (4.1.5)

where Tab(k) as defined is the scattering matrix. Given the relationship (4.1.3) it is clear

that Tab(k) must be of the form

Tab(k) =

 a(k) b(k)

b̄(k) ā(k)

 , (4.1.6)
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and with this in mind it will be more convenient henceforth to drop the labels 1, 2 on

{ϕ1, ϕ2} and replace them with {ϕ, ϕ̄}, and similarly with the ψ-basis. The scattering

relation between bases may now be written as

ϕ(x; k) = a(k)ψ(x; k) + b(k)ψ̄(x; k), (4.1.7)

with the scattering relation for ϕ̄ obtained by complex conjugation.

Given two solutions to (4.1.1) which we denote by g1(x; k) and g2(x; k) for any

k ∈ C, we define the Wronskian

W[g1, g2] = g1
dg2
dx

− g2
dg1
dx

. (4.1.8)

Differentiating once with respect to x we find

d

dx
W[g1, g2] = g1

d2g2
dx2

− g2
d2g1
dx2

, (4.1.9)

whereupon using (4.1.1) we see that the right hand side becomes identically zero. Clearly

theWronskianW[·, ·] of two solutions of the spectral problem is independent of position.

In particular we find using the asymptotic behaviour of the bases {ψ, ψ̄} and {ϕ, ϕ̄} that

lim
x→∞

W[ψ, ψ̄] = 2ik, lim
x→−∞

W[ϕ, ϕ̄] = 2ik, (4.1.10)

and so we see from our previous results that,

W[ϕ, ϕ̄] = 2ik, W[ψ, ψ̄] = 2ik, (4.1.11)

since the Wronskian is independent of location x.

Using (4.1.7) in (4.1.11) we obtain

2ik = W[ϕ, ϕ̄] = (|a(k)|2 − |b(k)|2)2ik, (4.1.12)

from which it is immediately clear

det[Tab(k)] = |a(k)|2 − |b(k)|2 = 1. (4.1.13)
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making T unimodal.

Considering the scattering equation (4.1.7) where we let both sides approach the

asymptotic region x→ ∞, in which case we find

lim
x→−∞

1

a(k)
ϕ(x; k) = e−ikx +

b(k)

a(x)
eikx +O(1). (4.1.14)

Recall as x→ −∞ we have ϕ(x; k) → e−ikx, in which case we have

lim
x→−∞

1

a(k)
ϕ(x; k) =

1

a(k)
e−ikx +O(1). (4.1.15)

The coefficients t(k) = 1
a(k)

and r(k) = b(k)
a(k)

are naturally interpreted as the trans-

mission and reflection coefficients respectively for a right-moving plane wave e−ikx,

originating in the asymptotic region x → −∞ and scattering off the potential u(x).

Dividing both sides of (4.1.13) by |a(k)|2 we find

|t(x)|2 + |r(k)|2 = 1. (4.1.16)

The properties of the continuous spectrum of the original Schrödinger problem are con-

tained entirely within the scattering matrix T (k), which in turn is essentially described

in full by the reflection coefficient r(k). The relations (4.1.3) and (4.1.4) also ensure

that we only need worry about the half axis k > 0. Recall ϕ̄(x; k) = ϕ(x;−k) when

k ∈ R, while the analogue is true for ψ(x; k) so we must have,

0 ≡ ϕ(x; k)− ϕ̄(x;−k) = [a(k)− ā(−k)]ψ̄(x; k) + [b(k)− b̄(−k)]ψ̄(x; k).

Given the linear independence of ψ(x; k) and ψ̄(x; k) it follows that

ā(−k) = a(k) & b̄(−k) = b(k) ⇒ r̄(−k) = r(k), (4.1.17)

for k ∈ R
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4.2 Analytic properties of the Jost solutions

We introduce the modified Jost solutions defined by

ξ+(x; k) = eikxϕ(x; k), ξ−(x; k) = eikxψ(x; k), (4.2.1)

whose asymptotic behavior clearly satisfies

ξ±(x; k) → 1 as x→ ∓∞

respectively. Differentiating once with respect to x we find

eikxϕx(x; k) = ξ+x (x; k)− ikξ+(x; k). (4.2.2)

Differentiating once more and using (4.1.1) we find

ξ+xx(x; k)− 2ikξ+x (x; k)− u(x)ξ+(x; k) = 0. (4.2.3)

In addition the asymptotic behaviour of ξ+(x; k) along with the spectral problem (4.1.1)

allows us to write

ξ+(x; k) = 1 +

ˆ x

−∞

e2ik(x−y) − 1

2ik
P (y; k)ξ+(y; k)dy, (4.2.4)

so differentiating once with respect to x and applying the fundamental of calculus we

find

ξ+x (x; k) =

ˆ x

−∞
e2ik(x−y)P+(y; k)ξ

+(y; k)dy. (4.2.5)

Differentiating once more we find

ξ+xx(x; k) = P+(y; k)ξ
+(x; k) + 2ikξ+x (x; k). (4.2.6)

In comparison to (4.2.3) we see immediately that

P+(x; k) = u(x). (4.2.7)
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Thus we may write

ξ+(x; k) = 1 +

ˆ x

−∞

e2ik(x−y) − 1

2ik
u(y)ξ(y; k)dy, (4.2.8)

in which case it is obvious that the integral on the right hand side above is bounded if

k ≥ 0. Consequently ξ+(x; k) is analytic if k ∈ C+.

Similarly one may write

ξ−(x; k) = 1 +

ˆ ∞

x

e2ik(x−y) − 1

2ik
P−(y; k)ξ

−(y; k)dy, (4.2.9)

and find

P−(x; k) = −u(x). (4.2.10)

The same argument now implies that ξ−(x; k) is analytic for all k ∈ C−.

Returning to the definitions (4.2.1) we see that

ϕ(x; k) = e−ikxξ+(x; k), (4.2.11)

in which case ϕ(x; k) must be analytic throughout C+, since e−ikx & ξ+(x; k) are both

analytic in the upper half-plane. Moreover we see that as |k| → ∞ with k ∈ C+ that

ξ+(x; k) → 1 and ϕ(x; k) → 0. Similarly we find ξ−(x; k) is analytic throughout C−

and ξ−(x; k) → 1 & ψ(x; k) → 0 as |k| → ∞ with k ∈ C−.

4.3 Analytic properties of a(k)

The relations obtained in (4.1.11) apply only when k ∈ R. However returning to the

spectral problem (4.1.1), it is clear the ψ(x; k) and ψ̄(x; k̄) are solutions to the same

spectral problem for arbitrary k ∈ C. With this observation we may extend (4.1.11)

for all k ∈ C. In the previous section it was found that ψ(x; k) could be analytically

continued into the region C−, in which case se see ψ̄(x; k̄) has analytic continuation
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throughoutC+.Moreover, it was found theϕ(x; k) had analytic continuation throughout

C+, in which case we see

a(k) =
1

2ik
W[ϕ(x; k), ψ̄(x; k̄)] (4.3.1)

is analytic throughout k ∈ C+. Thus the scattering coefficient a(k) is analytic in C+.

In the case where k0 = µ0 + iκ0 ∈ C+ such that a(k0) = 0, the Wronskian (4.3.1)

becomes

W[ϕ(x; k0), ψ̄(x; k̄0)] = ϕ(x; k0)ψ̄x(x; k̄0)− ϕx(x; k0)ψ̄(x; k̄0) = 0. (4.3.2)

Consequently, at k = k0 ∈ C+ we must have

ϕ(x; k0) = b0ψ̄(x; k̄0), (4.3.3)

with b0 a nonzero constant. The definition of ϕ(x; k) in (4.1.2) implies that

lim
x→−∞

ϕ(x; k0) = lim
x→−∞

e−ik0x = 0. (4.3.4)

Meanwhile, as x→ +∞ we find

lim
x→∞

ψ̄(x; k̄0) = lim
x→∞

eik0x = 0. (4.3.5)

We see that the function ϕ(x; k0) is exponentially decreasing as |x| → ∞.

In general if ϕ(x; k) a solution of (4.1.1) then we have

ϕ̄xx(x; k) = [−k̄2 + u(x)]ϕ̄(x; k), (4.3.6)

and so we have
d

dx
W[ϕ(x, k), ϕ̄(x; k)] = (k2 − k̄2)|ϕ(x; k)|. (4.3.7)

In the specific case of k = k0, in which case we know ϕ(x; k0) → 0 as x → ±∞, we

see that

0 = W[ϕ(x; k0), ϕ̄(x; k0)]
∣∣x=∞
x=−∞ = (k2 − k̄2)

ˆ ∞

−∞
|ϕ(x; k)|dx. (4.3.8)
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The L2-norm satisfies

∥ϕ(·; k)∥22 =
ˆ ∞

−∞
|ϕ(x; k)|2dx > 0,

for any solution of (4.1.1) and as such it must be the case

k2 − k̄2 = 0. (4.3.9)

Thus we may write

µ0κ0 = 0,

and since we have k0 ∈ C+, it follows that µ0 = 0. This mud be true for all zeros of

a(k), and so

kn = iκn κn ∈ R+ n ∈ {1, . . . , N}, (4.3.10)

i.e. the discrete spectrum of (4.1.1) must be purely imaginary.

Finally we must show that the zeros of a(k) are simple. To do so, we differentiate

the spectral problem (4.1.1) once with respect to the spectral parameter k, to obtain

ϕxxk = −2kϕ+ [−k2 + u(x)]ϕk. (4.3.11)

Multiplying (4.3.11) by ϕ and (4.1.1) by ϕk and subtracting the latter from the former

we obtain

[ϕϕxxk − ϕxxϕk]x = −2kϕ2

or
d

dx
W[ϕ, ϕk] = −2kϕ2, (4.3.12)

and so upon integrating we find

W[ϕ, ϕk]|x=∞
x=−∞ = −2k

ˆ ∞

−∞
ϕ2dx. (4.3.13)

Meanwhile, we also have

W[ϕ, ψ] = 2ika(k),
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and so differentiating with respect to the spectral parameter we find

W[ϕk, ψ] +W[ϕ, ψk] = 2ia(k) + 2ikȧ(k), (4.3.14)

where we introduce ȧ(k) = d
dk
a(k). Choosing k = iκ0 such that a(iκ0) = 0, where we

have ϕ(x, iκ0) = b0ψ(x, iκ0), then equation (4.3.14) becomes

b20W[ψ(x; iκ), ψk(x; iκ)]−W[ϕ(x; iκ0), ϕk(x; iκ0)] = −2b0κ0ȧ(iκ0), (4.3.15)

where we have multiplied both sides by b0. In addition, (4.3.13) evaluated at k = iκ0

yields

W[ϕ(∞; iκ0), ϕk(∞; iκ0)]−W[ϕ(−∞; iκ0), ϕk(−∞; iκ0)] = −2iκ0

ˆ ∞

−∞
ϕ(x; iκ0)

2dx.

