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Abstract

The thesis aims to take the first step towards automated extraction of the information

found in book reviews, by using machine learning tools to assign a label of fiction

or non fiction to the text. The thesis makes use of neural networks and performs

experiments around architecture, hyper-parameters and text processing from which

an optimized model is produced. The thesis enjoys certain successes; it was possible

to match the state of the art achieved by (Kim, 2014) and computation was sped up

considerably from the default to the optimized model by 13.8 seconds per 50 steps.

Further it is confirmed by the thesis that labelling a sequence as fiction or non fic-

tion can be performed most accurately with LSTM architectures and that contrary

to (Reimers & Gurevych, 2017) every considered hyper parameter had a considerable

impact on results.
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Chapter 1

INTRODUCTION

1.1 Background

Consumers face decisions every day and make these decisions based on an understand-

ing of what will best serve their needs and tastes. Whether it be media, clothing,

consumables or otherwise: the wealth of peer review information available for con-

sumers has made review information one of the main factors that influences the final

decision a consumer makes. The form that most online reviews take, for example on

Amazon.com, is simply an abstract numerical rating (such as star rating) and/or a

review text. When a product may have many thousands of reviews, this leads to a

problem for many consumers. A star rating provides a very coarse understanding of

how suitable the product is; as it is abstracted to the point that no direct product

features are discernible. Meanwhile review text has the opposite problem, that it is

overly rich and not possible to absorb without a concerted effort to read each text.

For many consumers this is not practical and the review text, which contains a reflec-

tion closer to the ground truth of peers opinions on the product, is simply ignored.

The aim of this thesis will be to look at applying machine learning techniques aimed at

gaining insight into this richer ground truth held in aggregate review texts, by assign-

ing a label of fiction or non fiction to book reviews. Amazon Book reviews are chosen

as they offer an especially rich dataset, having been recorded since 1996 and further

the dataset is available for research use at http://jmcauley.ucsd.edu/data/amazon/.

1



CHAPTER 1. INTRODUCTION 2

1.2 Why we need a Fiction vs Nonfiction label

Preliminary examination of the reviews was carried out to see what kind of motifs are

present in the dataset that a human reader might take an interest in which will guide

the aims of the research. The dataset are JSON including the review text and certain

metadata (see example below)

{"reviewText": "I bought this for my husband who plays the piano. He is

having a wonderful time playing these old hymns.

The music is at times hard to read because we think the book was published

for singing from more than playing from. Great purchase though!",

"overall": 5.0,

"reviewerID": "A2SUAM1J3GNN3B",

"reviewerName": "J. McDonald",

"helpful": [2, 3],

"summary": "Heavenly Highway Hymns",

"unixReviewTime": 1252800000,

"reviewTime": "09 13, 2009"}

Explanation: ”reviewText” - full text of the review including all characters, unfiltered

and includes non UTF Characters, overall - Abstract numerical rating out of a possi-

ble 5, reviewerID” - ID allowing for a single reviewer to be identified, reviewerName

- name, helpful - [LH digit - number of respondents that found this helpful, RH digit

- number of respondents overall], summary - a summary title for the review, unixRe-

viewTime - time of review in 24hr with minutes, reviewTime

When a human reads a review, they are looking to find features that they are interested

in and an accompanying opinion that will guide their decision making. Immediately

visible is that the content and therefore feature space varies enormously by the cate-

gory a book might belong to. For example, non fiction books reviews might comment

on the accuracy/utility of the book whilst a review of a novel might comment on the

quality of the plot. Further to this the type of language used between different cate-

gories of book varies, with non fiction books generally attracting reviews with a more

serious tone. Useful insight into products therefore requires that feature classification
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is carried out within a specific category of book. Unfortunately the meta data above

do not include labels for category and the first step in providing useful insight becomes

dividing the book reviews into fiction or non fiction categories.

1.3 An Intuitive look at Fiction vs Nonfiction La-

belling

The dataset is re-examined to discern which intuitions we as humans use when deter-

mining if a review belongs to a fiction or non fiction book.

1.3.1 Phrases and Terms

In many cases, a review can be determined as fiction or non fiction by examining short

phrases or specific terms.

• ”The third novel in this series, ’Catcher Redknapp’ tells the story of police

officer Dale Whitaker in his pursuit of Chicago gangland boss Forest Fenton”

• ”Jodie Westford has already written stories of great complexity and this is

no different”

• ”A practical and well written guide to carpentry”

• ”Although many of the above reviews disagree, I found Gary Ipswitchs expla-

nation of thermodynamics to be edifying and useful

For a human reader it is these phrases, combined with a humans contextual knowledge

of the terms used that reveals the answer.

1.3.2 Long Term Dependences

In some cases, a review cannot be determined as fiction or non fiction without reading

the entire text and finding long term dependencies that reveal the answer.
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• ”This should be sold as fiction. It’s obvious the author spent no time researching

or caring enough about the subject.”

• ”The author of this book has taken considerable artistic licence when telling this

tale. In this readers opinion any departure from the facts does not help the quality

of the book.”

Interestingly, a human reader might be confounded by a phrase that implies one cat-

egory but in fact the wider context and dependencies reveal it to be the opposite (the

following are hypothetical examples).

• ”Unreadable, the author should have picked up a guide to carpentry, rather

than waste his time on such wooden prose.”

• ”A complex book, though to enjoy it one hardly needs a full explanation of

thermodynamics”

1.3.3 Further Intuitions

Reviews vary greatly in length with the longest at 2382 words and the shortest at 23.

Initial examination suggests that non fiction book reviews are more prone to be longer

as their subject matter can be concerned with concepts of great detail, however this

may not be the case in aggregate. Frequent use of proper nouns seems to be associated

with a higher likelihood of the book being fiction (as characters and places are often

given in a brief summary). Again however this might confound a human as certain non

fiction books also have a higher prevalence of proper nouns, for example biographies.

With these intuitions in mind, related literature is considered to help frame the re-

search. Literature will be considered that offers machine learning frameworks in nat-

ural language processing that best suit the dataset, task intuitions outlined above.
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1.3.4 Literature review summary that informs the research

question, objectives, methodology, scope and limita-

tions

The literature review revealed that non linear machine learning methods are more

effective than linear as manual feature selection is avoided (which risks missing impor-

tant features difficult to discern as a human). Further two popular architectures are

found that reflect the intuitive formations in the text outlined above: Convolutional

Neural Networks (CNNs) and Long Short-Term Memory (LSTMs). Binary sentiment

analysis is found to be a comparable and well researched field, with established science

as to the optimal methods, hyper-parameter settings and variety of text preprocess-

ing. Vector space representations of words are revealed as an important consideration

in this type of natural language processing, with the degree dimensionality and the

training set for vectors important factors. A wide variety of architecture considera-

tions with associated hyper-parameters have been the subject of recent research, for

example the use of a drop out layer to prevent overfitting. The computational cost

of these processes is also of concern to the scientific community, with wide ranges in

training times across models. For full details refer to chapter 2

1.4 Research Questions

From this point it becomes possible to frame the research. There are three primary

research questions:,

1. Can deep learning models be made to assign a label of fiction or non fiction to

a book review text with the same accuracy as state of the art accuracies in long

sequence binary sentiment analysis?

