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Silver nanoparticles induce pro-inflammatory
gene expression and inflammasome activation
in human monocytes
A. Murphya*, A. Caseya, G. Byrneb, G. Chambersc and O. Howeb

ABSTRACT: A complete cytotoxic profile of exposure to silver (AgNP) nanoparticles investigating their biological effects on the
innate immune response of circulating white blood cells is required to form a complete understanding of the risk posed. This
was explored by measuring AgNP-stimulated gene expression of the pro-inflammatory cytokines interleukin-1 (IL-1),
interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in THP-1 monocytes. A further study, on human monocytes
extracted from a cohort of blood samples, was carried out to compare with the AgNP immune response in THP-1 cells along with
the detection of pro-IL-1β which is a key mediator of the inflammasome complex.

The aims of the study were to clearly demonstrate that AgNP can significantly up-regulate pro-inflammatory cytokine gene
expression of IL-1, IL-6 and TNF-α in both THP-1 cells and primary blood monocytes thus indicating a rapid response to AgNP
in circulation. Furthermore, a role for the inflammasome inAgNP responsewas indicated by pro-IL-1β cleavage and release. These
results highlight the potential inflammatory effects of AgNP exposure and the responses evoked should be considered with
respect to the potential harm that exposure may cause. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: nanoparticle exposure; innate immune response; IL-1β release

Introduction
Silver nanoparticles (AgNP) are one of the most commonly utilized
nanoparticles as a result of their antimicrobial properties (Duncan,
2011). As a result, the likelihood of exposure is becoming more fre-
quent thus posing potential health risks that must be addressed.
Cytotoxicity induced by AgNP exposure has been demonstrated
in a number of studies with a variety of factors influencing
observed cyto- and geno-toxic effects (Kim et al., 2009; Choi
et al., 2010). While oral exposure to high concentrations of silver
can occur accidentally or through self-administration it is
believed that the estimated daily exposure in the general popu-
lation is 0.4–27μgday–1 (Hadrup and Lam, 2014). Upon exposure,
AgNP have been shown to induce immune reactions at sub-
lethal concentrations, including interleukin (IL)-8 induction and
are involved in the generation of reactive oxygen species (ROS)
(Lim et al., 2012). After inhalation, nanoparticles have been shown
to infiltrate the alveolar cell wall causing toxicity in alveolar
macrophages which lead to dysfunction of the cytokine network
by potentially penetrating the alveolar wall and infiltrating the
bloodstream. This results in the translocation and distribution of
nanoparticles to various organs and potential detection by circu-
lating blood monocytes ( Johnston et al., 2010; Kim and Choi,
2012; Liu et al., 2013).

An intact and functioning immune system is vital in the protec-
tion against harmful external stimuli. The controlled and rapid
initiation and effective resolution of inflammation is vital in
maintaining normal homeostasis. Dysregulation of the immune
response has been implicated in many human disease processes
including autoimmunity, allergy and cancer (Lin and Karin, 2007;
Scheller et al., 2011). The innate immune response is the first line
of active defence and comprises a number of phagocytic cells with
monocytes particularly the primary cell type which are involved in

the initial immune response by recognizing distinct pathogen-
associated molecular patterns (PAMPs) such as lipopolysaccharide
(LPS) via toll-like receptors (TLRs) on the cell surface (Matzinger,
1994; Beutler, 2009; Oberbarnscheidt et al., 2011). The subsequent
release of cytokines from immune cells co-ordinate the immune
response and are vital in determining the type of response
required and can synchronize the various immunological elements
required.
The production of cytokines must be tightly regulated in order

to prevent an overstimulation of the immune response which
may lead to the initiation of a pathological process. IL-1β is one
cytokine that is tightly regulated at the transcriptional and post-
translational level by inflammasomes. As a result of its vast
influence both on innate immunity and the systemic response,
its production requires a two-step signalling process; an initial
priming step resulting in gene expression followed by
inflammasome activation which results in the cleavage of the
inactive form essential for IL-1β maturation and subsequent
release (Dinarello, 2009; Schroder and Tschopp, 2010; Gross et al.,
2011; Latz et al., 2013). Nanoparticles including titanium dioxide
(TiO2), silica and also AgNP have been shown to cause
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inflammasome activation resulting in IL-1β release (Winter et al.,
2011; Yang et al., 2012).

