
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Dissertations School of Computer Science

2018

A JavaScript Framework Comparison Based on Benchmarking A JavaScript Framework Comparison Based on Benchmarking

Software Metrics and Environment Configuration Software Metrics and Environment Configuration

Jefferson Ferreira

Follow this and additional works at: https://arrow.tudublin.ie/scschcomdis

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ferreira, Jefferson (2018). A javascript framework comparison based on benchmarking software metrics
and environment configuration . Masters dissertation, DIT, 2018.

This Dissertation is brought to you for free and open access by the School of Computer Science at ARROW@TU
Dublin. It has been accepted for inclusion in Dissertations by an authorized administrator of ARROW@TU Dublin.
For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomdis
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomdis?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomdis%2F159&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

A JavaScript framework comparison

based on benchmarking software

metrics and environment configuration

Jefferson Ferreira

BSc, Computer Science, Universidade Veiga de Almeida, 2012

A dissertation submitted in partial fulfilment of the requirements of

Dublin Institute of Technology for the degree of

M.Sc. in Computing (Advanced Software Development)

January 2018

 i

I certify that this dissertation which I now submit for examination for the award of

MSc in Computing (Knowledge Management), is entirely my own work and has not

been taken from the work of others save and to the extent that such work has been

cited and acknowledged within the test of my work.

This dissertation was prepared according to the regulations for postgraduate study of

the Dublin Institute of Technology and has not been submitted in whole or part for an

award in any other Institute or University.

The work reported on in this dissertation conforms to the principles and requirements

of the Institute’s guidelines for ethics in research.

 Jefferson Luiz da Conceição Ferreira

Signed: _________________________________

Date: 03 January 2018

 ii

ABSTRACT

JavaScript is a client-side programming language that can be used in multi-platform

applications. It controls HTML and CSS to manipulate page behaviours and is widely

used in most websites over the internet. JavaScript frameworks are structures made to

help web developers build web applications faster by offering features that enhance the

user interaction with the web page. An increasing number of JavaScript frameworks

have been released in recent years in the market to help front-end developers build

applications in a shorter space of time. Decision makers in software companies have

been struggling to determine which frameworks are best suited for a specific project.

This work investigates the actual state-of-the-art of JavaScript framework comparison,

and it proposes metrics and methods that could help developers when choosing a

JavaScript framework. In this work, a benchmark framework executes tasks to test the

efficiency of three JavaScript frameworks (AngularJS, Aurelia, and Ember). The

research shows the impact of the environment (CPU usage and network connectivity)

on JavaScript frameworks.

Keywords: JavaScript, JavaScript framework comparison, performance testing,

benchmarking, test environment, JavaScript framework adoption

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my supervisor Dr John Gilligan who was

extremely patient, attentive with me; always suggesting improvements that challenged

my knowledge and enhanced my confidence in my technical skills.

I would also like to thank my family, especially my mother who was always

supportive in my decisions and gave a lot of strength to pursue this degree.

Thanks to all my friends who were always there for me in every difficult and stressful

moment that I went through during the course.

 iv

TABLE OF CONTENTS

ABSTRACT .. II

TABLE OF FIGURES .. VII

TABLE OF TABLES .. IX

1 INTRODUCTION ... 1

1.1 BACKGROUND .. 1

1.2 RESEARCH PROJECT/PROBLEM ... 2

1.3 RESEARCH OBJECTIVES .. 3

1.4 RESEARCH METHODOLOGIES ... 4

1.5 SCOPE AND LIMITATIONS ... 4

1.6 DOCUMENT OUTLINE ... 5

2 LITERATURE REVIEW .. 6

2.1 INTRODUCTION ... 6

2.2 JAVASCRIPT AND JAVASCRIPT FRAMEWORKS .. 6

2.2.1 AngularJS ... 7

2.2.2 Ember .. 8

2.2.3 Aurelia .. 9

2.2.4 JavaScript frameworks comparison ... 10

2.2.5 System processes ... 12

2.2.6 Asynchronous programming explained .. 16

2.2.7 Promises explained ... 18

2.3 PERFORMANCE EVALUATION .. 20

2.3.1 Benchmarking ... 21

2.3.2 Other performance evaluations types ... 22

2.3.3 Benchmarking JavaScript frameworks ... 23

2.3.4 Benchmarking databases .. 25

2.3.5 TODO benchmark application ... 27

2.4 BENCHMARKING METRICS .. 29

2.5 PERFORMANCE.NOW (CLOCK) .. 30

2.6 VIRTUAL MACHINE VS DUAL BOOT ... 32

 v

2.7 CHAPTER SUMMARY ... 33

3 DESIGN AND METHODOLOGY ... 34

3.1 INTRODUCTION ... 34

3.2 JAVASCRIPT FRAMEWORK BENCHMARK APPLICATION 34

3.3 RESTFUL API .. 38

3.4 GOOGLE CLOUD PLATFORM ... 40

3.5 NETWORK... 41

3.6 EXPERIMENT DESIGN ... 42

3.7 CHAPTER SUMMARY ... 44

4 IMPLEMENTATION AND RESULTS ... 45

4.1 INTRODUCTION ... 45

4.2 SOFTWARE USED .. 45

4.3 FRAMEWORK IMPLEMENTATIONS ... 46

4.3.1 RESTful API .. 46

4.3.2 Clock settings .. 51

4.3.3 Processes .. 51

4.3.4 AngularJS ... 52

4.3.5 Aurelia .. 54

4.3.6 Ember .. 55

4.4 ENVIRONMENT CONFIGURATION .. 57

4.5 RESULTS ... 57

4.6 CHAPTER SUMMARY ... 58

5 ANALYSIS, EVALUATION AND DISCUSSION .. 59

5.1 INTRODUCTION ... 59

5.2 EXPERIMENTATION ... 59

5.2.1 Preparing the experiment ... 59

5.2.2 Running the experiment .. 63

5.3 EVALUATION .. 65

5.3.1 JavaScript framework benchmark results .. 65

5.3.2 Complexity measurement results .. 74

5.3.3 Comparison conclusion and suggestions ... 77

5.3.4 Strengths and limitations .. 78

 vi

5.4 CHAPTER SUMMARY ... 79

6 CONCLUSION ... 80

6.1 INTRODUCTION ... 80

6.2 RESEARCH OVERVIEW .. 80

6.3 EXPERIMENTATION, EVALUATION AND LIMITATIONS 81

6.4 RESULTS SUMMARY ... 82

6.5 CONTRIBUTIONS AND IMPACT .. 82

6.6 FUTURE WORK AND RECOMMENDATIONS .. 83

BIBLIOGRAPHY .. 84

APPENDIX A: TABLE RESULTS FROM THE BENCHMARK APPLICATION

 ... 92

 vii

TABLE OF FIGURES

FIGURE 2.1 PROCESS IN MEMORY .. 13

FIGURE 2.2 SINGLE-THREADED AND MULTITHREADED PROCESSES 14

FIGURE 2.3 TODOMVC USER INTERFACE .. 28

FIGURE 3.1 JS-FRAMEWORK-BENCHMARK USER INTERFACE .. 34

FIGURE 3.2 GOOGLE CLOUD PLATFORM ARCHITECTURE .. 41

FIGURE 3.3 EXPERIMENT DESIGN ... 43

FIGURE 4.1 CONFIGURATION FILE ... 46

FIGURE 4.2 SERVER FOR THE RESTFUL API.. 47

FIGURE 4.3 GET METHOD .. 47

FIGURE 4.4 SELECT FROM THE DATABASE ... 48

FIGURE 4.5 POST METHOD .. 48

FIGURE 4.6 INSERT INTO THE DATABASE ... 49

FIGURE 4.7 PUT METHOD .. 49

FIGURE 4.8 UPDATE THE DATABASE WITH INSERT ... 50

FIGURE 4.9 DELETE METHOD .. 50

FIGURE 4.10 DELETE FROM THE DATABASE ... 50

FIGURE 4.11 CLOCK IMPLEMENTATION ... 51

FIGURE 4.12 CODE SNIPPET OF THE SYSTEM INFORMATION MODULE 52

FIGURE 4.13 ANGULARJS TEMPLATE ... 52

FIGURE 4.14 DATABASE FUNCTIONS IN ANGULARJS ... 53

FIGURE 4.15 CALLING THE RESTFUL API IN ANGULARJS .. 53

FIGURE 4.16 AURELIA TEMPLATE .. 54

FIGURE 4.17 DATABASE FUNCTIONS IN AURELIA .. 54

FIGURE 4.18 CALLING THE RESTFUL API IN AURELIA ... 55

FIGURE 4.19 EMBER TEMPLATE ... 55

FIGURE 4.20 DATABASE FUNCTIONS IN ANGULARJS ... 56

FIGURE 4.21 CALLING THE RESTFUL API IN EMBER .. 56

FIGURE 5.1 GITHUB REPOSITORY FOR THE JS-BENCHMARK-FRAMEWORK 60

FIGURE 5.2 GITHUB PAGE OF THE FORKED PROJECT .. 60

FIGURE 5.3 CLONING REPOSITORY ON GITHUB ... 60

FIGURE 5.4 SNIPPET CODE OF BENCHMARKS ... 61

 viii

FIGURE 5.5 CREATING A NEW PROJECT IN GOOGLE CLOUD PLATFORM 61

FIGURE 5.6 SELECTING PROJECT IN GOOGLE CLOUD PLATFORM 62

FIGURE 5.7 DEPLOYING AN APPLICATION IN THE GOOGLE CLOUD PLATFORM 62

FIGURE 5.8 INSTALLING BENCHMARK APPLICATION DEPENDENCIES 62

FIGURE 5.9 INSTALLING FRAMEWORK DEPENDENCIES ... 62

FIGURE 5.10 RUNNING THE APPLICATION .. 63

FIGURE 5.11 APPLICATION HOME PAGE .. 63

FIGURE 5.12 RUNNING BENCHMARKS .. 64

FIGURE 5.13 RUNNING RESULTS TABLE ... 64

FIGURE 5.14 RESULTS TABLE... 65

FIGURE 5.15 LINUX PERFORMANCE IN A WIRED CONNECTION (PART I) 66

FIGURE 5.16 WINDOWS PERFORMANCE IN A WIRED CONNECTION (PART I) 67

FIGURE 5.17 LINUX PERFORMANCE IN A WIRED CONNECTION (PART II) 68

FIGURE 5.18 WINDOWS PERFORMANCE IN A WIRED CONNECTION (PART II) 68

FIGURE 5.19 LINUX PERFORMANCE IN A WIRED CONNECTION (PART III) 69

FIGURE 5.20 WINDOWS PERFORMANCE IN A WIRED CONNECTION (PART III) 69

FIGURE 5.21 LINUX PERFORMANCE IN A WIRELESS CONNECTION (PART I) 70

FIGURE 5.22 WINDOWS PERFORMANCE IN A WIRELESS CONNECTION (PART I) 71

FIGURE 5.23 LINUX PERFORMANCE IN A WIRELESS CONNECTION (PART II) 72

FIGURE 5.24 WINDOWS PERFORMANCE IN A WIRELESS CONNECTION (PART II) 72

FIGURE 5.25 LINUX PERFORMANCE IN A WIRELESS CONNECTION (PART III) 73

FIGURE 5.26 WINDOWS PERFORMANCE IN A WIRELESS CONNECTION (PART III) 73

FIGURE 5.27 LOGICAL LINES OF CODE COMPARISON ... 74

FIGURE 5.28 CYCLOMATIC COMPLEXITY COMPARISON .. 75

FIGURE 5.29 HALSTEAD EFFORT COMPARISON .. 75

FIGURE 5.30 MAINTAINABILITY INDEX COMPARISON .. 76

FIGURE 5.31 PARAMETER COUNTER COMPARISON ... 77

 ix

TABLE OF TABLES

TABLE 2.1 JAVASCRIPT FRAMEWORK FEATURE COMPARISON 11

TABLE 2.2 JAVASCRIPT FRAMEWORK COMMUNITY COMPARISON (DECEMBER 2017) 12

TABLE 2.3 PROCESS IN WINDOWS ... 15

TABLE 2.4 SERVICES IN WINDOWS .. 16

TABLE 2.5 INFLUENCE FACTORS ON CHOOSING JAVASCRIPT FRAMEWORKS 24

TABLE 3.1 API SPECIFICATION .. 39

TABLE 3.2 DATABASE SPECIFICATION ... 39

TABLE 3.3 NETWORK SPECIFICATION .. 42

TABLE 4.1 SYSTEM'S SPECIFICATION AND CONFIGURATION ... 57

TABLE 5.1 DESCRIPTION OF Y-AXIS VALUES IN MILLISECONDS IN FIGURE 5.15 AND

FIGURE 5.16 .. 66

TABLE 5.2 DESCRIPTION OF Y-AXIS VALUES IN MILLISECONDS IN FIGURE 5.17 AND

FIGURE 5.18 .. 67

TABLE 5.3 DESCRIPTION OF Y-AXIS VALUES IN MILLISECONDS IN FIGURE 5.19 AND

FIGURE 5.20 .. 69

TABLE 5.4 DESCRIPTION OF Y-AXIS VALUES IN MILLISECONDS IN FIGURE 5.21 AND

FIGURE 5.22 .. 70

TABLE 5.5 DESCRIPTION OF Y-AXIS VALUES IN MILLISECONDS IN FIGURE 5.23 AND

FIGURE 5.24 .. 71

TABLE 5.6 DESCRIPTION OF Y-AXIS VALUES IN MILLISECONDS IN FIGURE 5.25 AND

FIGURE 5.26 .. 72

 1

1 INTRODUCTION

This project intends to use the JavaScript framework (JSF) artefact to determine

metrics and environment settings in a performance comparison. Choosing the ‘right’

JSF has become a big challenge among front-end developers and this work address the

issues that most developers face when choosing a software for their projects. This

work uses benchmarking as a method for assessing JSFs. This research extends

Mariano’s (2017) work which investigated the role of benchmarking in JavaScript

frameworks. He defined benchmarking as an appropriate method for assessing JSFs.

JavaScript frameworks differ from each other in number of features they provide,

community support, architecture, and size. Metrics related to memory and security can

also me added to the comparison of JSFs. This work aims to determine the influence of

the configuration of the environment on the performance of JSFs in JavaScript

applications. This research will explore the execution of JavaScript applications in

different Operating Systems and different networks to assess the affects of the

environment.

1.1 Background

 JavaScript is a widely-known programming language which can be used in multi-

platform applications (Mariano, 2017) and just like other languages such as Java and

Python, JavaScript has been improved and is gaining more relevance on the web.

JavaScript is still one of the most popular programming languages in 2017 as the

tendency for applications to be transferred to web platforms only increases (Gizas,

Christodoulou, & Papatheodorou, 2012a).

As expected, a number of plug-ins, frameworks and libraries were created to work with

JavaScript, to facilitate the use of this language in everyday tasks of the web

developer. In recent years, dozens of JavaScript frameworks have been released on the

market to help these front-end developers build applications quickly (Gizas et al.,

2012a). Most of these frameworks are open source, and some of them have stood out

to become a fundamental part of several projects, due to their functionalities, being

integrated with great tools (Graziotin & Abrahamsson, 2013).

However, choosing the ‘right’ tools is not an easy task. Developers tend to seek out

better and faster solutions which raises the question: Which framework is the ‘best fit’

 2

for a project (O. Hauge, T. Osterlie, C. F. Sorensen, & M. Gerea, 2009)? Studies have

been conducted to test the performance of JavaScript applications (Ratanaworabhan,

Livshits, & Zorn, 2010) and the results obtained have significantly contributed to this

field of research, but as the technology advances over time, these studies become out-

dated.

JavaScript framework comparison is a growing area (Ratanaworabhan et al., 2010),

and this field of research has gaps that need to be filled. Thus, the performance and

integrity of JavaScript applications using JavaScript frameworks are the primary

motivation for this research project.

1.2 Research Project/problem

Developers face a challenge when choosing the right JavaScript framework because of

the extensive variety of tools and frameworks available. Methods of evaluation and

validation of software (P. Miguel, Mauricio, & Rodríguez, 2014) have been developed

during the past few years to measure the quality of Open Source Software (Barkmann,

Lincke, & Löwe, 2009). Decision makers in companies face challenges when choosing

a particular open source software (OSS); these challenges can relate to to product

selection (e.g. too much choice, lack of time to evaluate the product and product

version), product support (e.g. documentation, community, and maintenance of the

product) which includes uncertainty about the product’s future and dependency for

future support (Stol & Ali Babar, 2010). Other challenges are integration and

architecture (backward compatibility issues, need for modification, component and

architecture incompatibilities) as well as migration and legal issues (complex licensing

and lack of precise business model) (Stol & Ali Babar, 2010). The main concerns

when choosing an OSS are the frequent changes that come from the fast-growing

nature of the marketplace, lack of standards to assess and describe those OSSs as well

as product reputation (Ayala et al., 2009).