2. Are the hyper-parameters found by (Reimers & Gurevych, 2017) to be most

important for accuracy in long sequence sentiment analysis the same as those in

assigning a label of fiction or non fiction?
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3. Does computational speed necessarily come at a cost to a accuracy?

1.5 Research Objectives

1. Build a model which may match the absolute accuracy in binary classification

found in (Kim, 2014).

2. Build a model which may match the absolute accuracy in binary classification

found in (Barry, 2017).

3. Use experimental results to build an efficient model that produces as high accu-

racies as possible in as fast a time possible.

1.6 Research Methodology

The research will be carried out using Google Tensorflow, in which a series of models

will be built and recorded at different stages of training. Each model will serve as part

of an experiment around architecture, hyper-parameter tuning and text preprocessing.

Models will be compared based on their accuracy and speed. For full details refer to

chapter 3

1.7 Scope and Limitations

• During model training is was discovered that depending on when in the row of

models a model is trained, the model appears to be affected. Our suggested hy-

pothesis to explain this is that the GPU is affected by the state of the VRAM, or

that the GPU heats up during training. This introduces a confounding variable

into the measurement of speed and may also affect accuracy. Possible controls

are suggested in section 6.5. however it is beyond the scope of this thesis to

control for.
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• Further during model training it was discovered that training might be affected

by blips in accuracy where, in spite of convergence, accuracy drops again. Our

suggested hypothesis is that the model is being faced with a more ambiguous

batch of reviews than in other iterations. Again, this is a confounding variable

that we may be measuring rather than the intended variables of experimentation.

A possible control is suggested in section 6.5. However this is beyond the scope

of the thesis to control for.

• K-fold cross validation of the models has not been performed due to time con-

straints, this would help to confirm the validity of each model and would be the

first consideration in future work.

• Manual labelling of the dataset also results in a smaller than ideal size for the

sample, however there are examples in literature with smaller datasets: (Kim,

2014) make use of a 3775 size sample in classifying product reviews and (Pang,

Lee, & Vaithyanathan, 2002) make use of a 2053 size sample. Furthermore any

bias introduced will be lessened by stratified sampling as close to an equal sample

of fiction and non fiction reviews as possible.

• A vector space representation of words can be trained on any corpus of texts and

this might have been an option for the results of this thesis, however this is not

carried out within the thesis for the reason that pre-trained vectors are available

from Google and Stanford that are trained on far larger corpuses (over 3 billion

word corpus in the case of Google Word2Vec) which we can safely assume will

give rise to a more accurate representation of a word than our smaller sample of

just book reviews.

• The thesis will not make comparisons between linear and non linear machine

learning methods, this is because there is a clear distinction in reviewed liter-

ature showing outperformance of deep learning methods. Instead the focus of

experiments will be between deep learning methods and their associated hyper-

parameters and input preprocessing.
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1.8 Chapter Summary and Readerś Guide

This chapter gave an overview of the research and explored the motivation behind

undertaking the research. For a condensed view of the thesis, the following reader

strategy is advised. Reading the format I literature review, the method chapter ex-

perimental practice and model design then skipping ahead to the analysis chapter,

using the method chapter experiment list and results chapter for consultation when a

part of the analysis chapter needs clarification or a figure is referenced. The analysis

chapter contains all discussion and reference to the figures found in the results chapter.

The following chapter presents the literature that was considered to help frame the

research.



Chapter 2

LITERATURE REVIEW

2.1 Literature Review Aims

In approaching the literature review a series of questions needed to be answered:

1. What are the similar problems faced in the field of NLP?

2. Is linear or non linear machine learning suitable in this field?

3. What kind of non linear ML architectures are used and what are their relative

merits?

4. What kind of data preprocessing is done in similar fields?

5. How are dependencies in text expressed?

6. How is accuracy reported?

7. What sample size is needed?

8. What is the state of the art?

9. What are the hyper parameter concerns in non linear ML that will affect our

experimentation and how do these decisions above affect computational cost?

The literature review is presented in two formats. First, papers are grouped by their

implications for the questions above and a conclusion is reached about how this topic

9
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will be explored and experimented on by this thesis. Second, each relevant paper

is presented as an outline of its research results with comment offered as to the

implications for the thesis.

2.2 Format I - Answering the Literature Review

Aims

2.2.1 What are the similar problems faced in the field of

NLP?

Labelling a sequence of text with a binary classification is a common problem in

natural language processing. (Kim, 2014), (Barry, 2017), (Zaremba, Sutskever, &

Vinyals, 2014), (Reimers & Gurevych, 2017), (Komninos & Manandhar, 2016) (Tang,

Qin, Feng, & Liu, 2015) look at the classification of a sequence based on binary

sentiment - whether a sequence is positive or negative. The intuitions surrounding

binary sentiment classification has a great deal in common with a fiction or non fiction

label. For example certain terms can be used as an indicator of positivity or negativity

but further to this it is possible for subtleties in the text to cloud this. Longer term

dependencies such as a negating term earlier in the sequence might reverse a positive

word later in the sequence. Much research is concerned with shorter text classification.

(Kim, 2014) considers sentence level where (Komninos & Manandhar, 2016) look at

tweets. Longer sequences of the kind considered by this thesis are examined by (Barry,

2017) & (Reimers & Gurevych, 2017).

2.2.2 Is linear or non linear machine learning suitable in this

field?

