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ABSTRACT 

 

                  An attempt has been made to improve the physical-chemical properties of 

conducting polymers by switching from aqueous solutions towards ionic liquids as 

novel electrolytic media in order to fabricate novel electrochromic materials. 

                 Formation and electrochemical characterization of Poly (2,3,5,6-

Tetrafluoroaniline) (PTFA) was performed in aqueous solutions. The optical response 

was observed in order to establish the electrochromic properties of this material. 

Electrochromic activity of PTFA conducting polymer in aqueous conditions was 

investigated. Results indicated a slow colour change of 40 seconds, from delicate 

orange to a much intense orange colour. 

                 Electrochemical copolymerization of two monomers pyrrole (Py) and 3,4-

ethylenedioxythiophene (EDOT) was performed in an ionic liquid employing a novel 

‘micro-cell’ in order to use the materials efficaciously. Characterization of the 

copolymers electrochemical features was performed for different Py : EDOT ratios (1:2, 

1:1, 2:1) in both aqueous and ionic liquid electrolytes. A series of spectroscopic and 

microscopic studies were also carried out in order to prove the copolymer formation. 

All three copolymers presented different absorbance spectra, while the FTIR were not 

very clear. However, the morphology investigation highlighted the different features of 

copolymers which showed various distributions of globules, pores and holes.            

                 Ionic movement between aqueous phase and ionic liquid was studied, and a 

model was developed to describe the interfacial processes occurring between two 

immiscible liquid phases. In the present work the Ferrocene ion transport across the 

ionic liquid / water interface was studied experimentally and in comparison to a model 

for a thin film of ionic liquid. Results obtained from experimental and modelling data 
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had similar trends of increase in the peak to peak separation with increased scan rate, 

but the peak to peak separation in the experimental was larger.  

                 A new, cost-effective prototype of ‘micro-sandwich electrochromic cell’ was 

fabricated, based on an ‘ion jelly’ electrolyte. The ‘ion jelly’ solid state electrolyte was a 

successful replacement for the costly ionic liquids. This prototype of electrochromic cell 

showed dark-bluish and light-blue colours upon redox switch, but optimization is 

needed in order to reach the desirable features of a high-performance electrochromic 

device. 
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Chapter 1. Introduction 

1.1 Polymers versus Conducting Polymers  

 

                Over the course of the past decade, much effort has been made to develop 

cleaner and more environmentally friendly technologies. The industrial progress 

achieved by society comes with many drawbacks: global pollution, the depletion of 

the ozone layer, the green house effect, most of which the general public are aware. 

The book edited by J. Clark and D. MacQuarrie [1] presents the fundamental aspects 

and the need for ‘green chemistry and technology’ which would constitute a benefit 

to human health and environment. They proposed ‘12 Principles of Green 

Chemistry’ [2] to guide researchers in the development of new materials and 

processes.    

               The major area of interest in this research work is the formation of 

conducting polymers (CPs) [3] [4], in conjunction with room temperature ionic 

liquids (RTILs) [5] [6], to produce electrochromic thin films [7] [8]. Such films, 

which reversibly change colour  in response to changes in electrical potential, could 

be used in electronic display devices [9] and in light and energy-control applications 

[10] (e.g. smart windows which control light transmittance). Most current 

electrochromic materials suffer from manufacture and performance limitations 

(including stability issues) and they are generally made with relatively expensive 

and/or toxic compounds (making disposal difficult). Production of improved 

electrochromic devices [11] with low-cost manufacturing, using solution-processing 

of film-forming polymers in a more environmentally-friendly ‘Green Chemistry’ 

approach is a desirable goal and the present study addresses some of these issues.  

                What is a polymer? The first thing that people think of are plastics (e.g. 

poly(ethylene terephthalate): PET or poly(vinyl chloride): PVC). The list continues 
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with rubbers (e.g. polyisoprene - natural rubber), different fibres (natural and 

synthetic fibres) and fabrics (velvet, satin). Polymers consist of extremely large, 

chain-like molecules that are, in turn, made up of numerous smaller, repeating units 

called monomers and they are part of our everyday life. 

                 A polymer’s ability to conduct electricity was once considered absurd, as 

polymers were mostly employed as insulators. Conducting polymers are defined as 

organic polymers which are able to conduct electricity when charging/discharging of 

the material happens upon application of certain potentials. The field of conducting 

polymers is of great interest for the research community and is currently the focus of 

much attention (Figure 1.1). The work within the area of CPs has developed 

significantly and these compounds have become prospective materials for many 

technological applications because they can be easily synthesised either chemically 

[12] or electrochemically [13]. The most interesting aspect of conjugated polymers 

from an electrochemical perspective is their ability to behave as electronic 

conductors. Electronically conducting polymers are extensively conjugated 

molecules and it is believed that they possess a spatially delocalised band-like 

electronic structure (Figure 1.2). The tendency of materials to conduct electricity is 

generally expressed in terms of surface resistivity, reflecting the resistance due to 

the transfer of electrical charges. 

                Actually, in 1976, Alan J. Heeger, Alan MacDiarmid and Hideki 

Shirakawa, together with their research groups, discovered CPs and the ability to 

dope/undope these polymers over the full range from insulator to metal state. They 

subsequently [14], demonstrated that the molecular arrangement in conducting 

polymers (CPs) must contain alternating single and double bonds in order to allow 

the formation of delocalized electronic states. 
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Figure 1.1 Diagram showing range of conductivity for various materials including 

conducting polymers [15].  

 

It is generally agreed that the doping process is an effective method to produce 

electroactive polymers [15]. Doping allows electrons to flow due to the introduction 

of extra bands and as doping occurs, the electrons in the conjugated system, which 

are loosely bound, are able to ‘jump around’ the polymer chain [16]. 

                The polymer is called a ‘conjugated polymer’ because of the alternating 

single and double bonds in the polymer chain. Thanks to the special conjugation in 

their chains, it enables some of the π-electrons to be de-localized and shared 

throughout the polymer. The de-localized electrons may move around the whole 

system and become the charge carriers to make the polymer conductive. This 

polymer can be transformed into a conducting form when electrons are removed 

from the backbone resulting in cations or added to the backbone resulting in anions. 

Anions and cations behave as charge carriers, jumping from one site to another 

under the influence of an electrical field, thus increasing conductivity [17]. During 

the doping process, the polymer changes its redox state (oxidized/ reduced form) 

and this is of primary interest for the present work. 
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1.2. Conduction Mechanism of Conducting Polymers 

 

                  The conductivity of CPs can be adjusted to vary over a very wide range, 

starting from insulating and moving towards a more conductive form (metallic 

form) by varying the concentration of the dopant. Although the conduction 

mechanism of CPs cannot be always fully understood, it was noticed that their 

behaviour is similar to a semiconductor where electrons under thermal excitation  

jump from the valence band (VB) to the conduction band (CB) giving rise to 

conductivity. This is true for a narrow band-gap, but if the band-gap is very wide, 

then the electrons under thermal excitation at room temperature don’t have enough 

energy to travel across the gap. So, in addition to band theory, it is essential to also 

study the properties of charge carriers. Most of the known CPs are p-type doped and 

this involves formation of an abundance of mobile or "carrier" holes in the material, 

while in n-type doping the carriers are electrons. The model for the conduction 

mechanism of CPs can be explained using band theory [18]. 

 

 

Figure 1.2 Band structure in an electronically conducting polymer 

 

      In Figure 1.2, HOMO means the highest occupied molecular orbital and LUMO 

is the lowest unoccupied molecular orbital which are sometimes referred to as 

frontier orbitals. The energy difference between the HOMO and LUMO is termed 
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the band-gap (Eg). The intrinsic optical properties of these materials is given by the 

energy gap between the highest occupied π electron band (valence band, VB) and 

the lowest unoccupied band (conduction band, CB) [19]. A reduction of the band 

gap makes the material more conductive and attempts are being made to obtain a 

polymer with very low band gap, close to that of metals. When the band gap of the 

polymer is greater than 2.0 eV, it can be adjusted through various methods [18].  

                One of the approaches towards formation of small band gap conjugated 

polymers is the copolymerization approach [20], by altering the properties of a 

polymer in a desired direction. This method allows formation of a new polymeric 

material with some properties expected from the individual monomer types, based 

upon their physical and chemical interactions. 

                Common examples of conducting polymers (Figure 1.3) include 

polypyrrole (PPy) [21] [22], polythiophene (PTh) [23] [24] and polyaniline (PANI) 

[25] [26].  

 

                                             

Figure 1.3 Structures of some common conducting polymers 

 

The charge carriers, either positive p-type or negative n-type are the products of 

oxidizing or reducing the polymer respectively. p-type or n-type doping can be 

presented in analogy to the mechanism of generation of charge carriers in doped 

inorganic semiconductors [18]. A number of general observations can be made 

regarding the behaviour of the polymers studied.  
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                Oxidation of the polymer initially generates a radical cation with both spin 

and charge, referred to as a polaron [18].  This process causes the presence of 

localised electronic states in the gap due to a local upward shift ∆Ε of the HOMO 

and a downward shift in the energy of the LUMO. When an electron is removed 

from the polymer chain, the ionization energy is lowered by ∆Ε, and if ∆Ε is larger 

then Edis (distortion energy necessary to distort the lattice around the charge), this 

charge localization process is favourable relative to the band process [18]. The 

cation and radical form a bound species, since any increase in the distance between 

them would necessitate the creation of additional higher energy quinoid units 

(Figure 1.4).  

 

                                       

     Aromatic                                                       Quinoid 

Figure 1.4 Two possible structures for polyisothianaphthene:  

aromatic and quinoid units [3] 

 

 

At low doping levels, the charge is accommodated in polaron states, while upon 

going to higher doping levels, a polaron to bipolaron (doubly charged defects) 

transition is observed (Figure 1.5). As polarons migrate up and down the polymer 

chain, they could run into each other and give rise to a bipolaron. Two adjacent 

polarons combine to form a lower energy bipolaron, which is a spin-free, doubly-

charged, partially-localised structure [17].  
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Figure 1.5 Conduction mechanism for the oxidative polymerization of polypyrrole 

 

 

                  The polypyrrole (PPy) system is a model system and has been studied 

intensively. The evolution of the PPy electronic band structure upon doping is 

shown in Figure 1.6. It can be seen that the overlap of polaron states leads to the 

formation of two 0.4 eV wide bipolaron bands [18]. Polypyrrole is formed in the 

oxidized state, PPy
+1

, and it can be reduced to the neutral, insulating form, PPy
0
. 

The anion frequently utilised for the electrochemical formation of polypyrrole films 

is the perchlorate (ClO4
-
) anion because this counter ion produces films with a high 

degree of uniformity and reproducibility [27]. This is due to the relatively small 

radius of the ClO4
-
 ion that makes it quite mobile within the film matrix [28]. Upon 

electropolymerization process, the polypyrrrole film goes from its reduced state, 

which is an insulating hydrophobic polymer, to a conductive oxidized state which 

contains a high cationic charge density.  
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Figure 1.6  (a) low doping level, polaron formation; (b) moderate doping level, bipolaron 

formation; (c) high (33 mol %) doping level, formation of bipolarons bands for polypyrrole [29] 

 

 

                  All conducting polymers are potentially electrochromic in thin-film form 

[30] [31], redox switching giving rise to new optical absorption bands associated 

with electron transfer. In their oxidised states, conducting polymers are ‘doped’ with 

counter anions (p-doping) and possess a delocalised π-electron band structure. The 

HOMO-LUMO energy gap provides a first estimation of the electronic excitation 

energy which in turn can be measured by UV/Vis spectroscopy and provides the 

colours in the materials.  
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1.3 Electrochromic Materials and Electrochromic Devices 

 

               Electrochromism is the phenomenon displayed by some materials in which 

colour can reversibly change when a certain electrical potential is applied. It occurs 

when a material is oxidized or reduced as result of changes in the band-gap of the 

material induced by the potential change. A large number of electrochromic 

materials are available from almost all branches of synthetic chemistry. Organic 

electrochromic materials represent a major class of materials used for 

electrochromic devices and they are divided into three categories.  

  

1.3.1 Type I – Electrochromes 

 

               A type-I material is soluble in both reduced and oxidized states, and 

remains in solution at all times during electrochromic usage. Examples include 

methyl viologen (1,1’-di-methyl-4,4’-bipyridilium), which changes its colour from 

colourless to intense blue during a reductive electrode reaction [17] . 

 

1.3.2 Type II – Electrochromes 

 

              Type II electrochromes are soluble in one redox state, but form a solid film 

on the surface of an electrode during electron transfer. These types of materials are 

exemplified by aqueous viologen systems such as heptyl or benzyl viologens [19] 

[32], or methoxyfluorene compounds in acetonitrile solutions. The viologens are 

characterized by three redox states as presented in Figure 1.7, of which the 

dicationic state is ascribed to be the most stable. The solid form of 1,1'-di-n-heptyl-
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4,4'-bipyridilium (heptyl viologen) showed an intense yellow colour in its dicationic 

state, but in solution it appears as a pale yellow/or colourless material.  

 

 

Figure 1.7 Scheme representing the three common viologen redox states [19]. 

 

1.3.3 Type III – Electrochromes 

 

                Type III electrochromic materials, such as conducting polymers, remain 

solid at all times [19, 33]. These electrochromic materials are in general studied at a 

single working electrode using a three electrode cell, under potentiostatic or 

galvanostatic control. For materials characterization techniques such as cyclic 

voltammetry, coulometry, chronoamperometry with in situ spectroscopic 

measurements are  often employed [34]. Electrochemical Impedance Spectroscopy 

can also be employed for characterization of conducting polymers [35] [36]. 

                In order to obtain a good electrochromic material (EC), there are certain 

required properties such as fast switching time/speed (few seconds) [37], high 
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stability (long life time) [38], good contrast and reversibility of colour change. The 

electrochromic properties result from the oxidation/ reduction of the polymer 

backbone, and arise from the formation of bipolaron bands. This often has large 

effects on the electronic absorption spectra, producing high contrast colour changes. 

For example, the reduced yellow form of polypyrrole film displays a maximum 

absorption wavelength at 400 nm, while the fully oxidized blue/black form has a 

broad absorbance with a maximum around 800 nm [39]. 

               The colours that CPs might present in the different redox states are shown 

in Table 1.1. In the simplest approach, substitution of the parent heterocycle is used 

to control the band gap through induced steric or electronic effects.                 

 

Table 1.1 Examples of conducting polymers  

Electroactive polymer Colour in 

oxidized form 

Colour in 

reduced form 

polypyrrole dark grey yellow 

polythiophene blue red 

poly(3-methylthiophene) blue red / purple 

poly(3,4-

ethylenedioxythiophene) 

almost 

transparent blue 

dark blue 

 

polyaniline 

Emeraldine:  

blue/ green 

Pernigraniline: 

blue/violet 

Leucoemeraldine: 

white/clear and 

colorless 

 

 

The speed of the colour changes depends on the rate at which the dopant ions can 

migrate in and out of the polymer matrix.  
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1.3.4 Inorganic Electrochromic Materials 

 

                Another category of materials, besides conducting polymers, which 

exhibit electrochromic properties are the transition metal oxides (TMOs). There are 

many inorganic oxide compounds containing transition metals like iridium [40], 

ruthenium [41], tungsten [42], manganese [43], cobalt [44] and others used for 

designing electrochromic devices [45]. Relevant description of the properties and 

applications of various TMOs as electrochromic materials can be found in books by 

Granqvist [46] and Monk et al [7], as these materials have at least one redox state 

(colorless ⇔ colored).  

                Tungsten trioxide (WO3) is of particular interest for electrochromic 

devices [47] because of its ability to show electrochromic properties in both the 

visible and near-infrared regions when an appropriate potential is applied. 

Regarding the WO3 film formation,  increased attention is paid in optimising the 

deposition conditions, since the techniques involved in the deposition process are 

more sophisticated [48]. Also nickel oxide films [49] are of interest for use in 

electrochromic devices and a recent literature review  [49] refers to nickel oxide 

films used for thin film batteries, super-capacitors, electrocatalysis, etc. The 

electrochromic materials like tungsten oxide and nickel oxide were intensively used 

in the work with inorganic electrochromic materials as they have superior 

electrochromic properties than other inorganic oxides.  

                  The work done by E. Avendano et al. [50] presents interesting data about 

the optical absorption in both tungsten oxide and nickel oxide films, illustrating 

mainly the higher coloration efficiency thanks to their nanocrystalline structure. The 

optical absorption properties of electrochromic films are related to the injected 

charge per unit area of the active electrode.  
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                  The coloration efficiency (η) is an important parameter for 

electrochromic devices and is defined as the ratio of the change (between bleached 

and coloured state) in absorbance to the charge injected per unit area of the display 

electrode [46]. The coloration efficiency is related to the device performance and it 

depends upon chemistry, microstructure and film thickness used for the 

electrochromic device. 

                As stated earlier, a conducting polymer film can be easily formed by 

chemical [51] or electrochemical polymerization [52], while inorganic materials 

require more complicated methods such as vacuum evaporation [53] [54], spray 

pyrolysis [55] [56], sputtering [57] [58], and cryo-vacuum [59] deposition. In terms 

of processibility of the materials, the inorganic oxide materials are described as 

materials with poor processibility and for this reason also the number of colours that 

an inorganic material can yield is more limited than in the case of conducting 

polymers. The number of colours that conducting polymers can display is various 

and is correlated with the doping percentage, monomer type, the working potential 

and electrolyte’s nature [32].  

          Tungsten oxide (WO3) thin films [60] have been extensively used in 

applications like electrochromic mirrors especially because of their ability to change 

in a reversible manner from clear to deep blue for up to 10
6
 cycles. However, 

conducting polymers are attractive for the capability of displaying various colours 

when changing between oxidized and reduced forms, but the lifetime of these 

systems is limited to 10
4
-10

6
 cycles. The lifetime of an electrochromic device is an 

important parameter from both a research and commercial point of view and 

nowadays efforts are continuously being made to reduce device costs, to improve 

the lifetime of the systems and to prevent degradation [45]. In conclusion, 

conducting polymers are preferred for applications in electrochromic devices 
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because of large number of colours they are able to exhibit during chemical or 

electrochemical redox processes. In the same time, conducting polymers showed 

very high contrast (e.g. 43 % optical contrast retained by poly(1,2-bis(2-(3,4-

ethylenedioxy)thienyl)vinylene) [61] compared to inorganic oxide materials [45].  

                  Electrochromic devices [41] [62] have attracted increasing attention in 

recent years because of the valuable energy saving functions that the technology can 

provide. For example electrochromic “smart” glazing systems offer the possibility of 

optimizing the balance of daylight input into large buildings, consistent with 

minimizing air conditioning load, by active control of the glazing reflectivity. These 

devices require high photonic contrast materials that can switch between redox 

states of different coloration at the lowest possible energy cost [63]. An 

electrochromic device (ECD) has at its center an electrolyte or ion conductor, which 

is in contact with films that provide optical modulation, ion storage, and 

(transparent) electrical conduction. Use of appropriate electrolyte systems is 

important in terms of long time stability of electrochromic devices [63]. 

              Electrochromic contrast is probably the most important factor in evaluating 

an electrochromic material. It is often reported as a percent transmittance change 

(∆%T) at a specified wavelength where the electrochromic material has its highest 

optical contrast. For some applications, it is more useful to report a contrast over a 

specified range rather than a single wavelength. In order to obtain an overall 

electrochromic contrast, measuring the relative luminance change provides more 

realistic contrast values since it offers a perspective on the transmissivity of a 

material as it relates to the human eye perception of transmittance over the entire 

visible spectrum [64].  

                Switching speed is often reported as the time required for the 

colouring/bleaching process of an EC material to occur. It is important especially for 
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applications such as dynamic displays and switchable mirrors [30]. The switching 

speed of electrochromic materials is dependent on several factors such as ionic 

conductivity of the electrolyte, accessibility of the ions to the electroactive sites (ion 

diffusion in thin films), magnitude of the applied potential, film thickness, and the 

morphology of the thin film. In the field of EC materials, one of the great strengths 

of conjugated polymers is the ability to tailor the EC properties via modification of 

the polymer structure. Through band gap control, one can vary the accessible colour 

states in both the doped and neutral forms of the polymer. Numerous synthetic 

strategies exist for tuning the band gap of conjugated polymers [65]. An ECD must 

undergo stable redox processes for its electrochromic properties to be reproducible 

upon repeated switching. Typical degradation processes which can appear include 

irreversible redox behaviour because of high potentials, water and oxygen redox 

interferences with the EC components, degradation of electrode materials or 

evaporation of the electrolyte, and resistive heating on repeated switching.                  

               Electrochromic cells go from opaque to transmissive at selected regions of 

the electromagnetic spectrum. Electrochromic cells require that the cathodic and 

anodic reactions balance nearly exactly (cyclic voltammetry is a good comparison 

tool).  

              The electrochromic window is similar in operation to a battery with some 

additional requirements: at least one of the electrodes must be transparent to the 

given region of the electromagnetic spectrum; the cathode material (which colours 

upon being oxidized) must be electrochemically reversible, the ion-conducting 

electrolyte must not only provide physical separation between cathode and anode, a 

source of cations and anions to balance redox reactions, but must also be transparent 

to the given region of the spectrum and the anode material (which colors upon being 

reduced) must also be electrochemically reversible [66].                         
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1.4 Quantification of Colour 

                A very desirable goal regarding the electrochromic reactions is the colour 

quantification. The most common method used is based on the integration of 

experimental power distributions derived from visible region spectra over the CIE 

(Commission Internationale de l'Éclairage) 1931 colour-matching functions [67]. 

The colorimetric data provide a numerical specification at unit wavelength steps 

from which can be calculated tristimulus values for any spectral power distribution 

(Figure 1.8). The CIE 1931 defined a standard system for colorimetry, based on 2° 

colour matching and the basic data were averaged chromaticity coefficients of 

Wright (1929) and Guild (1931). So the two equivalent statements colour-matching 

behaviour of the CIE 1931 were established in the (R,G,B) and (X,Y,Z) system units 

[68]. 

 

 

 

Figure 1.8 CIE 1931 color matching functions. Spectral tristimulus values of constant 

radiance stimuli for different wavelengths. The three functions of wavelength define the 

color-matching properties of the CIE 1931 standard colorimeter observer. [68] 

 

 



       Chapter 1                                                                                                           Introduction 

      __________________________________________________________________ 17 

 
.                          

Figure 1.9 CIE 1931 chromaticity diagram. CIE 1931 (x,y)-chromaticity diagram. [68] 

                

               While electrochromic materials like polypyrrole, poly(3,4-

ethylenedioxythiophene) and polyaniline give the desired optical contrast initially, 

their performance often decays when the device is cycled for prolonged periods of 

time [69]. The high operating potentials used to achieve optimum optical contrast 

from the CPs may eventually lead to damage of the electrochromic films and the 

electrolyte and ultimately degrades the device performance [70]. Therefore there is a 

need to lower the potential used in cycling these devices to achieve practical 

lifetimes suitable for commercial exploitation. 
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1.5 Ionic Liquids and Conducting Polymers  

                 For this reason ionic liquids (ILs) were considered the best replacement 

of common water/ organic solvent, in order to increase the electrochromic device 

performance. There are several advantages to take into consideration when replacing 

the traditional solvents with ILs; these include wide potential window and low 

volatility. A very simple definition attributed to this new class of solvents is that of 

low-temperature molten salts which are liquids at room temperature and composed 

of ions only. This new class of solvents known as Ionic Liquids (ILs) had become 

extremely popular for their possible applications to various research areas because 

of their advantageous physical and chemical properties [71] [72].  

                These ‘molten salts’ are not perfect as they can present sometimes 

disadvantages such as high viscosity and solubility issues. However, replacement of 

traditional solvents with IL has brought improvement of different electroactive 

polymers systems and also the number of research studies involving ionic liquids 

had always increased since 1990 (Figure 1.10).  

 

 

Figure 1.10 Scheme showing the continuous increase of publications number on ionic liquids; 

source Sci-Finder. http://www.sigmaaldrich.com, accessed in December 2012. 
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                  G.G. Wallace, J.R Reynolds and R.J. Mortimer have performed various 

studies employing conducting polymers such as poly(3,4-ethylenedioxythiophene), 

polypyrrole, polyaniline in order to create and improve electrochromic devices. G.G. 