Experiment has been conducted to demonstrate available tools for in-browser network

performance measurement in different browsers and platforms (Gizas, Christodoulou,

& Papatheodorou, 2012b). This research showed the importance of proper

methodology and accurate tools when measuring network and software performance.

The information obtained through this research will help decision makers choose the

right tool when developing software for any potential projects (Horký, Libič,

 3

Steinhauser, & Tůma, 2015). JavaScript has been evolving, and several JSFs have been

released in the past years to help developers achieve faster and better results for the

development of an application (Graziotin & Abrahamsson, 2013). Each JavaScript

framework claims to provide unique benefits and advantages over its competitors.

Developers need to be aware of the features that each framework offers and

performance gains when using a specific framework.

Therefore, this research will attempt to answer the following research question:

Does the environment configuration affect the performance of JavaScript

frameworks in JavaScript applications?

1.3 Research Objectives

This research aims to determine metrics and methods of evaluation that best suit a

JavaScrpit framework comparison. The results of this research will enhance the

decision-making for developers and researchers when choosing a JavaScript

framework by using a different performance evaluation. Performance in the context of

this research is the execution time of a given task. Therefore, time is the primary object

of this measurement. Environmental factors impact performance results, e.g.

concurrent processes and network stability. This project explores factors that could

alter the results of performance in JavaScript frameworks.

The results of each experiment will give an insight to how this analysis should be

conducted and which metrics are essential for analysis when external influence acts

over these frameworks. JSFs are client-side applications which means results may

differ from one JSF to another, depending on the environment in which the

application is being executed. This research aims to establish a controlled environment

where only the critical processes are being executed and competing for the CPU usage.

The objectives of this research are:

1. To investigate the actual state-of-the-art of JavaScript frameworks and more

specifically JavaScript framework comparison.

2. To define metrics and environmental standards for the experiment to be

conducted.

3. To configure the environment where the experiment will be conducted

according to the chosen defined standards.

 4

4. To develop an experiment in compliance with the chosen metrics to evaluate

the selected JavaScript frameworks.

5. To document findings and the results of the evaluation process from the

experiment.

6. To critically analyse the results giving an overall view of the performance

obtained from each JSF

7. To suggest improvements to this project through recommendations for future

research in this area.

1.4 Research Methodologies

Secondary research (desk research) will be carried out as part of this thesis to

summarise and synthesise existing researches done in this area. Given the structured

and data-driven approach to the experiment, the following step is to conduct

quantitative research based on the data collected from it. This is a quantitative research

where systematic empirical investigation and statistical analysis of the data collected

will be carried out.

1.5 Scope and Limitations

This research aims to compare JavaScript frameworks and use software performance

metrics to generate data for this comparison. The literature review showed a wide

variety of JavaScript frameworks available for developers; only three frameworks were

selected for this comparison due to time constraints. The frameworks are AngularJS,

Aurelia, and Ember.

The literature review also revealed different types of performance metrics which

include spike testing and stress testing. Benchmarking was the method chosen for

measuring performance in this project as Mariano’s (2017) findings have proven that it

is the most suitable approach to take when measuring performance in JavaScript

frameworks.

The benchmark tool used in this research will assess the execution time of JavaScript

in different JavaScript frameworks. This application requirement only involves the use

of the browser ‘Google Chrome’. Future implementations of this application will

 5

integrate other browsers such as Mozilla Firefox and Microsoft Edge. Therefore, the

results of this research are collected from one browser.

JSFs are client-side applications, and this research aims to compare the execution of

JavaScript applications in different environments using different JSFs. The

benchmarks will run on different operating systems on the same machine. Two

operating systems were selected for this comparison (Windows and Linux) because

both systems can use the same machine without interfering with each other's

performance.

The comparison also aims to compute the execution time of database operations in a

cloud-based web server such as the AmazonAWS and Microsoft Azure. Google Cloud

Platform was the cloud-based server used for this research because it offers a structure

to host Node.js based application and relational database management system

(RDBMS) servers. MySQL is the RDBMS chosen for running this experiment.

1.6 Document Outline

The dissertation is structured as follows:

• Chapter 2 is a research of the literature already conducted in the field of

JavaScript framework comparison. This section presents the actual state-of-the-

art of this research field with its limitations and areas to be explored. The

literature review also presents a brief history and definitions of benchmarking

and JavaScript frameworks.

• Chapter 3 contains the design and methodology of this experiment. This section

describes the benchmark design and its development.

• Chapter 4 contains the description of the software used as well as the

environment specification and configurations to conduct the experiment.

• Chapter 5 illustrates the results and analysis of the experiment. It also presents

a discussion and interpretation of these results and findings.

• Chapter 6 summarises the research and concludes with an overview of the work

done throughout the project. It also suggests future work and recommendations.

 6

2 LITERATURE REVIEW

2.1 Introduction

As the aim of this project is to evaluate comparison results from different JavaScript

frameworks using benchmarking metrics, this chapter gives a brief introduction to

JavaScript and JavaScript Frameworks. The history of JSFs and a feature comparison

between them are also described in this chapter. The actual state-of-the-art of

benchmarking JavaScript frameworks is also discussed in this chapter with a brief

presentation of benchmarking and its importance for decision makers of software

projects. Benchmarking metrics and the importance of a precise clock to make speed

comparisons are also discussed in this chapter. This chapter also discusses the

difference between Virtual Machines (VMs) and Dual-Boot with an impact overview

on choosing one of those methodologies.

2.2 JavaScript and JavaScript frameworks

JavaScript is the most used programming language for front-end web developers

(Mariano, 2017). This programming language has an undeniable popularity given its

overwhelming use across most modern websites and all modern web browsers (Gizas

et al., 2012b). One of the critical features of the JavaScript language is that modern

web browsers contain an inbuilt interpreter for JavaScript codes that can parse and

execute the language (Mariano, 2017). In other words, JavaScript allows complex

applications to have direct access to the browser events and Document Object Model

(DOM) objects. DOM is a large hierarchical object with several elements forming a

tree. In the case of browsers, it is possible to find the elements in the browser itself and

in the accessed page (Mariano, 2017) and JavaScript manipulates the DOM.

Front-end web development, also known as client-side development, is the idea of

designing and creating the user interface and its interactions (Souders, 2008). A front-

end developer is a person responsible for creating the user interface. They are

responsible for the application usability, and user experience (UX) is the main concern

of this specialist (Souders, 2008).

 7

The main set of web development technologies includes HyperText Markup language

(HTML) to specify the web pages’ content, Cascading Style Sheets (CSS) to specify

web pages’ presentation, and finally JavaScript to specify web pages’ actions (S. Oney

& B. Myers, 2009).

Web browsers turn the pages encoded in HTML and CSS into an understandable

‘document’ to the user (S. Oney & B. Myers, 2009). Modern web browsers provide an

inbuilt interpreter of JavaScript language. This is not exclusive to desktops and

laptops. However, this technology has expanded to a number of other devices such as

game consoles, tablets, and smartphones (Mariano, 2017).

JavaScript code can be executed in different web browsers and different machines.

These environmental factors can cause difficulties when assessing an enhanced

performance of JavaScript (Gizas et al., 2012b).

JavaScript frameworks have now become essential tools for an agile development of

web applications (P. Saxena et al., 2010). They serve as a structure for creating single

page apps, enabling developers to care less about code structure, maintenance.

Developers can focus on building sophisticated components and rich interfaces with

the aid of these structures. The advantages of using JavaScript frameworks are their

efficiency, security and low cost. The most popular JavaScript frameworks are open-

source (Mariano, 2017) and the following sections discuss in detail the frameworks

AngularJS, Ember and Aurelia.

2.2.1 AngularJS

As the definition of JavaScript frameworks states, AngularJS1 is not a library but a

framework that aids developers with the challenges related to the creation of single-

page applications (SPA’s). In other words, AngularJS allows the developer to decorate

an HTML page with a special markup that synchronises with JavaScript. This

separation of concern isolates the application logic from the application views.

Many frameworks available in the market are created and maintained by an open

source community (Jain, Mangal, & Mehta, 2015). However, Angular is built and

maintained by Google Engineers. Google developed and released AngularJS in 2010.

AngularJS is not the first attempt of Google to release a JavaScript framework tool

(Jain et al., 2015). They developed an extensive Web Toolkit, which compiles Java

1 https://angularjs.org/

 8

down to JavaScript and it was applied in one of their products called Wave (Jain et al.,

2015). However, the rise of HTML5, CSS3, and JavaScript as a triad for front-end and

back-end solutions for web development, they abandoned the project as they realized

that web applications could not be written purely in Java (Jain et al., 2015). The main

advantages of AngularJS are the markup in DOM, data as Plain Old JavaScript Objects

(POJO), and dependency injection for modules.

Templates in some JavaScript frameworks are implemented like:

• template with markup -> framework template engine -> HTML -> DOM

AngularJS uses the following approach:

• HTML with Angular markup -> DOM -> Angular template engine

AngularJS skips the template pattern by including markup straight to HTML and

evaluates the markup only after HTML has been loaded into the DOM. The main

advantage of this approach is the integration with existing apps since evaluation starts

only after the page is completely loaded.

Digest cycle, or dirty checking, is the process that maintains the view and the data in

sync. The framework continually checks all the values in the scope searching for any

changes to automatically update the model. AngularJS creates a watchlist, and it will

walk down the list searching for any changes in the model.

2.2.2 Ember

Ember2 is the oldest JavaScript framework used for this comparison project. The

history started in 2007 when ember was part of the SproutCore MVC framework. In

December 2011, it was renamed to Ember.js to avoid confusion between the

application framework and the widget library of SproutCore 1.0. Ember is an open-

source JavaScript framework, based on the Model–View–Control (MVC) pattern and

just like Aurelia and Angular, it allows developers to create SPA with its own

methodology.

In contrast with AngularJS and Aurelia, Ember targets ambitious web applications

with a set of features that emphasize scalability. Ember was designed for creating a

web page with multiple ajax requests and user interface modifications. Projects like

these are usually complicated to maintain, especially when there is more than one

person working on the project.

2 https://www.emberjs.com/

 9

Therefore, if there is a need for CRUD actions - create, read, update and delete - on the

page, and it is necessary to improve performance, avoiding reloading with each action,

the MVC pattern, adopted by Ember, makes the process easier.

Ember relies heavily on the convention over configuration paradigm. In most cases,

the framework will automatically generate the modules needed for the application to

operate correctly. These modules are loaded by memory without explicitly having to

instantiate any class.

Ember uses Handlebars3 by default to build templates. Handlebars is a JavaScript

template system to develop semantic templates. It intends to separate the ‘view’ from

the business logic.

Models4 are responsible for controlling application data. They are entirely independent

of the user interface (UI), but they are required by it. Upon updating, the model

notifies the observers, which translates this into the UI.

Controllers5 are responsible for representing a model in a template and for storing

properties that will not be saved on the server. In other words, it manipulates the data

in the model, so the view can be changed.

2.2.3 Aurelia

Aurelia6 is the newest framework used in this project. It was released on July 2016,

and it is defined as a platform for building SPAs, based on top of open source web

technologies. A collection of modern JavaScript modules provided by Aurelia turns it

into a collection of feature-oriented modules. These modules include dependency

injection, binding, templating, and more.

The most significant stand out from this framework is the way that it performs the data

binding. Aurelia uses unidirectional data flow by default by pushing data from the

model into the view via DOM-batching mechanism. In other words, the changes that

will affect the DOM will be stored in a queue to be then executed altogether. Also, the

syntax is relatively simple and self-explanatory.

3 http://handlebarsjs.com/

4 https://guides.emberjs.com/v2.13.0/models/

5 https://guides.emberjs.com/v2.13.0/controllers/

6 http://aurelia.io/

 10

2.2.4 JavaScript frameworks comparison

Features are necessary to compare JSFs because they highlight the framework which

has an essential function in relation to any project. Table 2.1 shows a comparison

between AngularJS, Ember, and Aurelia. It is important to note these are the essential

features found in every JavaScript framework.

1. Data-Binding:

A mechanism allowing the connection between the HTML tags and the defined

data in JavaScript. Once the connection is created, the interface element will be

updated whenever the objects in the script are changed. This relationship is

called one-way binding, and when it occurs in both directions, it is called two-

way binding.

2. Dependency Injection:

A design pattern used when it is necessary to decouple different specific of a

system. In this solution, the dependencies between the modules are not defined

programmatically but by the configuration of a container. This container injects

in each component its declared dependencies.

3. Directives:

In the simplest way, they are marks on the DOM element (e.g. attribute, CSS

class) that tell AngularJS's HTML compiler ($compile) to attach a specific

behaviour to that DOM element. They also transform the DOM element and its

children.

4. Controller:

The class contains business logic behind the application to manipulate the

model with functions and values.

5. Scope/Model:

The stored data to be used in the application. It manipulates the data sent from

the view.

6. Template:

The data is presented in this layer. It is the view of the MVC model, and the

entire user interface resides in the templates.

 11

7. Routing:

The URL routing to the application. The router maps the current URL to one or

more route handlers. A route handler can render a template, load a model or

redirect to a new route.

8. Third-Party add-ons:

They are the extra functions created in order to help developers save time when

developing in a specific framework. (e.g. table with filtering)

9. Structure:

Model-View-Controller (MVC) pattern makes possible to divide the project

into distinct layers which provides separation of concern. MVC standard

isolates business rules from the user interface. It is possible to have multiple

user interfaces which may be modified without any need to change business

rules.

The Model–View–ViewModel (MVVM) aims to establish a clear separation of

responsibilities in the application, maintaining a façade between the Object

Model (data) and View which is the interface, where the user interacts.

Features

Metric Angular Ember Aurelia

Size 39.5 kb 90 kb 500 kb

Version v1.6.3 v1.1.5 2.16.2

Data-Binding
One-Way

Two-Way

One-Way

Two-Way

One-Time

One-Way

Two-Way

Dependency

Injection
YES YES YES

Controller YES YES YES

Scope/Model YES YES YES

Services YES YES YES

Directives YES NO NO

Templates/View YES YES YES

Routing YES YES YES

Structure
MVC

MVVM
MVC MVC

Third-Party

addons
2,112 (ngmodules) 4340 (emberaddons) -

Table 2.1 JavaScript framework feature comparison

Community

Community metrics are essential to verify the amount of support which a given

framework will provide to developers. Regarding product choice, community metrics

 12

are incredibly relevant to understand the current state of software in relation to its

maturity in the marketplace (P. Miguel et al., 2014).

All the chosen frameworks are open-source, and they have their code available in the

GitHub, a web-based Distributed Version Control System.

Every repository in GitHub has an option to follow a specific project by clicking the

‘star’ button. This will allow the user to track and find similar projects. GitHub also

offers a forum where developers can report bugs or suggest improvements to the

software. Developers can use this function to track previous problems and its solutions

in the project.

The number of YouTube videos determines the amount of teaching material that a

JavaScript framework may provide.

Metric Angular Ember Aurelia

GitHub stars 57,707 18,527 10,307

Open Issues 533 259 73

Closed Issues 8,169 5,190 550

GitHub

Contributors
1,602 695 90

YouTube

Results
193,000 11,600 7,050

Table 2.2 JavaScript framework community comparison (December 2017)

2.2.5 System processes

In the simplest terms, a process is an executing program. A program is a passive entity,

such as a collection of files stored on a disk and contains a series of instructions to be

executed (Tanenbaum, 2009). A program becomes a process when it is loaded into

memory, and it may contain one or more processes associated with it (Tanenbaum,

2009).

A process is not only a program code, but also includes the current activity of the

program, the process stack, a data section, and the heap (Silberschatz, Galvin, &

Gagne, 2014).

 13

Figure 2.1 Process in memory

Note: Retrieved from “Operating System Concepts Essentials” (p. 106), by Silberschatz, A., Galvin, P.

B., & Gagne, G. (2014), John Wiley & Sons, Inc.

Stack contains temporary data such as function parameters, return addresses, and local

variables. Heap is a memory dynamically allocated during runtime process. Data

Section contains global variables. Text is the program source (Silberschatz et al.,

2014).

A thread is a basic unit of CPU utilization to which the Operating System allocates

processor time and consists of a thread ID, a program counter, a register set, and a

stack (Silberschatz et al., 2014). A thread shares the code and the data section with

other threads in the same process as well as other operating system’s resources, such as

open files and signals (Silberschatz et al., 2014). A process can contain one (single-

threaded) or more (multi-threaded) threads (Silberschatz et al., 2014). For instance, a

web browser might have one thread display images or text while another thread

retrieves data from the network.

 14

Figure 2.2 Single-threaded and multithreaded processes

Note: Retrieved from “Operating System Concepts Essentials” (p. 164), by Silberschatz, A., Galvin, P.