(4.3.16)

which when added to (4.3.15) evaluated as x→ ∞ yields

b20W[ψ(x; iκ), ψk(x; iκ)]−W[ϕ(−∞; iκ0), ϕk(−∞; iκ0)] =

−2b0κ0ȧ(iκ0)− 2iκ0

ˆ ∞

−∞
ϕ(x; iκ0)

2dx. (4.3.17)

It has already been observed that ψ(x; iκ0) and ϕ(x;κ0) both decay exponentially as

x→ ±−∞, respectively, in which case we find

ȧ(iκ0) = −κ0
ˆ ∞

−∞
ϕ(x; iκ0)

2dx. (4.3.18)

Replacing k = iκ0 in (4.2.9) ensures ξ−(x; iκ0) is real which combined with (4.2.1)

ensures ϕ(x; iκ0) is also real. It follows from these observations and the previous result

that

ȧ(iκ0) < 0, (4.3.19)

in which case the zeros of a(k) must be simple.
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b

b κ1

κN

Γ+

b

k R
ε

C+

Γε(k)

Figure 4.1: The integration contour in C+ for the analytic continuation of a(k)

4.4 Analytic continuation of a(k)

We now know that the spectral function a(k) is analytic in C+ with a finite number of

simple zeros along the imaginary axis. Given the Wronskian in (4.3.1) we see from the

asymptotic properties of ϕ and ψ that

lim
|k|→∞

a(k) = 1, (4.4.1)

where k ∈ Γ+ as shown in the contour diagram below.

We introduce the auxiliary function

A(k) = a(k)
N∏

n=1

k + iκn
k − iκn

, (4.4.2)

which has no zeros or poles inC+, given the analytic properties of a(k) discussed in the

previous section. Furthermore we see that as |k| → ∞ with k ∈ Γ+ then A(k) → 1.

Given that lnA(k) is both analytic and without zeros in C+, and such that lnA(k) = 0

when k ∈ Γ+, we may write

0 =

˛
C+

lnA(k)
k − k′

dk′ =

 ∞

−∞

lnA(k′)
k − k′

dk′ +

ˆ
Γε(k)

lnA(k′)
k − k′

dk′, (4.4.3)
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An application of the residue theorem yields
ˆ
Γε(k)

lnA(k′)
k − k′

dk′ = −iπ lnA(k), (4.4.4)

and so we see at once

lnA(k) =
1

iπ

 ∞

−∞

lnA(k′)
k′ − k

dk′. (4.4.5)

It is clear from the definition of A(k) in (4.4.2) that |A(k)| = |a(k)|, and so we may

write

lnA(k) = ln |a(k)|+ i argA(k),

and so with this replacement made in (4.4.5), we find upon comparing both sides that

ln |a(k)| = 1

π

 ∞

−∞

argA(k′)
k′ − k

dk′ argA(k) = − 1

π

 ∞

−∞

ln |a(k)|(k′)
k′ − k

dk′, (4.4.6)

which are the Kramers-Kronig relations. We may write an integral representation for

lnA(k) in the form

lnA(k) = ln |a(k)| − i

π

 ∞

−∞

ln |a(k′)|
k′ − k

dk′ =
1

πi

ˆ ∞

−∞

ln |a(k′)|
k′ − k − i0+

dk′, (4.4.7)

while (4.4.2) also implies

lnA(k) = ln a(k) +
N∑

n=1

ln
(
k + iκn
k − iκn

)
(4.4.8)

Comparing both expressions we find

ln a(k) =
N∑

n=1

ln
(
k − iκn
k + iκn

)
− 1

πi

ˆ ∞

−∞

ln |a(k′)|
k′ − k − i0+

dk′. (4.4.9)

It is clear that upon analytic continuation into C+ this integral representation become

ln a(k) = ln |a(k)|+
N∑

n=1

ln
(
k − iκn
k + iκn

)
− 1

π

ˆ ∞

−∞

ln |a(k′)|
k′ − k

dk′, (4.4.10)

and so a(k) is completely determined by |a(k)| which in turn is determined by r(k).

The scattering coefficient b(k) may be simply written as b(k) = a(k)r(k), and so as

was claimed earlier, the scattering data is essentially contained in r(k).
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4.5 The Riemann-Hilbert problem

We now know the analytic properties of the Jost solutions away from the real axis,

and moreover we are also able to determine the scattering coefficients a(k) and b(k)

given r(k). Rewriting the scattering equation (4.1.7) in terms of the modified solutions

ξ±(x; k) and dividing by a(k) we find

ξ+(x; k)

a(k)
= ξ−(x; k) + r(k)ξ̄−e2ikx, (4.5.1)

where as always k ∈ R. As we now know, the left hand side is analytic in C+ except at

the zeros of a(k) as shown in Figure 4.5, while the right hand side is analytic in C−.

b

b κ1

κN

Γ+

Γ−

C+

C−

R

Figure 4.2: The contours C+ & C− for the Riemann-Hilbert problem of Φ(x; k).

We may integrating the left hand term about the contour C+, shown in Figure 4.5,

since ξ+(x; k) and a(k) have analytic continuation away from R in C+. The residue

theorem applied to this integral yields

1

2πi

˛
C+

ξ+(x; k′)

a(k′)(k′ − k)
dk′ =

N∑
n=1

ξ+n (x)

ȧ(iκn)(iκn − k)
, k ∈ C−, (4.5.2)
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where we define ξn(x) = ξ(x; iκn).Meanwhile, expanding the integral into two distinct

integrals over Γ+ and R we find

1

2πi

ˆ
C+

ξ+(x; k′)

a(k′)(k′ − k)
dk′ =

1

2πi

ˆ
Γ+

1

(k′ − k)
dk′ +

1

2πi

ˆ ∞

−∞

ξ+(x; k′)

a(k′)(k′ − k)
dk′,

where in the first integral on the right hand side we have used ξ+(x; k) → 1 and a(k) →

1 when k → Γ+. Using the scattering relation (4.5.1) we may rewrite the integral over

R as follows:
ˆ ∞

−∞

ξ+(x; k′)

a(k′)(k′ − k)
dk′ =

ˆ ∞

−∞

ξ−(x; k′)

(k′ − k)
dk′ +

ˆ ∞

−∞

r(k′)ξ̄−(x; k′)

k′ − k
dk′. (4.5.3)

In addition we may use the analyticity of ξ−(x; k) throughout C− and its asymptotic

behaviour ξ−(x; k) → 1 as k → Γ−, to write

ξ−(x; k) =
1

2πi

ˆ
C−

ξ−(x; k′)

k′ − k
dk′ =

1

2πi

ˆ ∞

−∞

ξ−(x; k′)

k′ − k
dk′ +

1

2πi

ˆ
Γ−

1

k′ − k
dk′.

(4.5.4)

Combining the results of (4.5.3), (4.5.3) and (4.5.4) we find

ξ−(x; k) = 1 +
N∑

n=1

ξ+n (x)

ȧ(iκn)(iκn − k)
+

1

2πi

ˆ −∞

∞

r(k′)ξ̄−(x; k′)

k′ − k
dk′. (4.5.5)

We previously saw that along the discrete spectrum ϕ(x; iκn) and ψ(x; iκn) are related

by ϕ(x; iκn) = bnψ(x− iκn), and so it follows

ξ+(x; iκn) = ϕ(x; iκn)e
−κnx = bnψ(x;−iκn)e−κnx = bnξ

−
n (x)e

−2κnx.

With this relationship in mind we rewrite (4.5.5) as

ξ−(x; k) = 1− i
N∑

n=1

Rnξ
−
n (x)e

−2κnx

k − iκn
+

1

2πi

ˆ −∞

∞

r(k′)ξ̄−(x; k′)

k′ − k
dk′, (4.5.6)

where we define Rn = bn
iȧ(iκn)

.
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4.6 Time dependence of the scattering data

In order to integrate the KdV equation for u(x) using the IST method, we need to obtain

the time dependence of the scattering data {Rn, r(k) : n = 1, . . . N, k ∈ R}. This

is achieved using the KdV equation itself. Specifically, we introduce a second time

dependant spectral problem

ϕt(x; k) = −4ϕxxx(x; k)3ux(x)ϕ(x; k) + 6u(x)ϕx(x; k) + γϕ(x; k), (4.6.1)

with gamma an arbitrary constant. The consistency condition ψxxt(x; k) = ψtxx(x; k)

is possible only if u(x) satisfies the KdV equation

ut + 3uux + uxxx = 0.

The pair of equations (4.1.1) and (4.6.1) are said to form the Lax pair for the KdV

equation. Here, and throughout, we have suppressed the variable t in the potential u,

the spectral function ψ and the scattering data r(k) & Rn.

While ϕ(x; k) is defined by its asymptotic behaviour as x → −∞ we may obtain

its asymptotic behaviour as x → +∞ via the behaviour of ψ(x; k) in the same region.

The scattering relation (4.1.7) yields

lim
x→∞

ϕ(x; k) = at(k)e
−ikx + bt(k)e

ikx, k ∈ R, (4.6.2)

where it is understood the asymptotic behaviour of ψ(x; k) and is independent of time

as x→ +∞. In addition we substitute (4.1.7) in (4.6.1) and let x→ +∞ to obtain

lim
x→∞

ϕt(x; k) = (−4ik3 + γ)a(k)e−ikx + (4ik3 + γ)b(k)eikx, k ∈ R, (4.6.3)

where we have also used the limiting behaviour lim
|x|→∞

u(x) = 0 & lim
|x|→∞

ux(x) = 0 at

all times.

The scattering coefficient a(x) is required to be time independent hence at(k) = 0

which in turn yields

0 = at(k) = (−4ik + γ)a(k),
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in which case γ = 4ik3. This in turn yields time evolution equation for the scattering

coefficient b(k), namely

bt(k) = 8ik3b(k), k ∈ R

which is readily solved to yield

b(k) = b0(k)e
8ik3t, b0(k) = b(k)|t=0 , (4.6.4)

thus giving the time dependence of the scattering coefficient b(k). In addition, time de-

pendence of the reflection coefficient r(k) is readily obtained from that of b(k), namely

r(k) = r0(k)e
8ik3t, r0(k) = r(k)|t=0 =

b0(k)

a(k)
. (4.6.5)

The time dependence of r(k) identical to that of b(k) since a(k) is independent of time.

Thus we have obtained to time dependence of the scattering data along the continuous

spectrum k ∈ R.

Recall that along the discrete spectrum we have ϕn(x) = ϕ(x; iκn) = bnψ(x −

iκn) = bnψn(x). Strictly speaking ϕn(x) only defined in the asymptotic region x →

−∞, however we may describe its behaviour as x → ∞ through the asymptotic be-

haviour of ψn(x). It follows

lim
x→

ϕn(x) = bn lim
x→∞

ψn(x) = bne
−κnx, (4.6.6)

which we substitute into (4.6.1) to obtain

lim
x→∞

ϕn(x) = bn,te
−κnx, (4.6.7)

since the asymptotic behaviour of ψn(x) as x → ∞ is independent of time. Along the

discrete spectrum (4.6.1) simplifies to become

ϕn,t(x) = (−4κ3nbn − γnbn)e
−κnx,
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where we define γn = γ|k=iκn
= 4i(iκn)

3 = 4κ3n.

Comparing the two expression for ϕn,t(x) in the asymptotic region x→ ∞,we find

the time dependence of bn is governed by

bn,t = 8κ3nbn, (4.6.8)

whose solution

bn = b0ne
8κ3

nt, b0n = bn|t=0 , (4.6.9)

gives the time dependence of bn explicitly. In addition, since a(k) is time independent

for all k ∈ C, it follows

0 = ∂ta(iκn) = i
dκn
dt

ȧ(iκn) ⇒
dκn
dt

= 0,

as the zeros of a(k) were already shown to be simple zeros. It follows that ȧ(iκn) is

also independent of time, in which case the Rn depend on time via bn only. Thus

Rn = R0
ne

8κnt, R0
n = Rn|t=0 =

b0n
iȧ(iκn)

, (4.6.10)

gives the time dependence of Rn explicitly.

