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Abstract 

This paper describes ten methods to identify a mathematical model for a real process with 

a time delay. The process is the Process Trainer, PT326 from Feedback Instruments 

Limited. Six of the methods use step response data and one of the methods uses impulse 

response data for identification. Two of the methods use frequency response data and the 

final method uses information from relay-based experiments. The best results are 

obtained using a combined analytical and gradient method [6] in the frequency-domain 

and, in the time-domain, using the two-point algorithm [1] and a method proposed by 

Suganda et al. [5]. 
 

1   Introduction 
The dynamics of a process can be determined from the response of the process to pulses, 

steps, sine waves, ramps, or other deterministic signals. The dynamics of a linear system 

are, in principle, uniquely given from such frequency or transient response experiments. 

Such experiments require that the system be at rest before the input is applied. Models 

obtained from such experiments are sufficient for PID controller tuning. 

   The methods are implemented using the following tools: 

• MATLAB 

• SIMULINK 

• Humusoft Real Time Toolbox 

• AD512 Data Acquisition Card plugged into ISA port 

• Process Trainer PT326 

• 37-pin D-type connector, 37-way cable and connector block 

 

2   Time-Domain - Open Loop Methods 
The first three methods, of the ten investigated, use open loop step response data to 

identify a process model. 

 
Figure 1. MATLAB/SIMULINK/Humusoft file used in open-loop system identification 

tests. 

These methods are 1: Deduction of model directly from process response (graphical 

approach), 2: Two-point algorithm (Eq. 2 & 3) [1], 3: Area method (Fig. 2) [2]. A step is 

applied to the process and the resulting data from the process is examined to deduce the 

required information. The model obtained is a parametric model, the first-order-plus-

dead-time (FOPDT) model. This model is characterised by three parameters: the static 

gain Km, the time constant τm, and the dead time dm. The model is by far the most 
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commonly used model for Proportional/Integral/Derivative (PID) controller tuning. The 

process model transfer function is shown in equation 1. 
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In the graphical approach, the process gain is determined by dividing the steady state 

output by the input set-point value and the time constant is the time taken for the output 

to reach 63% of the final value, less the dead time. The dead time is the time interval 

between the input being applied to the system and the output responding to this signal. 

   In the two-point algorithm approach, the steady state gain is determined as in the 

graphical method. The time taken for the process output to reach 28% and 63% of the 

final steady state output is used to determine the time constant and the dead time based 

on solving the following simultaneous equations: 
 

τ mmdT +=63                      (2) 
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The third method is the area method and is based on integrals of the step response. The 

algorithm integrates areas from the open loop step response data and from the resulting 

values, the time constant and the dead time are calculated. Figure 2 gives some details. 
 

  

 
Figure 2. Plot of process open loop step response and areas used in area method 

algorithm. 
 

The average residence time, Tar, is the sum of the dead time and the time constant. In the 

MATLAB commands in figure 2, T = time constant and L = dead time. 
 

Estimated parameter values: 

Graphical approach:  Km = 1.15,  τm = 0.60 sec.,   dm = 0.26 sec. 

Two-Point Algorithm:  Km = 1.15,  τm = 0.53 sec.,  dm = 0.36 sec. 

Area Method:  Km = 1.13,  τm = 0.36 sec.,  dm = 0.40 sec. 

 

The fourth identification technique uses the Method of Moments algorithm [2] to identify 

the three parameters for equation 1. A unit impulse is applied to the process (in open 

loop) and the parameters are determined from the impulse response data. The area under 

the impulse response curve determines the process gain. This area value is also used to 

determine the time constant and subsequently the dead time. In the experiment, the width 

of the pulse applied to the system is set to 2 seconds and the height set to 0.5.  
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Estimated parameter values: 

Method of Moments:  Km = 1.31,  τm = 0.94 sec.,  dm = 0.56 sec. 

 

3   Time-Domain - Closed Loop Methods 
 

The next three methods implemented on the process trainer are closed-loop methods. The 

first closed loop identification technique is based on a paper by Bogere and Ozgen [3] 

and identifies a second-order-plus-dead-time (SOPDT) model shown in equation 4. The 

test is carried out in closed-loop under proportional control. 
 

