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Abstract

In this study we explore several possibilities for modelling weakly
nonlinear Rossby waves in fluid of constant depth, which propagate
predominantly in one direction. The model equations obtained include
the BBM equation, as well as the integrable KdV and Degasperis-
Procesi equations.

1 Introduction

In this paper we present (formal) derivations for one-dimensional, weakly
nonlinear model equations, in the geophysical setting of Rossby waves. Our
method of derivation, which relies on techniques from asymptotic pertur-
bation theory, leads us to the celebrated KdV and BBM equations [45, 2],
or to the Degasperis-Procesi (DP) equation [28], depending on the order of
terms included in the model. It is the derivation of the DP equation in this
geophysical context which is of particular interest. We will see during the
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course of our derivation that the structural properties of the DP equation
are compatible, and consistent, with the geophysical problem we consider,
in the sense that the dispersion relation for the DP equation matches that
of the Rossby wave we examine.

The Earth’s oceans and atmospheres, in general, behave as a strongly
turbulent media. However, on large spatial, and slow time, scales highly or-
dered self organised structures can emerge. This can be observed for myriad
phenomena in geophysical fluid mechanics [26, 50, 51], among them being
Rossby waves. Geophysical fluid dynamics is the study of fluid motions
where the Earth’s rotation, in particular the Coriolis forces, plays a signifi-
cant role in the governing equations [26, 50, 51]. Rossby waves are geophys-
ical waves which plays a role in modelling the oceanic Gulf Stream, zonal
winds, climate variability propagating from the tropics during ENSO events,
and equatorial waves, cf. [6, 26, 31, 50, 51].

To the leading order, Rossby waves are governed by linear model equa-
tions [26, 50, 51], which will be introduced in Section 2. If weak nonlinearities
are incorporated into the governing equation, through asymptotic analysis,
then it is known that nonlinear models which are structurally simililar to
the KdV and mKdV equations may be obtained, cf. [6]. We also note that
two-dimensional nonlinear models for Rossby waves have been studied in
[33]. The KdV and mKdV model equations are integrable, with extremely
rich and profound structural properties, and they have solutions in the form
of solitary waves. The solitary waves arise as a balance between the nonlin-
ear and dispersive terms in the equation and are stable in time, so they are
particularly suitable for the description of emerging structures.

In Section 3 we present an alternative derivation of the KdV equation
for Rossby waves, and furthermore we derive the BBM equation at the same
order of asymptotic expansion. The BBM equation is a much celebrated
model equation in the theory of water waves, with many interesting proper-
ties. However, a significant drawback of the BBM equation is that it is not
integrable.

In Section 4 we formally derive the DP equation at the next order of the
asymptotic expansion. The DP equation [28] is a recently derived nonlinear
dispersive partial differential equation which has many interesting properties:
it is an integrable equation, however unlike the KdV equation it also exhibits
wave-breaking. By wave breaking, we mean the phenomenon whereby the
solution remain bounded, but its slope becomes unbounded, in finite time, cf.
[18]. It belongs to the so-called b−family of equations, of which the Camassa-
Holm (CH) equation is the only other integrable equation [41], and both
of these equations may be derived in the context of gravitational shallow
water waves [22, 43]. Both the DP and CH equations share a number of
interesting and rich structural properties, including integrability as infinite-
dimensional Hamiltonian systems [4, 5, 16, 19, 23], persistence properties of
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solutions [15, 35, 37, 36, 38, 48], geometrical interpretations [39, 21, 29, 44],
and, of particular interest for the fluid dynamics community, they exhibit
both global solutions and solutions which undergo wave breaking [18, 30].
A further aspect of CH and DP that attracted a lot of attention is the
existence of peaked travelling waves (peakons), whose shape is stable under
small perturbations (orbital stability) cf. [25, 46]. Particularly interesting
is the fact that the peakons have the same shape as the travelling waves
of greatest height that solve the governing equations for water waves - see
[7, 14, 17].

An interesting aspect of the CH and DP equations as models for shallow
water waves is that their dispersion laws differ from the typical one for small-
amplitude shallow water waves. This apparent disparity is accounted for by
the analysis in [22], where it was shown that both CH and DP arise in the
regime of shallow water waves of moderate (not small) amplitude. A nice
artefact of our formal derivation of the DP equation for Rossby waves, in
Section 4, is that that the dispersion law for the DP equation is consistent
with the dispersion relation for Rossby waves. The conclusion is that the
geophysical setting is highly suitable for the DP as a model equation, and
this paper may be regarded as a first approach in investigating whether the
DP, and perhaps the CH, equations play a role as model equations in the
geophysical setting.