4.7 Solving KdV via IST

Recall equations (4.2.9) and (4.2.10), which now allow us to write the asymptotic ex-

pansion for ξ−(x; k), namely

ξ−(x; k) = 1−
ˆ ∞

x

e2ik(x−y) − 1

2ik
u(y)ξ−(y; k)dy. (4.7.1)

In the asymptotic region k → Γ−, we know from the asymptotic behaviour of ξ−(x; k)

this the integral behaves as

ξ−(x; k) ≃ 1 +
1

2ik

ˆ ∞

x

u(y)dy +O
(

1

k2

)
, k → Γ−. (4.7.2)
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Equation (4.5.5) provides us with a second expression for ξ−(x; k), which when evalu-

ated in the asymptotic region k → Γ− becomes,

ξ(x; k) ≃ 1+
1

2ik

[
2

N∑
n=1

Rnξ
−
n (x)e

−2κnx +
1

π

ˆ ∞

−∞
r(k′)ξ−(x; k′)dk′

]
+O

(
1

k2

)
, k → Γ−.

(4.7.3)

Clearly then we may write the potential u(x) in terms of the modified spectral functions

ξ−(x; k) and ξn(x) with

u(x) = − d

dx

ˆ ∞

x

u(y)dy = − d

dx

[
2

N∑
n=1

Rnξ
−
n (x)e

−2κnx +
1

π

ˆ ∞

−∞
r(k′)ξ−(x; k′)dk′

]
,

(4.7.4)

being the expression we seek.

In general the system (4.5.6) is contains closed form solutions for a large class

of reflection coefficients r(k). However, in the case of reflectionless potentials, when

r(k) = 0, the system (4.5.6) becomes purely algebraic, thus allowing on to solve for

ξn(x) exactly. This in turn allows us to solve for the potential u(x) exactly, leading to

a class of solutions referred to as N -soliton solutions. In this case, the system reduces

to become

ξ−(x; k) = 1− i
N∑

n=1

Rnξn(x)e
−2κnx

k − iκn
, k ∈ C−. (4.7.5)

With k = −iκm we have

ξ−(x;−iκm) = ξm(x) = 1 +
N∑

n=1

Rnξ
−
n (x)e

−2κnx

κm + κn
, (4.7.6)

which obviously allows us to solve for ξ−m(x) exactly in terms of {Rn, κn : n =

1, . . . , N}.

In the case to the one-soliton solutions, we obviously have N = 1 and κ1 ≡ κ for

some κ > 0. The system (4.7.6) is readily solved to yield

ξ1(x) =
1

1− e−2κ(x−x0−4κ2t,)
(4.7.7)
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where we define x0 according to

R0
1

2κ
= e2κx0 ,

and which corresponds to the soliton centre of mass location at time t = 0. It follows

that

u(x, t) = − d

dx

[
4κe−2κ(x−x0−4κ2t)

1− e−2κ(x−x0−4κ2t)

]
= 2κ2sech2κ(x− x0 − 4κ2t), (4.7.8)

which is the one soliton solution for the KdV equation. This solution is realised in the

context of water waves and was first observed by Russell in 1834 and reproduced by

him thereafter in multiple experiments [Rus1844].

4.8 Conclusion

The KdV equation has served as the simplest motivating example to demonstrate the

effectiveness of the IST method of solving a nonlinear PDE. The IST is in a sense the

nonlinear analogue of the Fourier transform method for solving linear PDE, in that we

uncover the time evolution of the solutions via the time evolution of the scattering coef-

ficients r(k, t) and Rn(t). The IST applied to the KdV is well understood problem and

appears in many textbooks as a first introduction. Nevertheless, we have included the

treatment of this problem as an introduction to the methods of the IST for two reasons.

Firstly, the it will be seen in the following chapter that the spectral problem associated

with the Qiao equation may be identified with the spectral problem of the KdV equation

when we require the solution of the former to have constant boundary values. The sec-

ond reason we have studied this problem in such detail is that the methods introduced

may be extended to allow us to solve a more general class of PDE with cubic nonlin-

earities, which develop in greater detail in Chapter 6. Indeed, given the applicability

of the KdV to may nonlinear phenomena of physical interest, the study of the IST for
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the KdV is of great interest in its own right, and as such its inclusion is justified by the

occurrence of the KdV as a model equation in previous chapters.



Chapter 5

The Qiao Equation

The interest inspired by the Camassa-Holm (CH) equation and its singular peakon so-

lutions [CH1993] prompted the search for other integrable equations with similar prop-

erties. An integrable peakon equation with cubic nonlinearities was first discovered by

Qiao [Qia2006] and studied further in e.g. [Qia2007,QL2009]. Another equation with

cubic nonlinearities was introduced by V. Novikov in [Nov2009]. Actually the Qiao

equation

mt + (m(u2 − u2x))x = 0, m = u− uxx (5.0.1)

appears in the class of integrable equations discussed in [Fok1995].

It is known that the Qiao equation has a distinctiveW/M -shape travelling wave so-

lution [Qia2006,Qia2007]. The peakons ofNovikov's equationwere studied in [HLS2009]

while 2 + 1 dimensional generalizations of Qiao's hierarchy are studied in [Est2011].

Single and, muting-peakon dynamics, weak kink, kink-peakon, and stability analysis of

the Qiao equation were studied in [QXL2012] and [GLOQ2012], while other types of

solitons are studies in [IL2012c]. Equation (5.0.1) may also be written as

mt + (u2 − u2x)mx + 2uxm
2 = 0. (5.0.2)

Qiao introduced a 2× 2 Lax pair for this equation given by the linear systemΨx = UΨ

90
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and Ψt = VΨ where

U =

 −1
2

1
2
mλ

−1
2
mλ 1

2

 ,

V =

 λ−2 + 1
2
(u2 − u2x) −λ−1(u− ux)− 1

2
mλ(u2 − u2x)

λ−1(u+ ux) +
1
2
mλ(u2 − u2x) −λ−2 − 1

2
(u2 − u2x)

 .

(5.0.3)

Another equation from the same hierarchy is

mt +

(
1

m2

)
x

−
(

1

m2

)
xxx

= 0. (5.0.4)

The (white) soliton solutions of (5.0.1) and (5.0.4) were previously found in [Sak2011,

Zha2013]. These results rely on the fact that the spectral problem for (5.0.1) is gauge-

equivalent to the one for the mKdV equation. In this chapter we first discuss the peakon

solutions of (5.0.1). Then we present soliton solutions which approach a nonzero, con-

stant value as |x| → ∞ (dark solitons). To this end we are going to reformulate the

spectral problem in the form of a Schrödinger operator, which is also the spectral prob-

lem for the KdV equation.

5.1 Peakon solutions

In [HW2008] there is a remark on the peakons of Qiao's equation, stating that their

computation is problematic since one encounters a square of a delta-function. This

difficulty can be avoided by the following transformation of (5.0.1). Assuming peakon

solutions which vanish as x→ ±∞ and writing

m(x, t) =
N∑
k=1

pk(t)δ(x− xk(t))

one can integrate (5.0.1) to find

∂t

ˆ x

−∞
m(y, t)dy + (u2 − u2x)m(x, t) = 0,
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giving

∂t

(
N∑
k=1

pk(t)θ(x− xk(t))

)
+ (u2 − u2x)m(x, t) = 0,

It follows that
N∑
k=1

ṗk(t)θ(x−xk(t))−
N∑
k=1

pk(t)ẋk(t)δ(x−xk(t))+(u2−u2x)
N∑
k=1

pk(t)δ(x−xk(t)) = 0,

which is only possible if

ṗk(t) = 0, (5.1.1)

ẋk(t) = (u2 − u2x)x=xk(t). (5.1.2)

The N = 1 peakon solution is easily obtained from the above system, u(x, t) =

±
√
ce−|x−ct| where p1 = 2

√
c =constant. This solution was reported in [HW2008].

To compute the two-peakon solution we notice that

H =
1

2

ˆ
mu dx =

1

2
p21 +

1

2
p22 + p1p2e

−|x1−x2|

is a conserved quantity. Therefore ∆ = x1 − x2 is time independent, i.e. the distance

between the two peakons is constant and they move together. This explains theM-shape

travelling wave solution mentioned earlier, see for example Fig.5.1. The solution is

u(x, t) =
1

2
p1e

−|x−ct| +
1

2
p2e

−|x−ct−∆|, c =
1

2
p1p2e

−|∆|.

A rigorous discussion of the weak solutions of the Qiao equation may be found in the

publication [GLOQ2013].

5.2 Soliton solutions

5.2.1 Reformulation of the spectral problem

Let us consider solutions such that

m(x, t) > 0, lim
x→±∞

m(x, t) =M0, (5.2.1)
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Figure 5.1: Two peakon profile, p1 = 1, p2 = 0.5, ∆ = 2.5.

where M0 is a positive constant. Let us also assume that m(x, ·) − M0 ∈ S(R) for

any value of t. One can reformulate the spectral problem into a scalar one as follows.

Introducing Ψ = (ψ, ϕ)T the matrix Lax pair written in components becomes

2ψx = −ψ +mλϕ

2ϕx = −mλψ + ϕ.

We introduce a change of coordinates given by

∂y =
2

M
∂x, ψ =

1

λ

[
ϕ

M
− ϕy

]
(5.2.2)

where we defineM(y, t) ≡ m(x(y, t), t) and φ(y, t) = ϕ(x(y, t), t).With this change

of variables we obtain the following scalar spectral problem for ϕ(y, λ) (we omit the

argument t which acts as an external parameter for the spectral problem being consid-

ered)

−φyy +

[(
1

M

)
y

+
1

M2

]
φ = λ2φ. (5.2.3)

Note that this is a Schrödinger's operator with a potential

U(y, t) =

(
1

M

)
y

+
1

M2
. (5.2.4)
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It is well known how to recover U(y, t) from the scattering data of (5.2.3), however the

solution is m(y, t) and its recovery from U(y, t) necessitates solving a nonlinear (Ric-

cati) equation. We can expressm(y, t) in terms of the eigenfunctions of the Schrödinger's

operator. We introduce ρ(y, λ) = ϕy

ϕ
from which we immediately obtain

ρy + ρ2 =
φyy

φ
= U(y)− λ2.

If we define ρ0(y) = ρ(y, 0) then we have

U(y) = ρ0,y + ρ20.

However, comparing this with (5.2.4) we find a solution 1
M

= ρ0 or

M(y, t) =
1

ρ0(y, t)
=

φ(y, t, λ)

φy(y, t, λ)

∣∣∣∣
λ=0

(5.2.5)

So far we have worked with y as our variable instead of x. However we can treat y

as a parameter, and then (5.2.5) represents the solution in parametric form, while the

original variable x follows from (5.2.2), (5.2.5) by:

x(y, t) = 2 lnφ(y, t, 0) + const. (5.2.6)

Assuming that φ(y, t, 0) is positive everywhere, we have a solution in parametric form

(5.2.5) (5.2.6) given entirely in terms of the eigenfunctions φ(y, t, 0). We can formally

write this solution as

m(x, t) = 2

ˆ ∞

−∞
M(y, t)δ (x− 2 lnφ(y, t, 0)) dy. (5.2.7)

where we neglect the constant appearing in (5.2.6).