As the initial release of cytokines after exposure to an external
threat is pivotal in mounting an effective immune response, the
aims of this study were to investigate the ability of AgNP to induce
such a response in a monocyte cell line and to compare the
response to that which occurs from LPS stimulation alone. After
this investigation, the immunological response of AgNP on
primary human monocytes was investigated to determine if a
similar response was induced following exposure. The AgNP-
induced transcription of pro-inflammatory cytokines, IL-1, IL-6
and tumour necrosis factor-alpha (TNF-α). as well as therelease of
IL-1β as an indirect marker of inflammasome activation was inves-
tigated. This study aims to provide an insight into the activation of
innate immune responses after AgNP exposure in human whole
blood monocytes and provide an indication of the role of the
inflammasome in this response by the release of mature IL-1β,
which drives inflammation.

Materials and methods

Test materials and reagents

Polyvinylpyrrolidone (PVP)-coated silver nanopowder of< 100nm,
was purchased from Sigma-Aldrich Ltd (Dublin, Ireland). Cell
culture media, supplements, lipopolysaccharide, polymyxin B,
Tri-reagent, 1-Bromo-3chloropropane, 2-propanol, ethanol, PCR
primers, ATP and Ac-YVAD-CMK were all purchased from Sigma-
Aldrich Ltd (Dublin, Ireland). Dynabeads® CD14 were purchased
from Invitrogen by Life Technologies (Dublin, Ireland). A reverse
transcription qScript™ kit was purchased from Quanta Bioscience
(Gaithersburg, MD, USA). Two-step reverse transcription of DNA
was performed using LightCycler® 480 SYBR Green I Master
purchased from Roche (Sussex, UK). The human IL-1β ELISA
Max™ Deluxe set was purchased from BioLegend Inc. (San Diego,
CA, USA).

Cell line treatment with AgNP

The humanmonocyte cell line THP-1 (ATCC: TIB202) was cultured in
RPMI-1640 supplemented with 12.5% fetal bovine serum and
2mML-glutamine. Cells were incubated at 37 °C in humidified 5%
CO2. For exposures, cells at a density 1×105 cells ml–1 in 10ml of
RPMI-1640 were seeded in T25 flasks (Corning Life Sciences Sigma-
Aldrich, Dublin, Ireland) and incubated overnight at 37 °C in hu-
midified 5% CO2. Designated flasks were exposed to either AgNP
(50 and 100μgml–1), LPS (1μgml–1) or a combination of AgNP
and LPS making a final volume of 20ml per flask. Flasks were incu-
bated for 1, 6, 8 or 24h. After exposures, cell suspensions were cen-
trifuged at 1200 rpm (180 g) for 10min at 4 °C. Supernatants were
removed and stored for further analysis and cells were re-suspended
in 1ml of phosphate-buffered (PBS) ready for RNA extraction.

AgNP exposure doses for later gene expression studies were
chosen based on the Inhibitory Concentration (IC50) of THP-1 cells
exposed to increasing concentrations of AgNP (1.9–250μgml–1) as
determined by the alamarBlue® (AB, ThermoFisher Scientific,
Dublin, Ireland) cytotoxicity assay. Cells were seeded in 96-well mi-
crotitre plates (Nunc A/S, Roskilde, Denmark) at a density of 1× 105

cells ml–1 for 24-h exposure in 50μl of cell culture media. At least
three independent experiments were conducted with six replicate
wells employed per concentration per plate in each independent
experiment. Plates were treated with increasing concentrations

of AgNP prepared in media for 24h. This time point was chosen as
gene studies require shorter exposure times in order to detect gene
expression. After incubation, the assay was performed according to
manufacturer’s instructions. After 3-h incubation, AB fluorescence
was measured at an excitation and emission wavelength of 531
and 595nm, respectively, using a SpectraMax®M3Microplate reader
(Molecular Devices, Sunnyvale, CA, USA). Wells containing AB solu-
tion and media only were used as blanks with 10% DMSO used as
a positive control. For this assay, the mean fluorescence units for
six replicate cultures were calculated for each exposure treatment.
IC50 values were calculated from the average response of three
independent experiments fitted to a sigmoidal curve and a four
parameter logistic model used to calculate IC50 with a (P< 0.05).