2 Preliminaries

2.1 Governing equations

In this Section we present a brief derivation of the Rossby wave equation,
starting from the full governing equations for geophysical water waves. The
full governing equations for geophysical water waves are highly intractable
partial differential equations, being highly nonlinear, and with additional
complications such as an unknown free-surface. It is worthy of mention,
however, that a body of recent work has derived exact solutions for the full
governing equations at the equator [9, 10, 11, 12, 34, 47]. The standard
approach in working with the governing equation is to somehow simplify
the full equations, for example, through assuming geostrophic balance, or
through linearisation. The Rossby wave is an artefact of linearisation of the
governing equations, and play a role in modelling a number of geophysical
processes. While the Rossby wave may be derived in a number of different
fashions as a quasi-geostrophic wave, for instance, it may be derived as a by-
product of topographic changes in the sea-bed, we present below a derivation
of the Rossby wave over a flat sea-bed at mid-latitudes— such waves play
an interesting role in interactions with the Antarctic Circumpolar Current
[49], for instance.
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We take the earth to be a perfect sphere of radius R = 6378 km, which
has a constant rotational speed of Ω = 73.10−6 rad/s, and g = 9.8 ms−2

is the standard gravitational acceleration at the earth’s surface [26]. From
the viewpoint of a rotating reference frame with its origin at the earth’s
surface, so that the {x, y, z}-coordinate frame is chosen with z as the vertical
variable, x as the longitudinal variable (in the direction due east), and y
is the latitudinal variable (in the direction due north), then the governing
equations for geophysical ocean waves are given by [26]

ut + uux + vuy +wuz + f∗w − fv = −1

ρ
Px, (1aa)

vt + uvx + vvy + wvz + fu = −1

ρ
Py, (1ab)

wt + uwx + vwy + wwz − f∗u = −1

ρ
Pz − g, (1ac)

together with the equation for mass conservation

ρt + uρx + vρy + wρz = 0 (1b)

and the equation of incompressibility

ux + vy + wz = 0. (1c)

Here (u, v, w) is the velocity field of the fluid, ρ is the density of the fluid, P
is the pressure of the fluid, and we have neglected viscous effects in the fluid:
we assume the fluid is inviscid and incompressible. The Coriolis parameter
f , and the so-called reciprocal Coriolis parameter f∗, are defined by

f = 2Ω sinφ, f∗ = 2Ω cosφ, (2)

where the variable φ represents the latitude. Geophysical waves, for which
the Coriolis effects of the Earth’s rotation have a significant impact on the
fluid motion, typically occur when U

λ
. Ω [26], or expressed in terms of the

Rossby number Ro,

Ro =
U

λΩ
= O(1).

Here λ is the typical horizontal length scale of the flow, and U is the typical
horizontal velocity scale for the fluid motion, and we take the symbol O(1)
to mean that the term is of the order of magnitude of one, or less.

The full governing equations (1) are highly nonlinear and intractable,
and it would be very desirable, and indeed necessary, for us to simplify
them somehow. Thanks to the high variance in orders of magnitude of the
physical scales which are inherent in geophysical waves, simplification can
be achieved in a reasonable fashion for certain wave regimes if we perform
an analysis of the comparative orders of magnitude of the physical scales for
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each of the variables and terms of the equations (1). For instance, it can be
easily deduced, from an analysis of the terms in (1), that large (horizontal)
scale geophysical flows must be shallow, in the sense that H ≪ λ, where
H is the typical vertical depth of the fluid [26]. Additionally, large scale
geophysical flows are almost purely horizontal, that is W ≪ U , where W is
the typical vertical velocity scale [26]. Furthermore, away from the equator
(where additional factors must be incorporated into the scale comparison),
the terms involving f∗ play an insignificant role in the governing equations.
Following the scaling analysis, the equations (1a) may be reduced to

ut + uux + vuy + wuz − fv = −1

ρ
px, (3a)

vt + uvx + vvy + wvz + fu = −1

ρ
py, (3b)

and
pz = 0, (3c)

where p = P −P0 − ρg(H − z) is the dynamic pressure. Now, if uz ≡ vz ≡ 0
initially, then from (3c), (3a) and (3b) it follows that uz ≡ 0, vz ≡ 0 for all
times, that is, the horizontal flow remains independent of depth: these flows
are known as barotropic. In the following, we let z = 0 denote the flat sea
bed, and take the mean-depth of the fluid as the vertical length scale H.