5.2.2 Inverse scattering and Soliton solutions

It follows from (5.2.1) and (5.2.4) that U(y) does not decay to 0 as y → ±∞. As such

we need to introduce the modified potential

Ũ(y) = U(y)− 1

M2
0

, (5.2.8)
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which clearly satisfies lim|y|→∞ Ũ(y) = 0. So we have

−φyy +

[
U(y)− 1

M2
0

]
ϕ =

(
λ2 − 1

M2
0

)
ϕ,

or, introducing a new spectral parameter

k2 = λ2 − 1

M2
0

(5.2.9)

we have a standard spectral problem

−φyy(k, y) + Ũ(y)φ(k, y) = k2φ(k, y), Ũ(y) ∈ S(R). (5.2.10)

However when λ = 0 we find k = ± i
M0

. This means that if we take an eigenfunction

ϕ(k, y) of (5.2.10) which is analytic in the upper (lower) complex k-plane, we should

evaluate it at k = i
M0

(k = − i
M0

):

M(y, t) =
φ(y, t, k)

φy(y, t, k)

∣∣∣∣
k=± i

M0

(5.2.11)

x(y, t) = 2 lnφ
(
y, t,± i

M0

)
. (5.2.12)

5.3 Time Dependance of the scattering data and Soliton

Solutions

The spectral theory for the problem (5.2.10) is well developed, e.g. [ZMNP1984]. We

are going to use these results to construct the soliton solutions of (5.0.1), (5.0.4). One

can introduce scattering data as usual. For the time-dependence of the scattering data

one needs the time-evolution of the eigenfunction ϕ(k, x). The Lax-pair in x and t

variables for (5.0.1) has the form

ϕxx =
mx

m
ϕx +

(
1

4
− mx

2m
− m2

4
λ2
)
ϕ, (5.3.1)

ϕt =
1

λ2

[
ux + uxx

m

]
ϕ−

[
u+ ux
λ2m

+
u2 − u2x

2

]
ϕx + γϕ, (5.3.2)
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where γ is an arbitrary constant. Asymptotically as x→ ±∞ equation (5.3.2) becomes

ϕt → −
[
1

λ2
+
M2

0

2

]
ϕx + γϕ.

In terms of the (y, k)-variables letting y → ±∞ we find,

φt → −M
3
0

2

[
k2M2

0 + 3

k2M2
0 + 1

]
φy + γφ, (5.3.3)

since lim
|y|→∞

m = lim
|y|→∞

u =M0. Defining Jost solutions by

lim
y→±∞

ξ±(y, k)e
iky = 1, (5.3.4)

such that

ξ−(y, k) = a(k)ξ+(y, k) + b(k)ξ̄+(y, k), k ∈ R (5.3.5)

and noting that φ− → ae−iky + beiky when y → ∞ it follows from (5.3.3)

at =
M3

0

4

[
k2M2

0 + 3

k2M2
0 + 1

]
(ika) + γa, bt = −M

3
0

4

[
k2M2

0 + 3

k2M2
0 + 1

]
(ikb) + γb.

Requiring at = 0, we find

bt = −ikM
3
0

2

(
k2M2

0 + 3

k2M2
0 + 1

)
b(k, t)

and thus for the scattering coefficient r ≡ b/a we have

r(k, t) = r(k, 0) exp
[
−ikM

3
0

2

(
k2M2

0 + 3

k2M2
0 + 1

)
t

]
, (5.3.6)

while the analogue on the discrete spectrum k = iκn, is given by

Rn(t) ≡
b(iκn)

ia′(iκn)
= Rn(0) exp

[
κnM

3
0 (3− κ2nM

2
0 )

2(1− κ2nM
2
0 )

t

]
. (5.3.7)

It is convenient to define a dispersion law f(κ) =
κM3

0 (3−κ2M2
0 )

2(1−κ2M2
0 )

. Then we can write

Rn(t) = Rn(0) exp (f(κn)t) . (5.3.8)

Furthermore for convenience we introduce

χn ≡ y − f(κn)

2κn
t− 1

2κn
ln
Rn(0)

2κn
.
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5.4 Soliton Solutions

The eigenfunctions of the spectral problem (5.2.10) arewell known, see e.g. [ZMNP1984].

In the purelyN -soliton case the eigenfunction analytic in the lower complex k-plane is

the Jost solution φ+(y, k) defined in (5.3.4) which has the form

ξ+(y, t, k) = eiky

(
1 +

N∑
n=1

Γn(y, t)

k − iκn

)
(5.4.1)

with the residues Γn(y, t) satisfying a linear system

Γn(y, t) = iRn(t)e
−2κny

(
1 + i

N∑
m=1

Γm(y, t)

κn + κm

)
.

The time-dependence of the scattering data is given by (5.3.8). TheN - soliton solution

then is given in parametric form by (5.2.11) and (5.2.12) for the eigenfunction (5.4.1).

The condition 0 < κn < M−1
0 is sufficient to ensure smoothness of the solitons.

5.4.1 Example: One-Soliton Solution

The one-soliton solution corresponds to one discrete eigenvalue k1 = iκ1, where κ1 is

real, positive and κ1 < M−1
0 . The eigenfunction in this case is (5.4.1)

ξ+(y, t, k) = eiky

(
1 +

1

k − iκ1
· iR1(t)e

−2κ1y

1 + R1(t)
2κ1

e−2κ1y

)
. (5.4.2)

Evaluated at k = −i
M0

we find

ξ+(y, t,
−i
M0

) = e
y

M0

(
1− 1

1
M0

+ κ1
· R1(t)e

−2κ1y

1 + R1(t)
2κ1

e−2κ1y

)
.

Combining (5.2.11) and (5.2.12) we obtain the one-soliton solution:

x(y, t) =
2y

M0

+ 2 ln
(
1− κ1M0e

−κ1χ1

(1 + κ1M0) coshκ1χ1

)
, (5.4.3)

M(y, t) =
M0

1 +
κ2
1M

2
0 sech

2κ1χ1

1−M0κ1 tanhκ1ξ1

. (5.4.4)
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The extremum (minimum) ofm occurs when χ1 =
1

4κ1
ln
(

1−M0κ1

1+M0κ1

)
. This is a constant

value, e.g. the soliton moves with a velocity f(κ1)
2κ1

that depends on the dispersion law

(i.e. the chosen equation from the hierarchy). The profile of the dark soliton is given in

Figure 5.2.

Figure 5.2: One soliton profile withM0 = 2 & κ1 = 0.2.

5.4.2 Example: Two-soliton solution

In the case of two discrete eigenvalues we compute

ξ+(y, t,
−i
M0

) = e
y

M0

1 + ν1e
−2κ1χ1 + ν2e

−2κ2χ2 +
(

κ1−κ2

κ1+κ2

)2
ν1ν2e

−2κ1χ1−2κ2χ2

1 + e−2κ1χ1 + e−2κ2χ2 +
(

κ1−κ2

κ1+κ2

)2
e−2κ1χ1−2κ2χ2

(5.4.5)

where the following notation is introduced:

νj =
1

M0
− κj

1
M0

+ κj
, j = 1, 2.

Combining (5.2.11) and (5.2.12) we obtain the two-soliton solution

x(y, t) =
2y

M0

+ 2 ln
∆1

∆2

(5.4.6)

M(y, t) =
M0

1 + M0∆3

∆1∆2

. (5.4.7)
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Figure 5.3: Snapshots of the two-soliton solution of the Qiao equation (5.0.1), for three

values of t : −30, −12 and 30. The other parameters areM0 = 2, κ1 = 0.1, κ2 = 0.25.

where the following notation is introduced:

∆1(y, t) = 1 + e−2κ1χ1 + e−2κ2χ2 +

(
κ1 − κ2
κ1 + κ2

)2

e−2κ1χ1−2κ2χ2

∆2(y, t) = 1 + ν1e
−2κ1χ1 + ν2e

−2κ2ξ2 +

(
κ1 − κ2
κ1 + κ2

)2

ν1ν2e
−2κ1χ1−2κ2χ2 .

∆3(y, t) =
4κ21

M−1
0 + κ1

e−2κ1χ1 +
4κ22

M−1
0 + κ2

e−2κ2χ2

+
8(κ1 − κ2)

2

M0(M
−1
0 + κ1)(M

−1
0 + κ2)

e−2κ1χ1−2κ2χ2

+
4κ22ν1

M−1
0 + κ2

(
κ1 − κ2
κ1 + κ2

)2

e−4κ1χ1−2κ2χ2

+
4κ21ν2

M−1
0 + κ1

(
κ1 − κ2
κ1 + κ2

)2

e−2κ1χ1−4κ2χ2 .

The interaction of two dark solitons is illustrated in Figure 5.3.

5.5 Conclusion

In this chapter we have reviewed the construction of peakon and soliton solutions for

a PDE with cubic nonlinearities referred to in the literature as the Qiao equation. The

method developed to construct soliton solutions relied on the realisation that the spectral

problem for the system with constant boundary conditions was isomorphic to the IST
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for the KdV equation. In the paper [GLOQ2013] the authors develop the weak solu-

tions of this modified Camassa-Holm type equation. In that paper the authors considers

solution u ∈ W 3,1
loc . The solutions considered differ from those found in [HW2008].

In [HW2008] the authors also presented a reformulation of the spectral problem for

the Qiao equation which rendered the spectral problem of the KdV, with a discussion

of the relationship between this problem and the negative of the KdV/mKdV negative

flow also being presented.



Chapter 6

The Kaup-Boussinesq equation

6.1 Introduction

The Boussinesq equation was originally derived in [Bou1871] as two component sys-

tem modelling shallow water waves of long wavelength, where the system originally

proposed was written as

πt = Φxx + β2Φxxxx − ε(Φxπ)x +O
(
δ4, εδ2

)
π = Φt +

1

2
εΦ2

x,
(6.1.1)

with the fluid velocity u being obtained from the potential Φ as u = Φx. the param-

eter ε is that ratio of wave amplitude to fluid depth, a
h
. In [Kau1975], it was shown

by Kaup that the classical Boussinesq equation in (6.1.1) was completely integrable,

and as such the system became the Kaup-Boussinesq equation. Following the work of

Hirota [Hir1985], the work by Freeman et al. [FGN1990] investigates the Wronskian

solutions of the KP hierarchy and subsequently show that Kaup-Boussinesq equation is

a reduction of the two component KP hierarchy.

Moreover the last decades have witnessed an explosion in the complexity and so-

phistication of mathematical theories for fluids and in particular for water waves. The

101
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soliton theory has always been at the centre of these developments, such as from its early

days when the it transformed and enhanced enormously the mathematical description of

nonlinear wave propagation. The simplest and best known integrable water-wave equa-

tions belong to the Korteweg-de Vries family. For some classical and modern aspects

of the theory of water waves, nonlinear waves and soliton theory we refer to the fol-

lowingmonographs and the references therein: [AS1981,Con2011,FT1987,GVY2008,

HSS2009, Joh1997,New1985,PS2011,Whi1980,ZMNP1984].