Wallace indicates in his work an important property of the electrolyte, regarding the 

optical transparency of the electrolyte when it comes to a practical application. An 

optically transparent electrolyte will always be the best choice since it will provide 

high transmission over the visible range. The electrolytes used by G.G. Wallace 

ensured a 90 % transmission  and proved the use of ionic liquid as a non-volatile 

plasticizer instead of common organic platicizers in a gel-polymer electrolyte 

system with conducting polymer [73]. 

                Other work resulted in the increase of polyaniline stability and reversible 

behaviour when ionic liquids such as 1-butyl-3-methylimidazolium 

hexafluorophosphate (BMIM PF6) and 1-ethyl-3-methylimidazolium 

bis(trifluoromethansulfon)imide (EMIM TFSI) were employed. Results showed 

during successive potential cycling a stable and reversible response up to 150 

cycles, compared to films formed in aqueous-acidic solution  which seemed to lose 

their electroactivity after only 15-16 cycles [26].  

                 Efforts have been made to find the best candidates for both conjugated 

polymers and ionic liquids, in order to make a viable electrochromic device for 

industrial applicability. Usually thin films are prepared during electrochemical 

polymerization, a process which involves either radical-cation/ radical-cation 

coupling or an attack of a radical-cation on neutral monomer. The film growth can 

be controlled through the charge passed, while the polymer is forming. Actually for 

electrochromic devices thin films are made supported by an electrode surface, which 

can be electrochemically cycled between oxidized (conducting state) and neutral 
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(insulating state). Thicker films are formed in their oxidized state and can be peeled 

from the electrode surface to serve as free-standing, electrically conducting films. In 

this case the thicker films represent polymeric cations and their overall charge 

balance is achieved by the incorporation of counter-anions which arise from the 

electrolyte of the solution [4].       
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      1.6 Ionic Liquids as Electrolytes for Conducting Polymers Electrodeposition 

 

 

                Ionic liquids represent superior media for electrodeposition of metals [74] 

[75] and semiconductors [76], possessing wide electrochemical windows, spanning 

up to 6 V in some cases. 

 

 
 

                     a large CATION                         a delocalised ANION 
 

Figure 1.11 Cartoon of two components of an ionic liquid 

 

         

                   As presented in Figure 1.11 ILs comprise a large bulky cation 

(imidazolium, pyridinium, pyridazinium, pyrimidinium, pyrazinium) and a 

delocalised anion (e.g. bis(trifluoromethylsulfonyl)imide). They are characterized by 

low melting points being liquid at room temperature or even below, and are free of 

any molecular solvent. Their physical and chemical properties are the same as high 

temperature ionic liquids, but the practical aspects involving maintenance or 

handling is different enough to allow a distinction. ILs are also known as room 

temperature ionic liquids (RTILs) and are usually quaternary ammonium salts like 

tetraalkylammonium [77]  or based on cyclic amines, both aromatic (pyridinium, 

imidazolium) and saturated (piperidinium, pyrrolidinium). The first RTILs 

comprised chloroaluminate anion which was improved later by having 1-ethyl-3-

methylimidazolium (EMIM) cation and tetrafluoroborate (BF4) anion, which are 

resistant to moisture traces. During the last decade the number of publications 
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involving ionic liquids work has exponentially increased from approximately 50 

papers in 1997 to 4000 papers in 2011 [78] [79]. Some examples of both anions and 

cations for RTILs can be seen in Figure 1.12. 

 

 

Figure 1.12 Examples of cations (+) and anions (−) for ILs [80] 

 

 

                 Ionic liquids are no longer laboratory curiosities, as they have become 

important factors in the materials science field and this is reflected through the 

multitude of reviews available [81] [82]. There remain aspects of the behaviour of 

ionic liquids which still need to be investigated, since they have been named ‘the 

green solvents’ due to their attractive properties. ILs are characterized by a series of 

desirable properties which can ease the experimental conditions; these include 

thermal and chemical stability, low melting point, high ionic conductivity, 

negligible volatility, moderate viscosity and solubility (affinity) with many 

compounds [59]. RTILs are suggested as alternative to traditional organic solvents 

which are volatile and limited for their practical usage. A basic characteristic of 

these solvents used for producing conducting polymers is increased potential 

windows and relatively high conductivities. ILs have these attractive features that 

can accomplish this need and allow the electrochemical study to be undertaken 

without addition of supporting electrolyte. Several studies are based on CPs/ILs 
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systems as ILs have improved the redox behaviour of these materials which were 

used in applications such as actuators [83], supercapacitors [84] [85], electrochromic 

devices [86] and solar cells [87]. Another aspect for which ILs are employed 

extensively for conducting polymers film formation is their good ionic 

conductivities. They are more viscous than common solvents, denser than water, 

thermally stable up to 450° C and allow significantly larger electrochemical 

windows. 

 

 

1.6.1 Ionic Liquids Conductivity 

 

                 However, IL conductivities are much lower than those of conventional 

aqueous electrolytes which can reach up to 540 or 730 mS cm
-1

 (Table 1.2). In 

general, ILs conductivity values are typically in the range from 0.1 to 18 mS cm
-1

.                          

                 The imidazolium based ionic liquids containing the 1-ethyl-3- 

methylimidazolium cation reach quite high conductivity values (σ) around 10 mS 

cm
-1

, while those based on 1-butyl-3methylimidazolium only display a conductivity 

of around 3 mS cm
-1

. On closer examination, it can be easily noticed that 

imidazolium based ionic liquids have better conductivity than the rest of ionic 

liquids which are based on tetraalkylammonium, pyrrolidinium, piperidinium and 

pyridinium cations, ranging  from 0.1 to 5 mS cm
-1 

[78]. 
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Electrolyte Solvent σ 
[mS/cm] 

H2SO4 (30 wt. %) H2O 730 

KOH (29.4 wt. %) H2O 540 

NH4Cl (25 wt. %) H2O 400 

[Et4N]
+
 [BF4]

-
 (1 mol/dm

3
) AN 60 

LiN (CF3SO2)2  (1 mol/dm
3
) EC + DME (1:1) 13.3 

LiN (CF3SO2)2  (1 mol/dm
3
) EC + DMC (1:1) 6.5 

LiCF3SO3 (1 mol/dm
3
) EC + DME (1:1) 8.3 

LiPF6 (1 mol/dm
3
) EC + DME (1:1) 16.6 

[Et4N]
+ 

[BF4]
- 
(0.65 mol/dm

3
) PC 10.6 

[EtMeIm]
+
[BF4]

-
 (2 mol/dm

3
) AN 47 

[EtMeIm]
+
[BF4]

-
 (2 mol/dm

3
) PC 16 

 
AN = acetonitrile; EC = ethylene carbonate; DME = l,2-dimethoxyethane; PC = propylene 

carbonate; DMC = dimethyl carbonate 

 
Table 1.2 Examples of conductivity values for different classical electrolytes [78]. 
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1.6.2 Ionic Liquids Viscosity 

                 Another important aspect of the ionic liquids properties is their increased 

viscosity (η) which is inversely proportional to their conductivity and this represents 

one of the main barriers to the applications of ILs. In comparison to conventional 

water/organic solvents, ILs viscosity values are up to two or three times greater, 

which produces a reduction in the rate of many organic reactions and a decrease in 

the diffusion rate of redox species. The imidazolium based ionic liquids having the 

hexafluorophosphate (PF6) anion are highly viscous having the value of 450 mPa s 

for 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6) [88]. It is quite 

difficult to choose a low viscosity IL, but imidazolium ILs have the tendency to 

show a decrease in viscosity following the order of anion species [89]:  

                                   

Cl
-
 > [PF6]

-
 > [BF4]

-
 > [NTf2]

-
 

 

                 A short table presenting the viscosity values of several RTILs in 

comparison to water/organic solvents can be seen in Table 1.3 [77]. In general, ionic 

liquids are more viscous than molecular solvents with viscosities ranging between 

10 mPa s up to nearly 700 mPa s at room temperature. However, highly viscous 

ionic liquids are not appealing candidates for applications in chemical processes, as 

high viscosity leads to low conductivity in ionic liquids. 
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Liquid Viscosity  η/cP 

[EMIM]
+
       [BF4]

-
 

                      [PF6]
-
 

                      [(CF3SO2)2N]
-
 

                      [(CF3CF2SO2)2N]
-
 

                      [CF3CO2]
-
 

                      [CF3SO3]
- 

43 

             15 (80 °C) 

28 

61 

35 

             45 (30 °C) 

[BMIM]
+ 

      [BF4]
-
 

                      [PF6]
-
 

                      [(CF3SO2)2N]
-
 

                      [(CF3CF2SO2)2N]
-
 

                      [CF3CO2]
-
 

                      [CF3SO3]
-
 

291 

450 

69 

77 

70 

93 

[HMIM]
+
       [BF4]

-
 

                      [PF6]
-
 

                      [(CF3SO2)2N]
-
 

             314 (20 °C) 

585 

68 

[OMIM]
+
       [BF4]

-
 

                      [PF6]
-
 

                      [(CF3SO2)2N]
-
 

                      [(CF3CF2SO2)2N]
-
 

439 

682 

93 

492 

Water 0.89 

Methanol 0.54 

Acetic Acid 1.13 

Acetone 0.30 

Acetonitrile 0.34 

N,N- dimethylformamide 0.80 

Ethylene Glycol 16.1 

Propylene Glycol 40.4 

Glycerol 934 

         

 [HMIM]
+
 : 1-hexyl-3-methylimidazolium; [OMIM]

+
 : 1-octyl-3-methylimidazolium             

 

Table 1.3 Viscosity of several liquids at room temperature (25 °C ± 1) [77] 

 

                 An elaborate study was done by Bonhote et al in order to determine the 

multitude of parameters for ILs such as density, melting point, viscosity, 

conductivity, refractive index, electrochemical window, thermal stability, and 

miscibility with water and organic solvents [88] [90]. Their analysis was limited to 

imidazolium cations together with six different anions of which 

bis(trifluoromethanesulfonyl)amides displayed exceptional properties. This suggests 

a good choice as a solvent for synthetic and electrochemical applications. 

                  However, when it comes to using CPs in conjunction with ILs that 

function at room temperature, the electrochemical window is an important key 

parameter when ionic liquids are used for electrodeposition. The electrochemical 
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window is defined as the electrochemical potential range over which the electrolyte 

can not be reduced or oxidized at an electrode [18].  

                 CPs are generally formed during potentiostatic (application of constant 

potential over a period of time) or potentiodynamic (successive oxidation/reduction 

over a potential interval) methods. While the polymer film is grown in galvanostatic 

mode, the potential applied should be closely monitored to ensure that overoxidation 

of polymer does not arise. Even if the potentiodynamic method  (like cyclic 

voltammetry) is the most time-consuming method, it is considered beneficial for 

electrochemical studies because the redox states of the polymer film can be 

monitored during film growth [91]. 

                The oxidation potential of the various monomers is different in ILs than in 

traditional solvents, and this is reflecting in the increased electrochemical windows 

of ILs which allow them to be employed as superior electrolytes for 

electrodeposition. While the electrochemical window of aqueous electrolytes is 

limited to +1.2 V, the ILs electrochemical window is significantly larger, sometimes 

up to 6 V [65].   

                 When an ionic liquid is employed as the solvent/electrolyte for the 

electropolymerization of CPs, the anion and the cation of the ionic liquid are 

involved during the oxidation/ reduction processes and of course the nature of each 

one should be considered. RTILs are ideal replacements for the more toxic and 

volatile solvents (e.g. acetonitrile) and thus prevent the problems of solvent 

evaporation which occur in the long-term use of volatile solvents. The large range of 

ion combinations, along with good thermal stability makes the ionic liquids, 

desirable and also extremely favourable for device applications. While regarding 

ionic liquids as supporting electrolytes, their conductivity and electrochemical 
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stability allows them to be utilised as solvents for the electrochemical synthesis of 

conducting polymers [91]. 

               A systematic study of the physical properties of aqueous solutions of room 

temperature ionic liquids based on imidazolium is presented by W. Liu et al. [92]. 

Because the available air and water stable RTILs are employed to progressively 

replace organic solvents in a variety of chemical processes, some measurements 

were done to see the effect of association between ionic liquid and water. The study 

involves the effects on physical properties of aqueous solutions of room-temperature 

ionic liquids such as density, refractive index, viscosity, conductivity and surface 

tension over the whole concentration range to establish basic data for the 

polymer/ionic liquid/water system. It was noticed by W. Liu et al. that for different 

concentrations of ILs there were changes of physical properties of the solutions. A 

series of ILs were employed namely BMIM Cl, BMIM Br, EMIM Br and BMIM 

BF4 which resulted in striking differences when compared to aqueous solutions. The 

results indicated that the density of ionic liquids decreases and the refractive index 

increases with increasing the length of alkyl chain, which is a cause of the 

“bulkyness” of the volume of cation.  

                 W. Liu et al. concluded that the trend of surface tension change of BMIM 

BF4 is different compared to the other three ionic liquids in the study because it 

actually acts like a cationic surfactant. Also for the conductivity of ionic liquids and 

water mixtures, similar properties with the classical properties of concentrated saline 

solutions with a maximum conductivity were reported (e.g. maximum conductivity 

of 47.1 mS cm
-1

 for BMIM BF4 [93]). The curve of equivalent conductivity was 

different because the ionic liquid aqueous solution goes through two different 

regions: the water-rich region and the salt-rich region, so the equivalent conductivity 

is decreasing in the whole concentration range. According to W. Liu et al. the ionic 
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liquids physical properties suffered changes for different ionic liquid/ aqueous 

solution concentrations. It is important to know and to understand these effects for 

the future applications of the RTILs in the field of conducting polymers [92]. 

                   For example, J.M. Pringle et al. [94] described the work  done on 

pyrrole in conjunction with various ionic liquids, suggesting that in some cases, 

when the film is oxidized and reduced in an ionic liquid, the intercalation/ loss of a 

cation occurs rather than anion intercalation/explusion. Because ionic liquids have 

wide electrochemical windows, during growth of polypyrrole the potentials used 

were higher than in conventional electrolytes. However results achieved depended 

on the nature of ionic liquid used.  

                  In experiments conducted in 1-butyl-3methylimidazolium 

hexafluorophosphate (BMIM PF6) or N,N-butylmethylpyrrolidinium 

bis(trifluoromethansulfonyl) amide (N,N-butylmethylpyrrolidinium TFSA), the 

polypyrrole films yield a small electrochemical response. Still, improvement of the 

electrochemical response was more obvious in ionic liquids when compared to the 

polypyrrole film grown in lithium perchlorate/acetonitrile solution as can be seen in 

Figure 1.13. 
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Figure 1.13 Comparison of the cycling polypyrrole films in an acetonitrile/LiClO4 solution. 

Scan rate: 100 mV/s. [94] 

   

 

Also the thickness of the films was strongly dependent on the nature of the ionic 

liquid used. For films grown in, 1-ethyl-3-methylimidazolium TFSA, a more 

significant increase in the oxidation/ reduction current was seen during the growth 

and films exhibited a good electrochemical response when cycled in the ionic liquid, 

even if they are thicker. Another important aspect is the morphology of the 

polypyrrole films, which typically is a nodular surface morphology. To have good 

electronic properties a smooth and dense film would normally have a good 

conductivity because it can better facilitate charge transport through the film [94].  

               An improvement in the quality of polypyrrole film was achieved by K. 

Sekiguchi et al. [95]  using the water and air stable ionic liquid 1-ethyl-3-

methylimidazolium trifluoromethanesulfonate (EMIM CF3SO3). The imidazolium 

ionic liquids, having stable counter anions such as BF4¯ , PF6¯  and CF3SO3¯ , were 

considered as good candidates for the polymerization process as they do not require 

special conditions to run the experiments. The room temperature ionic liquid EMIM 

CF3SO3, used as a medium for electropolymerization process, had improved 
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polymerization rate, electrochemical capacity and electroconductivity.  This can be 

explained by the fact that the charge neutrality during film formation is maintained 

by anion and cation exchange with the ionic liquid [95].   

              Another conducting polymer, polythiophene has been of great interest for 

researchers because of its stability and good electrochemical properties and known 

also for its electrochromic properties. Compared to polypyrrole, both polythiophene 

and polythiophene derivatives have the great advantage of being stable to oxygen 

and moisture both in their undoped and in their doped states, and it can be 

considered a more superior material.  

               Electropolymerization of three derivatives of thiophene, 3-

methylthiophene (MeT), 3-hexylthiophene (HexT) and 3-octylthiophene (OcT) was 

performed in ILs [96]. Spectroelectrochemical measurements of the electrochromic 

films obtained, poly(3-methylthiophene), poly(3-hexylthiophene) and poly(3-

octylthiophene) were also performed. The thiophene derivatives, 3-hexylthiophene 

and 3-octylthiophene, were used in conjunction with 1-butyl-3-methylimidazolium 

hexafluorophosphate (BMIM PF6), achieving quite high quality electrochromic 

polymers. Using ionic liquids both as solvent and electrolyte there is the advantage 

of carrying out the experiments at room temperature because BMIM PF6 is stable to 

air and just a slight nitrogen overpressure was kept during the experiment. The total 

volume solutions of 5 ml which contained the ionic liquid BMIM PF6 with monomer 

(0.1 M MeT, 0.1 M HexT or 0.1 M OcT) were used to obtain during successive 

electrodeposition poly(3-methylthiophene), poly(3-hexylthiophene) and poly(3-

octylthiophene) respectively (Figure 1.15).  

              During the polymerization process a gradual increase in the current density 

on each potential sweep was seen, indicating the polymer film deposition at the 

electrode surface. Similar film thicknesses were obtained by simply adjusting the 
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number of potential scans (20 runs) in the potential window of -0.4 V to 1.7 V at 50 

mV/s scan rate. As a result it is believed that polymer film of three-substituted 

thiophenes having long alkyl chain looks more uniform and this can be seen in the 

differences between oxidation/ reduction peak potentials (∆Ep) which are smaller 

with increasing the length of alkyl chain as can be seen in Figure 1.14. ∆Ep values 

observed have decreased from 0.8 V for poly (3-methylthiophene), to 0.3 V for poly 

(3-hexylthiophene) and down to aproximatively 0.15 V for poly (3-octylthiophene). 

 

 

Figure 1.14 Cyclic voltammograms during electropolymerization of (a) 0.1 M MeT (20 

runs), (b) 0.1 HexT (20 runs), (c) 0.1 M OcT (20 runs) on platinum sheet working electrode 

in pure [BMIM] [PF6] ionic liquid. Scan rate: 50 mV/s. [96] 

 

Also the voltammetry of the resulting films PMeT, PHexT and POcT was performed 

in pure ionic liquid BMIM PF6 varying the scan rates between 10 to 400 mV/s. 

There is a linear relationship between peak currents upon oxidation/ reduction and 

square root of scan rate, which demonstrates that the processes are mainly diffusion 

controlled. 

               The 3-subtituted thiophene films exhibited very nice electrochromic 

behaviour. Different colours were obtained for the different redox states; the 

reduced form was bright red, orange red and orange yellow and bright blue, blue and 

black blue in the oxidized state for PMeT, PHexT and POcT.  
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              Another advantage is that it provides some insight into the polymer colour 

according to the location of the absorption maxima and intensity of the peak on the 

main π-π* transitions. It was found that λmax values for π-π* transitions in the 

completely reduced state for PMeT, PHexT and POcT are located at shorter 

wavelengths like 500, 460 and 440 nm. For display applications it is important that 

the polymer can change rapidly between oxidized and reduced states and can exhibit 

a striking colour change. In the paper by Y. Pang the square-wave method known as 

chronoabsorptometry was used to test the switching time and contrast of these 

polymers [96]. 

              The results indicated improved electrochromic properties of poly (3-

subtituted thiophenes) formed in the presence of an ionic liquid and they can serve 

as materials for designing electrochromic devices.  

               Another monomer available commercially since 1990 is 3,4-

ethylenedioxythiophene (EDOT) which displays many interesting properties; high 

environmental stability, high conductivity and excellent transparency in its doped 

state. An interesting feature of EDOT is its progressive emergence as one building 

block for the synthesis of different classes of molecular π-conjugated systems. 

Overall poly(3,4-ethylenedioxythiophene) (PEDOT) is mentioned many times as a 

polymer exhibiting outstanding electrochemical stability while cycling, superior air 

and thermal stability and good electrical properties.  

              The paper by Shahada Ahmad, M. Deepa and S. Singh [97] reported the 

deposition of PEDOT in ionic liquid medium, in this case 1-ethyl-3.-

methylimidazolium bis(perfluoroethylsulfonyl)imide (EMIM PFSI). During 

polymerization in the ionic liquid, both the cation (imidazolium) and the anion 

(PFSI
-
) of the RTIL are swallowed by the polymer matrix and formed an integral 

part of the polymer. This difference regarding polymer doping illustrates that the 
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ionic liquid is both the growth medium and the dopant used to make the polymer 

film. The film was formed under potentiostatic conditions by applying a constant 

potential of +0.8 V for 5 minutes using a Ag/AgCl as pseudo-reference electrode. 

PEDOT was also successfully deposited (at constant potential of +0.8 V for 5 

minutes) on SnO2/F coated glass from an extremely hydrophobic ionic liquid 

without any additional dopant [97]. 

              Since ionic liquids are known as charge-rich media mainly characterized by 

electrostatic forces, they become interesting for electrodeposition processes and film 

formation, especially because of the significant effect on the thermodynamics and 

kinetics processes. They represent a ‘green’ alternative to many traditional 

electrolytes. Ionic liquids have been used since their early development for many 

electrochemical processes and with a great range of materials [98].  

              Even though ionic liquids are characterised by various attractive 

physicochemical properties, they also present some drawbacks. The first condition 

for a successful electrochemical deposition of a conducting polymer is to find the 

appropriate ionic liquid. The choice of ionic liquid involves a series of other 

considerations such as stability, size and nature of ionic liquid ions, the monomer 

solubility and the viscosity parameter, which can influence the 

electropolymerization process.  

               When electrochemical deposition of conducting polymers is performed 

from ionic liquids, the high viscosity at room temperature (e.g. 1-Hexyl-3-

Methylimidazolium Chloride) of some ionic liquids may inhibit formation of 

electroactive polymers at the electrode surface. A very high viscosity produces a 

significant decrease in the conductivity and slows down the rate of ion diffusion 

within the ionic liquid. Due to increased ion size (3-5 Å) of ionic liquids when 



       Chapter 1                                                                                                           Introduction 

      __________________________________________________________________ 35 

compared to aqueous electrolytes (1-2 Å), conductivity at the electrode/ionic liquid 

interface could be altered.  

               The water content in the atmosphere is a factor that should be taken into 

consideration, as water can affect the physical properties of many ionic liquids. In 

order to prevent moisture contamination, the ionic liquids should always be stored in 

a dry place. Another issue of ionic liquids refers to their purity, as air moisture has a 

negative impact on the properties of ionic liquids.  

              Another limitation is the high cost of ionic liquids. For the present work the 

relatively high cost of ionic liquids represented an inconvenience and this led to 

designing a different experimental set-up, namely ‘microcell’ which is described in 

Chapter 3.  
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 1.7 Project Aim 

 

                 The general aim of this project is to use conducting polymers (CPs), in 

conjunction with Room Temperature Ionic Liquids (RTILs), to produce 

electrochromic films. Such films, which change colour in response to electrical 

potential changes, could be used in electronic display devices and in light and 

energy-control applications (e.g. smart windows which control light transmittance). 

Most electrochromic materials suffer from manufacture and performance limitations 

(including stability issues). In addition they are generally made with relatively 

expensive and/or toxic compounds (making disposal difficult). Production of 

improved electrochromic devices, using a more environmentally-friendly “Green 

Chemistry” approach is a desirable goal. This project addresses many of these 

issues.  

                 This project will produce valuable information concerning the 

electrochemical formation, optical and electrochemical performance and physical 

properties of both CPs and RTILs and the combined CP/RTILs system(s). 

                 These main points were investigated and the findings will be discussed in 

the following chapters: 

A. To investigate the electrochemical formation and characterization of poly 

(2,3,5,6-tetrafluroaniline) as electrochromic material in aqueous medium 

(Chapter 2). 

B. To perform electrochemical copolymerization of 3,4-ethylenedioxythiophene 

and pyrrole monomers in RTILs and conduct further electrochemical studies of 

the new material (Chapter 3).  Comparison will be made with published 

investigations concerning the role of various species, such as dopants in aqueous 

solutions versus RTILs. 
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C. To develop a method for employment of small quantities of ionic liquid for CPs 

formation and characterization (Chapter 3). 