Almost every relevant paper involving sequence classification considered makes use of

non linear (deep learning methods). Only one paper, (Pang et al., 2002) makes use of

solely linear methods. Three papers offer a comparison with linear ML. (Kim, 2014)
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offers an extensive comparison of convolutional neural networks against linear methods,

scoring 2.1% higher than the SVM (the peak linear ML approach) on a binary movie

review sentiment assignment test. (Komninos & Manandhar, 2016) compare SVMs,

CNNs and LSTMs, consistently finding the SVM the lowest scoring, the most accurate

SVM model scoring 7% lower than the highest deep learning method. (Barry, 2017)

directly compares a bag of words SVM to LSTM, finding an 8% increase in accuracy in

the LSTM approach with GloVe vetors. (Pang et al., 2002) achieve an 81% accuracy

using SVMs, much lower than those of more recent works. Three of the final chapters

of discussion in (Pang et al., 2002) are devoted to the problems posed by n-grams,

parts of speech and crucially positioning of words in a sentence. All three of these

problems are in some way addressed by using non linear ML approaches. For these

reasons the thesis will not pursue a linear ML approach. The time will be better spent

honing the non linear architecture and engineering hyperparameters.

2.2.3 What kind of non linear ML architectures are used and

what are their relative merits?

Architectures used in related research generally fall into two categories, Convolutional

Neural Networks (CNNs used by (Collobert et al., 2011), (Zhang & Wallace, 2015),

(Denil, Demiraj, Kalchbrenner, Blunsom, & de Freitas, 2014)) and Long Short Term

Memory (LSTM used by (Barry, 2017), (Zaremba et al., 2014). Some examples expand

on these two by combining them or adding extra layers (Zhou, Sun, Liu, & Lau, 2015),

(Li, Jurafsky, & Hovy, 2015)). The convolutional approach makes use of a sliding

window that moves over a text and attaches weights to a series of groups (or n-grams)

of words. Mid and high level features are found by the conjunction of these n-grams

and then an output layer provides the final classification. (Collobert et al., 2011) make

use of this configuration and comment on its high accuracy and quick running time,

with their system training itself in only 4 seconds and achieving 97% accuracy on a

simple Part of Speech tagging task. The LSTM approach makes use of a sophisticated

cell chain structure that passes information and weights through a sequence, updating
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weights as needed with new information. This allows for long term dependencies

in a text to be captured in the model. (Barry, 2017) makes use of these in binary

sentiment classification, achieving 96.5% accuracy. (Komninos & Manandhar, 2016)

offer a comparison of the two approaches and find the CNN to train more quickly and

have higher accuracy in classifying short texts, however intuition would suggest this

may be different when the task involves longer term texts. For this reason these two

architectures will be experimented with during this thesis.

2.2.4 What kind of data preprocessing is done in similar fields?

Many papers apply some kind of data preprocessing, although only one varies the

preprocessing as part of the experimentation. (Clark, 2003) is the first to state that

this is explicitly necessary and gives compelling arguments that when content is user

generated it is flawed in ways that inhibits machine learning. (Clark, 2003), (Pang et

al., 2002), (Kim, 2014), (Reimers & Gurevych, 2017) all make use of stop word removal

and lemmatisation. Many papers follow the processing performed by (Kim, 2014) as

this achieved state of the art measures in many tasks ((Zhou et al., 2015), (Barry,

2017), (Tang et al., 2015). (Haddi, Liu, & Shi, 2013) experiment with a series of pre-

processing procedures: text cleaning (white space removal, expanding abbreviations

found in tweets) stop word removal and stemming. These preparations were decided

on due to the nature of the text being considered (social media content). Similar

intuitions will be applied to the pre-processing of reviews. As such stop word removal

stemming will be experimented with. As mentioned in the introduction, proper nouns

as a reoccurring motif in book reviews and processing these into a marker will also be

experimented with.

2.2.5 How are dependencies in text expressed?

A basic approach to representing text is simply to express words as numbers that

are looked up in a dictionary. This is known as a bag of words approach as no

information about the dependencies or context between words is stored. However an
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area of considerable research in recent years is storing a word as a semantic map of

its co-occurrences. The two landmark words on this are (Mikolov, Chen, Corrado, &

Dean, 2013) and (Pennington, Socher, & Manning, 2014). (Mikolov et al., 2013) sets

out the Word2Vec framework, in which a given word is predicted based on the window

of words either side (its semantic context) or a window of words is predicted based

on a given word. (Pennington et al., 2014) present the GloVe vector representation,

that adds to this concept by adding context from elsewhere in a paragraph rather

than its immediate context. Every relevant paper in this field since these works have

included some kind of vector representation using one of these methods or an adapted

version. Each of these pieces of research have published vector representations for

large corpuses of text; Google News and Wikipedia respectively. Alternatively it is

possible to train a domain specific vector representation on a corpus of text. This

thesis will experiment with different vector representations, but will not train its own

vector representations. The reason for this is that those made available by (Mikolov

et al., 2013) and (Pennington et al., 2014) are trained on a far larger dataset and

outperform by at least 1% in (Barry, 2017).

2.2.6 What sample size is needed?

Sample sizes vary based on the task being performed. Within binary classification

(used in this thesis), the smallest is 2053 (Pang et al., 2002) and the largest is 10662.

(Kim, 2014) makes use of a 3775 sample for of customer reviews. As this thesis will

need to manually label reviews, there will be a time trade off against performing other

tasks. The sample will be larger than 2053 of (Pang et al., 2002), with the customer

reviews set used by (Kim, 2014) 3775 as the target.

2.2.7 How is accuracy reported in this field?

Absolute accuracy (% correctly classified), F1 measures and AUC are used to report

the accuracy of a model. Many papers simply use absolute accuracy as a default:

(Kim, 2014), (Zhang & Wallace, 2015), (Reimers & Gurevych, 2017), (Barry, 2017).
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Whilst other measures are used, absolute accuracy seems the standard approach. This

thesis will use absolute accuracy and avoid other measures.

2.2.8 What is the state of the art?

Papers that consider examples of sequence classification achieve accuracies ranging

between 81.5% and 96.5% when using non linear ML techniques. (Kim, 2014) achieves

81.5% on an IMDb dataset of 10662 positive and negative review sentences and 85%

on a dataset of 3775 customer reviews of products. (Barry, 2017) achieves 96.5%

in binary sentiment classification of a long sequence using LSTMs and GloVe vector

representations of words. If the results of this thesis can reach or exceed 81.5% accuracy

then we will consider the state of the art matched.

2.2.9 What are the hyper parameter concerns in non linear

ML that will affect our experimentation? How do these

decisions affect computational cost?

(Reimers & Gurevych, 2017) as well as (Zhang & Wallace, 2015) offer extensive dis-

cussion of hyperparameter engineering. The premise is that whilst non linear machine

learning avoids the problem of hand crafted features, practitioners must now specify

an exact model architecture that draws from very many variables. From (Zhang &

Wallace, 2015):

”To the uninitiated, making such decisions can seem like something of a black art

because there are many free parameters in the model. This is especially true when

compared to, e.g., SVM and logistic regression. Furthermore, in practice exploring

the space of possible configurations for this model is extremely expensive. (1) training

these models is relatively slow, even using GPUs. (2) The space of possible model

architectures and hyperparameter settings is vast.”