B., & Gagne, G. (2014), John Wiley & Sons, Inc.

A thread pool is a set of pre-instantiated threads ready for use and is usually in an idle

state (Silberschatz et al., 2014). The process of creating a thread is resource-intensive

and monitoring all the active ones is not an easy task. The thread pool helps to reduce

the number of application threads and minimizes the CPU effort by avoiding the

creation and destruction of several threads.

Essential Process in Windows

The following list contains the critical processes that Windows uses to run in initial

configurations.

Process Name Description

csrss.exe
Client/Server Runtime

Subsystem

User-mode side of the Win32 subsystem.

Provides the capability for applications to

use the Windows API.

dwm.exe Desktop Window Manager

The compositing manager introduced in

Windows Vista that handles compositing

and manages special effects on-screen

objects in a graphical user interface

System (ntoskrnl.exe) NT Kernel & System

The Windows kernel image. Provides the

kernel and executive layers of the kernel

architecture, and is responsible for services

such as hardware virtualization, process and

memory management, etc.

services.exe Service Control Manager Service Control Manager (SCM) is a

 15

(SCM) particular system process under the

Windows NT family of operating systems,

which starts, stops and interacts with

Windows service processes.

explorer.exe Windows Explorer

Provides an interface for accessing the file

systems, launching applications, and

performing common tasks such as viewing

and printing pictures

dllhost.exe COM Surrogate

COM stands for Component Object Model.

This is an interface Microsoft introduced

back in 1993 that allows developers to

create “COM objects” using a variety of

different programming languages.

Essentially, these COM objects plug into

other applications and extend them.

RuntimeBroker.exe Runtime Broker

It is used to determine whether universal

apps you got from the Windows Store–

which were called Metro apps in Windows

8–are declaring all of their permissions, like

being able to access your location or

microphone.

sihost.exe Shell Infrastructure Host

It’s responsible for presenting universal

apps in a windowed interface. It also

handles several graphical elements of the

interface, like Start menu and taskbar

transparency and the new visuals for your

notification area flyouts–clock, calendar,

and so on.

svchost.exe
Host Process for Windows

Services

fontdrvhost.exe
User-mode Font Driver

Host

winlogon.exe
Windows Logon

Application

This process performs a variety of critical

tasks related to the Windows sign-in

process.

lsass.exe
Local Security Authority

Process

Local Security Authority Subsystem

Service (LSASS) is a process in Microsoft

Windows operating systems that is

responsible for enforcing the security policy

on the system. It verifies users logging on to

a Windows computer or server, handles

password changes, and creates access

tokens.

wininit.exe
Windows Initialization

Process

It initializes the user-mode scheduling

infrastructure.

smss.exe
Session Manager

Subsystem

It is executed during the startup process of

those operating systems (it is the first user-

mode process started by the kernel).

It creates environment variables and starts

the kernel and user modes of the Win32

subsystem.

Table 2.3 Process in Windows

 16

Services

A Windows service operates in the background as a computer program. It is similar in

concept to a Unix daemon.

Name Process associated Description

BrokerInfrastructure svchost.exe (DcomLaunch)
Background Tasks

Infrastructure Service

CoreMessagingRegistrar
svchost.exe

(LocalServiceNoNetwork)
CoreMessaging

CryptSvc svchost.exe (NetworkService) Cryptographic Services

DcomLaunch svchost.exe (DcomLaunch)
DCOM Server Process

Launcher

EventLog
svchost.exe

(LocalServiceNetworkRestricted)
Windows Event Log

LSM svchost.exe (DcomLaunch) Local Session Manager

PlugPlay svchost.exe (DcomLaunch) Plug and Play

Power svchost.exe (DcomLaunch) Power

ProfSvc svchost.exe (netsvcs) User Profile Service

RpcEptMapper svchost.exe (RPCSS) RPC Endpoint Mapper

RpcSs svchost.exe (RPCSS)
Remote Procedure Call

(RPC)

StateRepository svchost.exe (appmodel) State Repository Service

SystemEventsBroker svchost.exe (DcomLaunch) System Events Broker

tiledatamodelsvc svchost.exe (appmodel) Tile Data model server

Table 2.4 Services in Windows

2.2.6 Asynchronous programming explained

Asynchronous programming is a challenging activity which confuses and presents

difficulties for many. In the most imperative languages, such as C# and Visual Basic,

the execution of methods (functions, procedures) is sequenced (Cristian, 1996). In

other words, once a control thread starts executing a particular method, it will be

working with this task until the method execution has been completed. Sometimes the

thread is executing statements in different methods, but this is part of the execution of

the main method (Cristian, 1996). The thread will never do something that was not

requested by its own method.

Sometimes this synchronicity is a problem because the method might be waiting for a

long task to be completed, e.g. a download or calculation performed on a different

thread. In these cases, the thread gets completely blocked doing nothing. Synchronous

behaviour creates a bad user experience as the interface is locked/frozen whenever the

 17

user attempts to perform a time-consuming operation (Okur, Hartveld, Dig, &

Deursen, 2014).

An asynchronous method (creation of a thread) will immediately be returned, and the

program will perform other operations while the calling method completes its work

(Okur et al., 2014). The behaviour of the asynchronous method differs from the

synchronous because the asynchronous method creates a thread separately and this

thread starts to be executed immediately. However, the control is instantly returned to

the thread that called it, while the other thread continues to be executed.

In general, asynchronous programming makes sense if it is necessary to create an

application with an intensive interface in which the user experience is the primary

concern. In this case, an asynchronous call allows the user interface (UI) to continue

responding and does not stay frozen (Okur et al., 2014). The second scenario would be

a complex computational work or a very time-consuming task, and the user still needs

to interact with the UI while those computations are being executed in the background

(Okur et al., 2014).

Asynchronous programming is one of the main advantages of the JavaScript language

especially because JavaScript runs on a single thread (Klein & Spector, 2007). If there

is only one thread to run the code, this code should avoid blocking the thread as much

as possible. Therefore, delayed operations such as HTTP requests and disk access, or a

database, are typically executed asynchronously (Klein & Spector, 2007).

Although JavaScript is executed by a single thread, it does not mean the language

engine and its host application only use one thread (S. Tilkov & S. Vinoski, 2010). For

example, if a Node.js application requests disk access, Node may use another thread to

perform such access (S. Tilkov & S. Vinoski, 2010). But the code that requests this

access and the callback code that handles the result is executed on that single thread

dedicated to JavaScript code. This single thread executes an event loop (S. Tilkov & S.

Vinoski, 2010).

Event loop is basically an infinite loop in which each iteration verifies the existence of

a new event (Richards, Gal, Eich, & Vitek, 2011). In Node.js, the EventEmitter7 is the

module responsible for issuing events

7 https://nodejs.org/api/events.html#events_class_eventemitter

 18

When a given code issues an event, the EventEmitter sends it to a queue to be executed

by the Event-loop. The Event-loop returns the result in a callback (S. Tilkov & S.

Vinoski, 2010). Such callback is usually executed through a listen function.

var http = require('http');

var server = http.createServer(function(request, response){

response.writeHead(200, {"Content-Type": "text/html"});

response.write("<h1>Hello World!</h1>");

response.end();

});

server.listen(3000, function() {

console.log("Server running! Listening to port 3000");

});

In the example above, the event loop will work with only two listening events:

http.createServer() and server.listen(). In http.createServer(), this event callback will

always be executed every time a user accesses the URL from the server. In this case,

http://localhost:3000. This event will run more frequently through the Event-loop

because it will be added to the queue each time the server receives a new request. The

Server.listen() event will be executed only once by the Event-loop because this event

occurs when the server starts. In this example, it is started by port 3000.

2.2.7 Promises explained

JavaScript is a single-threaded language, which means that every event called is

executed independently, one after another (Richards et al., 2011). Functions cannot run

at the same time, and JavaScript shares a thread with many other functions carried by

the browser (Richards et al., 2011).

function readJSONSync(filename) {

 return JSON.parse(fs.readFileSync(filename, 'utf8'));

}

In this example, the function readJSONSync will freeze the application until all the

data is loaded. One way to avoid this is called Callback functions.

Callback is a function that is passed to another function as a parameter, and then the

callback function is executed inside of the other function (Kambona, Boix, & De

Meuter, 2013). A callback function is essentially a pattern often referenced as callback

 19

pattern (Geiger, George, Hahn, Jubeh, & Zündorf, 2010). The cascade execution

should guarantee that the second function is executed after the first one.

function readJSON(filename, callback){

 fs.readFile(filename, 'utf8', function (err, res){

 if (err) return callback(err);

 callback(null, JSON.parse(res));

 });

}

However, this is not always true as the events might delay between one and another.

The implementation above does not include handling errors, which are very likely to

happen when dealing with time and asynchronous functions.

function readJSON(filename, callback){

 fs.readFile(filename, 'utf8', function (err, res){

 if (err) return callback(err);

 try {

 res = JSON.parse(res);

 } catch (ex) {

 return callback(ex);

 }

 callback(null, res);

 });

}

Events are great for dealing with the same object multiple times. However, when it

comes to handling the asynchronous call, events may not be the best way to deal with

async success/failure (Richards et al., 2011).

Using these callbacks in a large-scale application may lead to a mix of collocated code

fragments that are hard to understand (Kambona et al., 2013). It may also force the

programmer to create complex flows to pass callbacks around in order to use their

delayed values.

One way to handle this problem is to use Promises. The term was coined by Daniel

Friedman and D. Wise (1978), is defined as a proxy object that represents an unknown

result that is yet to be computed.

Promises are primarily the result of an asynchronous operation (Kambona et al., 2013).

Instead of immediately returning the value of the method, it will return a promise that

should be fulfilled or reject after at some point in the future. In other words, they are

event listeners that can only succeed or fail once. Promises have three states:

 20

Pending: Initial state, neither Fulfilled nor Rejected

Fulfilled: Operation succeed

Rejected: Operation failed

A pending promise can either be fulfilled with a value or reject with an error. When

either of this happens, the method .then() will handle in case of success or failure.

function readJSON(filename){

 return readFile(filename, 'utf8').then(JSON.parse);

}

Data can also be manipulated within the method .then(). In the example above, the

response is transformed into a JSON object. Promises also allow chaining through this

method. It is possible to append more .then() methods in order to create a queue of

responses. Each response will only be satisfied after the previous one.

Asynchronous JavaScript, AJAX, and HTML5 technologies provide developers with

essential tools to create complete responsive JavaScript applications (P. Saxena et al.,

2010). Promises play a significant role when it comes to JavaScript and Restful

applications (Kambona et al., 2013). Each JavaScript framework implements an HTTP

client and promises in different ways. However, they are based on the same concept of

RESTful applications and asynchronous functions.

2.3 Performance evaluation

Performance testing is a broad activity, which can address many risks, take many

forms, and provide a wide range of value to an organization (Ramos & Valente, 2014).

It is essential to understand the different types of performance testing to reduce risk

and cost, and it is also important to know when to apply the appropriate test over a

given project (Ramos & Valente, 2014).

In order to apply different types of tests in a performance test, the following key points

need to be considered:

• The goals of the performance test

• The context of the performance test (e.g. resources involved)

Performance tests consist of testing a system for its performance requirements

(Denaro, Polini, & Emmerich, 2004) such as:

• Latency: the time between a request and response of operation.

 21

• Throughput: the number of operations that the system is able to complete in a

period of time.

• Scalability: the number of concurrent users the system can handle;

• Use of machine resources: such as memory and processing

Although a complete and ideal performance test depends on the existence of a fully

integrated and functional system, performance tests are often applied in all steps

throughout the process, in the context through which it will work.

2.3.1 Benchmarking

Benchmarking is a technique used to measure the performance of a system or one of its

components (Vokolos & Weyuker, 1998). More formally it can be understood that a

performance test is the result of the execution of a computer program or a set of

programs on a machine, with the aim of estimating the performance of a specific

element and being able to compare the results with similar machines (Vokolos &

Weyuker, 1998). In the field of computers, a performance test could be performed on

any of its components, be it the CPU, RAM, graphics card, etc. (J. L. Henning, 2000).

It can also be specifically directed to a function within a component, such as the

floating-point unit of the CPU, or even to other programs (J. L. Henning, 2000).

Benchmarks submit computational systems to load tests, which are executed through

programs, exercising an appropriate set of instructions that generate loads in the

system, used as a method of comparing performance among various subsystems

(SPEC8). Benchmarks are evaluation measures which perform a defined set of

workload operations to produce a result, according to the metrics defined by the

algorithm or benchmark software (Alves, Ypma, & Visser, 2010).

Load testing is used to evaluate the operating limits of a system according to variable

workloads (Draheim, Grundy, Hosking, Lutteroth, & Weber, 2006). The system’s

behaviour during the execution of the test helps to determine maximum operating

capacity and bottlenecks in the system (B. M. Subraya & S. V. Subrahmanya, 2000).

In general, measurements are taken based on the data transfer rate of the workload and

the response time (Vokolos & Weyuker, 1998). There are cases where the load test

maintains the workload, but the system configuration varies (Draheim et al., 2006). In

8 https://www.spec.org/web2009/

 22

these cases, the environment where the system is configured could influence the

system’s performance.

2.3.2 Other performance evaluations types

Performance testing also covers different aspects of computational systems such as a

system’s resources and data volume. These load tests are the stress testing, volume

testing and spike testing.

Stress testing is a type of reliability test designed to evaluate how the system responds

under abnormal conditions (Krishnamurthy, Rolia, & Majumdar, 2006). System stress

can cover extreme workloads, insufficient memory, unavailable hardware and services,

or limited shared resources (Krishnamurthy et al., 2006). The test should put the

application under stress to verify that the software can operate normally under heavy

processing load (B. M. Subraya & S. V. Subrahmanya, 2000). Often, the requirements

define the expected processing load, for instance, one thousand hits per hour or one

hundred transactions per minute. These numbers should be used as parameters at the

time of the stress test run.

Volume testing tests the amount of data that a system can manage, the purpose of this

test is to determine the system's ability to handle the volume of data specified in its

requirements (Teitel, 1981). In general, this type of test uses large amounts of data,

which is used to determine the limits at which the system fails (Teitel, 1981).

Moreover, they are usually used in identifying the maximum load or volume of data

that the system can manage in a time period (Teitel, 1981).

Spike testing aims to analyse the behaviour of a Web system under an atypical

condition of high load for a specific period of time (Menasce & Almeida, 2001). In

general, systems can handle gradual increases of the load. However, serious problems

can arise during a sudden increase in load (Menasce & Almeida, 2001). For example, a

given system can correctly support a load growth of one to five users per minute in a

ten-minute interval, reaching between ten to fifty users. This same system may not

support an abrupt increase of ten to twenty users per minute, in the same ten-minute

interval, which could reach between one hundred to two hundred users per minute.

Problems related to the connection with the web server or the database could arise due

to the unexpected workload. Web systems can experience these sudden spikes of

 23

charge during a special event, such as an advertising marketing campaign or a new

product release (Menasce & Almeida, 2001).

2.3.3 Benchmarking JavaScript frameworks

Mariano (2017) conducted research on JavaScript frameworks (JSF) using

benchmarking software metrics. The research investigated whether computer and

software benchmark metrics are appropriate for the comparison of JavaScript

frameworks. Three JSFs were selected based on their popularity among the

development community. They are AngularJS, BackboneJS and React. The number of

frameworks was limited to three due to time constraints. However, the results gathered

from the experiment contributed to the research in this field.

Another significant contribution to this field of research is a paper from Gizas,

Christodoulou, and Papatheodorou (2012a) where they evaluated the most popular

JSFs in that period. The researchers focused on the quality and performance of the

JSFs, and they contributed with software quality metrics and performance measures

that inspired Mariano’s work and consequently this project. They compared ExtJS,

Dojo, jQuery, MooTools, Prototype, and YUI. Their results revealed that some points

in the code needed to be improved and they suggested carrying on the research in

different platforms such as the mobile platform.

Graziotin and Abrahamsson (2013) proposed an improvement in the Gizas et al. study

by suggesting an implementation of a benchmark framework based on the TodoMVC

project. The aim of their research was to provide reliable data based on the

performance of those frameworks when executing different tasks. Their proposal led to

the creation of the TodoMVC benchmark project which was used by Mariano in his

research.

Ratanaworabhan, Livshits, and Zorn (2010) discussed the research limitations in the

field of JavaScript frameworks. They evaluated the JavaScript behaviour in

commercial websites and compared with benchmark suits such as SunSpider and V8.

They measured function, code and event handlers. They concluded that those

benchmarks could not represent real-life situations as common behaviours native to

real websites were not included in the benchmarks such as event-driven execution,

instruction mix similarity, cold-code dominance, and the prevalence of short functions.