D. To use spectral monitoring to provide information on chromatic contrast, other 

optical properties and also some information of their response to electrical 

potential perturbations. Also comparison with the spectral characteristics of 

similar materials in conventional solvent/ electrolytes which will provide 

information concerning the role of the RTILs. 

E. To perform the morphological characterisation of the polymeric materials using 

scanning electron microscopy (SEM). 

F. To investigate the ion transport at the interface of a thin layer of IL and aqueous 

solutions/ buffer pH 7.0 using a model redox sytem (Chapter 4).  

G. To develope a prototype device for an electrochromic cell using a new CP/ILs 

system. 
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Chapter 2. Electrochemical and Electrochromic Properties of Poly-(2,3,5,6-

Tetrafluoroaniline) Thin Films in Aqueous Solution 

2.1 Introduction 

 

           As described in chapter 1, electronically conductive polymers are an 

extremely interesting class of materials that have gained popularity in the last decade. 

This is seen in the variety of industrial applications available, which include sensors [1] 

and batteries [2]. 

                  Polypyrrole (PPy), polythiophene (PTh) and polyaniline (PANI) [3] [4] are 

formed during anodic oxidation and are amongst the most extensively studied 

electroactive polymers [5]. Polyaniline (PANI) and its derivatives are of particular 

interest due to their stability [6], but also because of the low cost and ease of 

preparation. Polyaniline belongs to the family of conducting polymers resulting from 

the oxidation of aniline monomers during the electropolymerization process.  

                 Polyaniline (PANI) can be found in a variety of forms that differ in chemical 

and physical properties. This polymer is particularly interesting because of the three 

oxidation states which can occur: leucoemeraldine -white/clear and colourless, 

emeraldine - green or blue, pernigraniline -blue/violet. These oxidation states are 

represented in Figure 2.1. 
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Figure 2.1 Various possible oxidation states of polyaniline [7] 

 

The leucoemeraldine form represents the fully reduced form, emeraldine is half-

oxidized and pernigraniline is the fully oxidized state of polyaniline. The electrical 

conductivity of polyaniline based materials can be closely controlled over a wide range. 

For neat polyaniline, conductivity levels as high as 100 S cm
-1

 can be achieved. The full 

range of conductivity levels from less than 10
-10

 to 10
-1

 S cm
-1

 (melt processing) to 10 S 

cm
-1 

[8] (solution processing), can be achieved for polymer blends containing 

polyaniline.                                                     

                Polyaniline films have been formed during electrochemical deposition using 

potentiostatic, potentiodynamic and galvanostatic methods [9]. However, only the 

potentiodynamic method known as cyclic voltammetry (CV) [10] was most useful in 

understanding the electrochemical behaviour of polyaniline. Cycling voltammetry 

offered the possibility of switching between the polymer oxidation states: 

leucoemeraldine (neutral), emeraldine (polaron) and pernigraniline (bipolaron). 
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According to the different oxidation forms, the electrical conductivity of polyaniline 

based materials may be closely controlled over a wide potential range. The most 

common, protonated emeraldine, can display a high conductivity of almost 100 S cm
-1

, 

similar to that of a semiconductor [9]. 

                Polymerization of aniline monomers containing fluorine has been performed 

both chemically and electrochemically; however the properties of these polymers have 

not been fully characterised. Monofluoro-substituted anilines [11] have been 

synthesised from acidic solutions using a chemical oxidation process and characterised 

by a range of spectroscopic methods. Upon chemical synthesis of poly(2-fluoroaniline) 

and poly(3-fluoroaniline), the absorption spectra showed similar features to that of the 

2-fluoroaniline monomer. Dehalogenation occurred during polymerization of the 4-

fluoroaniline monomer, with fluorine being displaced to yield a more favourable head-

to-tail polymer, with the resultant UV-Vis spectrum being identical to that of 

polyaniline [11]. However, solubilities of polyfluoroanilines in organic solvents were 

improved in comparison to polyaniline [11].  

                Poly(tetrafluroaniline) has been previously used as a substrate for a bacterial 

fuel cell [9], but was not examined as an electrochromic material. In this work 

electrochemical polymerization of 2,3,5,6-tetrafluoroaniline was carried out in aqueous-

acidic solutions by applying constant potentials for different time periods. Poly(2,3,5,6-

tetrafluoroaniline) modified platinum electrodes showed improved stability compared to 

poly(2-fluoroaniline) when they were exposed to microbially aggressive conditions such 

as sewage or sewage sludge for long time periods [9]. Poly(2,3,5,6-tetrafluoroaniline) 

proved to be the most resistive material towards microbial degradation and prevented 

poisoning of platinum by metabolic by-products [9]. 

    The electrochemical behaviour of different mono-fluoroanilines (2-

fluoroaniline, 3-fluoroaniline and 4-fluoroaniline) electrodeposited on a platinum 
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electrode were examined in both aqueous acidic and organic media using NaClO4 as 

supporting electrolyte [12]. During electrochemical oxidation, poly (2-, 3- and 4- ) 

fluoroanilines were successfully deposited on the surface of the electrode, but the 

transition from the emeraldine to the pernigraniline form was not observed, due to 

presence of the fluorine electron withdrawing group [12].   

                A significant number of reports have described the development of 

transparent conducting polymers and in particular the use of chemically synthesized 

poly(3,4-ethylenedioxythiophene) (PEDOT) with polystyrenesulphonate (PSS) as 

counter ion to form conductive films. For example, dispersions of films of PEDOT: PSS 

in DMSO with single walled carbon nanotubes have been sprayed on 

polyethyleneterephthalate (PET) [13]. The resultant films had a resistance of 118 Ω/sq 

and 90 % transmittance over the wavelength range 400 - 800 nm. When the in-situ 

polymerization of EDOT with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) (molar 

ratio of 1: 1.33) was performed, films with 80 % transmittance over the range 300 – 700 

nm were obtained [14]. Similar films have been formed with a sulfonated derivative of 

polythiophene [15]. Even though these films were able to switch between coloured and 

colourless (transparent) redox states, no electrochromic studies have been described for 

these transparent polymers. However a polypyrrole/ polythiophene co-polymer had a 

broad absorbance between 400 nm and 800 nm while reduced [16]. Upon oxidation a 

strong absorbance band at 600 nm occurred. A co-polymer  of aniline/ thiophene 

displayed a relatively constant change in absorbance over the visible range with various 

applied potentials, but a slight absorbance maximum at 800 nm appeared [17]. When 

constant potentials from 0 V to 1.9 V were applied until the oxidized state was reached, 

the UV-Vis absorbance of aniline/ thiophene copolymer successively increased.     

                No electrochromic studies of PTFA material have been described to date. In 

this study the formation of PTFA thin films on a conducting ITO substrate by 
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successive potential cycling in acidic solutions was achieved and characterised by 

electrochemical and spectroscopic techniques. The electrochemical study of PTFA 

electrodes was examined in solutions containing monomer, and also in aqueous-acidic 

conditions with and without the addition of tetrahydrofuran (THF). The effects of 

different electrolytes on the properties of the polymer are described. Beside 

spectroelectrochemistry, the chronoamperometry technique was utilized in order to 

investigate the PTFA electrochromic behaviour. From the chronoamperometric studies 

it was seen that PTFA required around 40 s to switch between its redox states. In 

addition, SEM analysis of the PTFA polymer was used to characterize the film 

morphology. XPS was employed to characterise the oxidised and reduced states of the 

material.    
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2.2 Experimental 

 

                 The 2,3,5,6-tetrafluoroaniline  and tetrahydrofuran were purchased from 

Sigma-Aldrich and perchloric acid (60%) from BDH Laboratory Supplies, UK. In order 

to avoid degradation, 2,3,5,6-tetrafluoroaniline was stored under dry conditions away 

from moisture. Cyclic voltammetry (CV) was employed to grow PTFA films onto 

conducting indium tin oxide glass (ITO). A three electrode cell was used with an ITO 

glass slide (Solaronix, Switzerland), platinum coil (0.5 mm, Alfa-Aesar, UK) and 

Ag/AgCl (3M KCl) (CH Instruments Inc, UK) as working, counter and reference 

electrodes, respectively. All potentials were reported versus Ag/AgCl (3M KCl).  

                  The dimensions of the ITO electrodes were 0.5 cm x 2.5 cm and the 

electrodes connections were made with conductive silver-epoxy adhesive. The ITO 

sheet resistance was 18 ohms per square (ohm/sq). The electrodes were carefully 

cleaned by successive ultrasonication in deionized water, followed by acetone and then 

deionized water to ensure removal of all traces of acetone and finally dried in air prior 

to use. Deionized water with a resistivity of 18 MΩ cm (Elgastat Maxima) was used for 

all studies. Solutions (10 ml volume) containing 50 mM monomer (2,3,5,6-

tetrafluoroaniline) and 2 M HClO4 were prepared in deionized water. Monomer 

solutions were deoxygenated with nitrogen for 5 minutes before starting the CV 

experiments. All solutions were freshly prepared for each experiment and all 

measurements were performed at room temperature. The electrodes were connected to a 

three-electrode CHI 620 model potentiostat. UV-Vis absorption spectra were recorded 

on a Shimadzu 1800 UV-Vis spectrophotometer.        

                  Chronoamperometry was used to determine the value of the coloration 

efficiency when the potential was successively switched between 0 V to 1.2 V. SEM 

images of PTFA films were obtained using a Hitachi SU-70 scanning electron 
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microscope. X-ray photoelectron spectroscopy (XPS) analysis was obtained on a AXIS 

165 X-ray photoelectron spectrometer. 
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2.3 Results and Discussion       

2.3.1 Cyclic Voltammetry of PTFA on ITO Substrate  

 

                PTFA films were deposited onto ITO electrodes during successive potential 

cycling in aqueous media with the addition of perchloric acid (HClO4) as dopant.   The 

best electrochemical window to grow PTFA on an ITO substrate was in the potential 

range -0.2 V to +1.4 V at a constant scan rate of 40 mVs
-1

. The current density 

increased with the number of potential scans, which indicated formation of a PTFA 

layer on the ITO electrode (Figure 2.2). The peak currents increased slightly at ca. 0.9 V 

on successive scans. On the anodic potential scan, monomer oxidation seemed to have 

started at a potential of ca. 1.2 V. The films formed (Figure 2.2) were thin films since 

thicker films possess an increased resistance which can compromise the conductivity of 

the polymers.  
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Figure 2.2 Cyclic voltammograms of PTFA film deposited on ITO glass from an aqueous 

solution containing 50 mM TFA and 2 M HClO4. Scan rate of 40 mVs
-1

. Number of cycles: 15. 
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                 As the number of cycles increased, the potential corresponding to oxidation 

of the polymer increased to more positive values and the potential for reduction to more 

negative values. The large separation of anodic and cathodic peaks resulted in an 

asymmetric CV (Figure 2.2). Also on the reduction step, close to the main reduction 

peak at 0.3 V, an additional peak appeared at 0.6 V as film thickness was increased. The 

appearance of the small peak at ca. 0.6 V was dependent on the upper potential limit. 

When a higher potential of 1.6 V was used, the reduction peak potential at 0.3 V  also 

shifted to 0.4 V.   

                Electropolymerisation of 2,3,5,6-tetrafluoroaniline on ITO is proposed to 

occur via the same mechanism (Figure 2.3) described for the polymerisation of aniline. 

As evident from the first anodic scan, it is the electron-withdrawing effect of fluorine 

which most likely gives rise to the increase in potential required for monomer oxidation. 

On continuous sweeping, the peak potential separation increased indicating that the 

polymer oxidation/ reduction process is more difficult and this was due to the increased 

hydrophobicity of the film. Previous work involved PTFA electrodeposition as thin 

films on fluorine doped SnO2 (FTO). However, the PTFA films on fluorine doped SnO2 

showed very poor electrochemical response and all studies were thus performed with 

ITO electrodes.  
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Figure 2.3 Proposed mechanism for polymerisation of 2,3,5,6-tetrafluoroaniline 

 

 

 

2.3.2 Electrochemical Characterization of the PTFA/ITO Films 

 

                PTFA polymer characterization was performed in different solutions: with 

background electrolyte alone, with the addition of monomer, or with the addition of 

tetrahydrofuran. The nature of the supporting electrolyte used during electrochemical 

cycling of PTFA indicated that it has a considerable influence on the properties of the 

polymer [18]. Voltammetric characterization of the PTFA films deposited on ITO glass 
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was performed in the same solution used for film formation, over the potential range -

0.2 V and 1.0 V to avoid further monomer oxidation. The polymer was characterised in 

the presence of the monomer as the voltammetric response deteriorated in solutions 

containing only background electrolyte. The resultant cyclic voltammograms (Figure 

2.4) exhibited a similar response to that obtained during polymer deposition (Figure 

2.2). On the cathodic sweep, both anodic (jpa) and cathodic (jpc) peak currents were well 

defined, while upon oxidation the peak potentials shifted towards more positive values 

with increasing scan rate. The ratio of jpa to jpc should be close to one for an ideal thin 

layer system, but the rate of the oxidation process was slow and jpa could not be 

determined (Figure 2.4).  
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Figure 2.4 Cyclic voltammograms of PTFA film as a function of scan rate in a solution 

containing 50 mM TFA and 2 M HClO4.  Inset graph shows plot of cathodic peak current vs. 

scan rate (ν) and square root of scan rate (ν). 
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                 Cyclic voltammograms of films in the presence of monomer displayed an 

increase in the oxidation peak potential with increasing scan rate and also a slight shift 

in the peak potentials with increased scan rate. The inset in Figure 2.4 shows that the 

polymer does not display thin layer behaviour, instead displaying behaviour 

corresponding to bulk diffusion. The linear plot of  jp versus square root of scan rate 

(ν
1/2

) can be ascribed to slow ion movement arising from the hydrophobic nature of the 

film [19].  

                  On transferring the electrode to monomer-free solution containing 2 M 

HClO4 a dramatic change in response was observed (Figure 2.5). The anodic peak 

currents were significantly reduced and the peaks broadened, possibly indicating that 

ion incorporation during the polymer oxidation/ reduction process was not rapid.  It is 

obvious that the absence of the monomer caused a decrease in the peak currents which 

are three times lower in 2 M HClO4 compared to those in the monomer solution. The 

electrochemical response of PTFA in background electrolyte alone is in contrast with 

other conducting polymers such as polypyrrole and polythiophene which have large 

capacitive currents [20] [21]. In general, for conducting polymers the conductivity 

correlates with the capacitance of the film [22]. In aqueous 2 M HClO4 the decrease in 

current densities is due to a loss in conductivity of the film. 
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Figure 2.5 Cyclic voltammograms of PTFA film deposited on ITO as a function of scan rate in 

2 M HClO4 aqueous solution. 

 

 

 

 

                 It was interesting to note that after the PTFA film was removed from the 

electrolyte solution and placed back in the monomer solution, the polymer recovered its 

electroactivity (Figure 2.6). This test indicated that PTFA preserved its conducting 

polymer features only when it was kept in its growth medium.  There was an obvious 

similarity of the shape of the PTFA film scanned for the first time in monomer solution 

(Figure 2.4). The peak currents of PTFA films were drastically decreased in the 

monomer-free solution, which had diminished the film’s electroactivity (Figure 2.5).  
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Figure 2.6 CVs of PTFA film removed from 2 M HClO4 electrolyte solution placed back in 50 

mM TFA/ 2 M HClO4 monomer solution. Inset graph shows plot of cathodic peak current vs. 

scan rate (ν). 

 

  

               PTFA films also could be formed on FTO glass in the potential range of -0.2 V 

to 1.6 V versus Ag/AgCl (3 M KCl). Films formed on FTO were more resistive due to 

the increased oxidation potential of the monomer recorded at 1.6 V (Figure 2.7.a). 

During successive potential cycling in background electrolyte (2 M HClO4), the PTFA/ 

FTO films showed a decrease of electrochemical response and the peak currents 

couldn’t be measured (Figure 2.7.b). When FTO substrate was replaced by ITO 

substrate it was possible to deposit PTFA thin films with decreased resistivity at lower 

oxidation potentials like in Figure 2.4. 
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Figure 2.7.a Cyclic voltammograms of PTFA film deposited on FTO glass from an aqueous 

solution containing 50 mM TFA and 2 M HClO4. Scan rate of 40 mVs
-1

. Number of cycles: 4. 
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Figure 2.7.b Cyclic voltammograms of PTFA film deposited on FTO as a function of scan rate 

in 2 M HClO4 aqueous solution. 
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The addition of tetrahydrofuran to the aqueous 2 M HClO4 solution changed the 

electrochemical behaviour of the polymer (Figure 2.8). Tetrahydrofuran (THF) is a 

polar aprotic solvent characterised by a low dielectric constant of 7.5 [23]. In the 

presence of THF there was an obvious increase in the peak currents. This could be 

possible because the hydrophobic polymeric layer was more opened pore and allowed 

counter ions to move in and out more readily during the redox cycle.  
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Figure 2.8 Cyclic voltammograms of a PTFA film on ITO in 2 M HClO4 aqueous solution with  

16.66 % THF. 

 

 

In contrast to the data shown in Figure 2.4, the reduction peak current increased linearly 

with scan rate, indicative of thin layer behaviour [24] (Figure 2.8). An electrochemical 

study of PTFA in 2 M HClO4 while increasing the THF amount was performed (Figure 

2.9). Increasing the amount of THF resulted in increases in the peak current which are 

associated with increased ion mobility into and out of the film during the redox cycle  
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(Figure 2.9). It could be seen that for 16.66 % and 20.00 % THF present in solution, the 

peak currents were definitely greater compared to the others (4.76 %, 9.09 %, 13.04 %) 

and the reduction peak was well defined. 
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Figure 2.9 Cyclic voltammograms of a PTFA film cycled at 100 mVs
-1

 in 2 M HClO4 aqueous 

electrolyte while increasing the tetrahydrofuran concentration. 

 

                Attempts were made to fully understand the PTFA nature, by describing both 

ion and electron exchange with the polymer, the polymer matrix and charging of the 

interfaces.  

               A more detailed mechanism of spatial and temporal charging was proposed as 

results of improved electrochemical behaviour of PTFA when THF was present in the 

solution. In opposition to the behaviour of other conducting polymers such as 

polypyrrole, polythiophenes that have both significant faradaic and capacitive 

component, the PTFA polymer suffers from lack of capacitive currents. All these lead to 

a question: can PTFA be named a conducting polymer? The two diagrams in Figure 
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2.10 were designed to explain the fundamental process of insertion/ expulsion and 

transport of charges through this type of electrochemical system. 

                It was suggested that the hydrophobic nature of PTFA generates the slow 

redox process in monomer-free solution, as the polymer has a closed structure and does 

not facilitate the charge transport.  

                 The attention should be focused on the, two-phase distribution of ‘deeply 

trapped’ ions in the double layer at the film/electrode interface and ‘slightly trapped’ 

ions in the bulk of the films. Addition of different amounts of aprotic organic solvent 

(THF), caused the PTFA film to swell and as a result the layer was more open to the 

charge transfer process.  

                 In Figure 2.10.a the film is more closed due to the double-layer from which 

the ions cannot escape and this was seen previously in Figure 2.5. The improvement of 

electrochemical faradaic response appeared together with the change of electrolytic 

media (THF addition) (Figure 2.10.b), where the ‘deeply trapped’ ions could be more 

easily expelled (Figure 2.8). 

 

                 
  

a. b. 

 
Figure 2.10 Ion transport model in PTFA film. a) In absence of THF. b) In presence of THF.  

The “deeply trapped ions” generate the “low” faradaic process and the “slightly-trapped ions” 

create the “improved” faradaic process 
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2.3.3 In-Situ Spectroelectrochemistry of the PTFA Polymer  

 

                  Spectroelectrochemical analysis was performed in the presence and absence 

of THF to investigate the optical properties of the polymer. There was a uniform 

increase in absorbance as a function of potential over the wavelength range 420 nm to 

730 nm (Figure 2.11). In addition the spectral band was particularly broad, covering this 

entire wavelength range. This is reflected in the change from a delicate orange to a 

much deeper orange colour as the potential was increased [14].  
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Figure 2.11 UV-Vis spectra of PTFA film in 2 M HClO4 aqueous solution as a function of 

applied potential. 

 

 

      The changes in absorbance (Figure 2.11) over the visible range correspond 

to the electronic transition from a neutral (leucoemeraldine) to a polaron (emeraldine) 

state [7], similar to that seen for monofluorinated anilines [12]. The isosbestic point 
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related to a simple two stage system is not present, as the neutral polymer electronic 

transition occured at lower wavelengths, below 420 nm. The band-gap (π-π*) transition 

for aniline is generally observed around and sometimes below 300 nm which represents 

a limitation for electro-optical applications [25]. Compared to spectra of polyaniline, the 

range of wavelengths associated with the transition in PTFA is very wide, which is due 

to the presence of the fluorine electron withdrawing groups.  
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Figure 2.12 UV-Vis spectra of PTFA film in 2 M HClO4 aqueous solution containing 2 % THF 

as a function of applied potential.  

 

The UV-Vis spectra recorded in the presence of THF can be seen in Figure 2.12. The 

UV-Vis spectra obtained with addition of THF were not reproducible, and showed only 

broad absorbance over the visible range. Unfortunately the PTFA films did not exhibit 

large absorbance changes on oxidation / reduction, even on addition of THF. 
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2.3.4 Electrochromic Switch  

                  

                Electrochromic switching studies were performed in order to monitor the 

ability of the polymer to switch from an oxidized to reduced state and observe the 

resultant colour changes. For this purpose, the double potential step chronoamperometry 

technique was used to investigate the oxidation/ reduction switch of the PTFA formed 

on an ITO substrate. 

                The response time measured upon switching the polymer film between its 

neutral and oxidized states was monitored at 450 nm (Figure 2.13). The polymer 

thickness was controlled by adjusting the number of potential cycles. The film used for 

this study was a thin film formed during successive oxidation-reduction in the potential 

range of -0.2 V to 1.4 V. The film thickness was calculated from the total charge passed 

during oxidation which had a value of 13.6 x 10
-4

 C cm
-2

.   
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Figure 2.13 Plot of absorbance (λ = 450 nm) versus time of a PTFA film as the potential was 

switched between 0 V and 1.2 V. The solution contained 2 M HClO4 and 50 mM monomer. 

Switching interval of 40 s. 
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From the charge value obtained for the oxidation of TFA, the moles of monomer 

deposited were approximately 1.4 x 10
-8

 moles of monomer, which is indicative of a 

thin film. Also the chronoamperogram for the successive oxidation/ reduction process 

of PTFA in 50 mM TFA/ 2 M HClO4 solution is represented in Figure 2.14. 
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Figure 2.14 Chronoamperogram for oxidation/reduction of PTFA.  

Potential limits: 0 V and 1.2 V. 

 
 

Absorbance variations with time under a step potential stepping between the oxidized 

and reduced states of the polymer at λmax in the visible range are essential for an 

electrochromic material. The absorbance change as the polymer is cycled between 

oxidized and reduced state provides information concerning the film’s optical contrast 

and electro-optical stability [26] . 

                 The polymer film on ITO does not display dramatic colour variations, 

changing from an orange in the oxidized form to a more bleached orange colour in the 

reduced form. Consequently, the coloration efficiency had a value of 36.6 cm
2
C

-1
 at 450 

nm, which is low when compared to other electrochromic materials. For example, a dual 

electrochromic system containing poly(3,4-ethylenedioxythiophene) (PEDOT) and 
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poly(3-methylthiophene) had a high coloration efficiency of 460 cm
2
C

-1
 at 665 nm [27]  

where the colours ranged between deep red and deep blue. For other multicoloured 

electrochromic device based on poly(3-methylthiophene) with zinc hexacyanoferrate / 

PEDOT:PSS composite as counter electrode, a very good coloration efficiency of 336.8 

cm
2
C

-1 
was achieved at 750 nm [28]. 

                 The rate of colour change recorded at 450 nm wavelength was slow, probably 

due to the increasing difficulty of inserting ions into the hydrophobic polymer matrix. 

The hydrophobic nature of PTFA polymer makes the injection of ions on oxidation 

more difficult in aqueous media, while upon reduction they are more readily released. 

As stated in the literature the polymer colour depends on the polymer chain-length. An 

increase in resistivity was observed from cyclic voltammetry (Figure 2.2) and UV-vis 

spectra (Figure 2.11). The changes in absorbance spectra seen at 450 nm are very small 

and the rate of the oxidation-reduction process is very slow as the system required 40 s 

to switch between different oxidation states. Ideally a fast switching time of less than a 

few seconds is required for most electrochromic device applications.  