Thus a major part of experimentation in the thesis will be concerned with hyper-

parameter engineering. The list of hyperparameters considered within (Reimers &
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Gurevych, 2017) will be experimented upon, with other factors examined if there is

sufficient time. The list of hyperparameters include: the type of word embeddings,

the optimizer, the dropout, lstm hidden layers minibatch size.

2.3 Format II - Full Literature Review

Pang and Lee (2002) Thumbs up? Sentiment Classification using Machine

Learning Techniques

In an early example of binary classification of a sequence, (Pang et al., 2002) apply a

variety of linear machine learning techniques to an IMDb archive to classify a review

as positive or negative. The sample is 2053 reviews of which 1301 are positive and 752

negative. This is a much smaller size than found in other papers but the results appear

to justify the sample size. Feature selection is either a bag of words approach, bigrams

(words taken as pairs) or a position marker. The support vector machine is found to

be the most effective at 82.9% accuracy, with both unigrams and bigrams taken as

features. Considerable discussion is made as to the problems capturing semantics in

a sentence such as parts of speech and positioning. These results are less favourable

than those found in other papers such as (Kim, 2014) or (Barry, 2017) and suggest

for this thesis that linear ML is not the state of the art approach.

Mikolov and Zweig (2012) Context dependent recurrent neural network

language model

(Mikolov & Zweig, 2012) offers an early application of vector representations to feed

into a recurrent neural network. The objective is to predict the 51st word (given 50

predecessors) in the Penn Treebank portion of the Wall Street Journal corpus. This

paper offers an initial perspective on applying vector representations instead of simple

bag of words to the classifier. However LDA has been superseded by skip gram and

CBOW methods, as is shown by the dimensionality of the vectors used (40 for LDA

in this paper vs 300 used by (Mikolov et al., 2013). Further the problem is different

as this thesis aims to classify sequences rather than predict terms in a sliding window.
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Collobert et al 2011 Natural Language Processing (Almost) from scratch

(Collobert et al., 2011) aim to apply non linear machine learning methods to allow

important elements in natural language processing to be found in an unsupervised

way. The intuition is that non linear machine learning methods will allow the feature

selection process to be avoided. The four tasks chosen are part of speech tagging,

chunking, named entity recognition and semantic role labelling. The type of neural

network uses a window approach and is a convolutional neural network in all but

name. In part of speech tagging and chunking, the approach achieves close to state

of the art performance compared with the linear ML approach. This paper suggests

that the thesis should consider convolutions as a model architecture.

Hochreiter and Schmidhuber (1997) Long Short-Term Memory

(Hochreiter & Schmidhuber, 1997) gives the first description of the Long Short Term

Memory (LSTM) architecture. In traditional RNN neural networks, recurrent back-

propogation on an error in a sequence either blows up or tends to nothing, depending

on the weights applied. By using a combination of memory cells and gate units, each

step can be used to update the cell state which is preserved in a back-flow that runs up

the entire chain. As a result, longer term dependencies in sequences can be preserved

and ran at speed in a way which was previously not possible or highly expensive.

This paper offers the main means by which the longer term dependencies found in our

fiction/non fiction labelling dataset can be captured and trained against, an LSTM

architecture.

Tang et al 2015 Document Modelling with Gated Recurrent Neural Net-

work for Sentiment Classification

A combination of CNNs and LSTMs are used to learn sentence level representations

that are then used with a recurrent neural network to create a document level repre-

sentation which is used to provide a binary classification of sentiment classification.

Longer term semantic dependancies within the document are supposed to be captured
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by the LSTM approach and this is supported by the outperformance of the proposed

approach vs other state of the art approaches. The method is tested against four sen-

timent classification datasets, the Yelp Challenge sets 2013-2015 and the IMDB set.

A series of baseline comparisons are offered involving SVMs and preset features and

further a majority assignment that simply assigns each classification as the majority.

The LSTM approach is found to consistently yield the highest accuracy (F-measure)

over linear machine learning and convolutional neural networks. This is highly rele-

vant to the aims of this thesis for several reasons. First, the length of a document in

each of the sets consists of a series of sentences, with the semantic connection between

sentences a potential driver of the final classification. Further it offers several baseline

comparisons that might be used to compare the accuracy of the model, assigning a

majority classification might be used also in the dataset used by the thesis. Finally

the type of classification is simple binary (positive or negative, fiction vs non fiction).

However the paper considers a multitude of options that can be comfortably avoided

in this thesis, for example the use of simple recurrent neural networks and svms. The

fact that LSTM architectures consistently achieve the highest accuracy supports the

intuition that LSTMs are the best approach for longer level semantic dependancies

and document level classification.

Ilya Sutskever and Oriol Vinyals (2015) Recurrent Neural Network Regu-

larization

Overfitting it found to be a problem with RNNS that cannot be solved in the same

way as feed forward networks (dropout) This paper proposes a method to alleviate

the problems of overfitting with a dropout that is applied to a single cell in the LSTM

chain without affecting the weights of many time steps/cells in the past. The differ-

ence between test and validation set word-level perplexity is at its lowest when using

dropout to regularise LSTMs in instances with a single LSTM and multiple LSTMs

where an average classification is used. This paper looks at language modelling (pre-

dicting the next word given an input chain) and is therefore different to the approach

of this thesis in which a document is assigned a binary classification. However overfit-
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ting is still likely to be a problem given the high dimensionality of the dataset (vector

representations of words). As a result the dropout method proposed in this paper will

be used in hyper parameter engineering stage.