In an experiment to establish possible endotoxin contamination
of AgNP, THP-1 cells were incubated with polymyxin B (50μgml–1)
for 1 h prior to AgNP exposure. Endotoxin was not detected in
AgNP used in this study (data not shown).

For IL-1β ELISA studies, THP-1 cells (n=5) were plated alone or
stimulated with LPS (10 ngml–1) for 4 h and exposed to ATP
(5mM), a positive control, for 1 h or AgNP (50 and 100μgml–1)
for 6 h at 37 °C. In some cases, cells were pre-treated with the inhib-
itor Ac-YVAD-CMK (20μM) for 1 h prior to ATP and AgNP exposures.

Primary monocyte isolation and treatment with AgNP

In total, 20ml of whole blood was taken from 10 normal healthy
donors in heparinized vacutainers and all samples were processed
immediately. Internal ethical approval via a review board and indi-
vidual donor consent were acquired. Monocytes were extracted by
positive selection using CD14 Dynabeads® as per the manufac-
ture’s instructions. Purified monocytes were then re-suspended
in RPMI-1640 cell culture medium (Howe et al., 2009).

Cells were seeded at a concentration 4×104 cells ml–1 (500μl
total volume) in a 24-well plate (Nunc), and incubated at 37 °C with
5% CO2 overnight. Cells were then exposed to an AgNP concentra-
tion of 50μgml–1. Plates were then incubated for 8 h at 37 °C with
5% CO2. Experimentation was limited on the extracted monocytes
as only a small number of monocytes were harvested per donor
blood sample. Therefore, all optimization experiments incorporat-
ing concentration, time and the effects LPS stimulation were
carried out on THP-1 cells prior to these experiments.

After incubation, cells were removed from the base of the
24-well plates using a cell scraper (Sarstedt AG & Co., Nümbrecht,
Germany), suspended in cell culture media, and spun in a
pre-cooled microfuge at 3000g for 5min at 4 °C. Cell pellets were
re-suspended in 1ml of PBS for subsequent RNA extraction.

Gene expression analysis

The ability of AgNP exposure to induce pro-inflammatory cytokine
gene expression was evaluated using RT-PCR. THP-1 cells and
monocytes from a human cohort (n=10) were cultured in vitro
and exposed to AgNP as described in the previous section. Once
cells were centrifuged and the pellet re-suspended, total RNA
was isolated using the Tri-reagent protocol developed by
Chomczynski and Sacchi (1987). The extracted RNA pellet was
re-suspended in 30μl of DEPC H2O. First strand cDNA was synthe-
sized using a qScript™ kit (Quanta Biosciences, Maryland, USA), ac-
cording to manufacture’s instructions and amplified using
quantitative real-time PCR using LightCycler® 480 SYBR Green I
Master. Samples were analysed on LightCycler® 480 white 96-well
plates from Roche Life Science (Sussex, UK).
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Cycling conditions were the same for all primers and as follows:
95 °C for 5min, followed by 45 cycles of 95 °C for 10 s, 60 °C for 10 s
and 72 °C for 10 s, followed by 1 cycle of melting curve of 95 °C for
5 s, 65 °C for 1min then cooling at 4 °C. Primer sequences are
displayed in Table 1. PCR was performed on a Roche
LightCycler®480 system (Sussex, UK).

Human IL-1β ELISA

The release of Human IL-1βwas studied using a Human IL-1β ELISA
Max™ Deluxe set with a sensitivity of 0.5pgml–1. THP-1 cells (n=5)
were plated in 24-well plates (Nunc) 2× 105 cells per well in 200μl
of 10% FBS RPMI-1640 medium. AgNP in cell culture media
was added to each well making a final volume of 400μl per well.
The cell culture supernatant was collected after 6 h and stored at
–80 °C. ELISA was carried out as per manufacturers’ instructions.
Absorbance was measured immediately after the addition of
Stop Solution at 450nm and 570nm using a SpectraMax® M3
Microplate reader (Molecular Devices).

Statistical analysis
For real-time PCR experiments, relative quantification analysis
directly from the LC480 program (from the real-time PCR experi-
ments using SYBR green fluorescence) was used to determine
the pro-inflammatory gene expression levels after AgNP exposure.
The reference gene (Actin) normalizes sample-to-sample differ-
ences and was important to determine the changes in expression
of different genes, according to dose and time.