                Still, a slow response time is acceptable for some electrochromic applications 

known as ‘smart windows’ or ‘switchable windows’. Slow transients have also been 

reported elsewhere in the literature for a polypyrrole/ polythiophene system (> 20 

seconds) [16] and for Tempo/ viologen electrochromic devices (> 50 seconds) [29] [30].           

               Moreover, in a recent communication [31] the graphene-based electrochromic 

system with Prussian-Blue nanoparticles deposited on transparent graphene films was 

presented. The results showed that the response time of the Prussian-Blue material on 

graphene was mainly influenced by the graphene film thickness loaded with different 

amounts of Prussian-Blue nanoparticles. In summary, the best response time was 

achieved for the graphene thin films (response time of 3.3 s) while for the graphene 

thicker films the response time raised up to 38 s [31]. 
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2.3.5 Morphology Investigation 

 

                 Morphological investigations were carried out using scanning electron 

microscopy (SEM) to study the influence of organic solvent (THF) on morphology. The 

detailed surface morphology of two PTFA polymer films prepared in 2 M HClO4 

aqueous solution and deposited on ITO substrate was observed on both cases, with and 

without THF treatment. Substantial differences in the morphology of PTFA films have 

been observed. 

                 The SEM micrographs of PTFA films grown from 2 M HClO4 aqueous 

solution on ITO glass were taken after both films were removed from solution and 

allowed to dry without any post treatment. Both films were characterised by a porous 

surface, but differences of pore distribution could easily be seen. The morphological 

features of PTFA/ITO films obtained in aqueous solution containing 2 M HClO4 

without THF addition are presented in Figure 2.15.A. PTFA films had an uneven highly 

porous structure (Figure 2.15.A) with pore diameters of ca. 50 nm. On addition of a less 

polar solvent, THF (Figure 2.15.B), the film morphology appears less porous than for 

the PTFA in aqueous solutions. Previous studies on the polyaniline structure concluded 

that morphology of aniline based polymers is strongly influenced by the nature of 

dopant and oxidant used [32] [33]. It is interesting to notice the changes of polymer 

structure in the presence of 20 % THF which shows reduced number of pores.  

                 In general a less porous structure (Figure  2.15.B) may affect the diffusion of 

ions into and out of the entire bulk film decreasing the electroactivity [34]. This 

contradicts the electrochemical study of PTFA / 20 % THF (Figure 2.9) which indicates 

the presence of a more electroactive layer compared to PTFA / 2 M HClO4 aqueous 

solution (Figure 2.5). However, SEM images were obtained after the films were 

removed from solution and completely dried and may not adequately reflect the 
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structure of the films in solution. The presence of 20 % THF created films with reduced 

number of pores but with increased pore size which facilitates the insertion/ expulsion 

of ClO4
-
 into/ out of the polymer [34-35].  

 

 
 

Figure 2.15.A SEM image of PTFA polymer from aqueous solutions. 

 

 

 

 
 

Figure 2.15.B SEM image of PTFA polymer from solutions with tetrahydrofuran (20 %). 
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                 The cross-sectional view of PTFA/ ITO (Figure 2.15.C) revealed the compact 

structure of the film compared to the highly porous network type of polyaniline [32].  

The thickness of the polymeric film was 25 nm (Figure 2.15.C), in reasonable 

agreement with the value of 15.2 nm calculated from the charge passed during polymer 

oxidation (Q = 13.6 x 10
-4

 Ccm
-2

). 
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Figure 2.15.C SEM cross-section image of PTFA film run in aqueous solution. 
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2.3.6 XPS Analysis of PTFA Films 

2.3.6.1 Surface Analysis 

 

                 The chemical composition analysis of PTFA thin films formed by 

electropolymerization in the potential window -0.2 V to 1.4 V was determined utilizing 

XPS analysis. 

                 The films used for XPS study were synthesized by cyclic voltammetry as 

seen in Figure 2.16. Different redox states for PTFA /2 M HClO4 polymer were 

obtained by use of the appropriate potential, using an oxidising potential (0.9 V) to 

produce an oxidized film,and a reducing potential (0.5 V) to obtain PTFA in its reduced 

form. Two samples were prepared, one in the oxidized and the other in the reduced state 

(Figure 2.16.A and Figure 2.16.B). The film in the reduced state was kept under 

nitrogen conditions to prevent oxygen access and hence oxidation occurring. 

 

 

A. Oxidized B. ReducedB. ReducedA. Oxidized B. ReducedB. Reduced

 

Figure 2.16 PTFA samples used for XPS study. A) Oxidized film; B) Reduced film. 

 

                   XPS scans for the PTFA films in oxidized and reduced forms are presented 

in Figure 2.18. The XPS survey scan of PTFA showed the presence of fluorine (F 1s ~ 

687.7 eV), carbon (C 1s ~ 284.8 eV), chlorine (Cl 2p ~ 207.6 eV), nitrogen (N 1s ~ 
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400.3 eV), oxygen (O 1s ~ 532.8 eV) and tin (Sn 3d ~ 487.1 eV). In addition to carbon 

and nitrogen, which originated from the polyaniline backbone, an intense fluorine peak 

appeared on both XPS scans of the oxidized and reduced states of PTFA (Figure 2.18). 

Also chlorine element was detected in both PTFA samples, which was a counter ion in 

the case of oxidized PTFA sample or due to traces of the perchloric acid (2 M HClO4) 

used during the polymerization process. Similar to Golczak [36] XPS results for 

polyaniline thin films, the XPS results of PTFA films showed low intensity signal for Cl 

2p on both oxidized and reduced forms. 

 

 

Table 2.1 Composition (at. %) of PTFA samples resulting from XPS quantitative analysis  

 

 

 

 
F 

 
C 

 
N 

 
O 

 
Cl 

 
Sn 

 
F/Cl 

 
N/Cl 

 
C/N 

PTFA oxidized 
form 

 
21.6 

 
57 

 
6.5 

 
13.8 

 
0.5 

 
0.6 

 
43.2 

 
14 

 
8.8 

PTFA reduced 
form 

 
34.0 

 
55.7 

 
7.2 

 
2.9 

 
0.2 

 
- 

 
170.0 

 
32.6 

 
7.7 

 

at. % = atomic percentage 

               

                The relative concentrations of elements F, O, N, C, Cl detected on the film 

surface, were calculated and showed in Table 2.1. The peak intensity (or peak area) is 

directly related to the concentration of the element detected on the analysed surface. 

Clear differences between the XPS survey of the two PTFA samples were observed.  
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Figure 2.17 High resolution XPS spectrum of F (1s) for a) oxidized sample, and b) reduced 

sample 

 

                The fluorine peak presented a more intense peak for the reduced form of 

PTFA (Figure 2.17.b), while in the oxidized form the fluorine peak was smaller. On 

high resolution, the fluorine signal was seen at 687.8 eV for both oxidized and reduced 

forms of the polymer. The XPS technique can only be used to probe the surface (~ 5-10 

nm depth) and can not provide information about the bulk composition. Films used for 

this analysis had a thickness of approximative 15 nm and for this reason the anomalies 

were inevitable.  
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b) Reduced Form
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Figure 2.18 XPS wide scan of PTFA. a) Oxidized form of PTFA; b) Reduced form of PTFA. 
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                 According to PANI theoretical formula (C6H5N)n the ratio of carbon to 

nitrogen (C/N ratio) should have a value of 6. For the present study, the C/N ratio was 

higher than 6 for both PTFA samples (7.7 and 8.8) and did not remain constant. As seen 

in Table 2.1, for both samples, the ratio between carbon and nitrogen changed. The 

carbon signal was slightly smaller for the reduced state of PTFA, but the nitrogen peak 

had increased which indicated that more aniline was formed on the electrode. The 

present polymer is highly doped with fluorine ions, known as withdrawing group, that 

have a great influence upon film electropolymerization.  

                When comparing the results of the two samples, there was great amount of 

oxygen present in the doped PTFA, and a very small oxygen peak appeared for the 

reduced PTFA (Figure 2.18). The increased oxygen peak for the oxidised state can be 

also explained according to A. Sharma [37] from the presence of water molecules. The 

work done by A. Sharma on the poly(aniline-co-fluoroaniline) copolymer exposed to 

humid conditions, showed that the copolymer had absorbed the water molecules. The 

water molecules are of little importance because they were dissociated into H
+ 

and OH
- 

at the imine centre. Moreover these ions act as an acidic reagent and increases the 

effective doping of the poly(aniline-co-fluoroaniline) copolymer [37]. Upon reduction 

the PTFA had become more hydrophobic, the amount of moisture was reduced and at 

the end of this process the oxygen content is considerably diminished as in Figure 

2.18.b.  
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 2.3.6.2 Use of XPS to Identify Oxidation or Reduction in PTFA 

 

                  In acidic solution (2 M HClO4), upon oxidation of the film ClO4
-
 can enter 

and then will be expelled on reduction. 

                  By expanding the N 1s peak at 400 eV and using deconvolution to assign a 

number of overlapping peaks, one can identify N as amine nitrogens (-N-, at 400 eV) or 

imine nitrogens (=N-, at 401.4 - 401.6 eV) or benzenoid diamine nitrogens (at 398.7- 

399.2 eV) [36] [37]. However this deconvolution of an XPS high resolution spectrum 

shown in Figure 2.19 does not clarify the situation. Indeed the intensity for the 

benzenoid diamiine nitrogens and the imine nitrogens is greater for the reduced form 

than it is for the oxidized form. This may have happened through the oxidation of the 

film by air before the spectrum was collected. 

                  The three peak positions were similar to those found by Kang et al. [38] in 

previous XPS studies on polyaniline films, showing what an elegant method it is for 

assigning redox characteristics of a conducting polymer. Their study presents the 

changes in the intrinsic oxidation states of emeraldine base (EM) as a function of 

treatment time in aqueous-acid during protonation-deprotonation and this quantitatively 

assessed XPS. As indicated by the angular-dependent XPS data, the changes in the N 1s 

core-level spectra was obtained at α = 75° and α = 20°, for the pristine EM film and a 

once acid-base cycled EM film when exposed for different length of time in 1 M HCl. A 

complete deprotonation was achieved by equilibrating the protonated film with 

deionized water over a period of 24 hours. This was observed in the ratio of imine 

nitrogens to amine nitrogens which was about unity, taken from the N 1s core-level 

spectrum obtained at α = 75° [38].   
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Figure 2.19 High resolution XPS spectrum of N (1s) for a) oxidized sample, and b) reduced 

sample 

 

 

              According to the study done by Yue and Epstein [39] it was found that small 

differences might appear in the binding energies for the same species in different 

samples. The binding energy of C 1s was established at 285 eV [39].  

               In the case of PTFA/ ITO films the ClO4
-
 ions were used as a doping agent. 

The characteristic peak of perchlorate, Cl (2p) doublet was seen at the binding energy of 

207.5 eV. As expected, the atomic percentage (at. %) of Cl had a low value of 0.5 for 

the doped sample (a) and 0.2 for the reduced sample (b) (Table 2.1). Also the ratios of 

F/Cl and N/Cl were calculated. Higher values for F/Cl and N/Cl ratios were obtained 

(F/Cl = 170 and N/Cl = 32.6) for the reduced polymer film, compared to the oxidized 

state (F/Cl = 43.2 and N/Cl = 14).  
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2.4 Conclusions   

 

             PTFA films were successfully deposited on ITO and FTO substrates and further 

characterized by electrochemical and spectroscopic methods. The electrochemical study 

of PTFA/ ITO and PTFA/ FTO have highlighted that films formed on ITO substrate 

presented improved electrochemical response. However, when the PTFA films were 

removed from their growth medium, their conductivity was seriously affected. This was 

manifest in a huge decrease of the peak currents and very broad peak potential. Efforts 

were made in order to improve PTFA electrochemical behaviour. Results looked 

promising when PTFA films were kept in their growth media (with monomer), as they 

exhibited a well defined voltammetry. Addition of THF produced a significant increase 

of the faradaic peak currents. 

              Spectroelectrochemical measurements showed a broad absorbance peak over 

the visible region of the spectrum with an increase in absorbance across the spectrum as 

the potential was increased. This was very much expected, as according to the UV-Vis 

spectra of PEDOT treated with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) [14], a 

similar increase in absorbance as a function of potential was observed. Previous work 

done on fluoro-substituted anilines proved that protonation of aniline makes the electron 

transfer more difficult [12].                

               The addition of THF improved the electrochemical response of PTFA films in 

aqueous solutions. In 2 M HClO4 aqueous solution the films showed a significant 

decrease in the faradaic response. An increase in the peak currents was observed on 

addition of THF. The presence of fluorine substituents to form PTFA did not introduce 

extra stability, as ion movement was hindered and the voltammetric response was more 

sluggish than that of polyaniline in aqueous solution due to hydrophobic nature of the 

films. However with PTFA films the neutral to polaron transition was observed from 
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420 to 730 nm while the neutral transition was moved to lower wavelengths. 

Furthermore, both in aqueous acidic and with organic solvent addition, the transition 

from emeraldine (oxidized form) to pernigraniline (reduced form) was not present for 

fluoro-substituted anilines over visible range [12]. Moreover, for optically active 

poly(2-fluoroaniline) prepared in organic conditions using DDQ, a hypsochromic shift 

of the benzenoid π-π* transition and the bipolaron was observed, compared to PANI 

spectrum [40]. The in situ UV-Vis spectroscopy only confirmed that PTFA films 

formed by electrochemical oxidation are in oxidized form. A low coloration efficiency 

of 36.6 cm
2
C

-1 
was observed while PTFA polymer exhibited a contrast change of orange 

to a more transparent orange. 

              Also the morphology of PTFA polymer with and without THF addition was 

observed by SEM. The films showed a distribution of pores with pore diameters of ca. 

50 nm without THF addition. It was interesting to notice that when THF was added to 

the electrolyte solution (2 M HClO4), the films exhibited a structure with less pores.  

                The changes in the intrinsic oxidation states of thin films of PTFA formed in 

aqueous acidic conditions during successive potential scan were quantitatively assessed 

by X-ray photoelectron spectroscopy (XPS). The XPS technique is very sensitive as it’s 

possible to scan up to only 5-10 nm depth and sometimes the results may not be reliable 

to obtain information about the bulk composition. XPS measurements helped in 

identifying the chemical structure of the PTFA films, but it was not possible to clearly 

differentiate between oxidized and reduced forms, as the reduced sample was affected 

by oxygen when exposed to air. 
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Chapter 3. Homopolymerization and Copolymerization of  

Pyrrole and 3,4-Ethylenedioxythiophene in Room Temperature Ionic Liquids 

Using a  Novel Microcell Configuration 

 

3.1 Introduction  

                 As outlined in Chapter 1, conducting polymers have attracted more and more 

attention because of their potential applications in different fields such as 

supercapacitors [1], sensors [2], photovoltaic cells [3], electrochromic devices [4], 

organic light-emitting diodes [5], and actuators [6]. At the same time, huge progress has 

been made to obtain increased conductivity, stability and processability of conducting 

polymers. Heterocyclic monomers, such as pyrrole and 3,4-ethylenedioxythiophene 

(EDOT) have been intensively used for the synthesis of polypyrrole (PPy) and poly(3,4-

ethylenedioxythiophene) and their derivatives [7].  

   The EDOT monomer consists of a five-membered thiophene ring with 

hydrogens at the 3 and 4 positions replaced with a dioxy-ethyl substituent group. The 

regularity in its molecular structure yields a polymer with very good chemical stability. 

Pyrrole has a ring structure composed of four carbon atoms and one nitrogen atom. Due 

to high electrical conductivity, long term environmental stability and ease of synthesis 

by chemical or electrochemical means, polypyrrole (PPy) has been widely employed 

and characterized and can be considered a model for conducting polymers [8-9]. Also 

poly(3,4-ethylenedioxythiophene) (PEDOT) has received significant attention in 

commercial applications as an organic electrochromic material because of its rapid 

switch time and low oxidation potential value [10]. These conducting polymers can be 

formed and used in a range of solvents, aqueous or organic, but in these conditions they 

exhibit relatively poor stability which is a major limitation to their applications [11]. 

Syntheses of conducting copolymers from ionic liquids are considered to be an 

effective way to compensate for the deficiencies of conducting polymers formed in 
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traditional solvents. Room temperature ionic liquids (RTILs or ILs) are known to be 

environmentally benign media. Due to their non-volatility and excellent electrochemical 

stability, as discussed in Chapter 1, ILs can be used directly as hydrophobic electrolytes 

for the deposition of both PPy and PEDOT.  

In general conjugated polymers have different colours in both the oxidized and 

reduced states. PPy colours can change from dark blue (oxidized form) to yellow-green 

(reduced form), while PEDOT can be switched from light blue (oxidized state) to dark 

blue (reduced state). A variety of methods such as grafting alkyl groups onto the main 

polymer chain, synthesis of water-soluble precursors and preparation of conducting 

polymer composites, blends and copolymers can be used to improve the mechanical 

properties of conducting polymers [12]. One of the strategies that can be used to control 

and improve the electrochromic properties of electroactive polymers is 

copolymerization. Copolymerization is generally carried out to combine the diverse 

physicochemical properties of different polymers to a single polymeric system. 

Amongst the most widely employed methods of copolymerization are the 

electrochemical polymerization of the conducting component on a substrate coated with 

an insulating polymer or electrochemical polymerization of two electroactive 

monomers. 

                  

 

 

 

 

 

 



Chapter 3                                PPy-co-PEDOT Formation and Characterization in Ionic Liquids 

______________________________________________________________________ 81 

                 The reaction mechanism for copolymerization of monomers namely A and B 

is presented in Figure 3.1: 

 

Step 1:     Oxidation of monomers at the electrode surface  

        
_

eAA +→
•+

                                                    (3.1.1) 

       
_eBB +→ •+

                                                    (3.1.2)  

Step 2:     Coupling of radical cations with the growing radical cation polymer 

      
•++•+•+

− →+− AARAAR AAk
               (3.1.3.a) 

      
•++•+•+

− →+− BARBAR ABk
                   (3.1.3.b) 

       
•++•+•+ − →+− ABRABR BAk

                  (3.1.3.c) 

                               
•++•+•+ − →+− BBRBBR BBk

                  (3.1.3.d) 

Step 3:     Proton release 

       
+•++ +−→− HAARAAR 2                   (3.1.4.a) 

       
+•++ +−→− HABRBAR 2                  (3.1.4.b) 

      
+•++ +−→− HBARABR 2                    (3.1.4.c) 

       
+•++

+−→− HBBRBBR 2                  (3.1.4.d) 

Figure 3.1 Electrocopolymerization mechanism for two monomers (A and B), reproduced from 

reference [13]. 

 

 

                 The copolymerization process starts (Step 1) with anodic oxidation of the two 

different monomers, which can be adsorbed on the electrode surface and radical cations 

are formed. The main variables taken into account for monomer oxidation refers to the 
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nature and concentration of each monomer and supporting electrolytes and the 

polymerization potential [14]. 

               Reactions that occur in Step 2 of the electrochemical copolymerization involve  

the selective incorporation of monomers into the co-oligomers or the short copolymer  

chains. The oligomerization can proceed in two ways: the dimerization of one radical 

cation with a second radical cation [15] and the interaction between a radical cation and 

a neutral monomer molecule [16]. Step 3 is known to be very fast in comparison to 

previous steps reactions (Step 1 and Step 2) and therefore not rate controlling [13]. 

              In this work copolymerization of the monomers, Py and EDOT, was performed 

to obtain one layer, which is expected to have different properties from those of their 

corresponding homopolymers. The monomer solution for electro-co-deposition 

contained a mixture of Py and EDOT in an ionic liquid. PEDOT is a very desirable 

material for electrochromic devices, especially because of its low band-gap which 

allows the polymer to be almost transparent (very light blue) in the oxidized state [17]. 

The simple change from light blue to dark blue limits its application to some degree 

[18]. Copolymerization of EDOT with Py could overcome these drawbacks by creating 

a material with an  improved electrochromic range. 

    PEDOT and PPy were first formed as thin electroactive layers in 1-butyl-3-

methylimidazolium tetrafluoroborate (BMIM BF4) as supporting electrolyte as well as 

dopant, using a novel microcell which is described in section 3.2.2. Both the dopant and 

the solvent have a strong influence upon the electrochemical and physical properties of 

polymers during potential scanning [19]. Ionic liquids are distinct from traditional 

solvents, being formed entirely of ions and possessing unique properties (non-volatile, 

high ionic conductivity, wide potential windows and high thermal/electrochemical 

stability), as mentioned in Chapter 1. Those properties are extremely advantageous for 

the electrodeposition of conducting polymers [20]. 
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Copolymerization of PPy with PEDOT will be performed in the same BMIM 

BF4 ionic liquid and further characterised electrochemically in monomer-free ionic 

liquid. The electrochemical copolymerization of PPy with PEDOT will be done by 

employing three different ratios of monomers which allows formation of three films 

with different features. The electrochemical behaviour of copolymers will be 

characterised in neat ionic liquid. This will then be compared to the electrochemical 

response of the copolymers in aqueous solution. The copolymers will be also 

characterized spectroelectrochemically using in-situ spectroelectrochemistry, thereby 

enabling the optical properties of the electrochromic conducting polymers to be 

investigated upon application of a potential change.  This in-situ method will also 

provide information about the electronic structure of the new copolymers to be 

obtained. The electrochromic properties of the copolymers will be investigated during 

successive electrochromic switches between the oxidized and reduced forms. The 

structure of the new copolymers will be examined using FTIR. The surface morphology 

of copolymers will be also investigated by scanning electron microscope (SEM). 
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3.2 Experimental 

3.2.1 Materials and Equipment 

Pyrrole (Sigma-Aldrich, 98%) (Py) was distilled prior to homo-/co-polymerization as 

described earlier. 3,4-ethylenedioxythiophene (EDOT) monomer was purchased from 

Sigma-Aldrich and used without further purification. In order to avoid monomer 

degradation it was stored in the dark in a refrigerator. Ionic liquids including 1-butyl-3-

methylimidazolium tetrafluoroborate (BMIM BF4) used for copolymerization were 

received from Sigma-Aldrich and kept in a desiccator to protect them from moisture. 

Sodium tetrafluoroborate (NaBF4, Sigma-Aldrich) was used without any further 

purification. All aqueous solutions were prepared from deionised water which had a 

resistivity of 18.2 MΩ cm (Elgastat Purification system). The electrochemical results 

were recorded at room temperature with a CHI 600 electrochemical work station, and 

all potentials were given with respect to Ag/AgCl (3 M KCl) reference electrode in 

aqueous solution. For experiments performed in ionic liquids as electrolytic media, an 

Ag wire was used as pseudo-reference electrode. UV-Vis absorption spectra were 

recorded on a Shzimadzu 1800 UV-Vis spectrophotometer. Film morphology was 

analysed on a Hitachi SU-70 scanning electron microscope (SEM). The FTIR spectra of 

the films were recorded on Perkin-Elmer Spectrum 100 FTIR Spectrophotometer with 

an ATR accessory. All experiments described in this chapter were carried out at room 

temperature (approximately 18°C).  
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3.2.2 Novel Microcell Set-up and Electrode Preparation 

 

                 The cyclic voltammetry experiments were performed using a three electrode 

cell in a novel set-up. This cell was termed a microcell as it involved the use of very 

small amounts of ionic liquids (~ 20 µl) for polymer formation and further 

characterization. In the case of polymer deposition, the monomer solution was placed on 

the ITO working electrode surface using a Gilson pipette and then a flat Pt coil and the 

Ag wire were placed close to the working electrode surface as shown in Figure 3.2.a) 

and 3.2.b). 

 

a)  

 

b)  

Figure 3.2.a) Schematic diagram showing the cross-section for the microcell set-up. b) Photo of 

ITO microelectrode 
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                 Indium tin oxide coated glass (ITO, Solaronix, Switzerland) with a resistivity 

of 18 Ω/sq was used as the conducting working electrode. The ITO electrodes were 

cleaned by successive ultrasonication in deionized water, followed by ethanol and 

deionized water, prior to electrode connection.  