 24

Pano, Graziotin, and Abrahamsson (2016) conducted a survey to investigate the

deterministic factors that lead developers to adopt JavaScript frameworks. The

interview questions were designed based on performance expectancy, effort

expectancy, social influence, facilitating conditions and price value.

Performance expectancy is how much individuals believe that a system will help them

to achieve their results faster. The metrics for this factor are performance and size.

Effort expectancy is the degree of difficulty of software. In other words, it is how

software can be straightforward and easy to learn. The metrics for this factor are

flexibility, complexity and understandability.

Social influence is the degree of influence people have over the decision makers.

Social influence metrics include competitor analysis, collegial advice, community size

and community responsiveness.

Facilitation conditions are the individual beliefs of how the software is well supported

and maintained. The metrics for this factor are suitability, updates, modularity,

isolation and extensibility.

Price value is the cost of adopting the specific software. Most JavaScript frameworks

are open-source and free. However, participants often mentioned the cost of adopting a

JSF.

Factor Metrics

performance expectancy Performance; size

effort expectancy
Automatization; learnability; extensibility;

complexity; understandability

Social influence
competitor analysis; collegial advice;

community size; community; responsiveness

facilitating conditions
Suitability; updates; modularity; isolation;

extensibility

Price value cost

Table 2.5 Influence factors on choosing JavaScript Frameworks

The interview grouped eighteen decision makers regarding the JavaScript framework

selection, divided by their role in the project. These stakeholders are the customer,

developer, team, and team leader.

The research concluded that metrics related to size and performance in terms of

execution time play an essential role for decision makers in software projects.

Although these metrics are important for practitioners, they are not sufficient to

determine the degree of influence on the decision makers of the projects. The research

 25

findings demonstrated that programmers spend some time studying the framework

documentation to find examples of simple tasks or hints for achieving advanced

functionalities.

The results also revealed that framework maturity is an important factor as the

framework age also influences the decision-making of practitioners. Framework

modularity also influences the framework choice as the code modification process can

be quickly done without affecting other areas of the application. Developers like

frameworks that can achieve basic and advanced functionalities in their core versions

without the necessity of including third-party add-ons.

2.3.4 Benchmarking databases

A database can be defined as a large structured set of persistent data (Dietrich, Brown,

Cortes-Rello, & Wunderlin, 1992). In other words, a database is an organised store of

data that can be accessible by its element’s name. A Database Management System

(DBMS) is a software program designed to create, store, update, and manage databases

(Dietrich et al., 1992). DBMS software enables applications and end-users to access

the same data. It provides a mechanism for creating, retrieving, updating, and deleting

data from databases and is also responsible for maintaining data integrity as well as

access control and recovery mechanisms (Dietrich et al., 1992).

The performance of DBMS is a crucial factor in determining the adoption of these

systems by a company or service. The price of a DBMS is also an essential factor as

companies always seek for an optimized return of investment. The decision-making of

these companies is based on data collected from performance measures of DBMS’s

from different vendors. Database benchmarking is the process that provides the

necessary data to aid companies in making such decisions.

Database performance benchmark has a long history, and it has been evolving and

adapting throughout time. The DebitCredit benchmark is a transactional benchmark

created to measure the performance of transactions in a DBMS. The DebitCredit

benchmark is one example of the earlier stages of benchmarking databases. The results

provided for this benchmark were not reliable as some publishers were able to alter

critical requirements of this benchmark to improve performance results. It was

necessary to create benchmark standards for DBMS’s as research in this field was not

well developed. Transactional Processing Performance Council (TPC) is a non-profit

 26

corporation created to establish industry standards for transaction processing and

database benchmarks.

TPC modified the CreditDebit benchmark by adding and establishing standards for

benchmarking databases. They called TPC benchmark A (TPC-A). TPC-A document a

series of guidelines to measure performance and price of DMBS. TPC started to

establish performance measures for various types of DBMS’s and scenarios that had

been applied to these systems. The council enumerates a series of benchmarks that

measure transactions in databases such as TPC-C, TPC-W and TPC-H (May,

Kossmann, Kaufmann, & Fischer, 2013). DBMS’s have been evolving over time.

Therefore, it is essential that the benchmark field also updates and adapts to the new

ways of storing and retrieving data.

TPC has been struggling to keep up with the rapid changes that occur within the

DBMS industry (Nambiar & Poess, 2013). There has been a swift decline in

publications because traditional databases and system vendors are being bought out by

other companies, reducing TCP’s membership (Nambiar & Poess, 2013). In an attempt

to keep the council relevant, TPC separated their benchmark into two categories. They

are called TPC Enterprise Benchmarks and TPC Express Benchmarks (Nambiar &

Poess, 2013).

The first category contains the traditional set of benchmarks with an extensive

specification of those benchmarks. TPC Enterprise Benchmarks are expensive and

hard to maintain, however, they have a rigorous set of tests and checks that guarantee

the quality of the benchmark (e.g. Ensure ACID properties) (Nambiar & Poess, 2013).

Express benchmarks are based on predefined, executable kits that can be rapidly

deployed and measured. The Express category contains a new set of benchmarks

mainly focusing on Big Data Systems and Cloud Platforms(Nambiar & Poess, 2013).

Although there is little question about the quality of TPC’s benchmark standards when

they first started in the early 1990’s, they still are a reference in benchmarking

databases.

Transactions

Benchmarking databases are mainly focused on the transactions made in a database. A

transaction is a small unit of a program that may contain small tasks within its process

(Dietrich et al., 1992). A transaction can also be defined as atomic (all or nothing). The

atomic concept is crucial to maintaining the consistency of the stored data in the

 27

database (Dietrich et al., 1992). ACID stands for Atomicity, Consistency, Isolation,

and Durability and it determines the core properties of a transaction (Dietrich et al.,

1992).

• Atomicity – The system must ensure the all-or-nothing quality of transactions.

No data will be left partially updated.

• Consistency – DBMS must ensure that the data transaction is always abiding

by the established rules and the data affected must be changed only in allowed

ways.

• Isolation – DBMS can serve data to multiple user programs. In this case, the

system must carry each transaction independently as it was the only transaction

being made in the system. Lock mechanism helps to prevent two transactions

being made at the same time.

• Durability – In accordance with atomicity, the DBMS must be able to hold all

the changes even if the system crashes. The DBMS must provide

recoverability.

In addition, when the DBMS is executing multiple transactions, it must schedule

operations for the execution of concurrent transactions. This property is called

serializability, and it is crucial in multiuser and distributed database environments,

where various transactions are likely to be executed at the same time for the same data.

In a scenario where only a single transaction is executed, serializability is not an issue.

2.3.5 TODO benchmark application

TodoMVC is a project created to help developers in choosing the right JavaScript

frameworks. It aims to have an implementation of a simple todo application in all the

most popular JavaScript frameworks including Angular, Backbone, React, and others.

In the application, the user can add new tasks, mark them as completed and erase them.

The application also offers different views depending on how the user wants to

visualise the list of tasks (All, active and completed). It provides two buttons; to

complete all the remaining tasks and clean the list of all completed tasks. The user also

has the option of completing or eliminating them one by one.

 28

Figure 2.3 TodoMVC user interface

The TodoMVC benchmark framework uses the TodoMVC application to group a set

of actions that the application executes. The benchmark framework performs three

actions in the application. It adds a hundred new tasks completes all the tasks and

finally erases all the tasks from the list.

The time of each set of operations is counted and stored. After executing all the

operations, the benchmark framework uses the execution time of the tasks to generate

a chart showing the performance of the framework.

The framework calculates the time spent between the start and end of the request.

Before each step-start, the application prepares and starts the clock. The event

execution takes place, and the clock stops counting at the end of the event. The total

time of the execution is calculated at the end of the process.

The trigger is the emulation of a keypress event activated by the Key Code number

thirteen. Every time this event happens the application activates the clock and

calculates the time at the end of it.

1. Add 100 items

This is the first task the benchmark executes. It starts with a clean state where an

empty to-do list is created. The function simply adds a hundred items to the list with

the code:

 29

newTodo.value = 'Something to do ' + i;

A keypress event is triggered to complete the task and end the event. The benchmark

framework recodes the execution time of this process and how long the DOM objects

take to be created in the browser.

This process aims to measure how long the JavaScript framework takes to execute and

create objects in the browser. Speed is the main metric in this process, therefore, the

faster, the better.

2. Complete 100 items

The second step of the set of tests is to complete all tasks created in the previous step.

The process starts by loading the list and looping through the list simulating a click on

the checkboxes.

var checkboxes = contentDocument.querySelectorAll('.toggle');

for (var i = 0; i < checkboxes.length; i++)

checkboxes[i].click();

This process aims to measure how long the JavaScript framework takes to read the

DOM objects and update them. Speed is the main metric in this process, therefore, the

faster, the better.

3. Delete 100 items

The final step is to eliminate all the completed tasks. Similar to the previous step, this

process starts by loading a list of tasks to be eliminated and loops on the array

destroying the DOM objects marked as a completed task.

var deleteButtons = contentDocument.querySelectorAll('.destroy');

for (var i = 0; i < deleteButtons.length; i++)

 deleteButtons[i].click();

This process aims to measure how long the JavaScript framework takes to read the

DOM objects and delete them. Speed is the main metric in this process, therefore, the

faster, the better.

2.4 Benchmarking metrics

Lines of code (LOC) is the oldest metric for measuring the efficiency of algorithms,

and it is used to measure the size of a software program by counting the number of

lines in the text of the program's source code (Gizas et al., 2012b). The IEEE has

standardised two methods of counting lines of code; Physical Lines of Code (SLOC)

and Logical Lines of Code (LLOC) (Park, 1992). SLOC is the real number of code

 30

lines written in a programme excluding the comment lines, and LLOC is the number of

executable statements such as functions and procedures in a piece of code. SLOC is

usually used to predict the amount of effort that will be required to develop a program,

as well as estimating programming productivity or effort, once the software is

produced.

Cyclomatic complexity is a metric used to measure the complex nature of a program

(T. J. McCabe, 1976). It measures the number of linearly-independent paths through a

program's source code. In other words, this metric checks the logic gates that a

program uses during its execution and calculates the source code complexity.

Halstead's complexity metrics were developed by Maurice Halstead as a means of

determining a quantitative measure of complexity directly from the operators and

operands contained in the module of a program from the source code. These metrics

are often used as a maintenance metric. However, evidence shows that Halstead

metrics are also useful during development to assess code quality in dense

computational applications or to keep up with complexity trends.

Concerns about software quality are measured through the maintainability index which

measures how easy it is to maintain the code. The maintainability index metric uses a

series of formulas containing the Source Lines of Code and the Cyclomatic

Complexity (Mariano, 2017). This metric also gives insights about the quality of the

software.

Other time measures are the Request Time with the time between connection

initialization and first response byte received from the server (Filipe, Boychenko, &

Araujo, 2015). Response Time is the time between first and last response byte received

from the server. Query Processing Time is the time that an HTTP request spends on

the database (Filipe et al., 2015).

2.5 Performance.now (clock)

This section introduces two methods to measure the execution time of JavaScript

Applications (Date.now() and Performance.now()). Accurate timestamping is a crucial

need in the software benchmarking field because milliseconds may completely change

the outcomes of a comparison. Software clocks are constantly being improved to meet

these needs and overcome challenges related to precise clocks for measuring software

performance.

 31

A Date object is a time value representing time in milliseconds since 01 January 1970

UTC (Suh et al., 2017). In other words, this definition is sufficient to represent a

precise time in milliseconds or any instant that is within approximately 285,616 years

from 01 January 1970 UTC. For example, the following code ran on Sat Dec 23, 2017,

08:40:24 UTC. The result was a thirteen-digit number (1514018761800) representing

the number of milliseconds from the start of that timebase, January 1970.

<script>

console.log(Date.now());

</script>

Although the data object definition is useful for showing the current calendar time, the

definition is subject to both clock skew and adjustment of the system clock (A.

Rajaram, Jiang Hu, & R. Mahapatra, 2006). In other words, the value returned may

decrease or remain the same due to its non-monotonic nature.

var mark_start = Date.now();

doTask(); // Some task

var duration = Date.now() - mark_start;

For instance, the previous piece of code may compute a positive, negative, or zero

number for the variable duration.

Sub-millisecond resolution is required to measure elapsed time accurately (e.g. using

navigation time APIs, resource time, benchmarking). In tasks where precision is a

crucial factor for the results, this definition may not fulfil all the requirements as it

does not provide a sub-millisecond resolution and is subject to system clock skew.

The High-Resolution Time specification9 sets a new time base with a microsecond

resolution (one-thousandth of a millisecond). The specification reduces the number of

bits used to represent specific number and increases readability, instead of measuring

the time from January 1, 1970, UTC; this new time base measures the time from the

start of document navigation, performance.timing.navigationStart.

The specification defines performance.now() as the alternative method of Date.now()

to determine the current time in high resolution. DOMHighResTimeStamp is the

alternative type for DOMTimeStamp that sets the high-resolution time value.

performance.now(); //13.405000000000001

Date.now(); //1514021548850

9 https://www.w3.org/TR/hr-time/

 32

The values returned from each function [above] represents the same instance in time,

but they are measured from a different source. The time value from performance.now()

is clearer compared to Date.now().

<script>

var mark_start = Date.now();

console.log("time is relative");

var duration = Date.now() - mark_start;

console.log(duration); //3

</script>

In the above example, the value returned when using the Date.now() function is 3.

<script>

var mark_start = performance.now();

console.log("time is relative");

var duration = performance.now() - mark_start;

console.log(duration); //2.1849999999999996

</script>

For the performance.now(), the value is 2.1849999999999996.

2.6 Virtual Machine vs Dual Boot

Many computers hold only one Operating System (OS) such as Windows, Linux or

MAC. Dual-boot allows users to install and use multiple OSs in their machines

enabling them to choose which OS they would like to use at the boot time (Chang, Ho,

& Chang, 2014).

Having multiple OSs in one machine is hugely advantageous because users have more

options for executing the same task in different ways. They may also make use of a

program which is not available in another OS or another version of the same OS (e.g.

Games). Users may take advantage of the higher number of applications that each OS

offers without losing performance (Chang et al., 2014).

Dual-boot consists in partitioning a hard-drive or adding a different hard drive to the

computer to install the second OS (Fourment & Gillings, 2008). Two OSs cannot

coexist in the same partition which creates the necessity of having a bootloader that

allows users to choose which OS they wish to start (Fourment & Gillings, 2008). The

booting process will increase because the system will have to seek for file systems in a

different partition of the hard-disk (Fourment & Gillings, 2008).

 33

Virtual Machines (VMs) are an alternative and fast way to use two different OSs on

one machine. However, VMs run on top of the existing OS which obligates them to

share the same resources while they are running (Chang et al., 2014).

Virtual Machines consists of installing a virtual machine app which will host the

operating system. VMs can emulate multiple systems at the same time (Chang et al.,

2014). This may cause some overhead as all the systems will be sharing the same

hardware resources. It is useful to simulate networks in one environment or use as an

environment for security tests.

Dual-booting does not affect the performance of OSs, but it does increase the booting

time (Chang et al., 2014). Some studies have addressed the issue of enhancing booting

time in dual-boot machines with positive results (Kureshi, Holmes, & Liang, 2010).

Booting time will not impact the results of this research as the running operating

system does not share any resources with the concurrent OS. In other words, when

Windows is running Linux is completely shut down and therefore, incapable of

interfering with its performance and vice versa.

Although dual-boot does not affect the performance of the environment for tests, the

ideal scenario would be two different machines with the same hardware configuration

running different Operating Systems.

2.7 Chapter summary

This chapter provided an overview on the JavaScript frameworks and its research on

the field of benchmarking. A brief description of the target frameworks for this

comparison was discussed as well as a comparison of features available from each

framework. Concepts of JavaScript language that were relevant for this research were

explained and illustrated.

Relevant literature reviews supported the chosen metrics for the JavaScript Framework

comparison. This chapter also provided a detailed description of the clock used for

recording the execution time of JavaScript.

 34

3 DESIGN AND METHODOLOGY

3.1 Introduction

In this chapter, the design and methodology of this experiment are discussed in detail.

The chapter starts with an introduction to the application design and all the essential

factors that the application needs to be validated such as the cloud platform and

network specifications. Then, it will present a description of the analytical procedure to

evaluate the data collected.

3.2 JavaScript framework benchmark application

The js-framework-benchmark is a benchmark application built to compare JavaScript

frameworks through a set of performance tests and memory consumption. Stephan

Krause created the benchmark application as a personal project in 2014, and since then

the project has been growing with the aid of an online community of JavaScript

developers.

The ambitious project aims to compare 30+ JavaScript frameworks performing a set of

tests in those frameworks and their different variations.