The delta delta (ΔΔ) CT method of relative quantification was
used in the analysis of RT-PCR data to determine the fold change
in expression (Schmittgen and Livak, 2008; Livak and Schmittgen,
2001). Gene expression experiments were performed in triplicate.
Error bars represent the standard deviation of three independent
experiments. The mean-fold changes in gene expression of
each target gene were plotted by Microsoft Excel, and the figures
present either up-regulation or down-regulation of samples deter-
mined whether they reach above or below the control sample
value of 1.

Statistically significant differences between samples and their
respective controls were calculated using the statistical analysis
package InStat (GraphPad Software Inc., San Diego, CA, USA). Sta-
tistically significant differences were set at P< 0.05. Normality of
data was confirmed with Q-Q percentile plots and Kolmogorov–
Smirnov tests. Equality of variances across all samples was evalu-
ated using Levène tests. One-way analysis of variances (ANOVA)
followed by Dunnett’s multiple comparisons tests were carried
out for normally distributed samples with homogeneous variances
(THP-1monocyte cell lines). Non-parametric tests, namely Kruskal–
Wallis followed by Mann–Whitney U-tests were applied to samples

without normal distribution and/or inhomogeneous variances
(human monocytes from a cohort of blood samples).

Results

Particle characterization

Scanning electron microscopy (SEM) of AgNP revealed spherical
particles with a size range of 50–70nm. Zeta potential analysis of
AgNP dispersed in RPMI-1640 revealed values below –30mV, indi-
cating the overall systemwas stable when particles were dispersed
in cell culture media. Dynamic light scattering (DLS) measure-
ments of pristine particles in dH2O revealed an average size distri-
bution of 34± SD 3.5nm. When suspended in RPMI-1640, data
indicated a slight shift in hydrodynamic radius but the particle size
fell within the range of 34–40nm. Further detailed characterization
together with representative particle images and DLS data were
described in our previous paper (Murphy et al., 2015).

Cytotoxicity testing

The AB assay was performed to determine the active and cytotoxic
concentrations of THP-1 cells to AgNP exposure so that IC50 con-
centration values could be used to elicit a gene response for the
follow-up studies. A dose-dependent reduction in cell viability
was observed (Fig. 1) after AgNP exposure for 24h. The IC50 con-
centration was calculated as described previously. From these
data, it was determined that themost active and cytotoxic concen-
trations of AgNP for the remaining gene THP-1 monocyte studies
were 50 and 100μgml–1 (IC50).

THP-1 pro-inflammatory cytokine gene expression in re-
sponse to AgNP exposure

The induction of pro-inflammatory gene expression by the THP-1
monocyte cell line as a result of AgNP exposure was investigated.
The response to AgNP at concentrations of 100 and 50μgml–1

were tested. LPS (1μgml–1) was employed as a positive control.
Results revealed a significant increase in transcript levels of all
cytokines.
Induction of IL-1 transcript levels demonstrate a significant

increase in both concentrations after 1-, 6- and 8-h exposures at
50μgml–1 and after 6- and 8-h exposures at 100μgml–1 (Fig. 2b)
compared to the unexposed control. At all exposure concentra-
tions, a time-dependent increase was noted and peaked at 8 h.
At both concentrations, levels of IL-1 begin to decrease after
24-h exposure. Levels of IL-1 at this time point were not significant
compared to the unexposed control.
A statistically significant up-regulation in IL-6 induction (Fig. 2b)

was noted after all exposure time points at all exposure doses
compared to the unexposed control. The increase in transcript

Table 1. Table of forward and reverse primer sequences for the housekeeping gene actin, and for the target genes interleukin (IL)-1,
IL-6 and tumour necrosis factor-alpha (TNF-α)

Gene Forward Sequence Reverse Sequence

Actin 5’-ACTCTTCCAGCCTTCCTTCC 5’-GTTGGCGTACAGGTCTTTGC
IL-1 5’-GGGCCACACATCTACTAGGC 5’-TGGGTATCTCAGGCATCTCC
IL-6 5’-GATGCAATAACCACCCCTGACCC 5’-CAATCTGAGGTGCCCATGCTAC
TNF-α 5’-AAGAGAATTGGGGGCTTAGG 5’-CAGGGATCAAAGCTGTAGGC

Induction of an innate immune response by silver nanoparticles
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levels occurs in a time-dependent manner at an AgNP concentra-
tion of 100μgml–1. IL-6 induction peaks 1h after exposure at a
50μgml–1 dose with a step-wise reduction noted with time. At
24h, a significant increase in transcript levels compared to the
unexposed control was noted at this concentration.