                  In order to electrically connect the electrode, conductive silver paint 

(Electrolube, UK ) was used. Copper wire was placed at one edge of the ITO conductive 

surface and next, using a Gilson pipette, a small amount of silver paint (~ 6 µl) was 

attached to form an electrical connection. Then the paint was allowed to dry for 30 

minutes before insulating the electrical connection with Araldite glue. The silver paint 

gave good electrical conductivity, while the glue coverage provided mechanical 

strength. In order to have a small defined electrode area, the electrode was covered with 

insulating paint (Dielectric paste, The Gwent Group, UK) leaving a circular shape as 

electrode surface. Then the electrodes were left in the oven for approximately 15 

minutes to allow the paint to dry. A thick layer of insulating paint was built up which 

defined the working electrode area. The exposed ITO electrode has a diameter of 

approximately 0.5 cm, which formed a geometrical area of 0.196 cm
2
. A flat platinum 

(Pt) coil was placed on top of the droplet (parallel to the ITO electrode surface) as 

counter electrode, while a silver (Ag) wire was used as pseudo-reference electrode.  
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3.3 Results and Discussion 

3.3.1 PEDOT Electrodeposition in Ionic Liquids Using the Novel System 

Configuration: IL Droplet 

 

                 PEDOT films can be electrodeposited and characterised in imidazolium 

based ionic liquids such as 1-butyl-3-butylimidazolium hexafluorophosphate (BMIM 

PF6) and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) [21]. Damlin et 

al. [21] presented the electropolymerization of EDOT films on an ITO substrate in two 

imidazolium based ionic liquids and then conducted electrochemical, 

spectroelectrochemical and structural characterization. For this study the choice of ionic 

liquid was BMIM BF4 as used previously [21] enabling comparison of the differences in 

electrodeposition of PEDOT films in a bulk cell with the films formed here in a 

microcell. 

                  PEDOT electrodeposition on ITO was done in a microsystem which 

involved the use of 20 µl total volume of monomer solution. The monomer solution 

contained 0.15 µl EDOT, corresponding to 0.05 M EDOT in the BMIM BF4 ionic 

liquid. The PEDOT films formed from a droplet of monomer solution were further 

characterized in aqueous solution. Use of aqueous solutions as solvent offers a greater 

variety of supporting electrolytes. One potential cycle between -0.7 V and 1 V (vs Ag 

wire) was sufficient to form a thin uniform PEDOT film on ITO substrate as seen in 

Figure 3.3. The cyclic voltammogram showed a clear crossover on the reverse scan 

indicating nucleation and polymer growth. As expected, the polymer showed a light 

blue colour in the oxidized form and a dark blue in the reduced form. It displayed good 

adherence to the electrode surface. 
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Figure 3.3 Cyclic voltammogram for PEDOT film formation in 0.05 M EDOT/BMIM BF4 

solution. Scan rate: 50 mV s
-1

. 

 

                  The PEDOT films formed during potential cycling were successively used in 

spectroelectrochemical experiments, examining the influence of ClO4
-
 and BF4

-
 on their 

electrochemical behaviour. Figure 3.4 shows a reversible spectrum of the PEDOT in 0.2 

M NaBF4 aqueous solution, while constant potentials are applied in order to achieve the 

reduced form of the film. The reduced PEDOT had a λmax at 540 nm with a dark blue 

colour at -0.8 V and a very clear isosbestic point at 700 nm. Next the PEDOT film was 

transferred to 0.1 M LiClO4 aqueous solution in order to obtain a series of UV-Vis 

spectra for different applied potentials.  

                   The λmax value for the π-π* transition in the neutral state for PEDOT was 

approximately 550 nm (Figure 3.5). At more negative potentials, as the polymer was in 

the reduced form, the absorbance peaks became broader. Also the bands at longer 

wavelengths (lower energy) decreased in intensity with application of more negative 
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potentials, while at 550 nm wavelength the absorbance increased concurrently (Figure 

3.3). When switching the dopant anions, from BF4
-
 to ClO4

-
, changes in the absorbance 

spectrum could be observed. As shown in Figure 3.5, the absorbance changes as a 

function of potential are much greater compared to Figure 3.4. Spectroelectrochemical 

results of PEDOT films in LiClO4 versus NaBF4 aqueous solution are shown in Figure 

3.4 and Figure 3.5. This indicated that ClO4
-
 anions could be injected more easily into 

the polymer matrix in comparison to BF4
-
 anions. 
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Figure 3.4 In-situ UV-Vis spectroelectrochemistry of the successive reduction of 

PEDOT/BMIM BF4 film in 0.2 M NaBF4 aqueous solution in the potential 

range of 0.8 V to -0.8 V 
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Figure 3.5 In-situ UV-Vis spectroelectrochemistry of the successive reduction of 

PEDOT/BMIM BF4 film in 0.1 M LiClO4 aqueous solution for  

the potential range of 0.9 V to -0.8 V 

 

 

 

3.3.2 PPy-co-PEDOT Copolymer Formation and Electrochemical Characterization 

 

                 Conducting polymers formed in room temperature ionic liquids have been the 

subject of interest both from the fundamental and application points of view. For 

copolymerization of PPy with PEDOT, the air stable ionic liquid 1-butyl-3-

methylimidazolium tetrafluoroborate (BMIM BF4) acts as a supporting electrolyte as 

well as a dopant. Both polypyrrole and poly(3,4-ethylenedioxythiophene) are well-

known polymer materials and have been intensively studied because of their high 

conductivity, relatively low oxidation potential, chemical stability, and atmospheric 

stability at room temperature [22-23]. In order to improve the electrochromic properties 
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of CPs and to achieve multichromic materials there are two strategies which can be 

used: copolymerization or group structural modification [24].    

                   Electrochemical deposition of the copolymers was done from a micro-

droplet of ionic liquid which contains the mixed monomers, pyrrole (Py) and 3,4-

ethylenedioxythiophene (EDOT). The copolymers were formed during successive 

cycling in BMIM BF4.  

                   Thin films of PPy-co-PEDOT copolymers were prepared at different 

monomer ratios:  

- pyrrole : 3,4-ethylenedioxythiophene (1:2), Figure 3.7.  

- pyrrole : 3,4-ethylenedioxythiophene (1:1), Figure 3.8. 

- pyrrole : 3,4-ethylenedioxythiophene (2:1), Figure 3.9. 

 

 

Figure 3.6 Scheme for copolymerization of pyrrole with 3,4-ethylenedioxythiophene  

 

 

                 The optimal potential range for copolymer formation was -0.7 V to 0.8 V 

versus Ag wire (pseudo-reference), which ensured the formation of thin films on the 

ITO substrate. Potentials higher than 0.8 V lead to formation of overoxidized films with 

poor adherence at the electrode surface. Copolymerization of pyrrole with 3,4-

ethylenedioxythiophene at a molar ratio of 1:2, 1:1 and 2:1 can be seen in Figures 3.7, 

3.8 and  3.9, respectively. Film formation starts with nucleation on the first oxidation 



Chapter 3                                PPy-co-PEDOT Formation and Characterization in Ionic Liquids 

______________________________________________________________________ 92 

step with successive increases in current density on continuous sweeping leading to the 

formation of a thin film on the ITO substrate.  

                   Polypyrrole is much easier to form than PEDOT, so the EDOT monomer 

concentration is kept in high concentration for this reason. In each case the ITO 

electrodes covered with copolymers were studied first in monomer-free ionic liquid 

BMIM BF4. Once the films were formed, the solution with the two monomers was 

removed from the film surface and a fresh drop of ionic liquid applied. In order to study 

the influence of the electrolyte upon the redox behaviour, the potential scan of the 

copolymers prepared from different molar ratios was done in both ionic liquid and 

aqueous solutions. 

                   The copolymer was rinsed with deionized water in order to remove the 

monomer traces from the modified electrode. A scan rate study over the range 50-150 

mV/s was performed for the different ratios of copolymer thin films formed in an ionic 

liquid droplet. From this experiment a linear relationship between the peak current and  

the scan rate was seen, indicative of thin layer behaviour [25]. 

                   Characterization of both homopolymers and copolymers is necessary when 

studying the copolymer materials. Separately, the PPy/BMIM BF4 (Figure 3.10) and 

PEDOT/BMIM BF4 (Figure 3.3) films were electropolymerized on ITO glass and then 

used for electrochemical investigation.  

                    When the potential was cycled in pure BMIM BF4, cyclic voltammograms 

of the PPy-co-PEDOT (1:2) film (Figure 3.7.a) showed increases in the peak currents 

with increased scan rates. The repeated oxidation/reduction process of PPy-co-PEDOT 

(1:2) was performed in BMIM BF4 at different scan rates. Linearity of both anodic and 

cathodic peaks with different scan rates was seen which proved thin layer behaviour. 

The oxidation peak potential, Ep
f
 situated at -0.04 V is more defined as the scan rate was 

increased, while the reduction peak was very broad and shifted to positive potentials. 
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The electrochemical study of the film was continued in aqueous solution which contains 

anions of the same size, in this case BF4
-
. During continuous potential scanning in 0.2 

M NaBF4 (Figure 3.7.b), both oxidation and reduction peaks appeared broader and 

smaller, which means that the ion-exchange process was slowed down.   
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Figure 3.7 Copolymerization of Py-co-EDOT/ BMIM BF4, ratio 1:2. Film deposition: 3 cycles. 

Scan rate: 40 mV s
-1

. 

 

 

                 Due to modifications of electrolytic media, significant differences appear 

when PPy-co-PEDOT was cycled in aqueous solution at the same potential range of      

-0.5 V to 0.5 V (vs. Ag/AgCl, 3 M KCl). Both anodic and cathodic peak potentials were 

located in the potential range of -0.2 V and 0 V, while in aqueous solution for high scan 

rates of 100 or 150 mV s
-1

 the peak potentials shifted to positive values of 0.1 V. When 

the PPy-co-PEDOT (1:2) was transferred to aqueous solution, the peak currents 

disappeared and the voltammetry appeared capacitive at 100 mV s
-1

. This could be 

explained by the effects of a double layer charging as seen in Figure 3.7.b.  
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Figure 3.7.a Cyclic voltammogram of PPy-co-PEDOT (1:2) in monomer-free BMIM BF4. 
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Figure 3.7.b Cyclic voltammogram of PPy-co-PEDOT (1:2) in monomer-free aqueous 

solution 0.2 M NaBF4. 
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Figure 3.8 Cyclic voltammogram of PPy-co-PEDOT (ratio 1:1)/ BMIM BF4. Film formation: 3 

cycles. Scan rate: 40 mV s
-1

. 

 

 

                 The electrochemical behaviour of PPy-co-PEDOT (1:1) in neat BMIM BF4 is 

shown in Figure 3.8.a where both anodic and cathodic peaks become more pronounced 

with increased scan rate. This means that the reduction and oxidation of copolymer is 

characterized by faster kinetics which may arise from decreased amounts of EDOT. In 

addition the oxidation peak current appeared at the same potential position (-0.1 V), 

while the reduction peak was slightly moved in a positive direction to -0.2 V. The scan 

rate study showed that ∆Ep was reduced at faster scan rates and the anodic/cathodic 

peak currents varied linearly with scan rate. The same film of PPy-co-PEDOT (1:1) was 

subsequently scanned in 0.2 M NaBF4 aqueous solution (Figure 3.8.b). In aqueous 

solution the copolymer presents a significant increase of the capacitive current 

component and broad potential peaks. 

                  The currents have a magnitude of 120 µA cm
-2

 at 150 mV s
-1

 in BMIM BF4 

(Figure 3.8.a) similar to the values when the films were scanned in 0.2 M NaBF4 
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(Figure 3.8.b), indicating that the films have preserved their electroactivity. A decrease 

of ∆Ep value for PPy-co-PEDOT (1:1) copolymer in aqueous solution  (∆Ep = 63 mV) 

was observed, compared to  ∆Ep = 88 mV obtained for the CVs in pure BMIM BF4. 
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Figure 3.8.a Cyclic voltammogram of PPy-co-PEDOT (1:1) film in monomer-free 

BMIM BF4. 
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Figure 3.8.b Cyclic voltammogram of PPy-co-PEDOT (1:1) in monomer-free 0.2 M 

NaBF4 aqueous solution. 
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Figure 3.9 Cyclic voltammogram for copolymerization of PPy-PEDOT (2:1) in 

BMIM BF4. 

 

 

                    For the copolymer film PPy-co-PEDOT (2:1) (Figure 3.9) the 

electrochemical characterization was done in a similar manner as for PPy-co-PEDOT 

(1:2) and PPy-co-PEDOT (1:1). The electrochemical response of PPy-co-PEDOT (2:1) 

showed a clear increase in the peak currents with increased scan rate (Figure 3.9.a). The 

film exhibited fast kinetics which is evident from the sharp film voltammetry in ionic 

liquid on successive potential cycling. As expected, when the film was placed in 

aqueous solution (Figure 3.9.b), on continuous potential scanning the PPy-co-PEDOT 

(2:1) copolymer presents broad oxidation/ reduction potential peaks. Also the film 

thickness could be calculated from the total charge passed during oxidation (Q = 6.34 x 

10
-4

 C cm
-2

).  
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The resulting copolymer PPy-co-PEDOT thickness, L, was 15 nm, calculated from the 

relationship: 

L = QW/(2.25FσσσσA)             (3.2) 

where Q (C cm
-2

) is the charge passed during growth, W (g mol
-1

) is the molecular 

weight of the monomer, F (96485 C mol
-1

) is Faraday’s constant, σ (g cm
-3

) the density 

of monomer. Number 2.25 in the relationship (3.2) is the number of electrons 

transferred. It is assumed that no swelling due to the presence of electrolyte occurred 

[26]. 
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Figure 3.9.a Cyclic voltammogram of PPy-co-PEDOT (2:1) film performed in 

monomer-free BMIM BF4. 
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Figure 3.9.b Cyclic voltammogram of PPy-co-PEDOT (2:1), in monomer-free aqueous 

solution 0.2 M NaBF4. 

 

 

 

Consecutively PPy film was formed on ITO from a monomer solution containing 

BMIM BF4 (Figure 3.10) which presents a linear relationship between the peak currents 

and the scan rate, verifying the thin layer behaviour (Figure 3.10.b). Upon oxidation  the 

potential peaks shifted to more positive potentials and similarly upon reduction, the 

peak potentials shifted towards positive potentials (Figure 3.10.a). Broad peak potentials 

could be seen for the various scan rates, which could be explained by slow diffusion of 

the BF4
-
 ions into the film. 
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Figure 3.10 Cyclic voltammogram of polypyrrole film formation in BMIM BF4.  

Scan rate: 50 mV s
-1

. 
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Figure 3.10.a Cyclic voltammogram of polypyrrole film in monomer-free BMIM BF4 
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Figure 3.10.b Plot of anodic and cathodic peak currents of polypyrrole 

as function of scan rate. 
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Figure 3.11 Cyclic voltammogram of poly(3,4-Ethylenedioxythiophene) film in 

monomer-free BMIM BF4 ionic liquid. 

 

 

                 The PPy-co-PEDOT (2:1) was electrochemically characterized in monomer 

free ionic liquid (BMIM BF4) in the potential range of -0.5 V to 0.5 V versus Ag wire.  
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The copolymers present well defined and reversible redox processes. However, a 

decrease of the currents was seen when copolymer films were cycled in aqueous 

solution 0.2 M NaBF4. The scan rate dependence of the anodic and cathodic peak 

currents shows a linear dependence on scan rate as illustrated in Figures 3.7, 3.8, 3.9. 

This demonstrates that the electrochemical process is a thin layer behaviour. However 

the ∆Ep for all copolymers is greater than 0 mV as shown in Table 1. Actually all 

copolymers were electrochemically active with different characters depending on the 

monomer ratios. 

 

Table 1 Table of forward peak potential (Ep
f
) and peaks separation (∆Ep) of copolymer for 

different PPy/PEDOT ratios. 

 

PPy 
ratio 

PEDOT 
ratio 

Ep
f               

∆∆∆∆Ep 

1 2 > -0.04 V    93  mV 

1 1      -0.1 V   88  mV 

2 1    -0.15 V  113 mV 

1 0 varies - 

0 1       0.1 V  ~ 100 mV 

 

 

It can be seen that as the amount of PEDOT increased, the forward peak potential of the 

voltammogram in pure BMIM BF4 also increased. This was an indication of clear 

increase of PEDOT amount in the copolymer indicating that, it was possible to tune the 

redox potential of the layer by changing the ratio of monomer concentrations, Py and 

EDOT respectively. 

 

 

 

 



Chapter 3                                PPy-co-PEDOT Formation and Characterization in Ionic Liquids 

______________________________________________________________________ 103 

3.3.3 In-situ Spectroelectrochemistry of PPy-co-PEDOT Copolymers  

 

In-situ UV-Vis spectroelectrochemistry is a useful method for the structural and optical 

characterization of conducting polymers [27]. Changes in absorption spectra and 

information about the optical properties as function of applied potential of PPy-co-

PEDOT copolymer was studied.  

                  For this purpose, the spectroelectrochemistry of the copolymer films was 

carried out in monomer-free solution of 0.2 M NaBF4 aqueous solution during 

successive switching between oxidized to reduced forms. A series of UV spectra were 

obtained at different potentials. Constant potentials were applied until the current fell to 

zero and the steady state spectrum was collected. The film had been formed by scanning 

the potential from -0.7 V to 0.8 V versus Ag/ AgCl/ 3 M KCl.. 

                  Figure 3.12 shows the absorbance change with potential starting for 0.8 V 

(oxidation potential) down to -0.6 V (reduction potential) of the PPy-co-PEDOT (1:2). 

The film shows very little change in absorbance over the visible range. Upon reduction 

of the film, a broad absorbance peak was seen at 400 nm, which increased with 

decreasing potential values and a polaron peak was observed at 507 nm. 
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Figure 3.12 UV-Vis spectroelectrochemical spectra of PPy-co-PEDOT (1:2) films on ITO 

as function of applied potentials from 0.8 V down to -0.6 V in 0.2 M NaBF4 aqueous solution 

 

 

                The potential-dependent change in the peak intensities of the absorbance upon 

p-doping for PPy-co-PEDOT (1:1) film in 0.2 M NaBF4 aqueous solution is illustrated 

in Figure 3.13. Similar to PPy-co-PEDOT (1:2), the PPy-co-PEDOT (1:1) films present 

very little change in the absorbance over the UV-Vis range and the isosbestic point is 

not very clear. Upon successive reduction of PPy-co-PEDOT (1:1) thin film in an 

aqueous solution of 0.2 M NaBF4, the π-π* transition intensity was reduced and the 

formation of charge carrier bands was observed. The appearance of the broad 

absorbance peak at 564 nm can be attributed to the presence of a polaron band (Figure 

3.13). 
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Figure 3.13 UV-Vis spectroelectrochemical spectra of PPy-co-PEDOT (1:1) films on ITO as a 

function of applied potentials from 0.8 V down to -0.6 V in 0.2 M NaBF4 aqueous solution. 

 

 

                  In Figure 3.14 the reduction process of ‘polypyrrole dominated’ copolymer 

PPy-co-PEDOT (2:1) in aqueous solution 0.2 M NaBF4, shows a sharp absorbance peak 

at 380 nm in the oxidized form. As the potential applied to the polymer reached a value 

of 0 V, the absorbance peak displayed a blue shift to 370 nm. At negative potentials, 

λmax occurred at 400 nm and also significant changes in the absorbance were noticed 

compared to PPy-co-PEDOT (1:2) and PPy-co-PEDOT (1:1). At 560 nm a broad 

shoulder appeared due to polaron formation [28].   
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Figure 3.14 UV-Vis spectra of PPy-co-PEDOT (2:1) films on ITO while constant potentials 

were applied for 50s. Potential range: 0.8 V down to -0.7 V. Intervals of 0.2 V were applied. 

 

 

Comparing the spectroelectrochemical results of PEDOT and copolymers, the λmax for 

the neutral PEDOT was found at 520 nm and in Figure 3.14 an isosbestic point 

appeared indicating the transition between neutral and bipolaron. In figures 3.12, 3.13 

and 3.14 no isosbestic point is present and each of the spectra show the presence of 

neutral, polaron and bipolaron peaks. The absorbance peak in the neutral form is at the 

same wavelength for all the copolymers and is dominated by pyrrole. The bipolaron 

peak was broad in each case and the maximum wavelength was difficult to determine.    

 

Table 2  λmax of polaron peak as a function of the ratios of PPy/PEDOT 

PPy PEDOT λmax (nm) Figure 

1 2 507 3.12 

1 1 564 3.13 

2 1 558 3.14 
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The evolution of polaron peak appears to be directly related with the change of Py : 

EDOT monomer ratio. In all three copolymers the polaron state is stable unlike the 

PEDOT polymer where the equilibrium lies to the right hand side. 

            2 polarons     neutral  +  bipolaron 

Thus it is clear that the polaron band gap can be modulated by changing the Py : EDOT 

monomer ratio. Even when a small amount of pyrrole such as Py-co-PEDOT of 1:2 

(Figure 3.12), the polaron is stabilised compared to Figure 3.5. 
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3.3.4. Electrochromic Switching Studies 

 

                  The spectral variation corresponds to a change of colour from oxidized form 

(grey-blue) to a reduced form (olive-green). The ability of the polymer to change its 

colour in a reversible manner is of main importance for display applications [17, 29]. 

The PPy-co-PEDOT copolymer exhibited systematic changes in the visible absorbance 

spectrum and this was seen as a promising material for electrochromic applications. The 

PPy-co-PEDOT (2:1)/ BMIM BF4 system was studied in detail in order to explore its 

properties as electrochromic material. The copolymer formed from the ionic liquid was 

used in aqueous solution when spectroelectrochemical experiments were performed.  
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Figure 3.15 Electrochromic switching response for PPy-co-PEDOT (2:1) monitored at 

400 nm.Response time: 20 s. Potential limits: -0.7 V to 0V. 

 

The PPy-co-PEDOT (2:1) electrochromic response was performed at 400 nm and 700 

nm wavelength, applying a potential between -0.7 V and 0 V (Figure 3.15 and Figure 

3.16). The potential was interchanged between -0.7 V (reduced form) and 0 V (oxidized 
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form) at exact intervals of 20 seconds. The film  exhibited reversible behaviour and a 

relatively fast switching time of 20 seconds [30].  
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Figure 3.16 Electrochromic switching response for PPy-co-PEDOT (2:1) monitored at 700 nm. 

Response time: 20 s. Potential limits: -0.7 V to 0V. 

 

 

 

The electrochromic switch experiment was carried out also at 700 nm for the same 

potential interval of -0.7 V to 0 V. The film showed steady and reversible change in 

absorbance with time also at 700 nm. 

A control experiment investigating the electrochromic switching properties was 

performed at 800 nm, where it can be seen that for a different potential range  -0.5 V to 

0.5 V, the absorbance range remained constant with time (~ 10 minutes) (Figure 3.17). 

PPy-co-PEDOT (2:1) films were submitted to consecutive potential steps between -0.5 

V and 0.5 V in order to retrieve data about the stability of electrochromic changes. 

Another important characteristic of electrochromic films is the coloration efficiency η 

(CE), which is calculated using the following equation derived from Beer-Lamber law 

[31]: 
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               (3.3) 

 

where Qd is in C cm
-2

, CE (η) is in C
-1

cm
2
, and Tox and Tneut are the transmittance value 

of oxidized and reduced state. For the present study ∆A was used, as shown in Figure 

3.12 and Figure 3.13.         

                 Colouration efficiency CE (η) is related to the performance of the 

electrochromic device and is defined as the ratio between the change in optical density 

(∆OD) and the injected/ ejected charge per unit area of the electrode at a specific 

wavelength (λmax) [32]. The PPy-co-PEDOT (2:1) copolymer had colouration efficiency 

of 101.3 C
-1

cm
2
, which is a reasonable value for an electrochromic material [29] [33]. 
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Figure 3.17 Reversible response for PPy-co-PEDOT (2:1) monitored at 800 nm. 

Potential limits: -0.5 V and 0.5 V 
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Comparing Figure 3.9.b and Figure 3.18, it can be seen that the absorbance increases 

well beyond the peak current. This indicates that the region past the peak associated 

with double layer charging comprises of faradaic current. 