Zhou et al (2015) A C-LSTM Neural Network for Text Classification

(Zhou et al., 2015) propose a novel approach that combines the CNN and LSTM

architectures to heighten Neural Network performance in Text Classification. They

posit that the weaknesses of CNN (an inability to capture longer term dependencies

that have semantic value in classifying a text) can be fixed by combining this with an

LSTM. The LSTM is moreover less suited for learning local features such as N-grams

as each step is taken sequentially. By feeding the output from a single layer CNN into

the inputs of an LSTM, a C-LSTM architecture is formed. Experiments are conducted

on the SST movie set (sets of sentences and sentiments attached) and classification is

performed binary and with 6 classes. Binary in which degree of sentiment is removed

and reduced to just positive/negative. The same set is used within (Kim, 2014),

(Tai, Socher, & Manning, 2015). In binary classification, the proposed CLSTM model

does achieve results comparable to the state of the art found in those papers (87.7%

(Zhou et al., 2015), 88.1% (Kim, 2014)). In 6 class classification there is a clear

increase (94.6% (Zhou et al., 2015), 92.2% (Kim, 2014)), suggesting that more nuanced

shorter texts with more classes see an increase as a result of the CLSTM. In deciding

the architecture that will best suit the classification task of this thesis, a combined

approach of LSTM and CNN is an option. However given the debatable gain in

accuracy in binary classification of sentiment analysis (which is closer to the binary

classification in this thesis), the time will be better spent tuning hyperparameters such

as vector representations and language markers with text cleaning etc. For this reason

a combined approach will not be pursued within this thesis.
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Reimers and Gureyvch (2017) Optimal Hyperparameters for Deep LSTM-

Networks for Sequence Labeling Tasks

(Reimers & Gurevych, 2017) set out to perform a similar task as (Zhang & Wallace,

2015) but in an LSTM architecture, which presents very different concerns and hyper-

parameters to a CNN architecture. In keeping with other papers on hyperparameter

tuning, the emphasis is on the fact that tuning is often a black art requires unwrit-

ten rules of thumb or brute-force search to find optimal settings. A series of different

tasks such as Part of Speech Tagging, Named Entity Recognition and chunking are

performed and hyperparameters including the use of pretrained embeddings, the opti-

mizer, the classifier, the use of a dropout layer, the mini-batch size and the number of

LSTM layers are tested. Of the parameters tested, Word Embeddings, the Optimizer,

the Classifier and Dropout were all found to have a high impact on the performance

of the model; whilst LSTM units and Mini Batch size were found to have a medium

impact on performance. Despite the fact that document classification is not one of

the tasks this paper tests against, this paper is highly relevant to the thesis as it offers

a contemporary view on hyperparameter tuning in an LSTM architecture. Hyperpa-

rameters will be tested against to see how their application affects the model output

in predicting fiction or non fiction.

Kim (2014) Convolutional Neural Networks for Sentence Classification

Making use of a simple one layer CNN architecture and pre trained word vectors,

(Kim, 2014) achieves a state of the art classification rate for sentence level classification

across a range of datasets ranging from binary up to 6 classes (the same sets used in

(Zhou et al., 2015)). Hyperparameters unique to CNNs such as windows and stride

are tested, with dropout rate and mini batch held constant. Further, (Kim, 2014)

makes use of pretrained vectors trained on 100 billion words from Google news (as

described in (Mikolov et al., 2013)). State of the art F1 measures are achieved by

some variant of the CNN architecture proposed by (Kim, 2014) in three datasets: the

Stanford Sentiment Treebank (binary version), the Rotten Tomatoes Movie review

set and the Hu/Liu customer review dataset. The use of pretrained vectors in this
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paper dramatically increases performance and add to the well-established evidence

that unsupervised pre-training of word vectors is important in deep learning NLP.

This confirms the relevance of testing word vector strategies in optimising the model

for this thesis.

Barry (2017) Sentiment Analysis of Online Reviews Using Bag-of-Words

and LSTM Approaches

(Barry, 2017) aims to demonstrate the relevance of word order in sentiment analysis

by comparing the accuracy of LSTM neural networks with bag-of-words and SVMs. In

keeping with the intuition on LSTMs, the argument is that longer term dependencies

such as negation or compound phrases cannot be captured when words are taken as

individual entities. Furthermore vector representations taken from (Mikolov et al.,

2013) and (Pennington et al., 2014), the Word2vec and GloVe word representations,

are tested to measure the increase in classification accuracy. The classification task is

basic binary sentiment classification at a document level (multiple sentences) and two

datasets are considered; the Amazon Fine Foods review set and Yelp challenge dataset.

The model with highest accuracy is found to be an LSTM with GloVe embeddings for

the amazon dataset, and an LSTM with Word2Vec embeddings for the Yelp dataset

(94.1 and 94.8 respectively). As expected the LSTMs consistently outperform the

support vector machine and naive bayes with bag of word approaches. (Barry, 2017)

performs a series of experiments that are highly relevant to this thesis as we are testing

for a vary similar set of long term dependancies in text, so the same concerns as to

vector representations and model construction apply. Further we can surmise from

this that the neural network approach is the state of the art.

Denil et al., (2014) Modelling, Visualising and Summarising Documents

with a Single Convolutional Neural Network

(Denil et al., 2014) aim to summarise review text by applying a paradigm from com-

puter vision to document modelling. Namely that by taking convolutions at lower

levels, document level semantics can be derived as they are made up of groups of sen-
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tences which are themselves made up of groups of n-grams. Pooling of convolutional

outputs is performed at a max pooling layer which is then used by the classifier. The

most important of these sentences from pooling are then brought together to form a

summary. The efficacy of these summaries is tested with a novel approach, a bag of

words naive bayes classifier is trained against the sentiment of a summary generated

in this way vs a summary generated by selecting sentences at random. Testing in this

way, there is a clear increase in the accuracy of the bayes classifier (as much as 9%

increase when only a 25% sample of the text is taken for summary). Whilst no direct

comparison is made between this approach and an LSTM, intuition would suggest

that a CNN that is trained on N-grams will be less effective at capturing very long

dependancies in a text, as the N-gram will sample smaller phrases. Whether CNN or

LSTM architecture is more effective will be part of the experimentation performed in

this thesis.

Lund and Burgess (1996) Producing high-dimensional semantic spaces from

lexical co-occurrence

Improving on the original construction of vector representations of words, (Lund &

Burgess, 1996) offer an automated fashion by which words distances might be de-

scribed by vectors. Where previously words are assigned a position on an axis by

human auditors, the HAL method outlined by this paper produces a space based on

co occurrence in the text. This type of method is the first example of an automated

means by which words are represented by more than just a value in a dictionary. Al-

though the work is too early to have a means of implementing using Python. Further

work on this is found in Mikolov et al (2013 and Pennington et al (2014). Efficient

Estimation of Word Representations in Vector Space

Mikolov et al (2013) Efficient Estimation of Word Representations in Vector

Space

This paper outlines two novel means by which words might be represented in vector

space with comparatively little computational expense to previous methods. The
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continuous bag of words (CBOW) and continuous Skip Gram, which are in effect

inversions of each other. CBOW involves predicting a word from a given context of

words, and Skip Gram predicts a context given a word. These models form the basis

of Word2Vec and GloVe vector learning methods that have become mainstream in

natural language processing (Kim, 2014), (Zhou et al., 2015), (Barry, 2017), (Tang

et al., 2015). Further this paper directly shows that the proposed methods are more

effective than Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA)

which were previously the state of the art of learning word representations. Training

time varies greatly depending on the architecture used, vector dimensionality and the

size of the training dataset (between 0.3 and 2.5 days). However after training is

complete a vector space with intuitive uses is made. The example given in the paper

is that the cosine vector derived from combining (Man, King, Queen, x) will arrive at

woman for x. The vectors trained on googles news page are made available alongside

this paper. This is a landmark paper and gives the two vector learning methods

that will be used in testing for this thesis. Further the pretrained vectors offered by

(Mikolov et al., 2013) will be tested in this thesis.