Induction of TNF-α (Fig. 2c) was detected after 1, 8 and 24h at
50μgml–1 with a significant increase in induction compared to
the unexposed control. At the highest exposure concentration,
100μgml–1, up-regulation of TNF-α was detected after 1- and
6-h exposures with a significant increase in transcript levels
observed after 24 h compared to the unexposed control.

The increase in transcript levels for TNF-α and IL-6 after 24 h
suggests prolonged induction and longer time points need to be
investigated to determine if levels continue to rise.

Synergistic effect of LPS and AgNP on pro-inflammatory gene
expression

AgNP were investigated for any potential synergism with LPS with
respect to pro-inflammatory gene expression. After exposure to a
combination of LPS and AgNP, THP-1 cells demonstrated
enhanced levels of gene expression compared to both the unex-
posed control and exposure to LPS or AgNP alone. Significant
increases in IL-1 gene expression were observed at 6, 8 and 24h
after LPS and combined 50μgml–1 AgNP and LPS exposures
(Fig. 3a). For exposure to combined 100μgml–1 AgNP and LPS,
significant increases compared to the unexposed control were
noted at 6 and 8h. IL-6 induction (Fig. 3b) demonstrated signifi-
cant increases in all exposure scenarios at 6, 8 and 24h compared
to the unexposed control with significant increases in expression
of TNF-α (Fig. 3c) noted at all time points and in all exposures
compared to the unexposed control. For all of the cytokines,
greater levels were observed in the combined AgNP–LPS expo-
sures compared to LPS exposure alone.

In addition to significant differences compared to the unex-
posed control Student–Newman–Keuls multiple comparisons,
tests were performed to determine if the difference in levels of
expression between LPS exposed, AgNP exposed and AgNP–LPS
exposed samples was significant. For IL-1 expression, significant
differences were noted for 6 (P< 0.001), 8 (P< 0.05) and 24h
(P< 0.01) between all exposure scenarios with the exception of
100μgml–1 AgNP compared to 100μgml–1 AgNP–LPS and com-
pared to 50μgml–1 AgNP–LPS which showed no significant

difference in IL-1 induction after 24-h exposure. After 1-h exposure,
no significant differences in IL-1 gene expression were noted. IL-6
expression demonstrated statistically significant differences
between all exposure scenarios with P-values of P< 0.001 at all
exposure time points. Levels of TNF-α up-regulation demonstrated
a significant difference between all exposure scenarios at all time
points, with P-values of P< 0.01 after 1 h and P< 0.001after 6, 8
and 24h.

Primary monocyte cytokine gene expression in response to
AgNP exposure

Human blood monocytes were extracted from a cohort of 10
healthy donors and examined to determine whether a similar
innate immune response was induced in the THP-1 monocytes.
These monocytes were exposed only to a concentration of
50μgml–1 AgNP for 8 h as a result of the limited supply of mono-
cytes extracted per donor sample. This exposure concentration
and time point were chosen from the previous THP-1 studies as
they appeared to be the most active test points.

The following results are presented for the average response to
AgNP exposure in 10 healthy donors. As expected, all donors
displayed individual variation in response to AgNP for each cyto-
kine. Therefore, the coefficient of variation (CV) was calculated
for each cytokine between donors to determine the levels of vari-
ation between all blood donor samples. IL-1 demonstrated a CV of
63.7%, IL-6 of 54.5% and TNF-α of 51.2%.

The results (Fig. 4) demonstrate general up-regulation of all cy-
tokines in all donors responding to AgNP exposure compared to
an unexposed control. Non-parametric statistical analysis was per-
formed because of the donor samples being one-off samples.
Combined levels (n=10) of IL-1 and TNF-α showed statistically
significant up-regulation compared to the unexposed control as
determined by the Mann–Whitney test. Figure 5 demonstrates
the individual responses of 10 donors to exposure. The data illus-
trate the variation in individual gene expression between donors
as well as variation in the expression of each cytokine per donor.
Kruskal–Wallis non-parametric analysis comparing the difference
in expression levels of each individual cytokine between each of
the 10 donors was found to be non-significant for all three cyto-
kines. Spearman’s non-parametric assessment of differences
between the levels of expression of the three cytokines per donor
sample was shown to be non-significant.