                Similar results were reported by Kalaji and Peter [34], which indicates that 

current at higher potentials is not solely due to double layer charging. Their study was 

done for an 80 nm polyaniline film deposited on ITO glass at 20 mV s
-1

. The 

polyaniline optical absorption was observed at 620 nm as a function of potential since 

polyaniline presents a maximum absorbance at this wavelength upon oxidation. The 

results showed a continuous increase in absorbance during oxidation, observed beyond 

the peak in the voltammogram [34]. This was associated with rapid charge transfer 

which meant that there was a faradaic pseudo-capacitive component. The non-linearity 

seen in the plot of absorbance versus potential (Figure 3.18) indicated that more than 

one absorbing species was formed (e.g. polaron and bipolaron species [35]).  
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Figure 3.18 Absorbance evolution with time at 700 nm, when PPy-co-PEDOT (2:1) 

copolymer is cycled in 0.2 M NaBF4 aqueous solution between -0.7 V to 0.7 V. 
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3.3.5. FTIR-ATR Structural Characterization 

 

              Thick films of PEDOT, PPy and PPy-co-PEDOT copolymers were formed on 

ITO by cyclic voltammetry and analysed by FTIR. The results of the FTIR analysis 

were rather unclear as the films formed on ITO were quite far from the detector. It is 

known that PPy and PEDOT polymers have characteristic peaks at 827, 936, 1140, 

1182, 1372, 1552, 2677, 2829 cm
-1

 and 813, 1016, 1126, 1192, 1125, 1424, 1571, 1846, 

2008, 2663, 2824 cm
-1

, respectively  [36]. 
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Figure 3.19.A FTIR spectra of PPy-co-PEDOT (1:2), (1:1), (2:1) films on ITO substrate. 

 

 

 

               In Figure.3.19.A the three copolymers clearly have a dominant pyrrole 

signature and peaks at 1516.16, 1567.96, 1557.33, and 1052.28 cm
-1

 can easily be seen. 

The peaks at 1300 cm
-1

 for PEDOT were not evident for the three copolymers. FTIR 

analysis revealed little difference in the FTIR spectra of the three copolymers, even 
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though they were prepared in different monomer ratios. All copolymers showed small 

peaks characteristic to C-S bands at 820 cm
-1

, that indicated the presence of thiophene 

in the copolymers. In comparison with the corresponding homopolymers, the PPy-co-

PEDOT films had weak bands 820.36, 915.54 and 1054.28 cm
-1

, indicating the presence 

of EDOT rings.   
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Figure 3.19.B FTIR spectra of PEDOT film formed in BMIM BF4. 

 

 

                    The FTIR spectra of PEDOT films showed bands at 680.95, 828.81 and 

964.13 cm
-1

 which originate from the stretching mode of C-S. The bands which 

appeared at 1040.50 and 1168.14 cm
-1

 are assigned to the stretching modes of C-O-C 

groups. The vibration modes of the C=C and C-C bonds in thiophene rings could be 

seen at 1504.42 and 1291.50 cm
-1

.  
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Figure 3.19.C FTIR spectra of PPy film formed in BMIM BF4. 

 

 

                  Characteristic bands of PPy films formed in BMIM BF4 are presented in 

Figure 3.19.C.  The stretching mode of C-N was located at 1037.99 and 1171.56 cm
-1

, 

while the stretching bands corresponding to N-H at 750 and 3400 cm
-1

 were not very 

clearly defined.                

                  The PEDOT peaks were poorly defined when compared to the spectra of the 

PPy and PPy-co-PEDOT copolymers. The peaks situated at ca. 1200 cm
-1

 correspond to 

ring vibrations of pyrrole and EDOT in the copolymers. It can be seen that the intense 

peaks at 1054 cm
-1

 and 1541 cm
-1

 have appeared due to the influence of PEDOT band at 

1040.50 cm
-1

 and PPy band at 1547.21 cm
-1

. The FTIR spectra demonstrate that the 

PPy-co-PEDOT films contain features of both pyrrole and EDOT monomer units. 

                 The peak corresponding to β-coupling for the pyrrole units in the copolymer 

was previously located at 770 cm
-1

 [37] and had a very low intensity. The present FTIR 

study indicates a low intensity peak around 700 cm
-1

 (Figure 3.19.A), which may 

assigned to copolymer formation.  
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3.3.6 Morphological Features 

 

                Polymer films of PPy, PEDOT, PPy-co-PEDOT (1:2), PPy-co-PEDOT (1:1), 

PPy-co-PEDOT (2:1) were formed on ITO substrates and characterized by scanning 

electron microscopy (SEM). The films were rinsed with acetonitrile in order to remove 

traces of ionic liquid and dried in air before the analysis. All three copolymer films 

prepared from different monomer ratios and observed on SEM exhibited different 

morphologies.  

               The morphologies of new copolymers have different features compared to 

PPy/ BMIM BF4 and PEDOT/ BMIM BF4. PEDOT homopolymers are known to be 

porous films [38], while PPy films are characterized by a cauliflower appearance [21]. 

The PPy-co-PEDOT (1:2) film has a distribution of globules, pores and holes which 

indicated the incorporation of both PPy and PEDOT to produce the new copolymer. It is 

interesting to observe that the PPy-co-PEDOT (1:1) film has a featureless structure.  

                 The morphological aspect of PPy-co-PEDOT (1:1) is very different since this 

copolymer shows an array of very small granules. The PPy-co-PEDOT (1:1) 

morphology is strikingly different from the ‘polypyrrole dominated’ copolymer PPy-co-

PEDOT (2:1), which presents bigger clusters of globules and holes with increased 

diameter.  The SEM analysis of PPy-co-PEDOT (2:1) was interesting to observe since 

this polymer displayed the best electrochomic properties. The apearance of pores with 

increased diameter could explain the good electrochemical behaviour, from the 

perspective of ions which can be injected/ ejected easily into/out of the polymer matrix. 
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Figure 3.20.A SEM image for PPy-PEDOT (1:2) 

 

 

Figure 3.20.B SEM image for PPy-PEDOT (1:1) 

 

 

 
 

Figure 3.20.C SEM image for PPy-PEDOT (2:1) 
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3.4 Conclusions 

 

                In this study, new PPy-co-PEDOT copolymers were successfully synthesised 

by electrochemical oxidation of monomer mixtures in BMIM BF4 ionic liquid using a 

novel microcell set-up. The copolymers prepared in three different ratios were further 

characterized by several means such as cyclic voltammetry, in-situ UV-Vis 

spectroelectrochemistry, FTIR analysis and scanning electron microscopy (SEM). 

According to the cyclic voltammograms (CVs) of the copolymer film obtained in both 

ionic liquids and aqueous electrolyte, different electrochemical responses were observed 

when the copolymers were removed from their growth medium. Actually the 

copolymers CV curves showed well-defined redox processes comparable to earlier 

studies done by Tao Yi-Jie et al [37]. The current density was proportional to the 

applied scan rates indicating the presence of an electroactive thin film. 

                Spectroelectrochemical analysis of copolymers showed distinct 

electrochromic properties compared to those of PPy and PEDOT polymers. Changes in 

the absorbance spectrum of the copolymer film as a function of the applied potential to 

the electrode were observed upon the evolution of charges for all three copolymers. The 

in-situ spectroscopic measurement as function of potential helped in detecting PPy-co-

PEDOT (2:1) as the best behaved copolymer, as only for this copolymer transitions 

from neutral to polaron and bipolaron could be seen. These results are comparable to the 

UV-Vis spectra upon oxidation of PPy-co-PEDOT copolymers in acetonitrile [37]. 

                 FTIR was used to confirm the existence of both pyrrole and EDOT rings in 

the copolymer. FTIR spectra of the polymers and copolymers investigated were not 

very clear, but according to existent literature [37] on copolymerization it was possible 

to state that a new copolymer was formed. Previous work reported similar FTIR 

features for the PPy-co-PEDOT copolymers formed in acetonitrile solutions containing 

lithium perchlorate [37]. The copolymers study was completed by SEM analysis, which 
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highlighted the differences in morphology of copolymers to that of homopolymers. In 

comparison to PPy-co-PEDOT films formed in acetonitrile [37], the SEM test revealed 

various accumulations of globules and porous appearance, according to the amount of 

pyrrole existent in the sample. The careful study of copolymers helped in understanding 

the redox behaviour of these materials. Investigation of the electrochromic properties  at 

two wavelengths, 400 and 700 nm, proved the reversible electrochromic behaviour of 

copolymer PPy-co-PEDOT (2:1) and the value for the coloration efficiency was 110.41 

C
-1

 cm
2
. The value obtained for colouration efficiency is in good agreement with those 

required for display applications reference and suggested that this new material could be 

used in applications such as smart windows and other ECDs. 

               Different colours were observed for the oxidized and reduced forms of the 

copolymers formed in the three monomer ratios. The PPy-co-PEDOT (2:1) colours 

were different from those of PPy and PEDOT, as they changed from olive-green to 

blue-grey when switching between oxidized and reduced form. The colours seen for the 

PPy-co-PEDOT (1:2) had a green-yellowish in reduced state and blue-greenish in the 

oxidized state. The copolymer prepared in equal monomer ratios (PPy-co-PEDOT, 1:1) 

exhibited a yellow –greenish colour in the reduced form and a (darker) grey-bluish 

colour in the oxidized state.   
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Chapter 4.  Model For Thin Layer of Ionic Liquid Coating on an Electrode 

 

4.1 Introduction 

 

                  For many years electrochemistry at the interface of two-phase liquid system 

has represented a fascinating subject of study for electrochemists. The interface of two 

immiscible electrolyte solutions (ITIES) continues to be an intriguing subject in 

electrochemistry. This is illustrated by a range of publications presenting the processes 

generated by the ion transfer across ionic liquids/ water interface such as migration, 

solvation /desolvation, complex formation and adsorption/desorption. Examples within 

ITIES include ion transport across biological membranes [1], drug delivery [2], 

extraction processes in oil recovery [3] [4] and the list with other applications in 

electroanalytical or applied chemistry is long.  

                    The class of ionic liquids (ILs) named also the ‘green solvents’ [5], 

previously described in Chapter 1, are preferred as new reaction media. ILs can be used 

for a wide range of electrochemical reactions because of their negligible vapour 

pressure and relatively high thermal stability. However, most of ILs are hydrophobic 

and are characterized by increased viscosity, which can curtail their application on an 

industrial scale. The viscosity decreases with increasing temperature, but room 

temperature is the desirable condition for most experimental work. 

 

Thin film of ILelectrode aqueous solution

H1 H2

Thin film of ILelectrode aqueous solution

H1 H2  

Figure 4.1 A thin film of IL of thickness H1 and the distance H2 out into solution. 
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The transfer of the ferricenium (Fc) ion at the interface of an hydrophobic ionic liquid 

(IL) with aqueous solution interface was observed on successive cyclic voltammetric 

experiments and also simulations using a Fortran program were run. The present work 

was done using manufactured ITO micro-electrodes previously described in section 

3.2.2 of Chapter 3. 

      The ionic liquid chosen for this study was 3-methyl-1-propylpyrridinium 

bis(trifluoromethylsulfonyl)imide [MPyr TFSO], which has increased hydrophobicity 

[6]. The bis(trifluoromethylsulfonyl)imide ion is described as one of the most efficient 

anions because of features such as being weakly interacting with water and being 

flexible [7]. In order to prepare a stable hydrophobic layer, a composite of MPyr TFSO 

and PVC was employed. 

                  This chapter describes the charge transfer process at the interface between a 

polar (aqueous solution) and nonpolar solution (ILs). For the present study, both 

experimental work  and computer simulations were performed in order to understand 

the ion transfer across liquid/liquid interface using a model redox couple namely 

ferrocene.  

                In order for ion transport to occur across ionic liquid/ water interface the 

ferrocene-ferricenium couple was used. Ferrocene is soluble in ionic liquids and 

insoluble in the aqueous phase, while ferricenium is soluble in aqueous phase. SEM 

analysis was performed in order to observe the PVC film morphology and to estimate 

the film thickness. 
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4.2 Model For Thin Layer of Ionic Liquid Coating on an Electrode. 

Mass transport controlled model 

 

This consists of a thin layer of ionic liquid containing ferrocene coated on an electrode 

in an aqueous solution.  The ferrocene is soluble in the ionic liquid but not soluble in the 

aqueous solution. When oxidised, the ferricenium ion is soluble in the aqueous solution. 

For the general system: 

    O + ne  =   R         (4. 1)  

 

Diffusion equations are solved for within the IL, which is region 1 and where the 

diffusion coefficient is D1 and the aqueous solution where the diffusion coefficient is D2 

as can be seen in Figure 4.1. There are 4 diffusion equations to be solved. The diffusion 

coefficient for ferrocene in aqueous solution is 1.2 x 10
-5

 cm
2
s

-1
, while in an ionic liquid 

BMIM TFSI is 3 x 10
-7

 cm
2
s

-1
 [8]. Thus there is a requirement to differentiate between 

the two media. 

     (4. 2) 

     (4.3) 

    (4.4) 

    (4.5) 

                  All the parameters are made dimensionless as follows. The concentrations 

are normalised to the initial ferrocene concentration Co. In region 1 the distance is 

normalised to the thickness H1.  

For region 2, at a distance sufficiently far from the electrode, the concentrations of O 

and R will always be zero. This distance is taken to be 6(D2tc)
1/2 

[9]
 
and the distance in 
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region 2 is normalised to this.tc is the total time of the experiment, determined by the 

difference between the initial and final applied potentials and the scan rate and D2 is the 

diffusion coefficient of ferricenium in aqueous solution. 

The dimensionless diffusion coefficient DM  is calculated as follows [10] where ∆t is the 

time increment and ∆x is the distance increment. 

 

   (4. 6) 

 

The initial conditions at time = 0 are: 

The concentration of the oxidised form in region 1 is C
o
, (the bulk concentration). The 

concentration of the reduced form is zero. In region 2, the concentrations of the oxidised 

and reduced forms are both zero.  

The boundary conditions are as follows: 

                At the electrode surface the concentrations of O and R are set by the applied 

potential, E. 

 

                   (4. 7) 

 

Where Eo is the standard potential for the couple in equation (4.1) and n, F, R and T 

have their usual meanings.  

Also at the electrode surface the slope of the concentration profiles for the oxidised and 

reduced forms are equal and opposite in region 1. 
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                      (4.8) 

 

At the edge of the IL film, between region 1 and region 2, the oxidised form cannot 

diffuse outside the film and  

                             (4.9) 

At the edge the reduced form can diffuse outside the film, and so for R,  

 

     (4.10) 

  

The concentration profiles on either side of the edge are equal.  

The equations are solved by the Crank Nicholson implicit method where there are N 

distance increments and L time increments. The advantage is that the implicit method is 

not limited to values of DM less than 0.5.  

The input file to the program reads in the 2 diffusion coefficients, the layer thickness 

and the scan rate and the rate constant k. The initial and final potentials are 0.3 and -0.3 

and the standard potential is 0.0 V. The concentrations are in FRNW1, FRNW2, 

FONW1 and FONW2 and the current is dimensionless PCHI, as outlined in the 

program attached in the appendix. 

 

When the program was run under simple conditions to check that the output was 

accurate, the following behaviour was obtained as seen in Figure 4.2. 
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Figure 4.2 The corrected peak current ratio as a function of scan rate.  

Ratio is 1 at high scan rates. 
 

The conditions used were:  the diffusion coefficient is 3 x 10
-6

 cm
2
 s

-1
, the thickness is 

0.001 cm, the number of time increments is 500 and the number of distance increments 

is 500. The scan rates were in volts per second.  

The dimensionless current is χπ (at) where 

 

   χπ (at) = i/( nFAC
o

aD )                        (4. 11) 

 

where a = nF ν /(RT). The ideal dimensionless peak current is 0.4463 [10] [9] [11]. This 

dimensionless current includes the electrode area, the concentration, the diffusion 

coefficient of the species. It can be seen from the Table 4.1 and Figure 4.2 that at scan 

rates greater than 10 V/s, the dimensionless peak current is close to the literature value. 

This is an indication that the iron is oxidised and reduced fast enough that it does not 

have a chance to migrate outside the film. However at slower scan rates it can be seen 
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that the ferricenium diffuses out and so the corrected peak current on the backward scan 

decreases where the corrected peak current ratio is given by [10] [9] : 

 

             (4. 12) 

 

Where ipb/ipf is the corrected peak current ratio and 

ipfo is the forward peak current 

ipbo is the reverse peak current  

iγ is the current at the switching potential [11] 

 

Table 4.1 Results obtained by running the programme. Conditions are as in Figure 4.3.  

Data in table and in the figure is in V/s. 

 

Scan rate  V/s ipfo iγ ipbo ipb/ipf 

1 0.186 0.022 -0.0496 0.410 

2 0.261 0.027 -0.099 0.515 

3 0.312 0.04 -0.142 0.603 

4 0.347 0.056 -0.178 0.677 

5 0.372 0.0719 -0.206 0.733 

10 0.427 0.123 -0.278 0.876 

20 0.442 0.157 -0.316 0.973 

 
 

 

 

The oxidation peak currents do not vary linearly with the square root of scan rate as 

when the scan rate decreases; there is a transition between the bulk cyclic voltammetric 

behaviour and the thin layer voltammetry. This can be seen as while the currents 

decrease with scan rate, the shape also become more symmetric, indicative of thin layer 

behaviour as seen in Figure 4.3.  
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Figure 4.3 Predicted cyclic voltammograms for ferrocene at different scan rates from the 

PROGRAM 6 using  D1 = D2 = 3 x 10
-6

 cm
2
/s and H1 = 0.001 cm. 
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4.3 Experimental 

 

                   Ferrocene was obtained from Merck and poly(vinyl-chloride) (PVC, Mw = 

62,000), tetrahydrofuran (THF, anhydrous, 99.9 % ) and 3-methyl-1-propylpyrridinium 

bis(trifluoromethylsulfonyl)imide ([MPyr TFSO], 97 %, HPLC)  were purchased from 

Sigma-Aldrich, Germany. The electrolyte used for aqueous solution was potassium 

chloride (KCl, 99+ %) was obtained from Fisher Scientific. The water used for 

electrochemical experiments was purified by deionization using the Elgastat Maxima 

machine with a measured resistivity of 18.2 MΩ cm. All chemicals were stored in 

tightly closed containers to protect from humidity; especially the ionic liquids which 

were always kept in a dessicator.  

                   A three electrode cell was employed for all electrochemical experiments: 

ITO electrode as working electrode, platinum wire (0.5 mm, Alfa-Aesar, UK) as counter 

electrode and reference electrode Ag/AgCl [3 M KCl]. The electrochemical 

measurements were performed with CH Instruments three-electrode potentiostat. The 

aqueous solution used for electrochemical experiments was of 10 ml total volume 

containing 0.1 M KCl.  

                  A phosphate buffer solution, pH = 7 was prepared. Electrochemical 

experiments were performed in two different solutions, 0.1 M KCl aqueous solution and 

10 mM phosphate buffer (pH = 7.0).  

         

 

 

 

 

 



Chapter 4                                       Model for Thin layer of Ionic Liquid Coating on an Electrode 

______________________________________________________________________ 130 

4.3.1 Electrode Preparation       

                The indium-tin oxide (ITO) glass substrate (Solaronix, Swizerland) 

microelectrodes (Figure 4.4) were used for all electrochemical measurements. As 

described in Chapter 3, the geometry of the electrodes surface is a circle of 0.4 cm 

diameter and calculated geometric area of 0.125 cm
2
.  

 

 

Figure 4.4 Picture of manufactured ITO electrodes.  

 

                The 3-methyl-1-propylpyrridinium bis(trifluoromethylsulfonyl)imide [MPyr 

TFSO] ionic liquid is highly hydrophobic, so in order to achieve formation of a thin 

layer of on the ITO surface, a supporting material was needed. The poly(vinyl chloride) 

(PVC) was  used as a support for immobilization of the ionic liquid layer [12]. PVC 

polymer represented the best option as support for the hydrophobic ionic liquid because 

of its spongy morphology observed on SEM analysis (Figure 4.5). First a PVC stock 

solution was prepared which contained 0.05 g PVC, 3 ml THF and 5 mM ferrocene. 

From the PVC stock solution, a volume of 20 µl was removed using a Gilson pipette, 

and further mixed with 2 µl [MPyr TFSO] ionic liquid. The solution of PVC and [MPyr 

TFSO] was cast on the ITO surface and allowed to dry under the fumehood.  
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Figure 4.5 SEM images of the PVC cast film on ITO electrode 

 

                      The PVC film thickness was determined by SEM. The sample was 

scratched and tilted at 90° in order to examine the film in cross-section. From the cross-

section, a film thickness 10 µm was determined (Figure 4.6).  

 

ITO  substrate
PVC film

ITO  substrate
PVC film

 

Figure 4.6 SEM cross-section image of the PVC film on ITO electrode 
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4.4 Results and Discussion 

                 The cyclic voltammetry experiments were performed over the potential range 

of -0.1 V to 0.8 V vs Ag/AgCl. Various scan rates were applied in order to get a better 

insight of ion transfer process between ionic liquid and water phase. All cyclic 

voltammetric experiments were run on different scan rates, starting from high scan rates 

(Figure 4.7) and successively decreasing the scan rate (Figure 4.8-10). 

                The starting point was at 300 mV/s scan rate which seemed to be too high for 

the Fc mobility  and this resulted in a response typical of bulk- voltammetry (Figure 

4.7). Similar results were seen at 200 and 100 mV/s, where the cyclic voltammograms 

exhibited slow kinetics with broad peak potential (Figure 4.7). The successive decreases 

in the scan rate (50 mV/s) did not bring much improvement in peak to peak separation 

(∆Ep). ∆Ep had values of 600 and 500 mV at 300 mV/s and 50 mV/s, respectively 

(Figure 4.6).    
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Figure 4.7 Cyclic voltammogram of Fc/Fc
+
 couple in 0.1 M KCl aqueous solution 
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             The reason for the large peak to peak separation in Figure 4.7 may be due to a 

combination of resistance and slowness of ion transfer. When ferrocene is initially 

oxidized in the film, either an anion has to penetrate the film or a cation has to exit to 

preserve charge neutrality. By comparing Figure 4.8 and Figure 4.7, this can be seen to 

be a sluggish process. 

             When lower scan rates of 20 or 10 mV/s were used (Figure 4.8) an 

improvement in the electrochemical response, with well defined peak potentials 

appears. The peak potentials which were seen at 0.65 V (anodic) and 0.05 V (cathodic) 

in Figure 4.5, were shifted to 0.45 V (anodic) and 0.15 V (cathodic) in Figure 4.8. 
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Figure 4.8 Cyclic voltammogram of Fc/Fc
+
 couple in 0.1 M KCl aqueous solution 

 

From the CV shape in Figure 4.8, can be clearly seen a decrease of both oxidation and 

reduction peak potential when the scan rates were successively lowered. Beside 

successive decrease in the peak potential separation, a reduction of the cathodic peak 

current is observed and this is due to decreased concentration of Fc
+
. Reduction of the 

cathodic peak current is more evident when approaching lower scan rates of 5 or 2 
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mV/s, where more Fc is oxidized to Fc
+
 (Figure 4.9). Fc

+ 
has diffused out in the aqueous 

solution, but not all Fc
+
 amount has been reduced, as some of the Fc

+
 is lost in the 

aqueous phase. At these slow scan rates the Fc
+
 has time to diffuse out of the ionic 

liquid film and a smaller reverse peak is seen. 

                In Figure 4.9 at 5mV/s the forward peak is quite symmetric indicating thin 

layer behaviour, but the peak to peak separation is greater than 0 V due to resistance 

and/or slow kinetics. 

 

-16

-11

-6

-1

4

9

14

19

24

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Potential / V  vs  Ag/AgCl 

C
u

rr
e

n
t 

/ µµ µµ
A

 c
m

-2

2 mV/s

5 mV/s

 

Figure 4.9 Cyclic voltammogram of Fc/Fc
+
 couple in 0.1 M KCl aqueous solution. 

 

At very low scan rate such as 1 mV/s (Figure 4.10), the reduction peak current is 

significantly diminished compared to anodic peak current. This occurs because higher 

amount of Fc species are transformed into Fc
+
 species which diffuse into the aqueous 

solution.  
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Figure 4.10 Cyclic voltammogram of Fc/Fc
+
 couple in 0.1 M KCl aqueous solution 

  

When calculating the dimensionless peak current ratio of Nicholson and Shain, most of 

the values were greater than unity (Figure 4.11.a). For the scan rates above 10 mV/s, the 

values of corrected dimensionless peak current ratio (reverse peak/ forward peak) were 

always higher than 1.  
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Figure 4.11.a Plot of dimensionless peak current ratio as function of scan rate.  

Data from Figure 4.7, 4.8, 4.9 and 4.10. 
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Figure 4.11.b Plot of peak potential difference as a function of logarithm of scan rate for the 

cyclic voltammograms obtained in 0.1 M KCl. 
 

              Because Figure 4.7 to 4.10 were all performed on the same film, the initial 

concentration of Fc was different for each cyclic voltammogram . However this factor is 

corrected for by using current ratios as shown in Figure 4.11.a. 