Tang et al. (2015) Target-Dependent Sentiment Classification with Long

Short Term Memory

(Tang et al., 2015) posit that a further problem for sentiment classification is the

relatedness of a polarity word with the actual target of the text, i.e it might be possible

to have a word that expresses great sentiment but does not refer to the actual target

of the text. In order to address this a novel LSTM approach that takes a target from

the middle of a sequence, building backwards and forwards to model the relatedness of

that target to its context. Intuition suggests this approach might be suitable for this

thesis, as it might be possible to refer to fictional notions within a non fictional review

in an unrelated manner. However the implementation of this architecture is expensive

as it involves two LSTM models running in parallel, with implications for run time

and questionable return on the time invested. For this reason this architecture will

not be tested against in this thesis.
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Le and Mikolov (2014) Distributed Representations of Sentences and Doc-

uments

This paper offers more evidence as to why distributed vector representations of words

are more effective than bag of words or bag of n-gram approaches. Also proposed

is a paragraph vector algorithm that (much like CBOW from (Mikolov et al., 2013))

predicts a word given a context of words around it. This method expands on CBOW

by sampling many contexts from the same paragraph (a wider window than looking at

the words either side or in the same sentence used by CBOW). This paper reports the

error rate rather than accuracy % and demonstrate that paragraph vector approach

gives a lower error rate on a commonly used dataset (IMDB movies) used by (Zhang

& Wallace, 2015) and (Zhou et al., 2015). Training specific vector representations for

paragraphs is beyond the scope of this thesis as the error rate is only improved by 1.2%

in the IMDB dataset vs word level vector representations. Further training vectors

on the dataset adds time and complication vs using pretrained vectors available from

GloVe and google Word2Vec.

Zhang and Wallace (2016) A Sensitivity Analysis of (and Practitioners

Guide to) Convolutional Neural Networks for Sentence Classification

This paper aims to shed some light on the supposed black art of hyper-parameter

engineering in sentence classification using CNNs. The paper investigates the effect of

adjusting the input word vectors, filter region size, feature maps, max pooling strategy

and dropout. The same text preprocessing is examined as in (Kim, 2014). The paper

closes by offering specific advice around each of these hyperparameters to practitioners

using CNNs for sentence classification. Two of the hyperparameters addressed by

this paper (vector representations and dropout layers) are also used by LSTMs and

the advice offered here will be implemented in the thesis i.e that experimentation is

necessary on both and that higher dropout rates than 0.5 are generally found to be

more effective. However the domain area is different as sentence classification is a

shorter sequence than the review length found in the dataset of this thesis, lending

more weight to the argument that CNNs are less likely to be effective. Should CNNs
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prove an effective architecture, the other hyperparameters considered in this paper

will be experimented with.

Komninos and Manandhar (2016) Dependency Based Embeddings for Sen-

tence Classification Tasks

Expanding on the work of (Mikolov et al., 2013), the Skip Gram model by which vector

representations of words are derived is expanded using dependency contexts. Where

the original simply takes a window of 5 words and attempts to use the 2 either side to

target the middle 3rd word, this dependency model uses context markers instead of

the actual words (meaning stop words might be skipped). The results show that for

some datasets this type of vector representation is more accurate and benefits linear

ML classifiers greatly as it gives a source of structural information (that otherwise

is only captured by non-linear CNNs or LSTMs. This type of dependency vector

representation would require training specific word embeddings and parsing the corpus

for each sentence to give a relative dependency, for this reason the method will not

be used in the scope of this thesis. Results are compared across models using simple

accuracy measures which gives a clear indication of the top performers.

Gal and Ghahramani (2016) A Theoretically Grounded Application of

Dropout in Recurrent Neural Networks

The tendency of RNNs to overfit their training sets is a major problem in deep learning

and this paper aims to arrive at rules that prevent this overfitting. Dropout has been

used before (Zaremba et al., 2014) but this paper expands by adding a Bayesian

theoretical element. By applying the same dropout throughout layers in the sequence

rather than a random dropout at each layer, weights adjust to relying too heavily

on specific sequence that drive the overfit. This paper provides further evidence that

dropout will be very important to addressing any problem with overfitting that will

be encountered in the thesis and will be an area for experimentation.
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Ma and Hovy (2016) End-to-end Sequence Labelling via Bi-directional

LSTM-CNNs-CRF

By combining word and character level representations, aim to improve sequence la-

belling that is derived from either levels working alone. CNNs are used to derive

character level features and a bi-directional LSTM with word embedding vectors is

used to perform two NLP tasks: named entity recognition and part of speech tagging.

Absolute accuracies are reported in conjunction with the results from other papers.

The character level model is shown to be effective and this paper again cites dropout

and correct choice of vector space representation important to prevent overfit.

Pennington et al (2014) GloVe: Global Vectors for Word Representation

In this paper, word representations are improved by adding global co-occurence statis-

tics to local window occurrences used by the Skip Gram model of (Mikolov et al.,

2013). The result is the GloVe model of word representations and is tested against the

same word analogy, similarity and named entitiy recognition sets used by (Mikolov

et al., 2013) and has a greater accuracy at each training time compared with CBOW

and Skip-Gram models. Vectors are trained against a corpus of Wikipedia entries

from 2014 with a 400,000 word vocabulary. The availability of pretrained vectors that

perform so highly with a state of the art performance is highly useful for the means of

this thesis and will be used in experimentation alongside vectors derived by Word2Vec.

Maas et al (2011) Learning Word Vectors for Sentiment Analysis

Commenting on the effectiveness of word vector representations in specific applications,

this paper suggests that a domain specific approach is needed in sentiment analysis to

capture the subtleties of sentiment orientated texts. The model uses part supervised

methods, attaching values between 0 and 1 alongside the context of a word to inform

the vector space derived. The use of context specific vectors has been explored before

and does bear some weight however such a method is unnecessary for the scope of

this thesis as it would add greater time in labelling for the supervised methods to be
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applied.