Figure 3.1 js-framework-benchmark user interface

The benchmark application focusses purely on the performance of JavaScript

frameworks and their memory usage. Like TodoMVC benchmark, this framework

 35

consists of creating, updating and deleting DOM objects but with a different approach.

The focus of this framework is to test the performance of two different code

implementations of the same framework and compare them to other frameworks. The

application’s creator defines two types of implementations to be tested. The first is the

“keyed” implementation where any modifications associated with the data will be

applied to the associated DOM node. In the “non-keyed” implementation there is no

association between the data and the DOM node. The main difference in these two

implementations is how the code behaves using two different methods of data binding.

The benchmark framework uses the Chrome WebDriver to capture all results. This

driver uses the Chrome timeline to generate the performance results. It uses the same

API used for the TodoMVC benchmark, the performance.now API.

In comparison with Date.now() method, the performance.now() provides a higher

timestamp resolution, and always increases at a constant rate that is independent of the

system clock, which can be adjusted or manually skewed. The W3C organisation has a

formalisation for this API, and it will be discussed in section 2.5.

The benchmark functions run separately when the server is running. However, the

benchmark application runs all tests and results altogether. It also prepares the

environment before the test starts (e.g. cleaning the database before inserting new

data). Some of the following benchmarks use the warm-up technique which is

commonly used to avoid cold-start bias (J. W. Haskins & K. Skadron, 2001). They

iterate five times before the evaluation starts and the execution time of each function is

the difference between the start and the end of the operation.

Benchmark functions

1. Create rows

This function generates a thousand rows containing three words in each row. The

application registers the time before the function starts to generate random rows and

present the data afterwards. The application returns this speed metric in milliseconds.

2. Replace all rows

This function updates all the records in the table by executing the function Create

Rows. The data generated will replace the existing data in the table. This benchmark

has a five warm-up iteration, and the application returns this speed metric in

milliseconds.

 36

3. Partial update

This function updates the text of every tenth row. It loops through the data array

generated in the create rows and adds an extra text (‘!!!’) at the end of each row. This

benchmark has a five warm-up iteration, and the application returns this speed metric

in milliseconds.

4. Select row

This function calculates the time that each JavaScript framework takes to highlight a

row in response to a click on the row. This benchmark has a five warm-up iteration,

and the application returns this speed metric in milliseconds.

5. Swap rows

This function swaps two rows into a thousand rows table. The execution time is the

difference between the start and the end of this operation. This benchmark has a five

warm-up iteration, and the application returns this speed metric in milliseconds.

6. Remove row

This function deletes one row from a thousand rows table. The execution time is the

difference between the start and the end of this operation. This benchmark has a five

warm-up iteration, and the application returns this speed metric in milliseconds.

7. Create many rows

This function generates ten thousand rows containing three words in each row. This

benchmark has a five warm-up iteration, and the application returns this speed metric

in milliseconds.

8. Append rows to large table

This function adds a thousand rows to the current table created. The benchmark runs

this function after calling the `Create many rows` function which generates ten

thousand rows. This benchmark has a five warm-up iteration, and the application

returns this speed metric in milliseconds.

9. Clear rows

This function deletes all the rows in the table. The benchmark runs this function after

calling the `Create many rows` function which generates ten thousand rows. This

benchmark has a five warm-up iteration, and the application returns this speed metric

in milliseconds.

 37

10. Start-up time

This benchmark calculates the time for loading, parsing the JavaScript code and

rendering the page. This benchmark has a five warm-up iteration, and the application

returns this speed metric in milliseconds.

11. Ready memory

This benchmark calculates the amount of memory used after the page is loaded. Total

memory usage metric displayed in megabytes.

12. Run memory

This benchmark calculates the amount of memory used after adding a thousand rows in

the table page. Total memory usage metric displayed in megabytes.

13. Insert DB (database)

This function inserts a thousand rows into the database using a RESTful API. First, it

generates a thousand rows containing three words in each row. The data is parsed into

a JSON object and then sent in the body of the HTTP POST request. When the

application gets the response, the data is presented to the user. The application registers

the time before it starts to generate the random rows and after the data is presented to

the user. It calculates the time difference between the start and the end of this

operation. This benchmark starts by cleaning the database before starting the insertion

operation.

14. Select DB (database)

This function selects a thousand rows from the database using a RESTful API. The

application sends a GET request to the API which returns with a JSON object

containing a thousand rows from the database. It parses and presents the data to the

user. The application registers the time before it sends the request to the server and

after the data is presented to the user. It calculates the time difference between the start

and the end of this operation. This benchmark starts by cleaning the database and

inserting a thousand rows into the database before the selection operation starts.

15. Update DB (database)

This function updates a thousand rows in the database using a RESTful API. The

application sends a PUT request to the API with the data to be updated in the body of

the request in a JSON format. When the application receives the response, it parses and

presents the data to the user. The application registers the time before it sends the

request to the server and after the data is presented to the user. It calculates the time

difference between the start and the end of this operation. This benchmark starts by

 38

cleaning the database and inserting a thousand rows into the database before the update

operation starts.

16. Delete DB (database)

This function deletes a thousand rows from the database using a RESTful API. The

application sends a DELETE request to the API which returns an HTTP status code.

When the application receives the response, it cleans all the rows from the table. The

application calculates the time difference between the start and the end of this

operation. This benchmark starts by cleaning the database and inserting a thousand

rows into the database before the update operation starts.

3.3 RESTful API

Representational state transfer (REST) is an architecture style for creating networked

applications, and it can be defined as a conceptual abstraction of the basic HTTP

architecture. It was created to provide interoperability between computer systems using

a network, but unlike the complex alternative technologies like SOAP or CORBA,

REST is a lightweight, simple to build and maintain (Schreier, 2011).

RESTful applications use HTTP request to send data (create or update), receive data

(read), and delete data. Therefore, RESTful applications follow the four essential

functions of persistence storage which are: create, read, update, and delete (CRUD).

RESTful applications make use of the HTTP protocol to manage security and

encryption (e.g. HTTPS protocol).

REST can be implemented in any language (e.g. Java, JavaScript) and it does not

depend on the platform that runs it (e.g. Linux, Windows). Its simplicity, scalability,

and portability are the core advantages of using this technology to integrate systems

using the Internet.

A REST request is executed through an URL. For instance, the following URL:

https://js-benchmark-185712.appspot.com/api/data

A simple request using the HTTP method GET will return data in a JSON format. The

same URL can be used to execute all the CRUD operations on the resource (/data).

Although this API will return a JSON object, REST can adopt different response

formats like CSV (comma-separated values) or XML (eXtensible Markup Language).

https://js-benchmark-185712.appspot.com/api/data

 39

XML JSON

<response >

<id>1</1>

<label>pretty red table</label>

</response>

{

“id”:1

“label”:”pretty red table”

}

JavaScript Object Notation or JSON10 is a simple format for structured data. It is an

alternative for the complex XML notation, and it is used primarily to transfer data

between a server and a web application. The concept of a JSON object is based on the

key/value pairs.

• Key: A key represents an identifier of the information

• Value: It is the information that needs to be transferred

A key is always a string enclosed in quotation marks. A value can take any format,

also enclosed in quotation marks (e.g. number, strings, arrays).

js-benchmark RESTful API

JavaScript frameworks help front-end developers to create fast and easy to maintain

applications. The frameworks also provide HTTP methods to access information in a

database through an API. In this project, a RESTful API was developed to simulate a

real environment where an application could execute all the CRUD operations.

The API was developed in Node.js using a MySQL database.

Method Default Value Description

GET <empty> Return all the values in the database

POST JSON Insert the values in the database

PUT JSON Update the values in the database

DELETE <empty> Clear the database

Table 3.1 API specification

The database schema consists of a table with two columns.

Column Type Description

Id Int(11) It contains a unique identifier for the value stored

label Varchar(255) It contains the random text generated by the application

Table 3.2 Database specification

10 https://tools.ietf.org/html/rfc4627

 40

3.4 Google Cloud Platform

Google offers a cloud computing based platform called Google Cloud Platform (GCP).

The service uses the same infrastructure that Google uses internally for its own

products such as YouTube or the search engine. Google has a massive infrastructure

scattered around the globe with high expertise in scalability and security measures.

They compete directly with other cloud services such as Amazon Web Services and

Microsoft Azure. They offer solutions for computation, storage, networking, big data,

and machine learning.

The Cloud Platform resources are a set of physical assets which includes computers

and HDs, and virtual resources such as Virtual Machines (VMs). All these resources

are available in the Google Data Centres around the globe. Data Centres are located

globally in several regions. Available regions include Central US, Western Europe,

and East Asia. A region is a collection of zones. Zones are isolated from each other

within the region. For example, c is a zone in west Europe europe-west2-c.

This distribution of resources provides a series of benefits including high availability

and failure control due to the resource location. This distribution states some security

rules of how they can be used together.

 41

Figure 3.2 Google Cloud Platform Architecture

Note: Retrieved from “Google Cloud Documentation”, https://cloud.google.com/docs/overview/,

accessed on 02/11/2017.

GCP offers infrastructure and software as a service that can grow according to the

application necessity. In this project, europe-west2 was chosen, which is based in

London, U.K.

The Google App Engine runs on Virtual Machines, and it supports a variety of

languages, libraries, and frameworks such as Java, PHP, and Node.JS. GCP also

provides a fully-managed database service to manage relational databases such as

MySQL and PostgreSQL.

3.5 Network

From the beginning of 2000’s, the internet has been experienced a considerable growth

in the need for speed and stable network connections as streaming services and

applications which heavily depend on the use of the internet are becoming widely

used. These applications intensively use the internet, and they use a significant amount

of bandwidth.

 42

Network administrators have been tackling this issue by limiting the bandwidth of each

computer connected to a network where many users compete for more data to be

consumed.

Transmission rate in networks is usually measured in Mbps. Mbps or Mbit/s means

megabit per second. It is a data transmission unit equivalent to 1,000 kilobits per

second or 1,000,000 bits per second. For instance, streaming a VHS video quality

needs 2Mbps, a DVD video quality needs 8Mbps, and HDTV video quality needs

55Mbps. The rate varies according to the quality desired. In other words, Mbps is the

throughput used in serial communications and measures the number of megabits that

are transferred per second.

In this project, the Dublin Institute of Technology (DIT) network infrastructure was

used to run the experiment. DIT is built on Extreme switches with 100Mbit of LAN

connections to the labs where the experiment was conducted. The average internet

speed connection is reduced to 13Mbps maximum in the wired connection. They use a

fiber connection to the backbone with a 1Gbit link. The wireless network uses

Enterasys wireless AP, and it can support 254 simultaneous users. The average internet

speed connection is reduced to 10Mbps maximum in the wireless connection.

Specs Wired Wireless

Internet Speed Connection 13Mbps 10Mbps

Hardware
Model Extreme 7100-Series AP 3705

Speed 100Mbit 10Mbit

Table 3.3 Network specification

3.6 Experiment Design

In the preliminary literature review, approximately sixty different JavaScript

frameworks (JSFs) entries were identified for performance evaluation. Comparing all

possible JSFs would be difficult to complete within the timeframe. Therefore, the three

JSFs selected are AngularJs, Ember, and Aurelia.

Lines of code (LOC) is the oldest metric for measuring the efficiency (Gizas et al.,

2012b). The IEEE has standardised two methods of counting lines of code; Physical

Lines of Code (SLOC) and Logical Lines of Code (LLOC) (Park, 1992). SLOC is the

real number of code lines written in a programme excluding the comment lines, and

LLOC is the number of executable statements such as functions and procedures in a

piece of code.

 43

Cyclomatic complexity is another metric used to measure the complex nature of a

program (T. J. McCabe, 1976). It measures the number of linearly-independent paths

through a program's source code. In other words, this metric checks the logic gates that

a program uses during its execution and calculates the source code complexity.

Concerns about software quality are measured through the maintainability index which

measures how easy it is to maintain the code. The maintainability index metric uses a

series of formulas containing the Source Lines of Code and the Cyclomatic

Complexity (Mariano, 2017). This metric also gives insights about the quality of the

software.

The complexity-report tool11 offers a complete analysis of size and complexity metrics

such as LOC, cyclomatic complexity, and Halstead effort. This package is

incorporated to the NPM which can be reached by the Node.js server. Metrics related

to size and complexity of the code will be extracted using this tool, and the comparison

among the chosen frameworks will be based on the numbers collected from these

metrics.

Speed metrics will be assessed with the aid of the benchmark application. The

execution time of JavaScript operations will be recorded and compared.

Figure 3.3 Experiment design

11 https://github.com/escomplex/complexity-report

 44

3.7 Chapter summary

This chapter presented an overview of the design and methodology of this research.

The chapter started with the explanation of the JavaScript framework benchmark and

its metrics. Then it introduced Cloud Platform which hosts the RESTful API and the

application database. The network specification was also covered in this chapter.

 45

4 IMPLEMENTATION AND RESULTS

4.1 Introduction

This chapter describes the development and structure of different software for building

the benchmark application which were used to run the experiments. Aspects related to

the environment, configurations, results, and problems encountered during the process

of implementation will also be discussed in this chapter.

4.2 Software used

This thesis aims to compare JavaScript frameworks using benchmarking metrics.

Therefore, JavaScript is the programming language used for the software development.

Three JavaScript frameworks were selected for this comparison given the time

constraints of this project. The JavaScript frameworks are AngularJS, Ember, and

Aurelia. The versions and feature comparisons are described in Chapter 2 section

2.2.4. Visual Studio Code12 (v. 1.19) is a source code editor developed and distributed

by Microsoft, and it is supported in Windows, Linux, and MacOS. It includes support

for debugging, intelligent code complementation, syntax highlighting, embedded Git

control, and code refactoring. The code editor was chosen for this project due to the

familiarity of the researcher to the program and its intuitive interface.

The framework was built on the Node.js platform. Node.js is built on the Google

Chrome JavaScript engine to build fast and scalable network applications easily.

Node.js uses a non-blocking event-driven input/output model that makes it lightweight

and efficient, ideal for real-time applications with robust data exchange across

distributed devices. Node.js is a server, but unlike Apache or Tomcat web servers,

which are ready to build and run applications instantly, Node.js has the concept of

modules that can be added to the core of Node.js. There are literally hundreds of

modules to run with Node.js, and the community is very active in producing,

publishing, and updating dozens of modules per day. These modules can be found in

the Node Package Manager (NPM).

12 https://code.visualstudio.com/

 46

NPM is an online repository for publishing open source projects for Node.js. It is also

a command line utility that interacts with this online repository, which helps with

package installation, version management, and dependency management.

4.3 Framework implementations

This section presents a detailed description of the framework implementations to run

the performance benchmarks. Specifically, the implementation of the interaction with

the cloud server. Each framework requests data from the server using their own

libraries. These features are discussed in 2.2.4.

4.3.1 RESTful API

The restful API was built in node.js. The application was built with the Express API13

which is a framework for creating routes, middleware and other functions. Express

API handles the requests by associating the URL and the HTTP method to an action in

the application.

Figure 4.2 shows the application server code. The server will be listening to the

configured port in the configuration file. The configuration file (Figure 4.1) contains

the credential access to the Google Cloud Server and the method of accessing it. The

code bellow routes the URL to the HTTP methods implemented in the api.js

app.use('/api/data', require('./data/api'));

Figure 4.1 Configuration File

 47

Figure 4.2 Server for the RESTful API

Figure 4.3 and Figure 4.4 shows the code to request data from the database. Once the

application receives a GET request, the Express API identifies the route and request

the model in which the database is configured. The model contains the access

credentials to the database and the SQL statements to query the data. Figure 4.3 shows

the code snippet in data/api,js and Figure 4.4 shows the code snippet in data/model-

cloudsql.js

Figure 4.3 GET method

13 https://expressjs.com/

 48

Figure 4.4 Select from the database

POST method inserts data in the database with data embedded in the request body.

When the application detects a POST request, it uses the model to create an insert SQL

statement using the data send in the body of the POST request. After inserting the data

in the table ‘data1’, the function returns the data inserted within the response object.

Figure 4.5 shows the code snippet in data/api,js and Figure 4.6 shows the code snippet

in data/model-cloudsql.js

Figure 4.5 POST method

 49

Figure 4.6 Insert into the database

Figure 4.7 and Figure 4.8 shows the process of updating data in the database. The code

starts by detecting the PUT request and instantiating the model with the data sent in the

body of the request. The database will update the rows in the table ‘data1’ by inserting

the values where the primary key is duplicated. After updating the table, the function

returns the data updated within the response object.

Figure 4.7 shows the code snippet in data/api,js and Figure 4.8 shows the code snippet

in data/model-cloudsql.js

Figure 4.7 PUT method

 50

Figure 4.8 Update the database with Insert

Figure 4.9 and Figure 4.10 shows the code to delete data from the database. The

operation deletes all the data in the table ‘data1’ and returns the status code 200 (OK)

in the response.