The experimental results are quite different when compared to the designed model for 

thin film layer of ionic liquid, as the ideal value for dimensionless peak current ratio 

should be 0.4463 [10] [9] [11].  

                From the CVs obtained experimentally can be seen a gradual increase of peak 

to peak separation with increasing scan rate. According to literature the difference in 

peak to peak separation should have the value of 57 mV for a reversible process [9]. 

However under conditions where the kinetics is slow the peak to peak separation 

follows the equation [13] , as can be seen in Figure 4.11.b 

tconsE p tan)(log
59

10 +=∆ ν
α

,    at 298 K    (4.13) 

Where ν is the scan rate and α the transfer coefficient. 
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Table 4.2 Conditions for simulations with PROGRAM 6 [8] [14] 

 

 

Results obtained from simulations with PROGRAM.6 of the model are presented in 

Figure 4.12 and 4.13, using the conditions presented in Table 4.2. 
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Figure 4.12 Cyclic voltammogram of Fc/Fc

+
 couple in 0.1 M KCl aqueous solution, simulated 

by PROGRAM 6. IL film thickness: 10 µm. 

 

  

 

  

                  The results from simulations (Figure 4.12) are showing that for a thin film of 

IL (10 µm), below 20 mV/s the program is going into oscillation, while for higher scan 

rates the thin layer behaviour can be seen and at even higher scan rates again bulk CV 



Chapter 4                                       Model for Thin layer of Ionic Liquid Coating on an Electrode 

______________________________________________________________________ 138 

behaviour is seen. In Figure 4.12 the peak width around half height is 106 mV for 20 

mV/s, which is bigger than 90/n mV expected.  

In Figure 4.13, the results from simulations are shown for a thicker film of ionic liquid 

(100 µm), the electrochemical behaviour of this thick film is more similar to 

experimental results shown in Figures 4.7, 4.8 and 4.9. 
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Figure 4.13 Cyclic voltammogram of Fc/Fc
+
 couple in 0.1 M KCl aqueous solution, simulated 

by PROGRAM 6. IL film thickness: 100 µm. 

 

It can be stated that for the thicker layer, at fast scan rates the function equals 0.4463 as 

expected from Nicholson and Shain.  
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Figure 4.13.a Plot of peak potential difference as a function of scan rate for the simulated cyclic 

voltammogram. IL film thickness: 100 µm. 
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Figure 4.13.b Plot of corrected peak current ratio as function of scan rate for the simulated 

cyclic voltammogram. IL film thickness: 100 µm. 
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                  Other workers in the field have used recessed microelectrodes where the 

cavity was filled with IL and have used cylindrical coordinates to solve the diffusion 

equations [8] . Several authors [8] [14] have included kinetic terms associated with 

equations 4.2, 4.3, 4.4, and 4.5. An additional kinetic term is due to the reaction 

between ferricenium which reacts further with oxygen or tetraphenyl borate.  

                 Another term which has been included in the diffusion equations and which 

applies to the surface of ionic liquids is:  

-AkC/V      (4. 14) 

Where A is the area, V is the volume of the liquid, k is the rate of movement of the 

ferricenium from the ionic liquid in cm/s and C is the concentration. 

This term is made dimensionless by dividing by the bulk concentration and multiplying 

by the layer thickness. This term has been included in the diffusion equations only at the 

interface. It is curious that this has not been included as a boundary condition. The term 

is included to model the movement of ferricenium from the ionic liquid to the aqueous 

solution. This happens when the liquid junction potential at the IL/water interface is 

more negative that the standard liquid junction potential.  

The liquid junction potential at the interface is set by the concentration of the cation in 

the aqueous solution as  

         (4.15) 

As the concentration of the electrolyte cation increases the liquid junction potential 

becomes more negative. This happens because as the electrolyte cation concentration 

increases, it can exchange more readily with the ferricenium as it exits the IL increasing 

the rate at which the ferricenium exits the IL. In fact the rate of removal of the IL can be 

modelled by the Butler-Volmer equation  

       (4. 16) 
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Where the rate is dependent on how far the liquid junction potential is away from the 

standard liquid junction potential value. This term has been included in the program as 

RKR2(1) and RKR1(N). However for small values of k, there was no change seen in the 

voltammetry. At larger values of k, the program went in to oscillation and thus the 

kinetic term was neglected.  

                Further electrochemical studies involving ion diffusion at the interface of a 

thin film ionic liquid with phosphate buffer solution were performed. The cyclic 

voltammetry was carried out in similar manner to experiments performed in 0.1 M KCl, 

starting from high scan rate of 300 mV/s and successively reducing to 1 mV/s.  

              The cyclic voltammograms obtained when experiments were performed in 

phosphate buffer, pH = 7.0 are presented below in Figure 4.14.a to Figure 4.14.f.  

The electrochemical response of ferrocene/ferricenium in contact with phosphate buffer 

solution showed an increase in the peak potential separation (∆Ep). The characteristic 

shift of the peak potential (upon oxidation/ reduction) indicated the effect of anion 

present in the aqueous solution in the oxidation of ferrocene to ferricenium. Presence of 

PO4
3-

 anion generated a change in the peak potentials which were moved towards more 

positive values upon oxidation and down to more negative values when reduction 

occurred (Figure 4.15).   

               At very high scan rates of 150, 200 and 300 mV/s, there was seen an 

extremely high peak potential separation of 1 V was found. The voltammetric behaviour 

of Ferrocene is far from bulk layer behaviour, as the ∆Ep value was higher than 57 mV. 

This could be caused by increased hydrated radius and ionic radius of the PO4
3-

 anion 

[15], compared to Cl
-
. The values presented in literature for PO4

3-
 anion were 0.223 nm 

and 0.339 nm [16] for ionic radius and hydrated radius respectively. For Cl
-
 anion, the 

values found were 0.167 nm (ionic radius) and 0.324 nm (hydrated radius) [17], which 

are smaller than for PO4
3-

 anion. However, the difference in size for ionic radius, is not 
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very dramatic and cannot be a determining factor for permeation of Ferrocene ions in 

the phosphate solution.  
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Figure 4.14.a Cyclic voltammogram of Fc/Fc
+
 couple in phosphate buffer (pH = 7.0) solution. 
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Figure 4.14.b Cyclic voltammogram of Fc/Fc
+
 couple in phosphate buffer (pH = 7.0) solution. 
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Figure 4.14.c Cyclic voltammogram of Fc/Fc
+
 couple in phosphate buffer (pH = 7.0) solution. 
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Figure 4.14.d Cyclic voltammogram of Fc/Fc
+
 couple in phosphate buffer (pH = 7.0) solution. 
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Figure 4.14.e Cyclic voltammogram of Fc/Fc
+
 couple in phosphate buffer (pH = 7.0) solution. 
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Figure 4.14.f Cyclic voltammogram of Fc/Fc
+
 couple in phosphate buffer (pH = 7.0) solution. 
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Figure 4.15 Plot of peak potentials difference as a function of logarithm of scan rate for the 

cyclic voltammograms obtained in phosphate buffer solution pH = 7.0. 
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Figure 4.16 Plot of dimensionless peak current ratio as function of scan rate for the cyclic 

voltammograms preformed in phosphate buffer solution pH = 7.0. 
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4.5 Conclusions  

                  Certain difficulties were encounted when measuring the Fc concentration for 

the PVC cast solution, but it was possible to measure approximately 5 mM Fc (0.003 g 

Fc). The Fc
+
 ion transfer at the ionic liquid /water interface was studied by cyclic 

voltammetry at various scan rates. The ionic liquid thickness was difficult to measure, 

but it was possible to obtain an approximated film thickness from SEM analysis. The 

results obtained from experimental work were slightly different when compared to those 

from simulations performed with PROGRAM 6 designed by John Cassidy.  

                  At high scan rates of 100, 200, 300 mV/s, the peak to peak separation was 

very large, reaching values of approximately 500-600 mV. At lower scan rates the peak 

to peak separation decreased to approximately 100 mV. Still, when compared to ideal 

value for ∆Ep= 57 mV, the peak to peak separation for CVs obtained experimentally 

was very high. 

                   Finally it was possible to model the behaviour of Fc in a thin layer of ionic 

liquid using only diffusion controlled conditions without resorting to kinetics at the 

IL/aqueous interface. 

                  Additional investigations on the diffusion process of ferrocene from an IL 

layer to a buffer solution at pH = 7.0 were performed for various scan rates. 

Electrochemical results showed changes in the oxidation potential of ferrocene which 

were associated with lower solubility of ferricenium in the phosphate buffer.  

                  In conclusion, comparing the experimental results and the modelled plots: 

� The corrected peak height ratio (ipb/ipf) is independent of the initial ferrocene 

concentration.  

� The corrected peak height ratio ( ipb/ipf) for the model and experimental are close 

to 1 at fast scan rates and drop below 1 at lower scan rates due to the ferricenium 

diffusing out of the film. As the scan rate decreases for the model there is a 
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transition from bulk CV behaviour and thin layer behaviour as the peak to peak 

separation drops below 57 mV. 

� At low scan rates in the experimental plots the peak width at half height  is 

greater than 90/n mV, though the voltammetry looks a little more symmetrical . 

For example in Figure 4.10 the peak width at half height is 141 mV. 

Comparing the peak to peak separation for the model and the experimental, the peak to 

peak separation increases with scan rate. However in the experimental the peak to peak 

separation is much greater, perhaps due to slow ion transport across the interface. Thus 

the diffusion controlled model would require the input of slow kinetics to explain fully 

the experimental plots.  

                 Comparing Figure 4.13 (b) and Figure 4.16, the corrected peak current ratio 

for the model and experimental are quite similar in that both drop at about 40 mV/s. 

However this is unexpected as the layer thickness is estimated at 10 microns rather than 

100 microns.  
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Chapter 5. Conclusions and Future Work 

5.1 General Conclusions 

 

                  The aim of this project was to make conducting polymers (CPs), in 

conjunction with Room Temperature Ionic Liquids (RTILs) in order to produce 

electrochromic films for possible use in electrochromic devices.                

                 Novel electrochromic conducting polymers were prepared and their 

electrochemical behaviour examined in detail. The results presented in this thesis 

include a detailed kinetic study of PTFA modified ITO electrodes, the formation and 

characterization of a new co-polymer: PPy-co-PEDOT and also a detailed 

characterization of electrochemical behaviour of an ionic liquid thin film in contact with 

an aqueous solution. 

                 The electrochemical deposition and response of PTFA from an aqueous 

acidic solution is described in Chapter 2. The faradaic response of PTFA showed a 

decrease in background electrolyte. When THF was present in the electrolyte solution, 

PTFA showed improved faradaic response. However, no significant change was 

observed in the UV-Vis spectrum even on THF addition. Results obtained during 

electrochromic switch at 450 nm indicated a slow transient interval of 40 seconds 

between oxidized and reduced forms of PTFA. The morphology of PTFA films was 

characterised by a less porous structure when THF was added, while in absence of THF 

the PTFA appeared more porous. In addition, an XPS study indicated the presence of 

PTFA film on the ITO electrode. Overall the addition of fluorines on the polyaniline 

backbone affected the redox behaviour and colour of the film dramatically. The PTFA 

polymer proved good stability according to Niessen et al [1], but does not represent the 

best choice for an electrochromic device due to slow kinetics. A possible application 

could be smart windows, as these devices can have a response time up to 60 s.  



Chapter 5_____________________________________________Conclusions and Future Work 

___________________________________________________________________ 150 

                   Copolymerization of two homopolymers (Py and EDOT) in an ionic liquid 

was the strategy used to make a novel material with improved phsysico-chemical 

properties (Chapter 3). However, ionic liquids are very costly and a novel micro-cell 

was designed for electrochemical deposition of the polymers. Formation and 

electrochemical characterization of PPy-co-PEDOT polymers were performed for three 

different monomer ratios (PPy : PEDOT 1:2, 1:1, 2:1). PPy-co-PEDOT copolymers 

showed a more capacitive voltammetry when analysed in Na BF4 aqueous electrolyte, 

than CVs obtained in pure BMIM BF4. The spectroelectrochemical results showed that 

‘polypyrole dominated’ PPy-co-PEDOT (2:1) was the best copolymer combination for 

an electrochromic material. On redox cycling the PPy-co-PEDOT (2:1) showed a 

reversible switching time of 20 s at 450 nm seconds and the coloration efficiency value 

was in good agreement with values required for fast electrochromic devices. The 

response time of 20 s obtained for ‘polypyrrole dominated’ copolymer was higher than 

the value obtained by Yi-Jie et al. (10 s) [2]. This could be a consequence of switching 

from ionic liquid media to aqueous solutions, which was also seen in the decreased 

current density of the copolymers in 0.2 M NaBF4.  Differences in PPy-co-PEDOT (1:2, 

1:1, 2:1) FTIR spectra were less evident, but they displayed different morphology when 

analysed by SEM. Colours seen in visible region like grey-blue (oxidized form) and 

olive-green (reduced form) which render the PPy-co-PEDOT (2:1) copolymer a 

promising material for an electrochromic application.  

                 Both aqueous solutions and ionic liquids proved their use as environments for 

the production of novel electroactive materials. However, the PPy-co-PEDOT 

copolymers formed in an ionic liquid had dramatically different electrochemical 

behaviour when switching to aqueous solutions (0.2 M NaBF4).  

                 Since ionic liquids are expensive one possibility is to have a thin layer of 

ionic liquid (perhaps with monomer) in contact with a bulk aqueous solution in a 
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traditional three electrode cell. In order to assess this arrangement, a model redox 

couple was employed. Ferrocene was incorporated in the mixture 3-methyl-1-

propylpyrridinium bis(trifluoromethylsulfonyl)imide and PVC, which allowed 

formation of drop-cast thin films on ITO substrate. Diffusion of ferricenium ions into 

the aqueous phase was observed during cyclic voltammetry and the experimental cyclic 

voltammetric results were modelled using PROGRAM 6. The thickness of the ionic 

liquid layer was hard to control and it was approximated to 10 µm from the SEM 

images obtained for PVC films. The voltammetric response of Fc/Fc
+
 when the ionic 

liquid layer was in contact with phosphate buffer solution pH = 7, demonstrated that ion 

transfer across the interface was slower in phosphate buffer than in potassium chloride 

solution. The reason for the extremely broad potential peak separation in phosphate 

buffer (~ 900 mV) was attributed to increased hydration of PO4
3-

 ions compared to Cl
-
 

ions. Experimental results were different than simulations obtained with PROGRAM 6, 

which was designed for the ‘Model for Thin Layer of Ionic Liquid Coating on an 

Electrode’. In order for the model to be improved a kinetic term should be incorporated 

to account for the slow ion transfer across the interface. Experimental results did not 

reflect the simulations done using PROGRAM 6, as this model was designed for a 

reversible system. 

                  In conclusion, the formation of novel polymeric materials with 

electrochromic properties was achieved from both aqueous solutions and ionic liquid 

media, using relatively inexpensive and non-toxic compounds. This work has provided 

information concerning the electrochemical formation, optical and electrochemical 

performance and also physical properties of systems such as CPs/aqueous (Chapter 2) 

solutions and CPs/ILs (Chapter 3).  
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5.2 Future Work 

                 The most valuable aspect of the present work is represented by the possible 

use of the PPy-co-PEDOT (2:1) copolymer as part of an electrochromic device. In order 

to fabricate a display-oriented ‘micro-sandwich cell’[3], PPy-co-PEDOT (2:1) was 

employed as working electrode and PEDOT as counter electrode (Figure 5.1.a and 

Figure 5.1.b).  

                 Insertion of a small drop of ionic liquid between the modified electrodes 

represented a problem, as the drop of ionic liquid may leak. This issue was resolved by 

replacing the ionic liquid with an ‘ion jelly’ electrolyte [4]. This ‘ion jelly’ was prepared 

by simply mixing gelatin with ionic liquids in various ratios (Figure 5.2). 

 

        

Figure 5.1 Images of the ‘micro-sandwich cell’ based on ‘ion-jelly’ electrolyte. 

a. Image obtained at -0.7 V.  b. Image obtained at 0.8 V.  

 

                 A cyclic voltammetric experiment was performed in order to observe the 

colour switch at the oxidation/ reduction potentials. The ‘micro-sandwich cell’ changed 

colours from dark-bluish (at -0.7 V) to light-blue (at 0.7 V), thus showing that such a 

device containing solid state electrolyte was made and could have potential use in an 

electrochromic device. 
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Figure 5.2 Image of ‘ion gel’ droplets of 1-Hexyl-3-Methylimidazolium Chloride  

and gelatin (3:1, v:v) 
             

            The following issues are recommended for further investigation: 

� To optimise the ‘micro-sandwich cell’ configuration while manufacturing the 

appropriate ‘ion jelly’ based electrolyte, to ensure a fast electrochromic switch. 

This optimisation will entail performing a series of experiments using the ‘ion-

jelly’ electrolytes prepared in different ratios. 

� To prepare different film thickness for the polymers and choose the best 

candidate which will offer high stability and high visual contrast.  

� To perform additional in-situ spectroelectrochemical experiments which will 

indicate the attractive characteristics such as high coloration efficiency, rapid 

and reversible switch time, and vivid colour/ multi colour change.  

� To test the electrochemical stability over an extended period of time, as this 

characteristic is demanded in the field of electrochromic devices. 

 

                  To sum up, these recommendations are proposing a new, cost-effective 

proto-type of ‘micro-sandwich electrochromic cell’ that can be optimised in order to 

obtain the desirable features of an electrochromic device, that can be made in a more 

environmentally-friendly manner.  
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   PROGRAM 6 

C   MODIFICATION OF PROGRAm5  ( dec 2012) 

C      CYCLIC VOLTAMMETRY FOR BULK SOLUTION IMPLICIT METHOD 

C      for a thin layer of ionic liquid of thickness d H1 in contact 

C      with aqueous solution 

       IMPLICIT REAL*8(A-H,O-Z) 

C      IMPLICIT REAL*4(Z) 

       DIMENSION W(500),RL1(500000),RR1(500000),G(500),PCHI(25000) 

       DIMENSION FONW1(500),FOOL1(500),FRNW1(500),FROL1(500) 

       DIMENSION FONW2(500),FOOL2(500),FRNW2(500),FROL2(500) 

       DIMENSION RKO2(500),RKR2(500),RL2(500000),RR2(500000) 

       DIMENSION RKO1(500),RKR1(500),RNEW(500),RK(500),WZ(25000) 

       DIMENSION RMAT(500000) 

      OPEN (UNIT=5,FILE='BZ1.DAT',STATUS='OLD') 

      OPEN (UNIT=6,FILE='BK2.DAT',STATUS='NEW') 

C    SET POTENTIAL LIMITS 

       VI=0.3D0 

       VF=-0.3D0 

       EI=VI/0.02569D0 

       EF=VF/0.02569D0 

      READ (5,60)DIFF1,SCAN,H1 

      READ (5,62)DIFF2,RKFTW,RES 

      READ(5,61)N,L 

      LT2=2*L 

      TIMEL=2.D0*(VI-VF)/SCAN 

      RES=RES*0.0000001 

      DIST=6.D0*DSQRT(TIMEL*DIFF2) 

      H2=DIST/FLOAT(N) 

      RK1=TIMEL/FLOAT(LT2) 

C   TO MAKE THE ION TRANSFER RATE DIMENSIONLESS 

      RKFTW1=RKFTW*RK1/H2 

      H1=H1/FLOAT(N) 

      RKFTW2=RKFTW*RK1/H1 

      DM2=DIFF2*RK1/H2**2 

      DM1=DIFF1*RK1/H1**2 

      BETA=H2/H1 

      WRITE(6,70)DM1,DM2,RK1 

   70 FORMAT('   DM1 = ',E11.6,'   DM2=',E10.5,' RK1 = ',E10.5) 

      WRITE(6,71)TIMEL,DIST,BETA 

   71 FORMAT(' TIMEl = ',F11.6,'  DISTANCE= ', E11.5,' BETA',F10.2) 

   60 FORMAT(3F12.8) 

   62 FORMAT(3F12.8) 
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   61 FORMAT(2I6) 

      DELTAE=(EF-EI)/FLOAT(L) 

      EMOD=EI 

C     INITIAL CONDITIONS 

      DO 10 J=1,N 

      FOOL1(J)=1.D0 

      FROL1(J)=0.D0 

      FROL2(J)=0.D0 

      FOOL2(J)=0.D0 

   10 CONTINUE 

C      THE TOTAL NUMBER OF INCREMENTS IS 2l 

      NX=N-1 

C SET UP THE RIGHT HAND SIDE 

      DO 16 LL=1,N 

      DO 16 K=1,N 

   16 RR1((LL-1)*N+K)=0.D0 

      DO 17 LL=1,N 

   17 RR1((LL-1)*N+LL)=2.D0*(1.D0-DM1) 

      DO 14 LL=1,NX 

      RR1((LL-1)*N+LL+1)=DM1 

   14 RR1(LL*N+LL)=DM1 

C CALCULATE THE MATRIX FOR THE LEFT HAND SIDE 

       DO 26 LL=1,N 

       DO 26 K=1,N 

   26 RL1((LL-1)*N+K)=0.D0 

      DO 27 LL=1,N 

   27 RL1((LL-1)*N+LL)=2.D0*(1.D0+DM1) 

      DO 24 LL=1,NX 

      RL1((LL-1)*N+LL+1)=-DM1 

   24 RL1(LL*N+LL)=-DM1 

 

C CALCULATE THE RIGHT HAND SIDE CONSTANT FOR THOMAS ALGORITM 

      DO 36 LL=1,N 

      DO 36 K=1,N 

   36 RR2((LL-1)*N+K)=0.D0 

      DO 37 LL=1,N 

   37 RR2((LL-1)*N+LL)=2.D0*(1.D0-DM2) 

      DO 34 LL=1,NX 

      RR2((LL-1)*N+LL+1)=DM2 

   34 RR2(LL*N+LL)=DM2 

C CALCULATE THE MATRIX FOR THE LEFT HAND SIDE 

      DO 46 LL=1,N 
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      DO 46 K=1,N 

   46 RL2((LL-1)*N+K)=0.D0 

      DO 47 LL=1,N 

   47 RL2((LL-1)*N+LL)=2.D0*(1.D0+DM2) 

      DO 44 LL=1,NX 

      RL2((LL-1)*N+LL+1)=-DM2 

   44 RL2(LL*N+LL)=-DM2 

      DO 20 I=1,LT2 

      DO 18 LL=1,N 

      RKO1(LL)=0.D0 

      RKR1(LL)=0.D0 

      RKO2(LL)=0.D0 

      RKR2(LL)=0.D0 

   18 CONTINUE 

      DO 19 K=1,N 

      DO 19 LL=1,N 

      RKO1(K)=RR1((LL-1)*N+K)*FOOL1(LL)+RKO1(K) 

      RKR1(K)=RR1((LL-1)*N+K)*FROL1(LL)+RKR1(K) 

      RKO2(K)=RR2((LL-1)*N+K)*FOOL2(LL)+RKO2(K) 

   19 RKR2(K)=RR2((LL-1)*N+K)*FROL2(LL)+RKR2(K) 

      RATIO=DEXP(EMOD) 

      DOEDGE=FOOL2(1) 

      DREDGE=(BETA*FROL2(1)+FROL1(N))/(1.D0+BETA) 

      DRSURF=(FOOL1(1)+FROL1(1))/(1.D0+RATIO) 

      DOSURF=RATIO*DRSURF 

C      RKR2(N)=RKR2(N) 

C      RKO2(N)=RKR2(N) 20 dec 2012 

      CUR=ABS(601788.D0*DSQRT(DIFF1*SCAN)*PCHI(I-1)) 

C      WRITE(6,83)PCHI(I-1),CUR 

C   83 FORMAT('   PCHI = ',F12.8,'   CUR = ',F12.8) 

      EMOD=EMOD+DELTAE+CUR*RES/0.02569D0 

      RATIO=DEXP(EMOD) 

      FOEDGE=FOOL1(N) 

      FREDGE=(BETA*FROL2(1)+FROL1(N))/(1.D0+BETA) 

      FRSURF=(FOOL1(1)+FROL1(1))/(1.D0+RATIO) 

      FOSURF=RATIO*FRSURF 

      FONW1(1)=FOOL1(1)+DM1*(FOSURF-2.D0*FROL1(1)+FOOL1(2)) 

      FRNW1(1)=FROL1(1)+DM1*(FRSURF-2.D0*FROL1(1)+FROL1(2)) 

      FONW2(1)=FOOL2(1)+DM2*(FOEDGE-2.D0*FOOL2(1)+FOOL2(2)) 

      FRNW2(1)=FROL2(1)+DM2*(FREDGE-2.D0*FROL2(1)+FROL2(2)) 

C     INCLUDE KINETIC EFFECTS 

      FRNW1(N)=FROL1(N)+DM1*(FROL1(N-1)-2.D0*FROL1(N)) 
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      FONW1(N)=FOOL1(N)+DM1*(FOOL1(N-1)-2.D0*FOOL1(N)+1.D0) 

      FONW2(N)=FOOL2(N)+DM2*(FOOL2(N-1)-2.D0*FOOL2(N)) 

      FRNW2(N)=FROL2(N)+DM2*(FROL2(N-1)-2.D0*FROL2(N)) 

      RKO1(1)=RKO1(1)+DM1*(DOSURF+FOSURF) 

      RKR1(1)=RKR1(1)+DM1*(DRSURF+FRSURF) 

      RKO1(N)=RKO1(N)+DM1*(DOEDGE+FOEDGE) 

C   RKFTW IS THE FILM TO WATER TRANSFER RATE CONSTANT THAT APPLIED 

C    ONLY TO THE EDGE 

      RKR1(N)=RKR1(N)+DM1*(DREDGE+FREDGE)-RKFTW1*FREDGE 

      RKO2(1)=RKO2(1)+DM2*(DOEDGE+FOEDGE) 

      RKR2(1)=RKR2(1)+DM2*(DREDGE+FREDGE) 

C      RKR2(N)=RKR2(N) 

C      the following line is in error?... 