Figure 1. Cytotoxicity of silver (AgNP) in THP-1 cells after 24-h exposure as determined by the AB assay. Data were expressed as percentage of the control
mean± SD of three independent experiments. * denotes a statistically significant (P< 0.01) difference from the unexposed control.
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AgNP-induced inflammasome activation and cytokine release

After the investigation into pro-inflammatory cytokine up-
regulation by AgNP exposure, it was hypothesized that the induc-
tion of cytokine release could be as a result of inflammasome
activation. The ability of AgNP to induce cytokine release after
pre-treatment of cells with LPS was investigated to determine
the potential inflammasome activation by AgNP themselves. An
ELISA assay for IL-1β release (Fig. 6) was performed on the superna-
tant of THP-1 cells after 6-h exposure to AgNP to detect

inflammasome-induced cleavage of pro-IL-1β. The assay was also
employed to confirm pro-inflammatory gene expression through
detection of the protein product, IL-1β, in cell supernatant. Produc-
tion of the protein confirmed inflammasome activation driven by
AgNP exposure.
An increase in IL-1β levels compared to the unexposed

control was noted for both AgNP exposure concentrations.
While the IL-1β release was significantly increased compared
to the unexposed control, levels were still low, under
20 pgml–1. After pre-treatment with LPS for 4 h levels of

Figure 2. Fold increase in (a) interleukin (IL)-1, (b) IL-6 and (c) tumour necrosis factor alpha (TNF-α) induction in THP-1 cells exposed to 50 and 100 μgml–1

AgNP compared to the unexposed control ± SD of three independent experiments. * denotes a statistically significant (P< 0.05) difference from the
unexposed control. LPS 1μgml–1 used as a positive control. Actin was used as the internal control. For clarity of data the y-axis on (b) was put on the
logarithmic scale.

Induction of an innate immune response by silver nanoparticles
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Schluesener, 2008; Sotiriou and Pratsinis, 2011). Translocation and
systemic distribution of nanoparticles have been documented and
as such the influence of exposure to the circulatory system and the
associated risk must be assessed ( Johnston et al., 2010; Loeschner
et al., 2011; Van der Zande et al., 2012).

In this study, it was established that exposure to AgNP resulted
in significant transcription of inflammatory cytokines IL-1, IL-6 and
TNF-α. AgNP exposure can generate intracellular reactive oxygen
species (ROS) in mammalian cells, with excessive production
linked to cell damage and initiation of an inflammatory response
(Asharani et al., 2009; Lim et al., 2012). Oxidative stress in mono-
cytes coupled with the release of inflammatory cytokines is a
natural protective response; however, this process can become
pathogenic when normal cell control systems are overwhelmed.
Evidence has indicated a correlation between ROS production
and inflammation resulting in an amplified response. Oxidative
stress causes expression of cytokines including IL-1, IL-6 and TNF-
α which in turn contribute to ROS generation. This produces an
amplification loop between oxidative stress and inflammation
initiated by AgNP exposure (Kim and Ryu, 2013). This loop while
potentially contributing to resolution may also cause continued
pro-inflammatory cytokine induction past the threshold of

resolution thus inducing a continued inflammatory response and
toxicity (Lander, 1997; Acker, 2005; Franco et al., 2009). The pro-
inflammatory cytokine expression detected after AgNP exposure
and the amplified expression noted after exposure to AgNP and
LPS combined may result from ROS production. These AgNP have
previously been shown to be potent inducers of ROS in liver,
epithelial, keratinocyte and cervical cell lines, Hep-G2, Hep2, HaCaT
and HeLa, respectively (Gupta Mukherjee et al., 2012; Murphy et al.,
2015). Further investigation is required to determine if a similar
ROS-driven mechanism occurs after exposure to these specific
AgNP. Exposure to AgNP can result in pro-inflammatory cytokine
regulation but, consideration must be given to the role of AgNP-
induced cell death. This process can result in the release of stress
signals know as damage-associated molecular patterns (DAMPs)
that in turn can increase cytokine up-regulation. This possibility
must be considered and further investigation is required to
determine the contribution of AgNP-induced cell death and thus
DAMP release on cytokine induction (Bianchi, 2007; Farrera and
Fadeel, 2015).
The increased gene expression that was detected by the combi-

nation of AgNP and LPS exposures indicated a synergistic effect
andmay further indicate a potential interaction which exacerbates

Figure 4. Fold increase in interleukin (IL)-1, IL-6 and tumour necrosis factor alpha (TNF-α) gene expression in primary monocytes after 8-h AgNP exposure
compared to an unexposed control ± SD of 10 independent experiments. * denotes a statistically significant (P< 0.05) difference from the unexposed con-
trol. Actin was used as the internal control.