Figure 4.9 shows the code snippet in data/api,js and Figure 4.10 shows the code

snippet in data/model-cloudsql.js

Figure 4.9 DELETE method

Figure 4.10 Delete from the database

 51

4.3.2 Clock settings

This section shows the implementation of the clock which will record the execution

time of the JSFs. Performance.now() provides a high-resolution timestamp in a

precision needed for benchmarking processes. Section 2.2.5 describes the clock

specifications in detail.

Figure 4.11 shows the clock settings for record the execution time of each functionality

implemented using the JSFs selected. The function expression called startMeasure

records the time before the execution of the functionality. The function stores the data

in a global variable and records the name of the functionality being tested (e.g.

InsertDB). stopMeasure is the function expression called when a functionality from the

benchmark has finished. The function records the time that the function finished and

calculate the difference between the start and end of the operation.

Figure 4.11 Clock implementation

The result is printed in the console, and the benchmark will use this information to

calculate the final score of each function. The clock is implemented in each JSF

selected.

4.3.3 Processes

Node offers a module called systeminformation14 which can retrieve detailed

hardware, system and OS information from Windows, Linux and OSX. This module

was used to retrieve CPU status and the number of running processes.

The module is initiated by the following code:

const si = require('systeminformation');

14 https://www.npmjs.com/package/systeminformation

 52

Figure 4.12 shows the code snippet of retrieving all the running processes in the CPU.

The function processes() returns an array of information about processes running,

blocked, sleeping and unknown.

Figure 4.12 Code snippet of the System Information module

4.3.4 AngularJS

AngularJS works with the concept of directives and the ng-click works as a tag in the

button element of the HTML. The ng-click directive allows the developer to create a

custom behaviour when an element is clicked, similar to the on-click event of HTML.

The directive calls a method in the controller of the application. Figure 4.13 shows the

code for the CRUD operations.

Figure 4.13 AngularJS template

 53

Figure 4.14 shows the code snippet of the database function in AngularJS. Each

database function starts by calling the function startMeasure already discussed in

4.3.2. The insertDB() function generates a thousand rows with random data to be

inserted in the database.

Figure 4.14 Database functions in AngularJS

Figure 4.15 shows how AngularJS calls the RESTful API. The clock stops only after

the data has been returned to the user.

Figure 4.15 Calling the RESTful API in AngularJS

 54

4.3.5 Aurelia

Figure 4.16 Aurelia template

Figure 4.17 shows the code snippet of the database function in AngularJS. Each

database function starts by calling the function startMeasure already discussed in

4.3.2.

Figure 4.17 Database functions in Aurelia

Figure 4.18 shows how AngularJS calls the RESTful API. The clock stops only after

the data has been returned to the user.

 55

Figure 4.18 Calling the RESTful API in Aurelia

4.3.6 Ember

Figure 4.19 Ember template

Figure 4.20 shows the code snippet of the database function in AngularJS. Each

database function starts by calling the function startMeasure already discussed in

4.3.2.

 56

Figure 4.20 Database functions in AngularJS

Figure 4.21 shows how AngularJS calls the RESTful API. The clock stops only after

the data has been returned to the user.

Figure 4.21 Calling the RESTful API in Ember

 57

4.4 Environment configuration

The environment for running the benchmarks in windows was configured as section

2.2.5. In this case, Windows was left in its basic configuration with a minimum

amount of processes running concurrently. The aim of this step was to determine the

influence of concurrent processes in the operating system when running the

benchmarks.

In the first run of tests, the number of processes was reduced to 67 processes running

concurrently. During the second test run, the 156 processes running by default at

system start were running. The impact of the number of processes running

concurrently with the benchmark application will be discussed in detail in Chapter 5.

 Windows Linux

Name Microsoft Windows 10 Pro Ubuntu 16.04.3 LTS
OS Version 10.0.16299 N/A Build 16299 Linux 4.10.0-38-generic
System Locale en-ie;English (Ireland) en_IE.UTF-8
System Model HP Pavilion dm4 Notebook PC

System Type x64-based PC

Network Cards

Intel(R) Centrino(R) Wireless-N 1030

Qualcomm Atheros AR8151 PCI-E Gigabit Ethernet

Controller (NDIS 6.30)

Processor

Intel Core I5

Intel64 Family 6 Model 42 Stepping 7 GenuineIntel ~2301

Mhz

Node version 8.1.4 8.8.1
NPM version 5.3.0 5.4.2
Java version 1.8.0_151 1.8.0_151
Javac version 1.8.0_131 1.8.0_131

Google Chrome version
63.0.3239.108 (Official

Build) (64-bit)

63.0.3239.108 (Official

Build) (64-bit)

Table 4.1 System's specification and configuration

4.5 Results

The data collected after running the benchmark and the complexity evaluation tools are

displayed in Appendix A.

The next chapter will present an evaluation and discussion of the results with some

insights over the findings.

 58

4.6 Chapter summary

This chapter described the implementations of the new functionalities in the JavaScript

framework benchmark. These functionalities include the access to a database, an

implementation of a RESTful API, and the CPU status during the benchmark

execution. This chapter also described the environment in which the tests were

conducted including hardware and software specifications.

 59

5 ANALYSIS, EVALUATION AND DISCUSSION

5.1 Introduction

This chapter describes the analysis and evaluation process of the JavaScript

frameworks. The chapter begins with the benchmark configuration and the

environment preparation for running the performance tests. The first part of the

experimentation and evaluation solely focuses on the performance and execution time

of JavaScript frameworks. The second part of this evaluation refers to the benchmark

metrics already discussed in previous literature such as Lines of Code and Halstead

effort. This chapter ends with a brief discussion on the findings highlighting the

strengths and weaknesses of this research.

5.2 Experimentation

This section describes the performance experiment related to the execution time of

JavaScript frameworks. The original application is an on-going project hosted on

GitHub, and it has an active community working to improve and add more relevant

metrics to the benchmark framework. This project contains more than thirty JavaScript

Frameworks implemented including AngularJS, Ember and Aurelia. These are the

chosen JSF for this experiment.

5.2.1 Preparing the experiment

GitHub hosts the js-benchmark-framework project, and this online repository offers

the option Fork. Fork is a function within the GitHub platform that copies all the files

in a repository to another repository making it available to edit without interfering the

main project. This option allows individuals who want to contribute to the project to

edit files and suggest modifications to the owner of the main project. GitHub also

allows the merging of files of the main project with files of the forked project which

can maintain both projects up-to-date with the changes.

 60

Figure 5.1 GitHub repository for the js-benchmark-framework

Figure 5.2 GitHub page of the forked project

After forking the main project Figure 5.1 which is under the @krauset user, the files

are copied to the contributor repository Figure 5.2, which is now under the

@jeffersonlcf user.

The next step is to make the repository available in the machine. In the Git Bash the

following command needs to be executed:

git clone git@github.com:....git

This command will download all the files to a specified directory and link with the

repository for future commits of the changes.

Figure 5.3 Cloning repository on GitHub

Figure 5.4 shows all the benchmarks that the framework will run. The file is in the

directory \webdriver-ts\bencharks.ts

 61

Figure 5.4 Snippet Code of benchmarks

The RESTful API runs on the Google Cloud Platform. First, it is necessary to login in

to the platform and create a new project. Figure 5.5 shows the dashboard of the app

engine for creating a new project. After creating a new project in the GCP, it is

necessary to install the Google Cloud SDK. The SDK allows the deployment of the

Node.js application in the platform.

Figure 5.5 Creating a new project in Google Cloud Platform

 Before executing the application deployment, an environment needs to be set for the

project created in the previous step. Figure 5.6 shows the command to set the working

project.

 62

Figure 5.6 Selecting project in Google Cloud Platform

The deploy command needs to be executed in the application folder. Figure 5.7 shows

the deploy command execution. After finishing the deployment process, the

application will be available in the target URL showed in Figure 5.7.

Figure 5.7 Deploying an application in the Google Cloud Platform

Figure 5.8 and Figure 5.9 show the dependencies installation of the benchmark

application and the frameworks. It is necessary to run the command ‘npm install’ for

each framework’s folder before testing it. The command ‘npm build-prod’ compiles

the JSF into one or more JavaScript files.

Figure 5.8 Installing benchmark application dependencies

Figure 5.9 Installing framework dependencies

 63

5.2.2 Running the experiment

Figure 5.10 shows the console after starting the application server. The benchmark

application can be accessed at the following URL: http://localhost:8080/

Figure 5.11 shows the application interface after accessing the URL above.

Figure 5.10 Running the application

Figure 5.11 Application Home Page

 64

Figure 5.12 shows the console after starting to run the benchmarks. The command

specifies the number of runs that each benchmark will iterate (e.g. -- count 30) and the

frameworks that will be executed (e.g. --framework angular-v1.6.3-keyed). This

command needs to be run from the folder \webdriver-ts.

Figure 5.12 Running benchmarks

Figure 5.13 shows the command to generate the results table. This command is run

from the folder \webdriver-ts, and it can be accessed from the browser at the URL

http://localhost:8080/webdriver-ts/table.html

Figure 5.13 Running results table

 65

Figure 5.14 shows a snapshot of the results table.

Figure 5.14 Results table

5.3 Evaluation

5.3.1 JavaScript framework benchmark results

A wired connection (Specification in Table 3.3) to the server, where the database is

stored, was used in the first round of tests. In these tests, the benchmark application

was executed in two different operating systems using the same computer. Section 2.6

explains the difference between dual-boot and virtual machine. The connection speed

was 13Mbps on average. The benchmarks that use the network to execute DBMS

transactions (CRUD operations) ran in the browser Google Chrome in both systems.

Each benchmark ran ten times in each operating system. The average of concurrent

processes in Linux Ubuntu 16 (Specification in Table 4.1) was two hundred and

thirteen (213), and in Windows 10 (Specification in Table 4.1) the average of sixty-

seven (67) concurrent processes were being executed during the benchmarks` run.

 66

The concurrent processes in both systems include network processes (e.g. firewall,

wireless and wired configuration), graphic user interface and so on. Table 2.3 and

Table 2.4 contains a detailed description of necessary processes to run the Windows

operating system.

In the Figure 5.15 to Figure 5.26, the numbers on the Y-axis, were normalised to

enable data visualisation and do not depict the numbers in milliseconds of each run but

an adjusted value to represent time (e.g. 0.16 = 810.70ms). Table 5.1 to Table 5.6

present a conversion of these numbers.

Value 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02

Milliseconds 810.70 709.36 608.02 506.69 405.35 304.01 202.67 101.33

Table 5.1 Description of Y-axis values in milliseconds in Figure 5.15 and Figure 5.16

Figure 5.15 Linux performance in a wired connection (Part I)

 67

Figure 5.16 Windows performance in a wired connection (Part I)

Linux had a slightly superior performance results compared to Windows in the

benchmarks above. Linux executed the database tasks in 269.78ms on average, and

Windows took 294.94ms on average to execute these tasks. Database benchmarks

depend on the network speed and its configurations.

Aurelia achieved better performance results compared to other frameworks. Aurelia

took 368.37ms in a Linux environment to insert a thousand rows in the database while

Ember took 710.8ms to insert the same amount of data. Angular took 454.4ms to

execute this same task. The performance to execute this benchmark in the Windows

environment slightly increased compared to the Linux environment. Aurelia took

439.12ms to execute the ‘insertDB’ task in the Windows environment; Ember took

740.53ms and Angular took 515.99ms in the Windows environment.

Ember improves its performance compared to other frameworks when executing the

‘DeleteDB’ task. Ember took 73.5ms; Angular took 154.43ms and Aurelia took

64.49ms to execute this task. Even though Angular gets a quick response from the

server, it takes more time to update the DOM than the other frameworks. Angular also

has the worst score in the startup time benchmark. Angular loads an entire browser

environment called PhantomJS during the startup. The other frameworks only load the

modules needed to run the application.

Value 1 0.80 0.60 0.40 0.20

Milliseconds 5066.91 4053.528 3040.146 2026.764 1013.382

Table 5.2 Description of Y-axis values in milliseconds in Figure 5.17 and Figure 5.18

 68

Figure 5.17 Linux performance in a wired connection (Part II)

Figure 5.18 Windows performance in a wired connection (Part II)

Linux still has better performance results than Windows in these benchmarks. Both

systems had similar results, and Linux ran the JavaScript frameworks slightly faster

than Windows. Linux had a 1270.44ms average speed, and Windows had a 1430.41

average speed. The benchmarks ran ten times, and Aurelia performed better in every

benchmark run. These benchmarks do not depend on the network speed, and they are

solely based on the CPU speed. The number of concurrent processes running at the

same time as the benchmark execution directly affect the results of each run. Ember

has the worst results in almost every benchmark except for the ‘clear rows’ task.

Angular achieved a slower execution time in this task with 876.ms in the Linux

environment and 793.41 in the Windows environment. Aurelia achieved 492.98ms in

the Linux environment and 505.99ms in the Windows environment. Ember completed

 69

the same task in 476.88ms in the Linux environment and 504.14ms in the Windows

environment.

Value 0.60 0.50 0.40 0.30 0.20 0.10

Milliseconds 3040.15 2533.45 2026.76 1520.07 1013.38 506.69

Table 5.3 Description of Y-axis values in milliseconds in Figure 5.19 and Figure 5.20

Figure 5.19 Linux performance in a wired connection (Part III)

Figure 5.20 Windows performance in a wired connection (Part III)

Linux took 356.07ms on average to execute all the above operations, and Windows

took 441ms to execute the same tasks. Aurelia performed better in most results except

for the ‘partial update’ task. In this task, the framework took a significant amount of

time to update the DOM nodes. Aurelia does not perform a dirt-checking like

AngularJS (Section 2.2.1), but instead, it uses an observer-based mechanism that does

 70

not check anything that has not changed in the DOM15. Furthermore, Aurelia also does

not update the DOM instantly, but it batches the changes in an aggregator, so it can

happen at once. The Partial Update task demands a lot of changes in the DOM object

(create ten thousand rows and update them). All these changes are batched and added

up at the end of the operation, increasing the execution time of this operation. Overall,

Ember still scored worst results in both operating systems except for the partial

updates.

The second round of tests used a wireless connection with the same environment

configuration and browser. The connection speed was on 10Mbps on average. The

average number of concurrent processes in Linux was two hundred and twenty-two

(222) and sixty-nine (69) in Windows.

Value 0.2 0.18 0.16 0.14 0.12 0.10 0.08 0.06 0.04 0.02

Milliseconds 1013.38 912.04 810.70 709.36 608.02 506.69 405.35 304.01 202.67 101.33

Table 5.4 Description of Y-axis values in milliseconds in Figure 5.21 and Figure 5.22

Figure 5.21 Linux performance in a wireless connection (Part I)

15 https://github.com/aurelia/binding/issues/401

 71

Figure 5.22 Windows performance in a wireless connection (Part I)

In the benchmarks above, Linux executed the tasks in 275.89ms on average, and

Windows’ average was 316.03ms. The results were similar to the execution in the

wired network regarding the network speed, but, on average, they were slightly slower.

Ember still has the worst performance rank overall, especially with the InsertDB

operation which took 955.13ms. In comparison with the wired connection, the

difference to execute the same task was 214.6ms. The disparity of the numbers raised

suspicions about network instability and in the second attempt to run the same task, the

operation took 713.22ms, which is 241.91ms less. The network’s instability at the

moment of the task’s execution was the primary cause of this disparity.

Value 1 0.80 0.60 0.40 0.20

Milliseconds 5066.91 4053.528 3040.146 2026.764 1013.382

Table 5.5 Description of Y-axis values in milliseconds in Figure 5.23 and Figure 5.24

 72

Figure 5.23 Linux performance in a wireless connection (Part II)

Figure 5.24 Windows performance in a wireless connection (Part II)

In the benchmarks above, Linux executed the tasks in 1272.43ms on average, and

Windows’s average was 1451.31ms. Although these tasks do not use a network

connection to be executed, the number of concurrent processes in both operating

systems was higher in the wireless connection compared to the wired connection. This

factor might have influenced the results of these tests.

Value 0.60 0.50 0.40 0.30 0.20 0.10

Milliseconds 3040.15 2533.45 2026.76 1520.07 1013.38 506.69

Table 5.6 Description of Y-axis values in milliseconds in Figure 5.25 and Figure 5.26

 73

Figure 5.25 Linux performance in a wireless connection (Part III)

Figure 5.26 Windows performance in a wireless connection (Part III)

In the benchmarks above, Linux executed the tasks in 351.14ms on average, and

Windows’s average was 445.57ms. In comparison with the wired connection, a slight

difference occurred with the wireless connection due to the number of processes

running concurrently. When the benchmarks were running in the wired connection, the

wireless network card was disabled, and consequently, the processes attached to this

hardware were also inactivated. The number of processes influenced the results of

these benchmarks.