C      RKO2(N)=RKR2(N) 

C ADJUSTING THE RIGHT HAND SIDE. 

      CALL THOMAS (FRNW1,RKR1,RL1,N) 

      CALL THOMAS (FONW1,RKO1,RL1,N) 

      CALL THOMAS (FRNW2,RKR2,RL2,N) 

      CALL THOMAS (FONW2,RKO2,RL2,N) 

C CALCULATE CURRENT 

      FACT=SQRT(DM1*FLOAT(L))/(1.D0+RATIO) 

      WZ(I)=FACT*(FONW1(1)-RATIO*FRNW1(1)) 

      PCHI(I)=WZ(I)/DSQRT(EI-EF) 

C RESET CONCENTRATIONS.... 

      DO 40 J=1,N 

      FOOL1(J)=FONW1(J) 

      FROL1(J)=FRNW1(J) 

      FROL2(J)=FRNW2(J) 

      FOOL2(J)=FONW2(J) 

   40 CONTINUE 

C TEST FOR SWEEP DIRECTION 

      IF(I.EQ.L)DELTAE=(-DELTAE) 

      IF(I.EQ.L)EMOD=-0.3/0.02569 

      IF(I.EQ.L)RES=-RES 

   20 CONTINUE 

C OUTPUT DATA 

      DELTAE=-DELTAE 

      EMOD=EI 

C      WRITE(N,*)I 

C      WRITE(L,*)I 

C      WRITE(PCHI(I),*)D 

C      PRINT *,PCHI(I) 
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      WRITE(6,88)N,L 

C      WRITE(*,88)N,L 

      DO 50 I=1,LT2 

      EMOD=EMOD+DELTAE 

      V=-EMOD*0.02569D0 

   88 FORMAT( 'NUMBER OF POINTS =',I6,I12) 

      WRITE (6,100)V,PCHI(I) 

      IF (I.EQ.L)DELTAE=-DELTAE 

   50 CONTINUE 

  100 FORMAT(2(E11.4,3X)) 

      CLOSE(UNIT=5) 

      CLOSE(UNIT=6) 

      STOP 

      END 

      SUBROUTINE THOMAS(RNEW,RK,RMAT,N) 

      IMPLICIT REAL*8(A-H,O-Z) 

      DIMENSION W(500),RMAT(500000),G(500) 

      DIMENSION RNEW(500),RK(500) 

      W(1)=RMAT(N+1)/RMAT(1) 

      G(1)=RK(1)/RMAT(1) 

      DO 10 I=2,N 

      W(I)=RMAT(I*N+I)/(RMAT((I-1)*N+I)-RMAT((I-2)*N+I)*W(I-1)) 

   10 G(I)=(RK(I)-RMAT((I-2)*N+I)*G(I-1))/(RMAT((I-1)*N+I)- 

     1RMAT((I-2)*N+I)*W(I-1)) 

      RNEW(N)=G(N) 

      N11=N-1 

      DO 20 I=1,N11 

      J=N-I 

   20 RNEW(J)=G(J)-W(J)*RNEW(J+1) 

      RETURN 

      END 
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a  b  s  t  r  a  c  t

Electrochromic  films  of  poly(2,3,5,6-tetrafluoroaniline)  (PTFA)  were  formed  on ITO substrates  from
aqueous  solutions  utilising  perchloric  acid  (HClO4) as  dopant.  Electrochemical  and  spectroscopic  char-
acterization  of  PTFA  films  was  performed  in  background  electrolyte  and  in solutions  with  the  addition
of  tetrahydrofuran.  When  the  PTFA  film  was removed  from  its growth  medium,  a  significant  decrease
in  the  faradaic  current  was observed.  The  faradaic  response  increased  on  addition  of  tetrahydrofuran
which  facilitates  ion  movement  through  the  polymer  matrix.  PTFA  films  deposited  on ITO  substrate  were
orange  and  light  orange  in  the  oxidized  and  reduced  forms,  respectively.  The  films  were  ca.  25  nm  in
thickness.  In  aqueous  solution  the  films  showed  a  porous  structure  with  a non-uniform  distribution  of
pore  diameters.  In the presence  of  tetrahydrofuran  a  less  porous  structure  was  observed.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Since their discovery, conducting polymers (CPs) [1] which
are also known as electroactive polymers have been extensively
investigated for electrochromic applications [2,3]. The energy gap
between the valence and conduction bands of the polymer provides
a first estimation of the electronic excitation energy which can be
measured spectroscopically. The spectroscopic signal depends not
only on the energy of the electronic transition but also on the effi-
ciency of the transition [4]. The colour change between doped and
undoped forms of the polymer depends on the magnitude of the
band gap of the undoped polymer. For example oxidative p-doping
shifts the optical absorption band towards the lower energy part of
the spectrum [4].

Polypyrrole  (PPy), polythiophene (PTh) and polyaniline (PANI)
[5] are formed during anodic oxidation and are amongst the most
extensively studied electroactive polymers [6]. Polyaniline (PANI)
and its derivatives are of particular interest due to their stability [7].
Polyaniline films can be formed during electrochemical deposition
using potentiostatic, potentiodynamic and galvanostatic methods
[8]. The polymer possesses three oxidation states: leucoemeraldine
(neutral), emeraldine (polaron) and pernigraniline (bipolaron). The
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leucoemeraldine form represents the fully reduced form, emeral-
dine is half-oxidized and pernigraniline is the fully oxidized state of
polyaniline. The electrical conductivity of polyaniline based mate-
rials can be closely controlled over a wide range. The most common,
protonated emeraldine, has a high conductivity of 100 S cm−1, sim-
ilar to that of a semiconductor [7].

Polymerization of aniline monomers containing fluorine has
been performed both chemically and electrochemically; however
the properties of these polymers have not been fully charac-
terised. Monofluoro-substituted anilines [9] have been synthesised
from acidic solutions using a chemical oxidation process and
characterised by a range of spectroscopic methods. Chemically syn-
thesised poly(2-fluoroaniline) and poly(3-fluoroaniline) showed
similar absorption spectra to that of the 2-fluoroaniline monomer.
With the 4-fluoroaniline monomer, dehalogenation occurred dur-
ing polymerization, with fluorine being displaced to yield a more
favourable head-to-tail polymer with the resultant UV–Vis spec-
trum being identical to that of polyaniline [9]. The solubilities
of polyfluoroanilines in organic solvents were improved in com-
parison to polyaniline [9]. Poly(tetrafluroaniline) was used as a
substrate for a bacterial fuel cell [8], but was not examined as
an electrochromic material. Electrochemical polymerization of
2,3,5,6-tetrafluoroaniline was  carried out in aqueous-acidic solu-
tions under potentiostatic control. Poly(2,3,5,6-tetrafluoroaniline)
modified  platinum electrodes showed improved stability com-
pared to poly(2-fluoroaniline) when they were exposed to
microbially aggressive conditions such as sewage or sewage sludge
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for long time periods [8]. Poly(2,3,5,6-tetrafluoroaniline) was the
most resistive material towards microbial degradation and pre-
vented poisoning of platinum by metabolic by-products [8].

The  electrochemical behaviour of 2-fluoroaniline, 3-
fluoroaniline and 4-fluoroaniline electrodeposited on platinum
electrode were examined in aqueous acidic and organic media
using NaClO4 as electrolyte [10]. During electrochemical oxidation,
poly (2-, 3- and 4-) fluoroanilines were successfully deposited on
the surface of the electrode but the transition from the emeraldine
to the pernigraniline form was not observed, due to the fluorine
electron withdrawing group [10].

A significant number of reports have described the develop-
ment of transparent conducting polymers and in particular the
use of chemically synthesised poly(3,4-ethylenedioxythiophene)
(PEDOT) with polystyrenesulphonate (PSS) as counter ion to form
conductive films. For example, dispersions of films of PEDOT: PSS
in DMSO with single walled carbon nanotubes have been sprayed
on polyethyleneterephthalate (PET) [11]. The resultant films had a
resistance of 118 �/sq and 90% transmittance over the wavelength
range 400–800 nm.  In situ polymerization of EDOT with 2,3-
dichloro-5,6-dicyanobenzoquinone (DDQ) (molar ratio of 1:1.33)
yielded films with 80% transmittance over the range 300–700 nm
[12]. Similar films were formed with a sulfonated derivative of poly-
thiophene [13]. No electrochromic studies have been described for
these transparent polymers. However a polypyrrole/polythiophene
co-polymer had a uniform absorbance between 400 nm and 800 nm
while reduced [14] only upon oxidation a strong absorbance at
600 nm resulted. Another system of aniline/thiophene co-polymer
displayed a relatively constant change in absorbance with poten-
tial, but had a slight absorbance maximum at 800 nm [15].

To our knowledge, there have been no electrochromic stud-
ies of PTFA. This paper describes the formation of PTFA thin films
on a conducting ITO substrate by successive potential cycling in
acidic solutions. The films obtained were characterised by elec-
trochemical and spectroscopic techniques. PTFA polymer showed
an improved electrochemical response when tetrahydrofuran was
added to the solution. The UV–Vis spectra displayed a single broad
absorbance peak over the visible spectrum which can be attributed
to a neutral to polaron electronic transition. The effects of different
electrolytes on the properties of the polymer are described.

2.  Experimental

2,3,5,6-Tetrafluoroaniline and tetrahydrofuran were purchased
from Sigma–Aldrich and perchloric acid (60%) from BDH Lab-
oratory Supplies, UK. In order to avoid degradation, 2,3,5,6-
tetrafluoroaniline was stored under dry conditions in the dark.
Cyclic voltammetry was employed to electropolymerize PTFA films
onto conducting indium tin oxide glass (ITO). A three electrode
cell was used with an ITO glass slide (Solaronix, Switzerland),
platinum coil (0.5 mm,  Alfa-Aesar, UK) and Ag/AgCl (3 M KCl) (CH
Instruments Inc., UK) as working, counter and reference elec-
trodes, respectively. All potentials are reported vs Ag/AgCl (3 M
KCl). The dimensions of the ITO electrodes were 0.5 cm × 2.5 cm.
The ITO sheet resistance was 18 �/sq. The electrodes were care-
fully cleaned by successive ultrasonication in deionized water,
followed by acetone and then deionized water to ensure removal
of all traces of acetone and finally dried in air prior to use. Water
with a resistivity of 18 M� cm (Elgastat Maxima) was used for
all studies. Solutions (10 ml  volume) containing 50 mM monomer
(2,3,5,6-tetrafluoroaniline) and 2 M HClO4 were prepared in deion-
ized water. Monomer solutions were deoxygenated with nitrogen
for 5 min  prior to use. All solutions were freshly prepared for
each experiment. Electrochemical experiments were performed
using a CHI 620 model potentiostat. UV–Vis absorption spectra
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Fig. 1. Cyclic voltammograms of PTFA film deposited on ITO glass from an aqueous
solution  containing 50 mM TFA and 2 M HClO4. Scan rate of 40 mV s−1. Number of
cycles: 15.

were recorded on a Shimadzu 1800 UV-Vis spectrophotometer. The
colouration efficiency was measured by chronoamperometry, by
switching the potential between 0 V and 1.2 V. SEM images were
obtained using a Hitachi SU-70 scanning electron microscope.

3.  Results and discussion

3.1.  Cyclic voltammetry of PTFA films

PTFA films were deposited onto ITO electrodes under poten-
tiodynamic conditions from aqueous media with the addition of
perchloric acid (HClO4) as dopant. Cyclic voltammograms of TFA
in aqueous solution (Fig. 1) indicated that the optimal conditions
for electropolymerization were obtained over the potential range
−0.2 V to +1.4 V at a constant scan rate of 40 mV  s−1. Monomer oxi-
dation commences at a potential of ca. 1.2 V. Thin films were formed
since thicker films possess an increased resistance which compro-
mises the conductivity of the polymers. On successive scans, the
peak currents at ca. 0.9 V increased slightly, indicating that a con-
ductive polymeric film was formed on the electrode. As the number
of cycles increased, the potential for oxidation of the polymer
increased to more positive values and the potential for reduction to
more negative values. Also on the reduction scan, two peaks were
observed at 0.6 V and 0.3 V. The appearance of the small peak at
ca. 0.3 V depends on the upper potential limit used. On  increasing
the upper potential to 1.6 V, the reduction peak potential at 0.3 V
increased to 0.4 V.

Electropolymerization of tetrafluoroaniline on ITO is proposed
to occur via the same mechanism (Scheme 1) described for the poly-
merization of aniline. As evident from the first anodic scan, it is
the electron-withdrawing effect of fluorine which gives rise to the
increase in potential required for monomer oxidation. On contin-
uous sweeping the peak potential separation increases indicating
that the polymer oxidation/reduction process is becoming more
difficult, which is likely due to the increased hydrophobicity of the
film. Note that PTFA films were also deposited on fluorine doped
SnO2, however a very poor electrochemical response was  obtained
and all studies were thus performed with ITO electrodes.

3.2. Electrochemical characterization of the PTFA films

PTFA polymer characterization was performed in different solu-
tions: with background electrolyte alone, with the addition of
monomer, or with the addition of tetrahydrofuran. The nature of
the supporting electrolyte used during electrochemical cycling of
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Scheme 1. Proposed mechanism for polymerization of 2,3,5,6-tetrafluoroaniline.
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Fig. 2. Cyclic voltammograms of PTFA film as a function of scan rate in a solution containing 50 mM TFA and 2 M HClO4. Insert graphs show plots of cathodic peak current
versus � and �1/2.
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Fig. 3. Cyclic voltammograms of PTFA film deposited on ITO as a function of scan
rate  in 2 M HClO4 aqueous solution.

PTFA has considerable influence on the properties of the polymer
[16]. Voltammetric characterization of the PTFA films deposited on
ITO glass was performed in the same solution used for film for-
mation, over the potential range −0.2 V and 1.0 V to avoid further
monomer oxidation. The polymer was characterised in the pres-
ence of the monomer as the voltammetric response deteriorated
in solutions containing only background electrolyte. The resultant
cyclic voltammograms (Fig. 2) exhibited a similar response to that
obtained during polymer deposition (Fig. 1). On the cathodic sweep,
the peak currents were well defined, while upon oxidation the peak
potentials shifted towards more positive values with increasing
scan rate. The ratio of jpa to jpc should be close to one for an ideal
thin layer system, but the rate of the oxidation process was slow
and jpa could not be measured (Fig. 2). Cyclic voltammograms of
films in the presence of monomer displayed an increase in the oxi-
dation peak potential with increasing scan rate and also a slight
shift in the peak potentials with increased scan rate. The inset in
Fig. 2 shows that the polymer does not display thin layer behaviour,
instead displaying behaviour corresponding to bulk diffusion. The
linear plot of jp vs �1/2 can be ascribed to slow ion movement arising
from the hydrophobic nature of the film [17].

On transferring the electrode to monomer-free solution con-
taining 2 M HClO4 a dramatic change in response was  observed
(Fig. 3). The anodic peak currents were significantly reduced and the
peaks broadened, possibly indicating that ion incorporation during
the polymer oxidation/reduction process was slow. It is obvious
that the absence of the monomer caused a decrease in the peak
currents which are three times lower in 2 M HClO4 compared to
those in the monomer solution. The electrochemical response of
PTFA in background electrolyte alone is in contrast with other con-
ducting polymers such as polypyrrole and polythiophene which
have large capacitive currents [18,19]. In general, for conducting
polymers the conductivity correlates with the capacitance of the
film [20]. In aqueous 2 M HClO4 the decrease in current densities is
due to a loss in conductivity of the film.

The addition of tetrahydrofuran to the aqueous 2 M HClO4 solu-
tion changes the electrochemical behaviour of the polymer (Fig. 4).
Tetrahydrofuran (THF) is a polar aprotic solvent characterised by a
low dielectric constant of 7.5 [21]. In the presence of THF, the peak
currents increase, possibly indicating that the hydrophobic poly-
meric layer is more open and allows counter ions to move in and out
more readily during the redox cycle. In contrast to the data in Fig. 2,
the reduction peak current increases linearly with scan rate, indica-
tive of thin layer behaviour [22] (Fig. 4). Increasing the amount of
THF resulted in increases in the peak current which are associated
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Fig. 4. Cyclic voltammograms of a PTFA film on ITO in 2 M HClO4 aqueous solution
with  16.66% THF.

with increased ion mobility into and out of the film during the redox
cycle [23] (Fig. 5).

3.3.  Spectroelectrochemistry of the PTFA polymer

Spectroelectrochemical analysis was performed in the presence
and absence of THF to investigate the optical properties of the poly-
mer. There is a uniform increase in absorbance as a function of
potential over the wavelength range 420 nm to 730 nm (Fig. 6). In
addition the spectral band is particularly broad, covering this entire
wavelength range. This is reflected in the change from a delicate
orange to a much deeper orange colour as the potential is increased
[12].

The changes in absorbance (Fig. 6) due to the electronic transi-
tion corresponding to a neutral to a polaron state, similar to that
seen for monofluorinated anilines [10]. The isosbestic point related
to a simple two stage system is not present as the neutral poly-
mer electronic transition is at lower wavelengths below 420 nm.
The band-gap (�–�*) transition for aniline is generally observed
around and sometimes below 300 nm which represents a limita-
tion for electro-optical applications [24]. Compared to spectra of
polyaniline, the range of wavelengths associated with the transi-
tion in PTFA is very wide, which is due to the presence of fluorine
electron withdrawing group. The PTFA films did not exhibit large
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aqueous electrolyte while increasing the tetrahydrofuran concentration.
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Fig. 6. UV–Vis spectra of PTFA film in 2 M HClO4 aqueous solution as a function of
applied  potential.

absorbance changes on oxidation/reduction, even on addition of
THF.

3.4. Electrochromic switch

The response time measured upon switching the polymer film
between its neutral and oxidized states was monitored at 450 nm
(Fig. 7). The polymer thickness was controlled by adjusting the
number of potential cycles. The film used for this study was a
thin film as the charge passed through during deposition was
13.6 × 10−4 C cm−2. The colouration efficiency (CE) is an impor-
tant characteristic for electrochromic materials and corresponds
to the amount of charge injected in the polymer as a function of the
change in optical density. The coulombic efficiency (�) is related
to the performance of the electrochromic device and is defined
as the ratio between the change in optical density (�OD) and the
injected/ejected charge per unit area of the electrode at a specific
wavelength (�max) [23]. Absorbance variations with time under a
step potential oscillating between the oxidized and reduced states
of the polymer at �max in the visible range are essential for an
electrochromic material. The absorbance change as the polymer
is cycled between oxidized and reduced state provides details of
the optical contrast and electro-optical stability [25].

The  polymer film on ITO does not display dramatic colour varia-
tions, changing from orange in the oxidized form to a more bleached
orange colour in the reduced form. Consequently, the colouration
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Fig. 7. Plot of absorbance (� = 450 nm) vs time of a PTFA film as the potential was
switched  between 0 V and 1.2 V. The solution contained 2 M HClO4 and 50 mM
monomer.  Switching interval of 40 s.

efficiency had a value of 36.6 cm2 C−1 at 450 nm, which is low when
compared to other electrochromic materials. A dual electrochromic
system containing poly(3,4-ethylenedioxythiophene) and poly(3-
methylthiophene) had a high colouration efficiency of 460 cm2 C−1

at 665 nm [26] where the colours ranged between deep red and
deep blue.

The  colour changes recorded at 450 nm wavelength require
longer times, due to the increasing difficulty of inserting ions into
the polymer matrix. The hydrophobic nature of PTFA polymer
makes the injection of ions on oxidation more difficult in aque-
ous media, while upon reduction they are more easily released. As
stated in the literature the polymer colour depends on the polymer

Fig. 8. (A) SEM image of PTFA polymer from aqueous solutions; (B) SEM image of
PTFA polymer from solutions with tetrahydrofuran (20%); (C) SEM cross-section
image  of PTFA film run in aqueous solution.
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chain-length. An increase in resistivity was observed from cyclic
voltammetry (Fig. 1) and UV–Vis spectra (Fig. 7). The changes in
absorbance spectra seen at 450 nm are very small and the rate of
the oxidation–reduction process is very slow as the system required
over 40 s to switch between different oxidation states. Ideally a
fast switching time of less than a few seconds is required for most
electrochromic device applications [27].

Slow transients have been reported elsewhere in the litera-
ture for a polypyrrole/polythiophene system (>20 s) [14] and for
Tempo/viologen electrochromic devices (>50 s) [28,29].

3.5.  Morphology investigation

SEM  was used to study the detailed surface morphology of two
polymer films in 2 M HClO4 aqueous solution with and without
THF deposited ITO substrate. Both films were removed from solu-
tion and allowed to dry without any post treatment. Fig. 8A shows
the morphology of PTFA films obtained in aqueous solution con-
taining 2 M HClO4 without THF deposited on ITO substrate. PTFA
films had an uneven highly porous structure (Fig. 8A) with pore
diameters of ca. 50 nm.  On addition of THF (Fig. 8B) the film mor-
phology is less porous than for the PTFA in aqueous solutions. It
is interesting to notice the changes of polymer structure in the
presence of 20% THF which shows less numerous pores. In gen-
eral a less porous structure (Fig. 8B) may  affect the diffusion of
ions into and out of the entire bulk film decreasing the electroac-
tivity [23]. This contradicts the electrochemical study of PTFA/20%
THF (Fig. 4) which indicates the presence of a more electroactive
layer compared to PTFA/aqueous solution (Fig. 3). However, SEM
images were obtained after the films were removed from solu-
tion and completely dried and may  not reflect the structure of
the films in solution. The presence of 20%THF created films with
reduced numbers of pore but with increased pore size which facili-
tates the insertion/expulsion of ClO4

− into the polymer [23,30]. The
thickness of the polymeric film was 25 nm (Fig. 8C), in reasonable
agreement with the value of 15.2 nm calculated from the charge
passed during polymer oxidation (Q = 13.6 × 10−4 C cm−2).

4.  Conclusions

PTFA films were successfully deposited on a ITO substrate and
characterised by electrochemical and spectroscopic methods. Spec-
troelectrochemical measurements showed a broad absorbance
peak over the visible region of the spectrum with an increase in
absorbance across the spectrum as the potential was increased.
The addition of THF improved the electrochemical response of PTFA
films in aqueous solutions. In 2 M HClO4 aqueous solution the films
showed a significant decrease in the faradaic response. An increase
in the peak currents was observed on addition of THF. The presence
of fluorine substituents to form PTFA did not introduce extra stabil-
ity, as ion movement was hindered and the voltammetric response
was more sluggish than that of polyaniline in aqueous solution
due to the hydrophobic nature of the films. However with PTFA
films the neutral to polaron transition was observed from 420 to

730  nm,  while the neutral transition was moved to lower wave-
lengths. A low colouration efficiency of 36.6 cm2 C−1 was  observed
while PTFA polymer exhibited a contrast change of orange to a more
transparent orange.
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