The soliton theory has always been at the centre of these developments, such as from

its early days when the it transformed and enhanced enormously the mathematical de-

scription of nonlinear wave propagation. The simplest and best known integrable water-

wave equations belong to the Korteweg-de Vries family. For some classical and mod-

ern aspects of the theory of water waves, nonlinear waves and soliton theory we refer

to the following monographs and the references therein: [AS1981, Con2011, FT1987,

GVY2008,HSS2009, Joh1997,New1985,PS2011,Whi1980,ZMNP1984].

There are classes of soliton equations whose associated spectral problems are poly-

nomial in the spectral parameter. They too are known as soliton equations with 'energy

dependent potentials', due to the analogy with the Schrödinger equation in Quantum

Mechanics, whose spectrum represents the energy levels of the Quantum Mechanical

system. Some of these integrable systems appear as water wave models, most notably

the Kaup-Boussinesq equation [Kau1975,Whi1980,EGP2001] and the two-component

Camassa-Holm equation [CI2008, HSS2009, HI2011, Iva2009]. Other systems of this

type are studied in e.g. [AF1989,AFL1991, Iva2006,BPZ2001,Fok1995].

In Chapter 1 it was shown that in the shallow water regime the both the two com-

ponent Camassa-Holm and the Kaup-Boussinesq equation arise as approximate fluid

models. In [HI2011] the inverse scattering transform was developed to construct the

N -soliton solution of the CH2 equation. In this chapter, we develop a similar technique
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to solve a class of partial differential equations with cubic nonlinearities, of which the

Kaup-Boussinesq equation is a particular example. The work of this chapter is based

on the results in [IL2012c], wherein the construction of the N -soliton solution of the

Kaup-Boussinesq equation was investigated, and an explicit breather type solution for

the system was also presented.

In what follows we study an integrable system which arises as a compatibility con-

dition of the following pair of linear operators (Lax pair):

Ψxx(x;λ) =
(
−λ2 + λu+

κ

2
u2 + η

)
Ψ(x;λ) (6.1.2)

Ψt(x;λ) = −
(
λ+

1

2
u

)
ψx(x;λ) +

1

4
uxΨ(x;λ). (6.1.3)

Here κ is an arbitrary constant, while λ is the spectral parameter. The functions u and η

are both functions of the x and t variables, while the spectral functionsΨ are dependant

on the variables x, t and the spectral parameter λ. In what follows the explicit depen-

dence of a function will be introduced only as necessary, but it should be understood

that the dependence is implicit. The consistency conditionΨxxt(x, t;λ) = Ψtxx(x, t;λ)

produces a system of equations for the functions u(x, t) and η(x, t):

ut + ηx +

(
3

2
+ κ

)
uux = 0,

ηt −
1

4
uxxx + (uη)x −

(
1

2
+ κ

)
uηx − κ

(
1

2
+ κ

)
u2ux = 0.

(6.1.4)

Upon choosing κ = −1
2
these simplify to the well known Kaup-Boussinesq equation:

ut + ηx + uux = 0,

ηt −
1

4
uxxx + (uη)x = 0.

(6.1.5)

The Kaup-Boussinesq equation is introduced as a water-wave model in Chapter 1.

We saw that in the shallow water environment that KB equation is an approximates

model derived from the Euler equations. It was previously mentioned that the spectral

problems of the CH2 equation and the Kaup-Boussinesq equation share several features
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cf.[HI2011], and hence the introduction of the CH2 system in Chapter 1. In the current

chapter, having derived the KB equation as an approximate hydrodynamical model, we

now intend to obtain a solution via the inverse scattering transform. As a water-wave

model the Kaup-Boussinesq equation also appears in [Whi1980, Iva2009, EGP2001],

while the hierarchy of Hamiltonian structures are given in [Pav2001]. In addition spe-

cific solutions are studied in [KKU2003,EGK2005,MY1979]. In relation to the current

chapter, energy-dependant spectral problems like that presented in (6.1.2) are also stud-

ied in [Jau1972, JJ1972, JJ1976, JM1976, JJ1981,Alo1980,MY1979,AS2002,SS1996,

LSS2007].

In addition there is a well know transformation between the solutions of the Kaup-

Boussinesq equation and the nonlinear Schrödinger equation. The transformation be-

tween NLS and the classical Boussinesq equation was examined in [Hir1985]. The NLS

is given by

iϵψt +
ϵ2

2
ψxx ± |ψ|2ψ = 0, (6.1.6)

where ϵ is an arbitrary parameter not related to ε used elsewhere in this thesis, see

[AS1981,New1985,FT1987,ZMNP1984] for further discussion. Under the Madelung

transform

ψ =
√
ηe

i
ϵ

´ x udξ, (6.1.7)

along with the transformation t → −t, the NLS is equivalent to the following coupled

system of PDE

ηt = (uη)x

ut = ∂x

[
u2

2
+ η + ϵ2

(
ηxx
4η

− η2x
8η2

)]
.

(6.1.8)

With the change of variables u = v ± ϵ
2
(ln η)x we find

ηt =
(
vη ± ϵ

ηx
2

)
x

vt = ∂x

(
v2

2
+ η ∓ ϵ

vx
2

)
,

(6.1.9)
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which is known as the Broer-Kaup system. Finally under the change of variable given

by

η = ρ± ϵ
ηx
2

(6.1.10)

and under t→ −t, we obtain the Kaup-Boussinesq equation

vt + vvx + ρx = 0

ρt + (ρv)x +
ϵ2

4
vxxx = 0.

(6.1.11)

This transformation between Kaup-Boussinesq and NLS does not preserve the reality

of solutions.

In this chapter we formulate the inverse scattering transform as a Riemann-Hilbert

Problem (RHP) in the case where u and η are real, rapidly decaying functions as x →

±∞. Then taking into account the underlying reductions we obtain the simplest solu-

tion.

6.2 The spectral problem

Introducing the auxiliary function

w =
κ

2
u2 + η (6.2.1)

we consider the following two ``conjugate'' spectral problems related to (6.1.2):

Ψxx(x;λ;σ) =
(
−λ2 + σλu+ w

)
Ψ(x;λ; σ), (6.2.2)

where σ = ±1. The time dependence will be suppressed where possible for the sake of

brevity and clarity.

We specify that u, w and η belong to the Schwartz class of functions (the space of

rapidly decreasing functions) S(R). It follows from this requirement that eigenfunc-
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tions ψ1(x;λ; σ) and ψ2(x;λ; σ) exist such that

ψ1(x;λ;σ) → e−iλx

ψ2(x;λ;σ) → e+iλx

}
, x→ +∞ (6.2.3)

Similarly we define a basis of eigenfunctions for (6.2.2) according to

ϕ1(x;λ; σ) → e−iλx

ϕ2(x;λ; σ) → e+iλx

 , x→ −∞ (6.2.4)

These eigenfunctions are called Jost Solutions. Since the Jost solutions oscillate when

λ ∈ R the continuous spectrum fills in the real line.

The bases {ψ1(x;λ;σ), ψ2(x;λ;σ)} and {ϕ1(x;λ; σ), ϕ2(x;λ; σ)} constitute inde-

pendent bases of solutions to (6.2.2) and as such we may write ϕ1(x;λ;σ)

ϕ2(x;λ;σ)

 =

 T11(λ; σ) T12(λ; σ)

T21(λ; σ) T22(λ; σ)

 ψ1(x;λ;σ)

ψ2(x;λ;σ)

 . (6.2.5)

The matrix

T(λ;σ) =

 T11(λ; σ) T12(λ; σ)

T21(λ; σ) T22(λ; σ)

 (6.2.6)

is the scattering matrix for spectral problem (6.2.2).

Under the involution (λ;σ) → (−λ;−σ), the potential in (6.2.2) remains invariant.

Therefore the eigenfunctions ψ(x;λ; σ) and ψ(x;−λ;−σ) are solutions to the same

spectral problem. Since the asymptotic behaviour of these solutions does not depend

on σ it follows that

ψ1(x;λ;σ) = ψ2(x;−λ;−σ)

ϕ1(x;λ;σ) = ϕ2(x;−λ;−σ).
(6.2.7)

Thus each bases may be expressed using just one of its members, for example we have

ψ(x;λ; σ) ≡ ψ1(x;λ;σ) and ϕ(x;λ;σ) ≡ ϕ1(x;λ; σ). We also have ψ2(x;λ;σ) =

ψ(x;−λ;−σ) and ϕ2(x;λ; σ) ≡ ϕ(x;−λ;−σ).
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Since u and η are real, the spectral problem (6.2.2) is invariant under theZ2 reduction

group [Mik1981], i.e. it has the following property: if ψ(x;λ; σ) is an eigenfunction

so is ψ̄(x; λ̄;σ). Comparing the asymptotic behaviour of both, we conclude that this

coincides with the second Jost solution, i.e.

ψ̄(x; λ̄;σ) = ψ(x;−λ;−σ). (6.2.8)

Thus for λ ∈ R we have ψ(x;λ;σ) = ψ̄(x;−λ;−σ). With this and (6.2.5), it follows

that the scattering matrix T(λ;σ) may be written in the form

T(λ;σ) =

 a(λ; σ) b(λ; σ)

b̄(λ;σ) ā(λ;σ)

 , (6.2.9)

where λ ∈ R.

We may now write the following relationship between ϕ(x;λ; σ) and the Jost solu-

tions ψ(x;λ; σ), ψ̄(x;λ; σ):

ϕ(x;λ; σ) = a(λ; σ)ψ(x;λ;σ) + b(λ; σ)ψ̄(x; λ̄;σ). (6.2.10)

Furthermore for any pair of solutions f1(x;λ;σ) and f2(x;λ;σ) of equation (6.2.2), the

Wronskian of the pair is independent of x

d

dx
W[f1, f2] = ∂x(f1∂xf2 − f2∂xf1) = 0.

In particular it follows that the Jost solutions satisfy the following condition

W[ϕ(x;λ;σ), ϕ̄(x; λ̄;σ)] = W[ψ(x;λ;σ), ψ̄(x; λ̄;σ)] = 2iλ, (6.2.11)

which is a result of the asymptotic behaviour of {ψ, ψ̄} and {ϕ, ϕ̄} as |x| → ∞. It

follows from (6.2.10) and (6.2.11) that

detT(λ;σ) = |a(λ;σ)|2 − |b(λ; σ)|2 = 1, λ ∈ R. (6.2.12)
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6.3 Asymptotic behaviour of the Jost solutions

Since the functionsu andw are Schwartz class it follows that the Jost solutionsψ(x;λ; σ)

have asymptotic behaviour such that

ψxx(x;λ;σ) → −λ2e−iλx, x→ +∞. (6.3.1)

Consequently we make the following ansatz for the asymptotic expansion of the Jost

solutions as |λ| → ∞, namely

ψ(x;λ;σ) =

[
X0(x; σ) +

1

λ
X1(x; σ) +O(λ−2)

]
e−iλx. (6.3.2)

The asymptotic behaviour of the Jost solutions requires that the functionsX0(x;σ) and

X1(x;σ) have asymptotic behaviour

X0(x; σ) → 1

X1(x; σ) → 0

 , x→ +∞. (6.3.3)

The substitution of (6.3.2) into (6.2.2) gives

∂xX0(x; σ)

X0(x; σ)
=

i

2
σu, (6.3.4)

σuX1(x;σ) + 2i∂xX1(x;σ) = −w ·X0(x; σ) + ∂2xX0(x; σ). (6.3.5)

Using the conditions in (6.3.3) we readily solve (6.3.4) and (6.3.5) to obtain the follow-

ing expressions for X0(x; σ) and X1(x; σ):

X0(x; σ) = exp
{
−iσ

2

ˆ ∞

x

udx′
}
,

X1(x; σ) = X0(x; σ) ·
[
σ

4
u− i

8

ˆ ∞

x

(u2 + 4w)dx′
]
.