 74

5.3.2 Complexity measurement results

This section will present the results of the complexity measurement tool (complexity-

report) over the js-framework-benchmark application. The complexity report was run

on the compiled applications. The compilation process is showed in section 5.2.1.

AngularJS compiles the application in one file (dist\main.js), Aurelia compiles its

version of the application in two files (scripts\app-bundle.js and scripts\vendor-

bundle.js), and Ember also compiles its version of the application in two files

(dist\assets\ember-temp…js and dist\assets\vendor-…js).

Figure 5.27 Logical Lines of Code comparison

Figure 5.27 shows the total logical lines of code in each framework. Physical Lines of

Code (SLOC) and Logica Lines of Code (LLOC) are discussed in details in section

2.4. Angular has the lowest number of logical lines of codes because it loads the

browser’s libraries instead of loading its modules. Ember has the most significant

number of LLOC because it needs to specify its library in the compiled files. The

higher number of LLOC in Ember justifies its lowest performance in the overall

benchmark execution because it takes more time to access and execute the functions in

comparison to its competitors AngularJS and Aurelia. The compiled file shows only

six SLOC for AngularJS and two SLOC for Aurelia. Ember has four thousand, one

hundred and thirty-one physical lines of code in its compiled file. However, SLOC,

regarding JavaScript execution time, does not impact on the framework’s performance.

 75

Figure 5.28 Cyclomatic complexity comparison

Figure 5.28 shows the cyclomatic complexity of each code. In this comparison, the

lower the result, the less code complexity. Cyclomatic complexity counts the number

of different paths a method can take. The complexity tool uses McCabe’s definitions as

mentioned in section 2.4. Although AngularJS has a small number of LOC, it is the

most complicated code to understand due to the number of paths in the algorithm.

There is no ideal number for the complexity of a function, but a cyclomatic complexity

above twenty indicates that the code should be rewritten.

Figure 5.29 Halstead effort comparison

Halstead effort calculates the number of distinct operators, the number of distinct

operands, the total number of operators and the total number of operands in each

 76

function. These metrics are used to assess the complexity of the system, and they are

discussed in section 2.4. This metric is the base for the maintainability index, and

Figure 5.29 shows a mean per-function of this metric.

Figure 5.30 Maintainability index comparison

The maintainability index is measured on a logarithmic scale, calculated from the

logical lines of code, cyclomatic complexity and Halstead effort. Figure 5.30 shows the

maintainability index of each framework. As discussed in section 2.4, the higher the

maintainability index, the easier to maintain the code. Therefore, Aurelia is the most

straightforward framework to maintain due to the results of this comparison.

AngularJS has fewer LOC in comparison to the other frameworks, but it is more

complicated, and it might be hard for a developer to understand its code.

Figure 5.31 shows a mean per-function parameter counter comparison. A parameter

counter is the number of parameters obtained from the signature of each function. A

higher number of parameters indicates excessive work in a function and a complicated

interface. This situation must be avoided.

 77

Figure 5.31 Parameter counter comparison

5.3.3 Comparison conclusion and suggestions

Aurelia had the best performance in almost every benchmark. Aurelia is the newest

framework, released in 2016, and it is built with the most recent and sophisticated

modules for JavaScript applications. Aurelia presented the lowest code complexity

metric, and the implementation of the database operations in this framework was quite

straightforward. Ember has an elaborate design structure but once understood; this

framework is a powerful tool able to make the code well organized. However, this

whole structure makes it the worst framework regarding performance, but the second

one in complexity and maintainability. The new version of AngularJS is called

Angular 2 (or just Angular), and it promises to bring improvements related to the data

binding and startup time. AngularJS was used in this research as a reference to how the

frameworks have been evolving throughout time, and the disparity between Aurelia

and AngularJS has shown those improvements.

AngularJS introduced new concepts to the field of JavaScript frameworks, and they are

still relevant to this day. Ember is a robust framework created to develop ambitious

applications, and it organises the code better compared to AngularJS and Aurelia.

Aurelia is the fastest framework in this comparison. However, the framework has just

been released, and it still lacks a big community and support in comparison with its

competitors.

 78

5.3.4 Strengths and limitations

The JavaScript framework benchmark is an open source on-going project that has been

growing since its first release. The constant updates and the number of contributors to

this project make it extremely relevant and reliable as the community of developers are

enthusiastic and dedicated to this project and always bringing improvements and bug

fixes to this application. The benchmark application also contains a good number of

frameworks implemented which can aid developers in choosing between the great

variety of open source frameworks available.

Although the benchmark application has a complete set of metrics and JavaScript

frameworks, it only performs the tests in one browser, Google Chrome. Future

implementations of these applications intend to include more browsers such as Mozilla

Firefox and Microsoft Edge. The application is also expanding the number of metrics,

and after the running of this experiment a new CPU and memory metrics were

implemented, but they are not included in this project.

The research also focused on the environment where the experiment should be

conducted to find variables that could influence the performance of JavaScript

frameworks. The comparison was conducted on two different operating system on the

same machine, and it was verified that concurrent processes have a minimal impact on

the performance of JSFs. The results showed that concurrent processes do not have a

significant impact on the framework’s performance.

However, network instability could cause some delays in the execution time of JSFs

with web servers. As it was shown in one of the benchmarks (Figure 5.22), network

instability caused a delay in the database operation ‘InsertDB’ where Ember took more

time compared to the second round of tests.

The metrics related to database operations contributed to the simulation of a real web

application where CRUD operations are executed using JavaScript through JSFs. The

previous work did not consider using the database in a JavaScript framework

comparison.

The research used three JSFs due to time constraints. The results of this comparison

would benefit from the use of a greater variety of JSFs

 79

5.4 Chapter summary

This chapter describes the implementation and execution of the JavaScript framework

comparison experiment. The environment preparation and the necessary steps to run

the experiment were covered at the beginning of this chapter. The benchmark

framework needs to be installed in the machine while the RESTful API needs to be

deployed in a cloud web server, in this case, Google Cloud Platform was the platform

chosen to run this experiment. This chapter also covered the complexity measurement

tool to evaluate the complexity metrics of each framework. These metrics were

discussed in section 2.4 of this research.

The results provided by each tool (JavaScript framework benchmark and complexity

tool) were evaluated and discussed, highlighting the main differences between each

JSF and their strengths and weaknesses.

 80

6 CONCLUSION

6.1 Introduction

JavaScript is a front-end programming language, and with the aid of HTML5 and CSS,

it has been experiencing an increasing number of developers dedicated to this

language. JavaScript frameworks help programmers to develop SPAs much faster with

a set of functionalities that save the developer`s time when building those applications.

The popularity of JavaScript created a vast number of JSFs available for developers

today, and Section 1.2 described the problems that these professionals are facing when

choosing the framework that best suits their projects. The aim of this research was to

determine the factors that could influence the adoption of JavaScript frameworks based

on software metrics and environment configuration. Three JSFs were selected for this

experiment, and the results were discussed in Chapter 5.

6.2 Research overview

This research investigated the effects of the environment on JavaScript applications

using JavaScript frameworks. The main goal of this research was to use benchmark

metrics, presented in Section 2.4, to evaluate JSFs in different environments to

measure the effects of the environment on those frameworks. Three JSFs were selected

to run the experiment in a benchmark framework using two different operating systems

(Linux and Windows) on the same machine. A dual-boot technique was chosen over

the virtual machine because the two systems can coexist on the same machine without

interfering with each other’s performance.

Two different network connections were used to run the experiment. DIT (Kevin

Street) offers fast Wired and Wireless network connections and maintains a stable

connectivity using fiber backbone connections. The network specifications are

described in Section 3.5.

Google Cloud Platform (GCP) was the cloud-based service chosen to host an

implementation of a RESTful API to execute CRUD operations in a database. Both,

the RESTful application and the database are hosted in the GCP. GCP has a massive

infrastructure with data centres scattered around the globe and a good availability of its

 81

services. It can host Node.js applications and Relational Database System Management

Systems such as MySQL.

6.3 Experimentation, Evaluation and Limitations

The benchmark application ran all the speed metrics successfully and showed clear

differences between the JavaScript frameworks tested. The project only includes three

JSFs due to its time constraints, and the benchmark application offers more JSFs to be

implemented and tested.

AngularJS was one of the frameworks chosen because the researcher already had

knowledge and experience with this tool. Even though there are similarities between

AngularJS, Ember and Aurelia, the researcher was not familiar with these frameworks

which complicated the implementation of security metrics in this project.

The experiment used a cloud-based platform to simulate transactions between a user

computer and a web server. The results showed that environment configurations have

little impact on the performance of JSFs as the results did not change from one

environment to another. In other words, environment configurations do not affect the

performance of JSFs in comparison with other JSFs.

The comparison of a JSF in the same environment but with a different configuration

showed that the environment slightly decreases the performance of this JSF. For

instance, AngularJS in Windows with an average of sixty-seven processes running

concurrently performs better than AngularJS running in the same OS with an average

of a hundred and twenty-two processes running concurrently.

Although the environment configurations of the selected OS’s do not significantly

impact the performance of JSFs, the research lacks more systems running JavaScript as

the literature review showed that JavaScript is not only limited to execution in Desktop

browsers but also on different platforms such as mobiles and video games.

The results also showed that stable internet connections do not affect the performance

of JSFs. However, the connection speed and the network type (wired and wireless)

slightly affect the execution time of JavaScript as the data needs to be transferred using

these channels. In this experiment, the network has different configurations for each

network as Section 3.5 described.

The experiment only included Google Chrome as the browser for running the

benchmarks. The benchmark application has only implemented this browser, and

 82

future implementations will contain different browsers such as Microsoft Edge and

Mozilla Firefox.

6.4 Results Summary

This section summarises the results and findings of this research

• Aurelia is the newest and fastest framework compared to Ember and

AngularJS.

• Ember has the most organised structure and it can handle ambitious JavaScript

applications.

• AngularJS has been restructured and updated to Angular2 (or just Angular) and

it eliminated the dirt checking of the data binding processes. Evaluation on the

new version should be conducted to asses the impact of those changes.

• Environmental configurations have little impact on the performance of

JavaScript applications using JSFs. The main factor the affects execution time

of JavaScript application is the JSF itself.

6.5 Contributions and Impact

The main contribution of this work is its emphasis on the impact of the environment

where the JavaScript is being executed. Previous research in this field did not include

some variables that could alter the performance results of the execution time of

JavaScript frameworks. This project investigated concurrent processes running in the

machine where the JavaScript is being executed to assess the effect of these processes

on the JavaScript applications. The results showed that concurrent processes have little

impact on the execution of JavaScript frameworks and the deterministic factors

involving the performance of JSFs are within the implementation of these frameworks.

In other words, the framework implementation is the cause of a lower execution time

of the JavaScript application.

The research also addressed the issue of cloud-based services. The findings

demonstrated that database operations do not alter the execution time of JavaScript

applications as they use asynchronous methods to execute an HTTP request. However,

the response time of these servers relies on the network’s connectivity and stability

which could increase the execution time of an operation (e.g. ‘InsertDB’).

 83

6.6 Future Work and Recommendations

There are a number of ways in which this work can be pushed forward to expand the

knowledge of JavaScript framework comparison. Some of the recommendations were

suggested by previous work and still have not been achieved.

1. Implementing the database operations in different frameworks and running the

benchmarks in those JSFs would give developers a better understanding of the

actual marketplace and help them to decide on the best choice for their project.

2. Performance evaluation has different approaches, and it would be interesting to

apply the different methods discussed in Section 2.3.2

3. Including more browsers in this experiment such as Microsoft Edge and

Mozilla Firefox

4. Running the experiment on different platforms such as mobiles to identify

possible performance issues connected to an entirely different environment.

 84

BIBLIOGRAPHY

A. Rajaram, Jiang Hu, & R. Mahapatra. (2006). Reducing clock skew variability via

crosslinks. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 25(6), 1176–1182.

https://doi.org/10.1109/TCAD.2005.855928

Alves, T. L., Ypma, C., & Visser, J. (2010). Deriving metric thresholds from

benchmark data. In 2010 IEEE International Conference on Software

Maintenance (pp. 1–10). IEEE. https://doi.org/10.1109/ICSM.2010.5609747

Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J., & Velle, K. S. (2009). Challenges

of the Open Source Component Marketplace in the Industry. In C. Boldyreff,

K. Crowston, B. Lundell, & A. I. Wasserman (Eds.), Open Source Ecosystems:

Diverse Communities Interacting: 5th IFIP WG 2.13 International Conference

on Open Source Systems, OSS 2009, Skövde, Sweden, June 3-6, 2009.

Proceedings (pp. 213–224). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-02032-2_19

B. M. Subraya, & S. V. Subrahmanya. (2000). Object driven performance testing of

Web applications. In Proceedings First Asia-Pacific Conference on Quality

Software (pp. 17–26). https://doi.org/10.1109/APAQ.2000.883774

Barkmann, H., Lincke, R., & Löwe, W. (2009). Quantitative Evaluation of Software

Quality Metrics in Open-Source Projects. In 2009 International Conference on

Advanced Information Networking and Applications Workshops (pp. 1067–

1072). https://doi.org/10.1109/WAINA.2009.190

 85

Chang, J. M., Ho, P. C., & Chang, T. C. (2014). Securing BYOD. IT Professional,

16(5), 9–11. https://doi.org/10.1109/MITP.2014.76

Cristian, F. (1996). Synchronous and Asynchronous. Commun. ACM, 39(4), 88–97.

https://doi.org/10.1145/227210.227231

Denaro, G., Polini, A., & Emmerich, W. (2004). Early Performance Testing of

Distributed Software Applications. In Proceedings of the 4th International

Workshop on Software and Performance (pp. 94–103). New York, NY, USA:

ACM. https://doi.org/10.1145/974044.974059

Dietrich, S. W., Brown, M., Cortes-Rello, E., & Wunderlin, S. (1992). A Practitioner’s

Introduction to Database Performance Benchmarks and Measurements. The

Computer Journal, 35(4), 322–331. https://doi.org/10.1093/comjnl/35.4.322

Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., & Weber, G. (2006). Realistic load

testing of Web applications. In Conference on Software Maintenance and

Reengineering (CSMR’06) (p. 11 pp.-70).

https://doi.org/10.1109/CSMR.2006.43

Filipe, R., Boychenko, S., & Araujo, F. (2015). On Client-Side Bottleneck

Identification in HTTP Servers. In 10th International Conference on Internet

and Web Applications and Services. IARIA (pp. 22–27).

Fourment, M., & Gillings, M. R. (2008). A comparison of common programming

languages used in bioinformatics. BMC Bioinformatics, 9(1), 82.

https://doi.org/10.1186/1471-2105-9-82

Friedman, D. P., & Wise, D. S. (1978). Aspects of Applicative Programming for

Parallel Processing. IEEE Trans. Comput., 27(4), 289–296.

https://doi.org/10.1109/TC.1978.1675100

 86

Geiger, N., George, T., Hahn, M., Jubeh, R., & Zündorf, A. (2010). Using Actions

Charts for Reactive Web Application Modeling. In F. Daniel & F. M. Facca

(Eds.), Current Trends in Web Engineering: 10th International Conference on

Web Engineering ICWE 2010 Workshops, Vienna, Austria, July 2010, Revised

Selected Papers (pp. 49–60). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-16985-4_5

Gizas, A., Christodoulou, S., & Papatheodorou, T. (2012a). Comparative evaluation of

javascript frameworks. In Proceedings of the 21st International Conference on

World Wide Web (pp. 513–514). ACM. Retrieved from

http://dl.acm.org/citation.cfm?id=2188103

Gizas, A., Christodoulou, S., & Papatheodorou, T. (2012b). Comparative Evaluation of

Javascript Frameworks. In Proceedings of the 21st International Conference on

World Wide Web (pp. 513–514). New York, NY, USA: ACM.

https://doi.org/10.1145/2187980.2188103

Graziotin, D., & Abrahamsson, P. (2013). Making Sense Out of a Jungle of JavaScript

Frameworks. In J. Heidrich, M. Oivo, A. Jedlitschka, & M. T. Baldassarre

(Eds.), Product-Focused Software Process Improvement: 14th International

Conference, PROFES 2013, Paphos, Cyprus, June 12-14, 2013. Proceedings

(pp. 334–337). Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-39259-7_28

Horký, V., Libič, P., Steinhauser, A., & Tůma, P. (2015). DOs and DON’Ts of

Conducting Performance Measurements in Java. In Proceedings of the 6th

ACM/SPEC International Conference on Performance Engineering (pp. 337–

340). New York, NY, USA: ACM. https://doi.org/10.1145/2668930.2688820

 87

J. L. Henning. (2000). SPEC CPU2000: measuring CPU performance in the New

Millennium. Computer, 33(7), 28–35. https://doi.org/10.1109/2.869367

J. W. Haskins, & K. Skadron. (2001). Minimal subset evaluation: rapid warm-up for

simulated hardware state. In Proceedings 2001 IEEE International Conference

on Computer Design: VLSI in Computers and Processors. ICCD 2001 (pp. 32–

39). https://doi.org/10.1109/ICCD.2001.955000

Jain, N., Mangal, P., & Mehta, D. (2015). AngularJS: A modern MVC framework in

JavaScript. Journal of Global Research in Computer Science, 5(12), 17–23.