( )( )11
)(

21 ++
=

−

ss

e
sd

K
sG

m

m
m

ττ
                (4) 

 

Km is the process model gain, dm is the process model dead time and the two time 

constants are denoted by τ1 and τ2. The proportional gain is set so that the process output 

has an oscillatory response as shown in figure 3. 
 

 

 
Figure 3. Under-damped transient response, for a step input [3]. 

 

The time delay, dm, is taken directly as the time interval between the time when the set-

point input is made to the process and the time when the output from the process begins 

to respond to the input. A modified three-term Taylor approximation of the exponential 

delay term in the closed loop characteristic equation is subsequently used. This allows a 

second order closed loop approximation to be written in terms of  K, dm, τ and ζ . The 

second order approximation parameters τ and ζ can be expressed in terms of the 

measurable quantities ∆t and Y0, Yp1, Yp2, Ym1 and Y∞ on the response curve. Hence, the 

model parameters, Km, τ1 and τ2 may be estimated as [3] 
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and A is the magnitude of the change in set-point step input and a, β1, β2 and β3 are 

defined by Bogere and Ozgen [3]. 
 

Estimated parameter values:  Km = 0.86,  dm = 0.25 secs.,  τ1 = 0.70 secs.,  τ2 = 0.22 sec. 
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Alternatively, a method described by Mamat and Fleming [4] is used to identify a first-

order-plus-dead-time model in closed-loop under Proportional/Integral (PI) control. The 

model structure is shown in equation 1. If the PI controller parameters KC (Proportional 

gain) and TI (Integral time) are chosen such that the closed-loop response is under-

damped, as shown in Figure 4, then by using a 1
st
 order Pade approximation for the dead-

time term, e
sd m− , in the denominator of the closed loop transfer function, the closed-loop 

response can be approximated by a second order plus dead-time transfer function: 
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From the closed loop step response data, five characteristic points are used to determine 

the second order plus dead-time approximation (equation 9) and subsequently, the 

frequency response of the closed-loop system. Knowing the dynamics of the closed-loop 

system and the dynamics of the controller, the open-loop dynamics of the process can be 

determined by separating the dynamics of the controller from the closed-loop dynamics. 

The equations to determine K, d, τ and ζ are as follows, where A is the magnitude of the 

set-point change (as above): 
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The equations to determine the first-order-plus-dead-time parameters Km, τm and dm are 

subsequently given [4]. 

 

Estimated parameter values:  Km = 1.06,  τm = 0.45 sec.,  dm = 0.50 sec. 
 

 
Figure 4. Typical under-damped closed-loop servo step response under PI control. 

 

The third closed loop identification method implemented on the process trainer is that 

proposed by Suganda, Krishnaswamy and Rangaiah [5] to identify a second-order-plus-

dead-time process model, as shown in equation 10. The system is in closed-loop under PI 

(Proportional/Integral) control. In this method, the same five characteristic points, as 

shown in figure 4, that are used in the method of Mamat & Fleming [4] are also taken to 



 6 

determine the second-order-plus-dead-time model of the overall closed loop system.  The 

phase crossover frequency and the magnitude at this frequency are then determined; the 

four parameters for the second-order-plus-dead-time process model are subsequently 

calculated. 
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Estimated parameter values:  Km = 0.99,  τm = 0.26,  ζm = 1.07,  dm = 0.28 sec. 
 

 

4   Frequency-domain 
 

4.1   First-Order-Plus-Dead-Time model 
 

Identification in the frequency domain involves the estimation of the process frequency 

response over an appropriate frequency range, followed by the estimation of the model 

parameters. The process frequency response may be measured in open loop by recording 

the output of the process as a sine wave input varies in frequency. The model parameters 

are estimated by a two-stage approach, combining an analytical approach and a gradient 

approach, as detailed by O’Dwyer [6]. The three parameters of the first-order-plus-dead-

time (FOPDT) model, equation 1, are analytically calculated as follows: 
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where ω1 and ω2 are two test frequencies; Gp(jω1) and Gp(jω2) are the magnitudes 

of the frequency response at ω1 and ω2 respectively; φp is the phase of the frequency 

response at test frequency ω. The gradient approach is subsequently employed to 

determine the most accurate model parameters. The gradient method uses the plot of the 

cost function, J, to determine the best estimate between process and model by searching 

for the minimum value. The cost function, J, is a plot of the function of the mean sum of 

the squares of the error between the process and the model of the process. An important 

requirement is that J must be unimodal i.e. J must have no local minima. The algorithm 

determines the partial derivative of the cost function, with respect to the three FOPDT 

parameters Km, τm and dm, at the initial estimate and subsequent estimates. The final and 

most accurate estimated value (least squares) is in the trough of the cost function curve. 
 