(6.3.6)

Similarly the analogous expression for ϕ(x;λ; σ) is given by

ψ(x;λ; σ) = e−i(λx+σ
2

´∞
x udx′)

[
1 +

1

λ
ξ1(x, σ)) + . . .

]
, (6.3.7)

ϕ(x;λ; σ) = e−i(λx−σ
2

´ x
−∞ udx′)

[
1 +

1

λ
ζ1(x, σ) + . . .

]
, (6.3.8)
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where the functions ξ and ζ

ξ1(x, σ) =
σ

4
u− i

8

ˆ ∞

x

(u2 + 4w)dx′,

ζ1(x, σ) =
σ

4
u+

i

8

ˆ x

−∞
(u2 + 4w)dx′,

(6.3.9)

are introduced for later convenience.

6.4 Analytic behaviour of the Jost solutions

To determine the analytic behaviour of the Jost solutions we introduce the modified Jost

solutions as follows

χ(+)(x;λ; σ) = eiλxϕ(x;λ;σ) → 1, as x → −∞. (6.4.1)

Differentiating (6.4.1) once with respect to x we find

eiλxϕx(x;λ;σ) = χ(+)
x (x;λ;σ)− iλχ(+)(x;λ;σ).

Combined with the spectral problem in (6.2.2), it follows that

χ(+)
xx (x;λ;σ) = (λσu+ w)χ(+)(x;λ; σ) + 2iλχ(+)

x (x;λ;σ). (6.4.2)

The spectral problem (6.4.2) and the asymptotic expansion in λ appearing in (6.3.8)

suggest the following integral representation for χ(+)(x;λ;σ)

χ(+)(x;λ; σ) = 1 +

ˆ x

−∞

e2iλ(x−x′) − 1

2iλ
P (x′;λ;σ)χ(+)(x′;λ; σ)dx′. (6.4.3)

The kernel P (x;λ;σ) is defined such that P (x;λ; σ) ∈ S(R).

Differentiating this integral representation twice with respect to x we obtain

χ(+)
xx (x;λ;σ) = P (x;λ;σ)χ(+)(x;λ;σ) + 2iλχ(+)

x (x;λ; σ). (6.4.4)

Combining (6.4.2) and (6.4.4) we determine

P (x;λ;σ) = λσu+ w. (6.4.5)
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Thus we may write

χ(+)(x;λ;σ) = 1 +

ˆ x

−∞

e2iλ(x−x′) − 1

2iλ
(λσu+ w)χ(+)(x′;λ; σ)dx′, (6.4.6)

leaving us with an integral representation for χ(+)(x;λ;σ) in terms of functions whose

analytic properties are obvious. The analyticity of χ(+)(x;λ;σ) is of particular impor-

tance and clear from (6.4.6). We see that for all values of x, the kernel of the integral

above is finite for all values of λ when Imλ > 0. Therefore χ(+)(x;λ; σ) and ϕ(x;λ; σ)

are analytic in the upper half-plane C+. It follows that χ̄(+)(x; λ̄; σ) is analytic for

λ ∈ C−.

In a similar manner we define

χ(−)(x;λ;σ) = eiλxψ(x;λ; σ) → 1, as x → +∞ (6.4.7)

from which it follows ultimately that

χ(−)(x;λ; σ) = 1−
ˆ ∞

x

e2iλ(x−x′) − 1

2iλ
(λσu+ w)χ(−)(x;λ; σ). (6.4.8)

It is immediately clear from (6.4.8) that χ(−)(x;λ;σ) and therefore ψ(x;λ;σ) are ana-

lytic throughout C−.

We introduce a new variable for later convenience, namely

ω− =
1

2

ˆ x

−∞
udx′ and ω+ =

1

2

ˆ ∞

x

udx′. (6.4.9)

The asymptotic expansion of the bases of Jost solutions given in (6.3.7) and (6.3.8) can

be rewritten using (6.4.9), with

ψ(x;λ; σ) = ψ(x;λ; σ)ei(λx+σω+(x)) = 1 +
1

λ
ξ1(x;σ),

ϕ(x;λ; σ) = ϕ(x;λ; σ)ei(λx−σω−(x)) = 1 +
1

λ
ζ1(x; σ).

(6.4.10)

Meanwhile to obtain the analytic properties of ψ(x;λ; σ) and ϕ(x;λ; σ), we note that

ψ(x;λ;σ) = χ(−)(x;λ;σ)eiσω+ and ϕ(x;λ;σ) = χ(+)(x;λ; σ)e−iσω− ,
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which expresses ϕ and ψ in terms of functions whose analytic properties are obvious.

The function u has been restricted to S(R) and furthermore is independent of λ. The

analytic behaviour of χ(±)(x;λ; σ) throughoutC+ &C− have already been determined,

and so it follows that, ϕ(x;λ;σ) and ψ(x;λ;σ) are also analytic throughout C+ and C−

respectively.

6.5 Time dependence of the scattering data

Wemay rewrite the time component of the spectral problem in terms of u and in addition

add a term with a constant factor γ, without effecting the outcome of the consistency

condition. With these changes implemented the spectral problem becomes

Ψt(x;λ; σ) = −
(
σλ+

1

2
u

)
Ψx(x;λ; σ) +

(
γ +

1

4
ux

)
Ψ(x;λ;σ). (6.5.1)

Specifically the Jost solution ϕ(x;λ;σ) satisfies

ϕt(x;λ; σ) = −
(
σλ+

1

2
u

)
ϕx(x;λ;σ) +

(
γ +

1

4
ux

)
ϕ(x;λ; σ). (6.5.2)

However we also note that along the continuous spectrumwe have the scattering relation

(6.2.10), from which the asymptotic behavior of lim
x→+∞

ϕt(x;λ;σ) follows, namely

ϕt(x;λ; σ) → at(λ; σ)e
−iλx + bt(λ; σ)e

+iλx. (6.5.3)

Replacing (6.2.10) on the right hand side of (6.5.2) and letting x→ +∞, we find

ϕt(x;λ;σ) →− σλ[−iλa(λ; σ)e−iλx + iλb(λ;σ)eiλx]

+ γ[a(λ;σ)e−iλx + b(λ; σ)e+iλx],
(6.5.4)

where we have made use of the fact that u is Schwartz class and vanishes as x→ ±∞.

As in the case of the KdV spectral problem, the scattering coefficient a(λ;σ) is indepen-

dent of time and as such γ = −iσλ2, ensuring the time derivative of a(λ; σ) vanishes.
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The time evolution of the two scattering functions a(λ;σ) and b(λ;σ) is governed by

the following pair of ODE

at(λ;σ) = 0 ⇒ a(λ;σ) = a0(λ; σ),

bt(λ;σ) = −2iλ2b(λ; σ) ⇒ b(λ;σ) = b0(λ; σ)e
−2iσλ2t.

(6.5.5)

where we define

a0(λ; σ) = a(λ; σ)|t=0 b0(λ;σ) = b(λ;σ)|t=0 . (6.5.6)

Along the discrete spectrum we have a(λn, σ) = 0, and so as with the KdV spectral

problem, relation (6.5.3) along with the x-independence of the Wronskian yields

ϕ(x;λn; σ) = bnψ̄(x; λ̄n; σ),

where bn is independent of x. It follows that

lim
x→∞

ϕt(x;λn;σ) = bn,t(σ)e
iλnx. (6.5.7)

Analogously instead of (6.5.4) we have

lim
x→+∞

ϕt(x;λn;σ) = −σλn[iλnbn(σ)eiλnx] + γ(λn)bn(σ)e
iλnx, (6.5.8)

and as such

bn,t(σ) = −2iσλ2nbn(σ). (6.5.9)

Consequently

bn(σ, t) = bn(σ, 0)e
−2iσλ2

nt, (6.5.10)

describes the time evolution of the coefficient scattering bn.With these two results the

time dependence of all the scattering data is available to us.
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6.6 Conservation Laws

In order to solve the inverse problem, that is to obtain u(x, t) and η(x, t) from the scatter-

ing data, it is necessary to obtain a series of conservation laws from the spectral problem

(6.1.2). However it will prove more convenient to derive these same conservation laws

from (6.2.2). To proceed we define the function

ρ(x;λ; σ) =
ψx(x;λ; σ)

ψ(x;λ;σ)
. (6.6.1)

Differentiating once with respect to x we find

ρ2(x;λ; σ) + ρx(x;λ;σ) = −λ2 + σλu+ w. (6.6.2)

Using this result along with the Lax pair in (6.5.1), we find upon differentiating (6.6.1)

with respect to t that

ρt(x;λ;σ) =

[
1

4
ux −

(
σλ+

1

2
u

)
ρ(x;λ;σ)

]
x

. (6.6.3)

Using the fact u and w are Schwartz class, we see from (6.6.3) that
ˆ +∞

−∞
ρt(x;λ;σ)dx = −σλ ρ(x;λ;σ)|x=∞

x=−∞ = 0, (6.6.4)

that is to say

I(λ;σ) =
ˆ +∞

−∞
ρ(x;λ;σ)dx (6.6.5)

is a generating function for the conserved quantities. We may write it as a power series

in λ according to

I(λ; σ) =
∞∑
n=1

λn−2In(σ), (6.6.6)

where I1(σ), I2(σ), etc. are individually conserved quantities. Next we write a series

expansion in λ for ρ(x;λ;σ) as follows

ρ(x;λ;σ) =
∞∑
n=0

λ−nρn(x; σ), (6.6.7)
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and replace it in (6.6.2). Comparing the terms of equivalent order inλ in each expression

gives to leading order

ρ0(x;σ) = − iσ
2
u. (6.6.8)

As a result of (6.6.6) it follows that

I2(σ) =

ˆ ∞

−∞
ρ0(x;λ; σ)dx = − iσ

2

ˆ ∞

−∞
udx. (6.6.9)

So we see that

α1 ≡
1

2

ˆ ∞

−∞
udx (6.6.10)

is an integral of motion. Following a similar procedure we find the next conserved

quantities to be

I3(σ) = − i

8

ˆ +∞

−∞
(u2 + 4w)dx,

I4(σ) = − iσ
16

ˆ +∞

−∞
u(u2 + 4w)dx.

(6.6.11)

One may continue a process of iteration indefinitely, whereby an infinite series of such

conserved quantities is generated from the u and w, and therefore from the physical

variables u and η.