Kambona, K., Boix, E. G., & De Meuter, W. (2013). An Evaluation of Reactive

Programming and Promises for Structuring Collaborative Web Applications. In

Proceedings of the 7th Workshop on Dynamic Languages and Applications (p.

3:1–3:9). New York, NY, USA: ACM.

https://doi.org/10.1145/2489798.2489802

Klein, J., & Spector, L. (2007). Unwitting Distributed Genetic Programming via

Asynchronous JavaScript and XML. In Proceedings of the 9th Annual

Conference on Genetic and Evolutionary Computation (pp. 1628–1635). New

York, NY, USA: ACM. https://doi.org/10.1145/1276958.1277282

Krishnamurthy, D., Rolia, J. A., & Majumdar, S. (2006). A synthetic workload

generation technique for stress testing session-based systems. IEEE

Transactions on Software Engineering, 32(11).

Kureshi, I., Holmes, V., & Liang, S. (2010, September). Hybrid HPC – Establishing a

Bi-Stable Dual Boot Cluster for Linux with OSCAR middleware and Windows

HPC 2008 R2. Retrieved from http://eprints.hud.ac.uk/id/eprint/9897/

 88

Mariano, C. L. (2017). Benchmarking JavaScript Frameworks (Masters dissertation).

Dublin Institute of Technology, Dublin, Ireland.

https://doi.org/10.21427/D72890

May, N., Kossmann, D., Kaufmann, M., & Fischer, P. M. (2013). Benchmarking

Databases with History Support (pp. 1–44). ETH Zurich.

https://doi.org/10.3929/ethz-a-009994978

Menasce, D. A., & Almeida, V. (2001). Capacity Planning for Web Services: Metrics,

Models, and Methods (1st ed.). Upper Saddle River, NJ, USA: Prentice Hall

PTR.

Nambiar, R., & Poess, M. (2013). Keeping the TPC Relevant! Proc. VLDB Endow.,

6(11), 1186–1187. https://doi.org/10.14778/2536222.2536252

O. Hauge, T. Osterlie, C. F. Sorensen, & M. Gerea. (2009). An empirical study on

selection of Open Source Software - Preliminary results. In 2009 ICSE

Workshop on Emerging Trends in Free/Libre/Open Source Software Research

and Development (pp. 42–47). https://doi.org/10.1109/FLOSS.2009.5071359

Okur, S., Hartveld, D. L., Dig, D., & Deursen, A. van. (2014). A Study and Toolkit for

Asynchronous Programming in C#. In Proceedings of the 36th International

Conference on Software Engineering (pp. 1117–1127). New York, NY, USA:

ACM. https://doi.org/10.1145/2568225.2568309

P. Miguel, J., Mauricio, D., & Rodríguez, G. (2014). A Review of Software Quality

Models for the Evaluation of Software Products. International Journal of

Software Engineering & Applications, 5(6), 31–53.

https://doi.org/10.5121/ijsea.2014.5603

 89

P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, & D. Song. (2010). A

Symbolic Execution Framework for JavaScript. In 2010 IEEE Symposium on

Security and Privacy (pp. 513–528). https://doi.org/10.1109/SP.2010.38

Pano, A., Graziotin, D., & Abrahamsson, P. (2016). What leads developers towards the

choice of a JavaScript framework? CoRR, abs/1605.04303. Retrieved from

http://arxiv.org/abs/1605.04303

Park, R. E. (1992). Software size measurement: A framework for counting source

statements (No. No. CMU/SEI/92-TR-20) (pp. 1–13). CARNEGIE-MELLON

UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST. Retrieved

from

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=A

DA258304

Ramos, M. E., & Valente, M. T. (2014). Análise de Métricas Estáticas para Sistemas

JavaScript. In Anais do II Workshop on Software Visualization, Evolution and

Maintenance (pp. 30–37).

Ratanaworabhan, P., Livshits, B., & Zorn, B. G. (2010). JSMeter: Comparing the

Behavior of JavaScript Benchmarks with Real Web Applications. In

Proceedings of the 2010 USENIX Conference on Web Application

Development (pp. 3–3). Berkeley, CA, USA: USENIX Association. Retrieved

from http://dl.acm.org/citation.cfm?id=1863166.1863169

Richards, G., Gal, A., Eich, B., & Vitek, J. (2011). Automated Construction of

JavaScript Benchmarks. In Proceedings of the 2011 ACM International

Conference on Object Oriented Programming Systems Languages and

Applications (pp. 677–694). New York, NY, USA: ACM.

https://doi.org/10.1145/2048066.2048119

 90

S. Oney, & B. Myers. (2009). FireCrystal: Understanding interactive behaviors in

dynamic web pages. In 2009 IEEE Symposium on Visual Languages and

Human-Centric Computing (VL/HCC) (pp. 105–108).

https://doi.org/10.1109/VLHCC.2009.5295287

S. Tilkov, & S. Vinoski. (2010). Node.js: Using JavaScript to Build High-Performance

Network Programs. IEEE Internet Computing, 14(6), 80–83.

https://doi.org/10.1109/MIC.2010.145

Schreier, S. (2011). Modeling RESTful Applications. In Proceedings of the Second

International Workshop on RESTful Design (pp. 15–21). New York, NY, USA:

ACM. https://doi.org/10.1145/1967428.1967434

Silberschatz, A., Galvin, P. B., & Gagne, G. (2014). Operating system concepts

essentials. John Wiley & Sons, Inc.

Souders, S. (2008). High-performance Web Sites. Commun. ACM, 51(12), 36–41.

https://doi.org/10.1145/1409360.1409374

Stol, K.-J., & Ali Babar, M. (2010). Challenges in Using Open Source Software in

Product Development: A Review of the Literature. In Proceedings of the 3rd

International Workshop on Emerging Trends in Free/Libre/Open Source

Software Research and Development (pp. 17–22). New York, NY, USA: ACM.

https://doi.org/10.1145/1833272.1833276

Suh, Y.-K., Snodgrass, R. T., Kececioglu, J. D., Downey, P. J., Maier, R. S., & Yi, C.

(2017). EMP: execution time measurement protocol for compute-bound

programs. Software: Practice and Experience, 47(4), 559–597.

https://doi.org/10.1002/spe.2476

T. J. McCabe. (1976). A Complexity Measure. IEEE Transactions on Software

Engineering, SE-2(4), 308–320. https://doi.org/10.1109/TSE.1976.233837

 91

Tanenbaum, A. S. (2009). Modern operating system. Pearson Education, Inc.

Teitel, R. F. (1981). Volume Testing of Statistical/Database Software. In W. F. Eddy

(Ed.), Computer Science and Statistics: Proceedings of the 13th Symposium on

the Interface (pp. 113–115). New York, NY: Springer US.

https://doi.org/10.1007/978-1-4613-9464-8_16

Vokolos, F. I., & Weyuker, E. J. (1998). Performance testing of software systems (pp.

80–87). ACM Press. https://doi.org/10.1145/287318.287337

 92

APPENDIX A: TABLE RESULTS FROM THE

BENCHMARK APPLICATION

angular

v1.6.3-keyed

aurelia

v1.1.5-non-

keyed

ember

v2.16.2-

keyed

create

rows
404.89 337.02 667.27

Processes 218 217 214

replace all

rows
371.2 118.56 449.41

Processes 218 217 213

partial

update
133.55 2064.63 225.37

Processes 218 213 214

select row 9.28 14.64 17.24

Processes 218 213 214

swap rows 244.54 29.6 253.82

Processes 218 212 214

remove

row
92.99 85.49 112.23

Processes 218 212 214

create

many

rows

3816.75 3255.13 4439.38

Processes 218 212 214

append

rows to

large table

528.42 398.58 669.96

Processes 216 212 214

clear rows 876.6 492.98 476.88

Processes 216 212 213

Insert into

DB
454.4 368.37 710.8

Processes 216 212 213

Select

from DB
386.34 322 506.73

Processes 216 212 213

Update

DB
33.47 22.46 152.81

Processes 216 212 213

Delete

from DB
147.97 65.41 66.68

Processes 216 212 213

startup

time
479.8 71.9 339.8

Processes 209 205 206

slowdown

geometric

mean

1.78 1.22 2.11

Table Appendix A - Wired connection in Linux (10 runs)

 93

angular

v1.6.3-

keyed

aurelia

v1.1.5-

non-keyed

ember

v2.16.2-

keyed

create

rows
451.26 379.14 770.3

Processes 67 67 69

replace all

rows
432.99 130.17 484.12

Processes 67 67 68

partial

update
182.36 2913.02 242.17

Processes 67 67 67

select row 11.08 14.88 11.63

Processes 67 67 67

swap rows 278.03 32.37 281.43

Processes 67 67 67

remove

row
115.22 106.88 118.79

Processes 67 67 67

create

many

rows

4309.51 3672.35 5066.91

Processes 67 67 66

append

rows to

large table

595.84 562.17 813.78

Processes 67 67 68

clear rows 793.41 505.99 504.14

Processes 68 67 67

Insert into

DB
515.99 439.12 740.53

Processes 67 67 67

Select

from DB
435.64 332.25 550.15

Processes 67 67 67

Update

DB
35.07 25.07 173.07

Processes 67 67 67

Delete

from DB
154.43 64.49 73.5

Processes 67 67 67

startup

time
638.4 91.5 277.8

Processes 62 62 62

slowdown

geometric

mean

1.75 1.22 1.97

Table Appendix A - Wired connection in Windows (10 runs)

 94

angular

v1.6.3-

keyed

aurelia

v1.1.5-

non-keyed

ember

v2.16.2-

keyed

create

rows
403.13 341.21 654

Processes 229 224 222

replace all

rows
365.02 112.34 474.21

Processes 228 224 222

partial

update
135.33 1997.58 223.2

Processes 228 224 223

select row 15.35 10.87 17.8

Processes 228 224 223

swap rows 243.28 27.88 245.98

Processes 225 224 223

remove

row
94.95 90.4 108.94

Processes 220 224 224

create

many

rows

3834.47 3075.4 4532.7

Processes 220 224 224

append

rows to

large table

514.56 409.41 686.19

Processes 220 224 224

clear rows 862.35 517.78 542.07

Processes 220 224 223

Insert into

DB
468.01 399.31 693.72

Processes 220 224 223

Select

from DB
354.69 326.57 449.64

Processes 220 224 223

Update

DB
32.7 22.31 184.58

Processes 220 224 223

Delete

from DB
149.14 65.44 66.62

Processes 220 224 222

startup

time
521.3 71.8 332.6

Processes 213 218 215

Table Appendix A - Wireless connection in Linux (10 runs)

 95

type

angular

v1.6.3-

keyed

aurelia

v1.1.5-

non-keyed

ember

v2.16.2-

keyed

create

rows
456.89 382.93 792.03

Processes 68 67 68

replace all

rows
436.01 133.04 476.01

Processes 68 67 68

partial

update
183.84 2941.75 243.85

Processes 68 67 68

select row 11.56 13.04 13.71

Processes 68 67 68

swap rows 280.3 35.79 282.92

Processes 68 67 68

remove

row
113.29 103.71 122.45

Processes 68 67 68

create

many

rows

4305.13 3701.43 5065.15

Processes 68 67 67

append

rows to

large table

588.39 565.17 819.85

Processes 67 67 67

clear rows 791.03 495.29 507.23

Processes 67 67 67

Insert into

DB
524.06 447.67 955.13

Processes 75 67 67

Select

from DB
403.37 381.76 581.73

Processes 67 67 67

Update

DB
36.35 26.57 188.52

Processes 67 67 67

Delete

from DB
156.82 64.21 72.94

Processes 75 67 67

startup

time
542.4 85.3 273.7

Processes 62 62 62

slowdown

geometric

mean

1.7 1.22 1.99

Table Appendix A - Wireless connection in Windows (10 runs)

 96

AngularJS Results

Mean per-function logical LOC 4.246203

Mean per-function parameter count 1.515823

Mean per-function cyclomatic complexity 2.174684

Mean per-function Halstead effort 2696.141

Mean per-module maintainability index 120.3792

 dist\main.js
 Physical LOC 6

 Logical LOC 6711

 Mean parameter count 1.515823

 Cyclomatic complexity 1857

 Cyclomatic complexity density 27.67%

 Maintainability index 120.3792

Table Appendix A - AngularJS complexity measurement results

Aurelia Results

Mean per-function logical LOC 2.877216

Mean per-function parameter count 0.998708

Mean per-function cyclomatic complexity 1.607381

Mean per-function Halstead effort 1798.728

Mean per-module maintainability index 130.0242

 scripts\app-bundle.js
 Physical LOC 1

 Logical LOC 135

 Mean parameter count 0.666667

 Cyclomatic complexity 14

 Cyclomatic complexity density 10.37%

 Maintainability index 138.254

 scripts\vendor-bundle.js
 Physical LOC 1

 Logical LOC 7383

 Mean parameter count 1.330749

 Cyclomatic complexity 1988

 Cyclomatic complexity density 26.93%

 Maintainability index 121.7944

Table Appendix A - Aurelia complexity measurement results

 97

Ember
 Mean per-function logical LOC 3.633435

Mean per-function parameter count 1.06286

Mean per-function cyclomatic complexity 1.557052

Mean per-function Halstead effort 1631.141

Mean per-module maintainability index 125.0196

 dist\assets\ember-temp-….js
 Physical LOC 33

 Logical LOC 211

 Mean parameter count 0.741379

 Cyclomatic complexity 22

 Cyclomatic complexity density 10.43%

 Maintainability index 126.8302

 dist\assets\vendor-….js
 Physical LOC 4098

 Logical LOC 18721

 Mean parameter count 1.384342

 Cyclomatic complexity 3893

 Cyclomatic complexity density 20.79%

 Maintainability index 123.209

Table Appendix A - Ember complexity measurement results

	A JavaScript Framework Comparison Based on Benchmarking Software Metrics and Environment Configuration
	Recommended Citation

	ABSTRACT
	TABLE OF FIGURES
	TABLE OF TABLES
	1 Introduction
	1.1 Background
	1.2 Research Project/problem
	1.3 Research Objectives
	1.4 Research Methodologies
	1.5 Scope and Limitations
	1.6 Document Outline

	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 JavaScript and JavaScript frameworks
	2.2.1 AngularJS
	2.2.2 Ember
	2.2.3 Aurelia
	2.2.4 JavaScript frameworks comparison
	2.2.5 System processes
	2.2.6 Asynchronous programming explained
	2.2.7 Promises explained

	2.3 Performance evaluation
	2.3.1 Benchmarking
	2.3.2 Other performance evaluations types
	2.3.3 Benchmarking JavaScript frameworks
	2.3.4 Benchmarking databases
	2.3.5 TODO benchmark application

	2.4 Benchmarking metrics
	2.5 Performance.now (clock)
	2.6 Virtual Machine vs Dual Boot
	2.7 Chapter summary

	3 Design and methodology
	3.1 Introduction
	3.2 JavaScript framework benchmark application
	3.3 RESTful API
	3.4 Google Cloud Platform
	3.5 Network
	3.6 Experiment Design
	3.7 Chapter summary

	4 Implementation and results
	4.1 Introduction
	4.2 Software used
	4.3 Framework implementations
	4.3.1 RESTful API
	4.3.2 Clock settings
	4.3.3 Processes
	4.3.4 AngularJS
	4.3.5 Aurelia
	4.3.6 Ember

	4.4 Environment configuration
	4.5 Results
	4.6 Chapter summary

	5 Analysis, evaluation and discussion
	5.1 Introduction
	5.2 Experimentation
	5.2.1 Preparing the experiment
	5.2.2 Running the experiment

	5.3 Evaluation
	5.3.1 JavaScript framework benchmark results
	5.3.2 Complexity measurement results
	5.3.3 Comparison conclusion and suggestions
	5.3.4 Strengths and limitations

	5.4 Chapter summary

	6 Conclusion
	6.1 Introduction
	6.2 Research overview
	6.3 Experimentation, Evaluation and Limitations
	6.4 Results Summary
	6.5 Contributions and Impact
	6.6 Future Work and Recommendations

	BIBLIOGRAPHY
	APPENDIX A: Table results from the benchmark application