Figure 5. Fold increase in pro-inflammatory cytokine gene expression, interleukin (IL)-1, IL-6 and tumour necrosis factor-alpha (TNF-α) in primary mono-
cytes of 10 donors after 8-h AgNP exposure compared to an unexposed control ± SD of three independent experiments. Actin was used as the internal
control.
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the inflammatory response, and potentially contributing to a
greater immune reaction. As previously discussed, significant
increases in levels of all cytokines compared to the unexposed
control were noted. Significant differences in expression of all
cytokines after 6, 8 and 24h, were determined when comparing
the differences in cytokine levels in cells exposed to either a
combination of AgNP and LPS compared to AgNP, or LPS alone.
An interaction between AgNP with LPS would explain the
increased gene expression compared with exposure to AgNP or
LPS alone. An important part of AgNP toxicity is attributed to
nanoparticle–biomolecule interactions. Upon entry, nanoparticles
associate with various biomolecules producing a surface coating.
The variety of biomolecules within the body leads to any number
of combinations coating the particle surface, making it an impor-
tant contributory factor of a cellular response to nanoparticles
and the extent of toxicity (Lynch et al., 2006; Monopoli et al.,
2012; Murphy et al., 2015; Dubey et al., 2015). A nanoparticles bio-
molecule surface coating can induce a Trojan horse effect whereby
toxicity appears delayed only to occur days later, resulting from
dissolution of the biomolecule coating within the lysosome after
cellular internalization (Wang et al., 2013). An interaction between
AgNP and LPS must be considered, and it is clear that numerous
factors contribute to the responses induced. Further investigation
is required to determine this interaction with particular attention
paid to the biomolecule surface coating in order to understand
the complete effect of AgNP exposure.

After investigation into gene expression by AgNP exposure in
THP-1 cells, human blood monocytes extracted from a cohort of
10 healthy donors were exposed to AgNP to determine if a similar
innate immune response was induced. While significant up-
regulation in IL-1 and TNF-α compared to the unexposed control
was observed when comparing the donors as a whole, variation
between individual donors in their expression of a particular cyto-
kine and variation between the levels of the three cytokines
expressed by each donor was also noted. Even under the same
experimental conditions variation in gene expression was
expected. There is evidence of donor-specific gene expression
patterns which can be attributed to the data shown here and also
the large error observed when the expression patterns of a partic-
ular cytokine were grouped and averaged. Statistical analysis of
the variation, which ranged from 51.2% to 63.7%, were performed
but indicated the variations between donors were non-significant.
Several studies involving donor blood samples have demonstrated

variation in gene expression patterns with each donor producing
differing levels after exposure to a particular stimulus. Many factors
can contribute to the variation in expression, from environmental
and physiological factors to the time of day of sample taking
(Whitney et al., 2003; Howe et al., 2005, 2009). The inflammatory
response in human circulating blood is a complex systemic
process involving numerous factors which contribute to the large
CVs and varied results. A larger cohort of samples to include other
cells per donor such as lymphocytes would be an interesting inves-
tigation to elucidate this response on a more clinical level.