6.7 Analytic continuation of a(λ;σ)

Returning to (6.2.10) we see that we may re-write the scattering coefficient a(λ;σ) in

terms of the x-independent Wronskian, that is

a(λ; σ) =
W [ϕ(x;λ;σ), ψ(x;−λ;−σ)]

2iλ
. (6.7.1)

Since the two eigenfunctions in (6.7.1) are analytic for λ ∈ C+, a(λ;σ) allows an

analytic continuation in the upper half complex plane. From (6.7.1) with (6.3.7) and

(6.3.8) we obtain the asymptotic behaviour of the scattering coefficient,

lim
|λ|→∞

a(λ;σ) = eiσα1 (6.7.2)
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where α1 is the conserved quantity in (6.6.10). We make the further assumption that

a(λ; σ) has a finite number of simple zeros λn ∈ C+, n = 1, 2, 3, . . . , N . This as-

sumption is of course an additional restriction to the classes of the possible solutions.

Our experience with a similar (but simpler) weighted spectral problem associated to

the Camassa-Holm equation [BSS1998,CM1999,Con2011,MKST2009] shows that in-

finitely many zeros are possible. However, in our examples we will confine ourselves

with considering only finitely many zeros.

We introduce the auxiliary function

A(λ;σ) = e−iσα1

N∏
n=1

λ− λ̄n
λ− λn

a(λ, σ), (6.7.3)

which is analytic and without zeroes in C+. It follows from (6.7.3) that

|A(λ; σ)| = |a(λ;σ)|, λ ∈ R, (6.7.4)

Next, we also see from (6.7.2) and (6.7.3) that

lim
|λ|→∞

lnA(λ;σ) = 0, (6.7.5)

and so, lnA(λ; σ) is analytic throughout C+ and vanishes as |λ| → ∞.

We also have from (6.7.4);

lnA(λ;σ) = ln |A(λ;σ)|+ i argA(λ;σ) = ln |a(λ;σ)|+ i argA(λ;σ),

for λ ∈ R.We make use of the Kramers-Kronig dispersion relations,

ln |a(λ;σ)| = 1

π

∞ 

−∞

argA(λ′;σ)
λ′ − λ

dλ′

argA(λ, σ) = − 1

π

∞ 

−∞

ln |a(λ′;σ)|
λ′ − λ

dλ′,

(6.7.6)
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for λ ∈ R, where the dashed integral denoted the principal value part of the integral.

Then from (6.7.6) we have

lnA(λ;σ) = ln |a(λ, σ)| − i

π

∞ 

−∞

ln |a(λ′;σ)|
λ′ − λ

dλ′

=
1

πi

∞̂

−∞

ln |a(λ′;σ)|
λ′ − λ− i0+

dλ′, λ ∈ R.

(6.7.7)

Meanwhile, (6.7.3) gives

lnA(λ; σ) = −iσα1 −
N∑

n=1

λ− λn
λ− λ̄n

+ ln a(λ; σ). (6.7.8)

Using (6.7.7) and (6.7.8), we find that for real values of λ we may write

ln a(λ;σ) = iσα1 +
N∑

n=1

λ− λn
λ− λ̄n

+
1

πi

∞̂

−∞

ln |a(λ′;σ)|
λ′ − λ− i0+

dλ′ (6.7.9)

and for λ ∈ C+ the analytical continuation is

ln a(λ; σ) = iσα1 +
N∑

n=1

λ− λn
λ− λ̄n

+
1

πi

∞̂

−∞

ln |a(λ′;σ)|
λ′ − λ

dλ′. (6.7.10)

6.8 The Riemann-Hilbert problem

For λ ∈ R we may use (6.2.8) to re-write the expression (6.2.10) in terms of the new

analytic functions ϕ(x;λ;σ) and ψ(x;λ; σ) to find

ϕ(x;λ;σ)eiσα1

a(λ;σ)
= ψ(x;λ; σ) + r(λ; σ)ψ̄(x;λ;σ)e2i(λx+σω+), (6.8.1)

where r(λ; σ) = b(λ;σ)/a(λ;σ). The function ϕ(x;λ;σ)eiσα1

a(λ;σ)
is analytic for Im λ > 0

(except for the finitelymany simple poles atλn) , whileψ(x;λ;σ) is analytic for Im λ <

0. Thus, equation (6.8.1) represents an additive Riemann-Hilbert Problem (RHP) with

a jump on the real line, given by

r(λ;σ)ψ̄(x;λ; σ)e2i(λx+σω+)
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and a normalization condition lim|λ|→∞ ψ(x;λ; σ) = 1.

In this section we will follow the standard technique for solving RHP. We integrate

the two analytic functions with respect to
¸

dλ′

λ′−λ
(·) over the boundary of their analyticity

domains using the normalization condition. In our case the domains (the upper C+ and

the lower C− complex half-planes) have the real line as a common boundary and there

we relate the integrals using the jump condition. TheRHP approach for various equation

is presented in [GVY2008,HI2011,LSS2007,SS1996].

We now choose some λ ∈ C− and integrate the left-hand side as follows

1

2πi

˛
C+

ϕ(x;λ′; σ)eiσα1

a(λ′; σ) · (λ′ − λ)
dλ′ =

N∑
n=1

ϕ(n)(x; σ)eiσα1

ȧn(σ) · (λn − λ)
(6.8.2)

where C+ is the contour in the upper half plane shown in Fig. 1,

ȧn(σ) ≡
da(λ; σ)

dλ

∣∣∣∣
λ=λn

̸= 0, ϕ(n)(x;σ) ≡ ϕ(x;λn;σ).

Wemaywrite the integral as such because λ ∈ C− and so 1
λ−λ′ is analytic throughout

C+. Furthermore, a(λ;σ) is analytic with finite number of simple zeros, λn in C+, and

the function ϕ(x;λ;σ) is analytic throughout C+. Alternatively we may expand the

integral as follows

1

2πi

˛
C+

ϕ(x;λ′;σ)eiα1

a(λ′;σ) · (λ′ − λ)
dλ′ =

1

2πi

ˆ ∞

−∞

ϕ(x;λ′;σ)eiα1

a(λ′;σ) · (λ′ − λ)
dλ′ +

1

2πi

ˆ
Γ+

ϕ(x;λ′;σ)eiα1

a(λ′, σ) · (λ′ − λ)
dλ′.

(6.8.3)

Using the asymptotic properties of a(λ; σ) and ϕ(x;λ;σ) along with the relationship

(6.8.1), we find

N∑
n=1

ϕ(n)(x;σ)eiα1

ȧ(λn) · (λn − λ)
=

1

2πi

ˆ
Γ+

1

λ′ − λ
dλ′ +

1

2πi

ˆ ∞

−∞

ψ(x;λ′; σ)

λ′ − λ
dλ′

+
1

2πi

ˆ ∞

−∞

r(λ′; σ)e2i(λ
′x+σω+)ψ̄(x;λ′;σ)

λ′ − λ
dλ′.



CHAPTER 6. THE KAUP-BOUSSINESQ EQUATION 118

λ
Γ+

Γ−

C+

C−

Figure 6.1: The integration contoursC± are the closed paths in the upper and lower half

planes while Γ± are the semicircles with infinite radii.

Next we obtain an expression for the line-integral

1

2πi

ˆ +∞

−∞

ψ(x;λ′;σ)

λ′ − λ
dλ′,

by considering the integral over the contour C−, shown in Fig. 1. Since C− is counter-

clockwise and λ ∈ C− with ψ(x;λ;σ) analytic therein it follows that

1

2πi

˛
C−

ψ(x;λ; σ)

λ′ − λ
dλ′ = ψ(x;λ;σ). (6.8.4)

Expanding the integral, we have

1

2πi

˛
C−

ψ(x;λ′; σ)

λ′ − λ
dλ′ =

1

2πi

ˆ −∞

∞

ψ(x;λ′;σ)

λ′ − λ
dλ′ +

1

2πi

ˆ
Γ−

ψ(x;λ′;σ)

λ′ − λ
dλ′.

(6.8.5)

Using the asymptotic properties of ψ(x, λ, σ) as |λ| → ∞ with λ ∈ C−, we have

1

2πi

ˆ ∞

−∞

ψ(x;λ′;σ)

λ′ − λ
dλ′ = ψ(x;λ;σ)− 1

2πi

ˆ
Γ−

1

λ′ − λ
dλ′ (6.8.6)
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We can also make use of the following result when it comes to substituting this expres-

sion in (6.8.4) ˆ
Γ+

1

λ′ − λ
dλ′ +

ˆ
Γ−

1

λ′ − λ
dλ′ = 2πi.

Uponmaking these substitutionswe find the following integral representation forψ(x;λ; σ),

λ ∈ C−:

ψ(x;λ; σ) = 1−
N∑

n=1

ϕ(n)(x;σ)eiα1

ȧn(σ)(λn − λ)
+

1

2πi

ˆ ∞

−∞

r(λ′)e2i(λ
′x+σω+)ψ̄(x;λ′;σ)

λ′ − λ
dλ′.

At the points of the discrete spectrum ϕ(x;λn;σ) = bn(σ)ψ̄(x; λ̄n;σ) we have

ϕ(n)(x; σ)eiα1

ȧn(σ)
= iRn(σ)e

2i(λnx+σω+)ψ̄(x; λ̄n;σ) (6.8.7)

where we define

Rn(σ) =
bn(σ)

iȧn(σ)
.

The Riemann-Hilbert problem is reduced to the linear singular integral equation for

ψ(x;λ; σ)

ψ(x;λ;σ) = 1− i

N∑
n=1

Rn(σ)ψ̄(x; λ̄n;σ)

(λn − λ)
e2i(λnx+σω+)

+
1

2πi

ˆ ∞

−∞

r(λ′;σ)ψ̄(x;λ′;σ)

λ′ − λ
e2i(λ

′x+σω+)dλ′.

(6.8.8)

In addition to (6.8.8) we have an analogous system written at the points λ = λ̄p ∈

C−, p = 1, 2, . . . , N :

ψ(x; λ̄p; σ) = 1− i
N∑

n=1

Rn(σ)ψ̄(x; λ̄n;σ)

(λn − λ̄p)
e2i(λnx+σω+)

+
1

2πi

ˆ ∞

−∞

r(λ′;σ)ψ̄(x;λ′;σ)

λ′ − λ̄p
e2i(λ

′x+σω+)dλ′.

(6.8.9)

Finally, the fact that at λ = 0 the Jost solution ψ(x; 0; σ) does not depend on σ gives

ψ(x; 0; σ) = ψ(x; 0;−σ) or an algebraic equation for e2iσω+ , namely
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e2iσω+ =
ψ(x; 0; σ)

ψ(x; 0;−σ)
=
ψ(x; 0; σ)

ψ̄(x; 0; σ)
. (6.8.10)

The system (6.8.8), (6.8.9) and (6.8.10) allows for the determination of both the

Jost solution and the potential functions of the spectral problem in terms of the scatter-

ing data. Note that the time-dependence of the scattering data is known from (6.5.5),

(6.5.10):

r(λ; σ) = r0(λσ)e
−2iσλ2t, Rn(σ) = R0

n(σ)e
−2iσλ2

nt. (6.8.11)

Thus the complete set of scattering data is

r(λ;σ), λn, Rn(σ) (n = 1, 2, . . . , N). (6.8.12)

Also it is sufficient to know the scattering data for σ = 1, because of the Z2 involution,

which holds on the scattering data too:

r(λ;−σ) = r̄(−λ;σ), Rn(−σ) = R̄n(σ). (6.8.13)

6.9 Reflectionless potentials and soliton solutions

The so-called reflectionless potentials are a subclass which corresponds to a restricted

set of scattering data: r(λ;σ) = 0; λ ∈ R. Then the system (6.8.8), (6.8.9), (6.8.10) is

algebraic, and the solutions of the PDE are called solitons.