Abadi et al (2016) Tensorflow: Large-Scale Machine Learning on Hetero-

geneous Distributed Systems

This paper sets out the open source TensorFlow API designed for large-scale dis-

tributed deep machine learning. The system is scalable and can be operated by smaller

domestic systems and larger distributed commercial ones, including certain domestic

GPUs. Tensorflow works as a series of nodes connected by operations in what is called

a graph. Each node performs some operation on the multi-dimensional arrays that are

sent through it. These multi-dimensional arrays are known as tensors (thus Tensor

flow). Further a companion visualisation tool called Tensorboard that is run from a

browser allows for training to be viewed and the graph of the session to be viewed and

thereby understood better. As a freely available machine learning platform that can

support both linear and non-linear machine learning, Tensorflow will be used as the

tool for development, training and testing of the models for this thesis.

Chetlur et al (2014) CuDNN: Efficient Primitives for Deep Learning

A library that makes use of parallel architectures and provides routines for GPUs. The

thesis will make use of a domestic Nvidia GPU unit with CUDA options available,

use of this library will speed up training and deployment of Tensorflow especially in

expensive tasks such as LSTMs.

Chilimbi et al (2014) Project Adam: Building an Efficient and Scalable

Deep Learning Training System

Traditional machine learning optimisers do not scale well as they are not designed to

be parallelised. Specifically built distributed hardware has been used in the past but

this is not a cost-effective option. This paper offers a new optimiser that parallelises

operations, giving asynchronous parameter updates across its network that speeds up

training time and accuracy. As mentioned in (Reimers & Gurevych, 2017), the type

of optimiser used in the non linear architecture has a high impact on training and
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performance. Both this paper and (Reimers & Gurevych, 2017) suggest that Adam

will have the strongest performance, but the context of this thesis means this will need

experimentation to confirm.

Haddi et al (2013) The Role of Text Pre-processing in Sentiment Analysis

(Haddi et al., 2013) aim to experiment on the types of data fed into machine learning

classifiers by holding the classification technique constant and adjusting the types of

pre-processing applied to data. Techniques experimented on include cleaning text

of non utf characters, stemming, stop word removal and expanding abbreviations.

Across all feature selection methods, accuracy is improved by applying some kind of

text preprocessing. Whilst text preprocessing is less of a deep learning paradigm (in

which the depth of the architecture is trusted to find features), there may be a gain

in accuracy by streamlining the feature space in which the neural net is searching for

features. Many of the papers considered such as (Kim, 2014) in which many state of the

art performances are made, include text preprocessing. As a result text preprocessing

will be experimented within the thesis.

Clark (2003) Pre-processing very noisy text

Publicly created content often has many semantic and syntactic errors, such as spelling,

grammar and incorrect use of terms. (Clark, 2003) argues that these have a consider-

able impact on any sequence model as terms and features that are in essence similar

may be mistakenly taken as different. Techniques such as stop word removal and

lemmatisation decrease the degree difference these errors make by removing the di-

mensionality in which these errors are made. Further alterations such as spelling error

correction and similar term compression (segmentation) might also be used. For ex-

ample 10 different terms for Ha are found in the Penn treebank set that (Clark, 2003)

argues might be comfortably collapsed into a single. In keeping with (Haddi et al.,

2013), the preprocessing applied to the text will be an area of experimentation in this

thesis.
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2.4 Chapter Summary

In this chapter we have presented relevant literature that explains the technologies used

and places the work of the thesis in its wider research context. The following chapter

explains the method by which models were built as well as listing the experiments

and giving the specification of the dataset. Again if a condensed view is desired,

it is recommended to read experimental practice, model process and dataset before

skipping ahead to the analysis chapter.



Chapter 3

DESIGN & METHODOLOGY

The study will consist of a series of models constructed in Tensorflow. The models

will have varying parameters and by judging evaluative metrics it will be possible

to deduce which parameter settings give optimal performance. The two metrics by

which a model will be judged are absolute accuracy (% of examples correctly predicted)

and time to perform 50 iterations. Where parameter categories are a sliding scale, a

baseline will be compared against two other settings (High, Mid and Low), examples

of this include the minibatch size or number lstm hidden layers. Where parameters are

discrete (on or off) including the parameter will be compared to a baseline, examples

of this include lemmatising text preprocessing vs non lemmatising.

3.1 Experimental Practice

Models in tensorflow undergo training iterations, with each step feeding in a batch of

examples and updating weight rules accordingly. Consequently models can be judged

at checkpoints during their training.

• Every 50 steps - % Accuracy against the training set and the time to perform

50 steps recorded

• Every 1000 Steps - Model saved for testing against a 10% test set

29
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Figure 3.1: Experimental practice, depending on the iteration number different actions

are taken

• Every model will run for 5000 steps - giving 100 evaluative metric recordings

and 5 models

Each model is designed to report accuracy for a given test batch, therefore average

accuracy across batches will be reported (sixteen batches at 16 size, eight batches

at 32 size, four at 64 size). For more details on batching see section 3.3. After

experimentation a final model with optimal parameters will be trained.

3.2 Model Process

The model follows 12 steps in which data is imported, pre-processed, batched and sent

into TensorFlow where the model itself is induced through iterations of batches sent

through a neural network.
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Figure 3.2: Model Process, for description see section 3.2
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1. Import of the dataset in CSV

2. Import of experimental settings from a JSON object.

3. String operations are the first experimental parameter imported from JSON and

performed on the dataset

4. The vocabulary of the resultant set is determined

5. A 10% Test sample of string is held aside

6. Strings are rewritten as a series of vocabulary indices

7. Sequence is padded (truncated) and sequences as formed into Mini Batches

Entering TensorFlow Environmet

8. A Mini Batch is passed into TensorFlow

9. Vector Representations are looked up for each ID in the given sequence

10. The Neural Network is constructed according to parameters taken from the set-

tings JSON (Optimiser, Hidden Layers Dropout)

11. The batch is passed into the Neural Network

12. The Neural Network optimises its loss function along with the new information

from the batch Steps 8,9,11,12 repeat until 5000 iterations are reached.
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Figure 3.3: Example Tensorboard, showing training set accuracy as the model iterates

for the Mini Batch size experiment

3.3 Example Results

Tensorboard is a browser based tool for use in tandem with TensorFlow that allows

a user to visualize the learning process for the model and any metrics of interest. This

will be used to display model training against the train set. See figure 3.3 as example.

Bar plots will be used to show accuracy against the test set at each of the 5 training

checkpoints. See figure 3.4 for example. Violin plots will be used to the distribution

of time taken for 50 steps to be performed between models. See figure 3.5 for example.