The effect of AgNP on the release of IL-1β and its potential to
cause inflammasome activation yielded some interesting results.
Exposure to AgNP alone resulted in a low but significant level of
IL-1β release compared to the unexposed control. Pre-treatment
of cells with LPS followed by AgNP resulted in significantly higher
IL-1β release indicative of a synergistic relationship between the
two. This result corresponds to the increase in gene expression
observed after combined AgNP-LPS exposure. This effect on
IL-1β release may potentially have pathological consequences
and result in a greater immune response produced by minimally
activated cells when AgNP are present. Given their commonality
in consumer products and the incidence of exposure, their pres-
ence may trigger an exacerbated immune reaction in what would
have been a minimal immune response. Another interesting
observation was that the lower dose exposure produced the
greatest release indicating that at sub-lethal concentrations of
AgNP a greater response is induced, and this is an important
dosimetric consideration. This type of reaction has been observed
in other studies examining AgNP exposure which the findings here
support (Lim et al., 2012; Yang et al., 2012). The inclusion of an in-
hibitor highlights the involvement of caspase-1 in inflammasome
activation and potentially the specific involvement of the NLRP3
inflammasome which has been shown to become activated upon
AgNP exposure (Yang et al., 2012; Simard et al, 2015). The involve-
ment of caspase-1 would explain the low levels of IL-1β release
after cell exposure to AgNP or LPS alone as it has been shown that
monocytes constitutively express activated caspase-1 and as a
result only require one stimulating event in order to cleave pro-
IL-1β, which may explain the low levels detected after exposure
to AgNP or LPS alone (Netea et al, 2009).

The first signal in inflammasome activation leading to the
production of pro-IL-1β is often NF-κB. AgNP has been shown to
stimulate this pathway resulting in downstream effects ranging

Figure 6. Release of interleukin (IL)-1β (pgml–1) from THP-1 cells after a 6-h exposure to silver (AgNP). Lipopolysaccharide (LPS) (10 ngml–1) was pre-treated
4 h before exposure and Ac-YVAD-CMK (20 μM) inhibitor was treated 1 h before exposure. ATP (5mM) was employed as a positive control. Data expressed as
percentage of the control mean± SD of five independent experiments. *denotes a statistically significant difference (P< 0.05) from the unexposed control.
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from cell cycle arrest to apoptosis (Eom and Choi, 2010). A causa-
tive mechanism of NF-κB expression is ROS, which can lead to sev-
eral inflammatory responses including mitochondrial DNA release,
causing NLRP3 inflammasome activation (Hehner et al., 2000;
Gloire et al., 2006; Shimada et al., 2012). AgNP entry into cells is
believed to occur via receptor-mediated endocytosis, and evi-
dence suggests that AgNP can activate toll-like receptor pathways,
another mechanism of NF-κB activation (Kim et al., 2007, 2012). It is
possible that TLR-2 is involved as it has been demonstrated that
AgNP-induced apoptosis can be partially mediated by the TLR-2
signaling pathway (Kim et al., 2012; Dubey et al., 2015). Interaction
of AgNP with a TLR coupled with AgNP induction of NF-κB high-
lights a possible mechanism for inflammasome activation. Further
investigation into specific TLR–AgNP interactions is required to
determine any involvement. The heightened gene expression to
combined AgNP–LPS exposure may suggest the involvement of
the TLR-4 signaling pathway, a receptor that specifically recognizes
LPS, as another potential initiation event in inflammasome
activation.

ROS, specifically mitochondrial superoxide, have been impli-
cated in the formation of the inflammasome complex. Two addi-
tional mechanisms have also been identified, one involves
interaction of AgNP with the cell membrane affecting integrity
and resulting in alteration of K+ efflux channels, the other involves
cathepsin release after particle entry into the lysosome which in
turn affects mitochondrial function resulting in ROS release and
thus inflammasome formation (Yang et al., 2012). Another contrib-
utor to inflammasome activation by AgNP was recently identified
as degradation of a stress sensor associated with the endoplasmic
reticulum brought on by exposure (Simard et al., 2015). Further
investigation is required to determine if one or all of these mecha-
nisms are responsible for inflammasome activation by the specific
AgNP utilized in this study. In addition, AgNP has been investi-
gated for their potential adjuvant properties with studies indicat-
ing a significant adjuvant effect in mice (Xu et al., 2013). This
evidence of the immunostimulatory effect of AgNP highlights
the immunological significance of AgNP and is in agreement with
the data presented in this study regarding gene expression and
IL-1β release induced by AgNP exposure alone and the increased
levels released after the combined exposure to AgNP and LPS.

This study has highlighted that AgNP exposure results in
up-regulation of inflammatory cytokines IL-1, IL-6 and TNF-α in
THP-1 cells and primary human monocytes. In addition, we have
demonstrated that this gene expression leads to IL-1β release by
inflammasome formation. The results demonstrate that AgNP
exposure can result in an innate immune response andmay poten-
tially contribute to the risk of disease development or indeed exac-
erbate already existing conditions by inducing an immunologically
active state.
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