2.2 Rossby waves

In certain geophysical regimes, the nonlinear advective terms in the govern-
ing equations play a negligible role in the underlying motion. Specifically,
this scenario occurs when the Rossby-number is low, Ro ≪ 1, and the so-
called temporal Rossby number RoT = 1/ΩT ∼ 1, where T is the typical
time-scale for the flow [26]. According, the governing equations can be ex-
pressed as

ut − fv = −gηx, (4a)

vt + fu = −gηy, (4b)

where η(x, y, t) represents the surface wave over the flat bed. The equations
(4) govern a number of different geophysical phenonema: Kelvin (trapped)
waves, Poincaré waves, and Rossby (planetary) waves. Rossby wave solutions
of (4) are waves which exhibit a slow evolution from steady geostrophic flows,
and are accordingly termed quasi-geostrophic waves. Geostrophic flows are
those where the Coriolis force dominates the acceleration terms in the govern-
ing equations, and so the pressure gradient force is balanced by the Coriolis
effect. We present a derivation of the governing equations for Rossby waves
which occur at mid-latitudes. We note that there are also equatorial Rossby
waves [31], which share some characteristics with the waves we will present.
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At mid-latitudes, the Coriolis parameter f in (2) can be expanded in
terms of a Taylor series for φ = φ0 + y/R, where φ0 is a reference latitude
and R is the Earth’s radius. Retaining the first two terms we have the
β−plane approximation

f = f0 + β0y, (5)

and if we omit the second term we have the f−plane approximation. Here
f0 = 2Ω sinφ0 is the reference Coriolis parameter, β0 = 2(Ω/a) cos φ0 is the
β−parameter. The β−plane approximation is valid when the dimensionless
planetary number β = β0λ/f0 ≪ 1, which gives us restrictions on the ref-
erence latitudes φ0 and meridional length scales L for which Rossby waves
apply [26]: typical values for these parameters are f0 = 8 × 10−5s−1 and
β0 = 2 × 10−11m−1s−1, and so obviously β ≪ 1 for all waves of length
λ ≪ 4000km. Applying a formal asymptotic analysis of the equations (4a)-
(4b), we get expressions for u, v in terms of partial derivatives of η. Substi-
tuting the resulting expressions into

ηt +H(ux + vy) = 0 (6)

gives us the following linearised Rossby wave equation for the free surface
height η:

ηt − L2
D∆x,yηt − βL2

Dηx = 0. (7)

Here LD =
√
gH/f0 is the Rossby deformation radius. The waveform

η ∼ ei(ω(k,n)t−kx−ny)

is a solution of (7) if the dispersion relation is satisfied:

ω(k, n) = − β0k

k2 + n2 + L−2
D

. (8)

3 Weakly nonlinear models: BBM and KdV

In order to model zonal Rossby wave flows, which are largely one-dimensional,
we derive obtain a suitable model equation from (7) using the ansatz η̃ =
cos(ny) η(x, t) for waves in a channel; η(x, t) then satisfies the equation

(

1 + L2
D(n

2 − ∂2
x)
)

ηt − β0L
2
Dηx = 0. (9)

The one-dimensionality of the motion is a common characteristic of long
waves, and it is relevant if one considers simply x-directional propagation at
fixed latitude, when the wavelength λ >> LD. With n fixed, in this one-
dimensional model ω = ω(k) depends only on the x-directional wave number
k. We note that, for long waves, k ∼ 2π/λ ≪ 1. In general, one dimensional
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model equations with nonlinearity and dispersion have the universal form
[52, 53]:

ut + uux + κ

∫

∞

−∞

K(x− x′)ux(x
′, t)dx′ =0,

K(x) =

∫

∞

−∞

eikxc(k)
dk

2π
,

(10)

where ω(k) = kc(k), is the dispersion law of the model. For example, ω(k) ∼
k3 for KdV equation, ω(k) ∼ k|k| for the Benjamin-Ono equation, etc.