The simplest case is the N = 1-soliton solution, so we start with this case first.

From (6.8.8) we have

ψ(x;λ; σ) = 1− i
R1(σ)ψ̄(x; λ̄1; σ)

λ1 − λ
e2i(λ1x+σω+), λ ∈ C−. (6.9.1)

We notice that ψ̄(x; λ̄; σ) has an unique pole at λ̄1 and ψ(x;−λ;−σ) has an unique

pole at −λ1. Due to (6.2.8) these two poles coincide, i.e. λ̄1 = −λ1 and therefore

λ1 = iν is purely imaginary, ν > 0 is real.
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Solving for ψ(x, λ̄1, σ) we find

ψ̄(x; λ̄1; σ) =
1− i R̄1(σ)

2λ1
e2i(λ̄1x+σω+)

1 + |R1(σ)|2e4iλ1x
4λ2

1

. (6.9.2)

Then (6.9.1) takes the form

ψ(x;λ;σ) = 1 +
2iν

λ− iν
·

R0
1(σ)

2ν
e−2νx+2iσν2t+2iσω+ − |R0

1(σ)|2
4ν2

e−4νx

1− |R0
1(σ)|2
4ν2

e−4νx
(6.9.3)

Furthermore we can relate the real and imaginary parts of the complex constant R0
1(σ)

2ν

to two new constants, say x0 and t0 as follows:

R0
1(σ)

2ν
= e4νx0−2iσν2t0 .

Now ψ(x;λ; σ) in (6.9.3) depends only on x − x0 and t − t0. Due to the translational

invariance of the problem and without loss of generality we can choose x0 = 0 and

t0 = 0. This simplifies (6.9.3) which yields

ψ(x;λ;σ) = 1 +
2iν

λ− iν
· e

−2νx+2iσν2t+2iσω+ − e−4νx

1− e−4νx
(6.9.4)

Then (6.8.10) gives

e2iσω+ =
1 + 2e−2νx−2iσν2t + e−4νx

1 + 2e−2νx+2iσν2t + e−4νx
(6.9.5)

Using (6.4.9) we can recover u(x) from ω+:

u = ν
sin(2ν2t) sinh(2νx)

cosh4(νx) cos2(ν2t) + sinh4(νx) sin2(ν2t)
(6.9.6)

On the other hand, we also have (6.4.10),

ψ(x;λ;σ) = 1 +
1

λ

[
σ

4
u+

i

8

ˆ ∞

x

(u2 + 4w)dx′
]
+O

(
1

λ2

)
,

which can be compared to (6.9.4):

ψ(x;λ; σ) = 1 +
2iν

λ
· e

−2νx+2iσν2t+2iσω+ − e−4νx

1− e−4νx
+O

(
1

λ2

)
. (6.9.7)
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Figure 6.2: Snapshots of the solution for the u-component of the Kaup-Boussinesq

equation (6.9.6), (6.9.8) for three values of t.

Since ω+ and u are already known we can find w and consequently η. With (6.2.1) we

compute

u2 + 4w = 2(κ+
1

2
)u2 + 4η.

For the Kaup-Boussinesq case, namely κ = −1
2
and

u2 + 4w = 4η = −4∂2x ln
[
(1 + e−2νx)4 + (1− e−2νx)4 tan2 ν2t

]
,

in which case we have

η = −2ν2
cosh6(νx) cos4(ν2t) + 3

4
sin2(2ν2t) sinh2(2νx)− sinh6(νx) sin4(ν2t)

[cosh4(νx) cos2(ν2t) + sinh4(νx) sin2(ν2t)]2
.

(6.9.8)

The solution (6.9.6), (6.9.8) is presented on Fig. 6.2. Note that u is an odd func-

tion and η is an even function of x. The solution is of 'breather' type and develops

singularities 'infinitesimally' close to x = 0 at countably many isolated values of t.
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Figure 6.3: Snapshots of the solutions for the η(x, t)-component of the Kaup-

Boussinesq equation (6.9.6),(6.9.8) for three values of t. The first panel is before,the

third panel is after the blowup.

6.10 Conclusion

The next case is a solution with N = 2 discrete eigenvalues. Due to (6.2.8) there are

the following situations:

(i) Both eigenvalues are on the imaginary axis: λ1 = iν1, λ2 = iν2 for some real

and positive ν1 and ν2;

(ii) λ2 = −λ̄1, R2(σ) = R̄1(−σ). For the (ii) case from (6.8.8) we have

ψ(x;λ; σ) = 1 + ie2iσω+

[
R1(σ)e

2iλ1xψ̄(x; λ̄1; σ)

λ− λ1
+
R̄1(−σ)e−2iλ̄1xψ(x; λ̄1;−σ)

λ+ λ̄1

]
,

(6.10.1)

From (6.10.1) we obtain a linear system of four equations for the quantitiesψ(x; λ̄1;±σ)

and their complex conjugates by writing (6.10.1) for λ = λ̄1, the same with σ replaced

by −σ and their complex conjugates.

The case with N > 2 eigenvalues is always a combination between (i) and (ii) - in

general it involves eigenvalues on the imaginary axis as well as conjugate pairs λk and
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−λ̄k.

We have outlined the inverse scattering for spectral problems of the form (6.2.2)

with real functions in the potential, which necessitates the Z2 reduction (6.2.8). The

soliton solution in the case of a single pole of the eigenfunction does not have the form

of a travelling wave and develops singularities with time. This solution is probably

not relevant for the theory of water waves. There is another feature of this type of

equations which points in the direction that the purely soliton solutions are probably

not the ones which are observed in the context of water waves. Indeed, since η is the

deviation from the equilibrium surface, then one expects that its space-average value is

zero,
´∞
−∞ η(x, t)dx = 0. However, the trace identities which can be derived easily (see

e.g. [LSS2007]) for theN -soliton solution of the Kaup-Boussinesq equation lead to the

following result:

ˆ ∞

−∞
η(x, t)dx =

1

4

ˆ ∞

−∞
(u2 + 4w)dx = −4

N∑
k=1

Imλk.

By assumption Imλk > 0 since λk are in the upper half complex plane. Thus, we

have the following 'mostly negative' result for the N -soliton solution:
ˆ ∞

−∞
η(x, t)dx < 0.

This results indicates that the water wave solutions are related only to the continuous

spectrum and are therefore unstable. This agrees with the fact that the travelling wave

solutions to the Euler's equation with zero surface tension are unstable.



Results and Future Work

This thesis has examined several aspects of fluids arising in various physical circum-

stances. We presented a brief overview of several fluid models which have played an

important role in the continuing development of the mathematical analysis of nonlin-

ear phenomena as they arise in the context of fluid dynamics. Among the features of

such nonlinear systems which we encountered were the phenomenon of wave break-

ing, the drift of fluid particles along streamlines, along with stable solutions such as

peakon and soliton solutions. All of these results relied on the nonlinearity of the sys-

tems from which they were derived. These models in turn were derived from the basic

principles of Newtonian mechanics, applied to continuous media of constant density

and neglecting any viscous effects. The basic equations to follow from these physical

laws constituted the Euler equations, and were the starting point for the derivation of

the models we wished to investigate.

To ensure a coherent structure it was necessary to include both original results

and well established ones, thereby allowing the material to be presented with a some-

what natural flow. As such it is necessary to emphasise that the material in Chapter

1 and Chapter 4 has been borrowed from other sources, e.g. [Joh1997], [Iva2009],

[ZMNP1984] among others. The aim of Chapter 1 was to provide background and mo-

tivation for the investigation of systems of nonlinear PDE. Meanwhile Chapter 4 was

necessary, as it not only provided an introduction to the methods of the IST, but the

inverse scattering transform method of solving KdV was explicitly used when solving

125
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Qiao's equation in Chapter 5. In addition the derivation of KdV as a model of arterial

blood flow relied on that presented in [DP2006], and was included as further motivation

for the study of KdV and moreover provided a bridge between the quasi-linear models

examined in Chapter 2 and the fully nonlinear models studied in Part 2 of this thesis.

In Chapter 2 we presented an original derivation of the quasi-linear Hopf equa-

tion as it arises in the theory of arterial blood flow, cf. [Lyo2012]. In addition we

presented an original demonstration of the occurrence of wave breaking for this sys-

tem which relied on the method of characteristics for solving such systems. This wave

breaking phenomena was interpreted physiologically as the pistol shot pulse, while at

the same time we provided the necessary criteria for solutions of the system to remain

bounded. Chapter 3 was in a sense a diversion from the main material investigated in

the rest of the thesis, but was included to demonstrate an entirely different approach to

tackling the complexities presented by the nonlinearities encountered in fluid dynam-

ics. The results presented in this section relate to [Lyo2014] and concerned the drift

of particles along streamlines in a fluid body of infinite depth and whose free surface

assumed the form of an extreme Stokes wave. The result is an extension of those found

in [Con2006,Con2012,Hen2008]. This chapter of the thesis addressed two issues left

answered in these publication, namely that it was possible to extend the techniques of

conformal mapping theory and the application of maximum principles to a semi-infinite

fluid domain with free boundary which is continuous but not continuously differen-

tiable.

The result of Chapter 5 and Chapter 6 were original derivations of two types of sta-

ble solutions of Qiao's equation and the Kaup-Boussinesq equation respectively, and

were based on the publications [IL2012c, IL2012a]. In deriving the peakon solutions

we managed to circumvent a well known problem with their construction for the Qiao

equation, namely the occurrence of the double delta function. Having done so we then
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provided an alternative derivation of the travellingW/M -wave solutions for this sys-

tem. In addition in this chapter we presented an entirely new method of solving the

Qioa equation via the IST, which involved reformulating the spectral problem for solu-

tions with constant boundary values, to yield the well understood spectral problem of

the KdV. At this point it was then possible to construct the soliton solutions by solv-

ing the associated Riemann-Hilbert problem, thereby allowing us to present the one

and two soliton solutions. The results of Chapter 6 were again an original result found

in [IL2012b], but relied on the method employed in [HI2011] among others. Essen-

tially Chapter 6 presented an extension of the IST for the KdV equation, thus allowing

us to apply similar techniques to the Kaup-Boussinesq equation.The major obstacle to

overcome in this instance was the energy dependence of the spectral problem, which

was done by introducing a pair of conjugate spectral problems. The construction of

the Riemann-Hilbert problem was then possible, which in turn allows one to construct

the soliton solutions of the Kaup-Boussinesq equation. In this thesis we presented an

explicit expression for the one soliton solution of this system, which was found to be a

breather type solution.

The work being continued on from the research presented in this thesis focuses on

the two soliton solution of the Kaup-Boussinesq equation. In contrast to the breather

type solutions presented in chapter 6, it appears from the most recent research that the

two soliton solution is a travelling wave type solution. In addition to the construction of

this two soliton solution, there are several question to be answered in relation to the IST

for the system, in particular is is possible to demonstrate that the scattering coefficient

a(λ) has a finite number of simple zeros, as is the case with the KdV equation. This was

an issue which was not addressed during the the analysis presented here and provides

another line of research to be pursued from this thesis.
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