Estimated parameter values:  Km = 1.13,  τm = 0.61 sec.,  dm = 0.34 sec. 
 

4.2 Second-Order-Plus-Dead-Time model 

The two-stage approach, combining an analytical and gradient method, is also used to 

obtain the parameters of a SOPDT model.  
 

Estimated parameter values:  Km = 1.13,  dm = 0.23 sec.,  ττττ1 = 0.22 sec,  ττττ2 = 0.35 sec. 
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5   Relay-based Identification 
 

The final method explored uses a relay in series with the process in closed loop as shown 

in figure 5, to allow the calculation of model parameter estimates from the estimated 

ultimate gain ( K̂ u), and ultimate frequency ( ω̂ u). In the experiment carried out on the 

process trainer, the estimated ultimate frequency, ω̂ u, is determined as 4.65 

radians/second and the estimated ultimate gain, K̂ u, is 4.48. The time delay, d, is read off 

from the initial part of the relay feedback test as 0.4 seconds. The equations to estimate 

the time constant and gain of the first-order-plus-dead-time (FOPDT) model, using the 

ultimate gain/ultimate frequency data, are shown in equations 14 and 15 respectively [7]: 
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Figure 5. MATLAB/SIMULINK/Humusoft file used for relay-based identification 

(Manual Switch in Up position) and closed loop methods under P/PI control (Manual 

Switch in Down position). 
 

Estimated parameter values:  Km = 0.78,  τm = 0.72 sec.,  dm = 0.40 sec. 
 

 

6   Validation 

The results of the parameter estimation for each of the identification techniques discussed 

are validated in the time- and frequency-domains using step response and Nyquist plots. 

In the time-domain validation procedure, a step is applied to the model and the resulting 

data plotted on the same plot as the process data to compare the accuracy of the model 

with the process. The most accurate time-domain open loop and closed loop process 

identification methods (the two-point method [1] and the method defined by Suganda et 

al [5], respectively) are demonstrated in this paper in figure 6 by comparing the Nyquist 

plots of model and process data. Figure 7 shows a comparison of the Nyquist plots of the 

process and the models obtained from the frequency-domain and relay-based methods. 
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Figure 6. Comparison of Nyquist plots for process data from PT326 and two “best-fit” 

models from time-domain estimation methods. 
 

 

Figure 7. Comparison of Nyquist plots for process data from PT326 and the frequency-

domain and relay-based estimation methods. 
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7   Conclusions 
The results of the ten experiments to identify a process model are compared. In the time-

domain, it is concluded that the “best-fit” between the model and process is achieved by 

using the two-point method [1] or the method of Suganda et al. [5]. The two-point 

method identifies a first-order-plus-dead-time model and is a relatively straightforward 

method carried out in open loop. A disadvantage of open loop identification is that the 

process has to be taken out of commission while the test is being carried out. The 

method of Suganda et al. [5] is a closed loop test carried out while the loop is under 

Proportional/Integral (PI) control. The test identifies a second-order-plus-dead-time 

process model. Since most feedback loops in practise involve Proportional/Integral (PI) 

controllers, an added advantage of this method is that the test data for retuning could be 

obtained during normal operation, for example, while switching from one operating level 

to another. In the frequency-domain identification techniques, both the first-order-plus-

dead-time (FOPDT) and second-order-plus-dead-time (SOPDT) models are accurate 

representations of the process. However, the second-order-plus-dead-time (SOPDT) 

model is the “best-fit” of all the models. While estimating the model parameters, it is 

noticed that the parameters obtained using the analytical method and the gradient method 

are quite close to each other. This proves that the analytical method works well. The 

relay based identification techniques are not as accurate as some of the previous methods. 

The relay used in the experiments is the ideal relay. More accurate results could be 

obtained by using a biased relay or a relay with hysteresis. The information obtained 

from the relay-based experiments is very useful in the auto-tuning of controllers. 
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