The leading order terms in equation (9) are

(1 + L2
Dn

2)ηt − β0L
2
Dηx ∼ 0, (11)

with ηxxt of smaller order.
Furthermore, there is a nonlinear term present, ǫηηx, at the leading ap-

proximation (and yet small) as it transpires from (10). With this term the
weakly nonlinear equation becomes

ηt − β0L
2
D

(

1 + L2
D(n

2 − ∂2
x)
)

−1
ηx + ǫηηx = 0, (12)

where ǫ = ǫ(n) is a dimensional constant for fixed n. Then

(

1 + L2
D(n

2 − ∂2
x)
)

ηt − β0L
2
Dηx + ǫ

(

1 + L2
D(n

2 − ∂2
x)
)

ηηx = 0, (13)

or

(

1 + L2
D(n

2 − ∂2
x)
)

ηt−β0L
2
Dηx+ǫ

(

1 + L2
Dn

2
)

ηηx−ǫL2
D(3ηxηxx+ηηxxx) = 0,

(14)
Neglecting smaller order ǫL2

D terms we can write the model equation as

(1 + L2
Dn

2)ηt − β0L
2
Dηx − L2

Dηxxt + ǫ
(

1 + L2
Dn

2
)

ηηx = 0, (15)

which is known as the BBM equation [1, 2]. Indeed, if one changes for

simplicity x → x+
β0L

2

D

1+L2

D
n2
t, the equation acquires its recognizable form

(1 + L2
Dn

2)ηt − L2
Dηxxt + ǫ

(

1 + L2
Dn

2
)

ηηx = 0. (16)

A major benefit of the model equation (15) is that its dispersion law matches
exactly the one for Rossby waves (8). The BBM equation is not integrable,
yet it allows soliton-like solutions and is very convenient for numerical simu-
lations. It can be transformed to the integrable KdV equation, keeping terms
to a certain order, as follows. The term ηxxt is of smaller order, however of
the same order as ηxxx. Using Johnson’s approach [43] the two terms can be
replaced with each other in the model equation. More rigorously, estimates
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about the difference between the two terms are studied in [3]. Then we can
use (11) in (16) and for an arbitrary µ we can write

(1+L2
Dn

2)ηt−(L2
D+µ)ηxxt+µ

β0L
2
D

1 + L2
Dn

2
ηxxx+ǫ

(

1 + L2
Dn

2
)

ηηx = 0. (17)

The choice µ = −L2
D removes the ηxxt term and we obtain the KdV equation

[45]

(1 + L2
Dn

2)ηt −
β0L

4
D

1 + L2
Dn

2
ηxxx + ǫ

(

1 + L2
Dn

2
)

ηηx = 0, (18)

or, with the linear dispersion term,

(1 + L2
Dn

2)ηt − β0L
2
Dηx −

β0L
4
D

1 + L2
Dn

2
ηxxx + ǫ

(

1 + L2
Dn

2
)

ηηx = 0, (19)

The KdV is an integrable equation [32, 13, 42, 54], however its dispersion
relation ω(k) ∼ k3 (or, if ηx term is included, ω(k) ∼ k + νk3, ν being
a constant) differs from (8) and conforms with (8) only for small k. Of
course this is consistent with the long waves assumption, that λ ∼ 2π

k
is

large. Another approach for modelling Rossby waves which leads to the KdV
equation is given in [6]. The solution there also has the form of a product of
two functions, one of which depends on y and the other satisfying the KdV
equation with coefficients, depending on n.

4 Other integrable models: The Degasperis-Procesi

equation

In this Section we present a formal derivation of the DP equation from the
Rossby wave equation (9). Applying again Johnson’s trick on the term ηxxt
of (14) for an arbitrary µ, and taking into account (11) we obtain

(

1 + L2
Dn

2
)

ηt−(L2
D + µ)ηxxt +

µβ0L
2
D

1 + L2
Dn

2
ηxxx − β0L

2
Dηx

+ǫ
(

1 + L2
Dn

2
)

ηηx − ǫL2
D(3ηxηxx + ηηxxx) = 0,

(20)

The ηxxx term can be removed by a constant shift transformation,

η → η +
µβ0

ǫ(1 + L2
Dn

2)
,

leaving

(

1 + L2
Dn

2
)

ηt − (L2
D + µ)ηxxt + β0(µ− L2

D)ηx

+ ǫ
(

1 + L2
Dn

2
)

ηηx − ǫL2
D(3ηxηxx + ηηxxx) = 0,

(21)
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Rescaling

∂x →
√

1 + L2
Dn

2

L2
D + µ

∂x ∂t →
√

1 + L2
Dn

2

L2
D + µ

∂t

gives

(

1− ∂2
x

)

ηt + β0
µ− L2

D

1 + L2
Dn

2
ηx + ǫηηx −

ǫL2
D

L2
D + µ

(3ηxηxx + ηηxxx) = 0, (22)

We can choose µ = 3L2
D, then

(

1− ∂2
x

)

ηt + β0
2L2

D

1 + L2
Dn

2
ηx + ǫηηx −

ǫ

4
(3ηxηxx + ηηxxx) = 0, (23)

The last equation up to rescaling η → 4η/ǫ is the Degasperis-Procesi (DP)
equation [28], since the ratio of the coefficients in the last bracket is 3:1.

(

1− ∂2
x

)

ηt + β0
2L2

D

1 + L2
Dn

2
ηx + 4ηηx − (3ηxηxx + ηηxxx) = 0, (24)

which can be written also as

mt + κηx + 3mηx + ηmx = 0, m = η − ηxx, (25)

with κ = β0
2L2

D

1+L2

D
n2

being a constant.

The DP is an integrable equation for any constant κ, including κ = 0
[20, 27, 28, 41], in the dispersionless case κ = 0 it allows peakon solutions,
otherwise it has also smooth soliton solutions as well as breaking waves [30],
subject to special initial conditions. The DP equation together with the
Camasa-Holm (CH) equation [8, 43, 41, 40, 13],

ηt − ηxxt + κηx + 3ηηx − 2ηxηxx − ηηxxx = 0 (26)

(κ is an arbitrary constant related to the linear dispersion term) which has a
similar nonlinear structure, have been put forward as shallow water models
[22, 43, 41]. Both equations are integrable and share some common features,
such as breaking waves [18, 30], geometrical interpretations [21, 29, 44] and
persistence properties of solutions [15, 35, 37, 36, 38, 48]. While their appli-
cability as shallow water models has been well-studied, it was shown in [22]
that both CH and DP arise in the regime of shallow water waves of moderate
(not small) amplitude. This explains the disparity of the dispersion laws for
the CH and DP equations, and the typical one for small-amplitude shallow
water waves, given by

ω(k) =
√

gk tanh(kh).

In this study we argue that the DP equation is well suited to the geophysical
setting of Rossby waves, since the dispersion relation of the Rossby waves
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(8) is in the same form as for the DP equation. Indeed, if one neglects the
nonlinear terms in the equations (25), (26) their linearizations admit wave
solutions of the form η ∼ exp(iω(k)t − ikx), such that

ω(k) =
κk

1 + k2

which up to rescaling of the constants gives the dispersion law (8) in the
case when n is constant.

5 Conclusions

We have derived several model equations for weakly nonlinear Rossby waves
propagating predominantly in one direction. Two approximate models in-
cluding same order of terms relate to the BBM equation and to the inte-
grable KdV equation with coefficients, depending on the wave number n of
the transversal direction y. Both BBM and KdV equations have certain
advantages from analytical and computational point of view. Another pre-
viously known similar model of Rossby waves [6] in slightly different set up
presents the solution in a form of a product of two functions, one of which
depends on y and the other satisfying the KdV or mKdV equations with
coefficients, depending on n.

When terms of higher order of smallness are kept, the model can be trans-
formed to the integrable DP equation which has been extensively studied
recently both analytically and in the context of water waves. The usefulness
of the DP equation in the modelling of Rossby waves is due to its disper-
sion law, which has the same form as the dispersion relation of the Rossby
waves (8). We can speculate that the integrable Camassa-Holm equation,
which has the same dispersion law as the DP equation and the same type
of nonlinearities can also be put forward as a model for Rossby waves. To
this end a rearrangement of the nonlinear terms of the smallest order might
be necessary following the techniques from the work of Johnson [43]. In
comparison to KdV equation, CH and DP equations have more interesting
and involved features, such as allowing for both stable and wave-breaking
solutions. Indeed, the CH and DP are archetypes for nonlinear dispersive
partial differential equations which are both integrable (and so possess the
associated rich structure) and allow for wave-breaking.
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