Tables will be used to show figures behind the plots. Scipy.stats.describe used for

speed result statistics.

Spec Min Max Mean Variance

HighBatch 30.2 33.7 30.4 0.2

DefaultLSTM 28.2 33.4 28.5 0.41

LowBatch 27.6 31.3 27.8 0.2

Table 3.1: Example Table showing Batch Size Speeds (Seconds) in Performing 50

Steps
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Figure 3.4: Example Bar Plot, showing test set accuracy at each checkpoint for the

Mini Batch size experiment

Figure 3.5: Example Violin Plot, showing the distribution of time taken for 50 steps

to be performed for the Mini Batch size experiment
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Figure 3.6: Histogram of Review Lengths, with a clear positively skewed distribution

Quartiles: 145, 267, 446

Mean Length: 306

3.4 The Dataset

The dataset consists of 3699 review texts and a boolean fiction label (true indicates

fiction) 3.6. The data are manually labelled by a team of 3 auditors, with a sample

of 200 overlapped for agreement metrics. The kappa value of inter agreement is used

for which this labelling process had a value of 0.88, (Ganu, Elhadad, & Marian, 2009)

cite a kappa value of 0.8 as very good agreement. This sample size is 1646 larger than

that used by (Pang et al., 2002) and 76 fewer than the size used by (Kim, 2014). The

split is 1967 non fiction and 1723 fiction reviews (47:53), this ratio is more favourable

that that used by (Pang et al., 2002) in which 752 negative and 1301 positive reviews

(37:63) are used. Further the lengths of reviews follow a clear sloped distribution

without local maxima, which gives us confidence that the sample size is adequate.
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3.5 Experiment List

Experiments are grouped by category and consist of the full parameter specification

and commentary on the value of the experiment in answering the research question.

3.5.1 Architecture Experiment

Spec Default LSTM CNN

Sequence Length 300 300

Batch Size 24 24

Hidden Units 32 32

Dropout 0.5 0.5

Vector Representation Word2Vec300 Word2Vec300

Optimizer Adam Adam

String Operations None None

Table 3.2: Architecture Experiment Parameters

CNN Specific Parameters - Window : 10, Stride : 5

As described in chapters 1 and 2, the architecture used to induce the model will be

the subject of experimentation. The intuition behind this experiment is that certain

forms of text from which a fiction or non fiction label can be seen, might be captured

in a series of N-grams (the CNN method). At the same time others forms of text

require an LSTM approach to be captured. By experimenting with architectures we

can deduce which forms of text are more prevalent and important in review texts. For

more information on architectures, see (Hochreiter & Schmidhuber, 1997) (LSTMs)

and (Denil et al., 2014) (CNNs) in the literature review. The question that can be an-

swered by this experiment is: is the more computationally expensive LSTM approach

necessary?
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3.5.2 Optimizer Experiment

Spec Default LSTM SGD Optimizer

Sequence Length 300 300

Batch Size 24 24

Hidden Units 32 32

Dropout 0.5 0.5

Vector Representation Word2Vec300 Word2Vec300

Optimizer Adam SGD

String Operations None None

Table 3.3: Optimizer Experiment Parameters

The optimizer is a part of the architecture that gives the procedure by which

weights are adjusted to new information. The choice of optimizer is found by (Reimers

& Gurevych, 2017) to be highly important in binary sentiment analysis. For more

information on the Adam optimizer see (Chilimbi, Suzue, Apacible, & Kalyanaraman,

2014) in the literature review. The question that can be answered by this experiment

is: is the choice of optimizer as important in this problem vs binary sentiment analysis?

3.5.3 Hidden Units Experiment

Hidden units serve as the number of weights stored by the network as it unrolls a

sequence. Higher numbers mean a more fine grained recording is made of the weights

found by the network, but this in turn might increase the tendency to overfit. The

question that can be answered by this experiment is: do book reviews need as fine a

grain representation as sentiment analysis to capture the fiction or non fiction element

or does this cause the model overfit? Is this as important as found in binary sentiment

analysis?
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Spec High Hidden Units Default LSTM Low Hidden Units

Sequence Length 300 300 300

Batch Size 24 24 24

Hidden Units 64 32 16

Dropout 0.5 0.5 0.5

Vector Representation Word2Vec300 Word2Vec300 Word2Vec300

Optimizer Adam Adam Adam

String Operations None None None

Table 3.4: Hidden Units Experiment Parameters

Spec Long Sequence Default LSTM Short Sequence

Sequence Length 350 300 250

Batch Size 24 24 24

Hidden Units 32 32 32

Dropout 0.5 0.5 0.5

Vector Representation Word2Vec300 Word2Vec300 Word2Vec300

Optimizer Adam Adam Adam

String Operations None None None

Table 3.5: Sequence Length Experiment Parameters

3.5.4 Sequence Length Experiment

Neural networks require inputs to be of fixed dimensions to allow the same operations

to be performed on them. As a result, the length of a sequence is set at a maximum

and strings are either padded or truncated to reach this length. Intuition suggests

that longer sequences will increase computation time, but truncating longer sequences

may remove a crucial part on which the correct labelling might hinge. The question

that can be answered by this experiment is: can we afford to truncate sequences for

the uplift in computational speed, or does this cost too greatly in accuracy?
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3.5.5 Batch Size Experiment

Spec High Batch Size Default LSTM Low Batch Size

Sequence Length 300 300 300

Batch Size 64 24 12

Hidden Units 64 32 16

Dropout 0.5 0.5 0.5

Vector Representation Word2Vec300 Word2Vec300 Word2Vec300

Optimizer Adam Adam Adam

String Operations None None None

Table 3.6: Batch Size Experiment Parameters

Mini Batch size denotes the number of examples used by the network to establish

weights in a single iteration. Larger batch sizes make special cases in a batch less

highly weighted but do mean that the model is exposed to more rules more quickly.

(Reimers & Gurevych, 2017) find batches between 1-32 in size to be optimal. The

question that can be answered by this experiment is: do book reviews have similar

subtleties to sentiment analysis that require the model to be trained slowly (many

smaller batches rather than fewer large batches) to capture? Is this as important as

found with binary sentiment analysis?

3.5.6 Dropout Wrapper Experiment

As propounded by (Zaremba et al., 2014), the correct use of a dropout wrapper helps to

alleviate many problems to do with overfitting that arise from NNs especially LSTMs.

The question that can be answered by this experiment is: is overfitting a large concern

in this problem and does a large drop out need to be used to preserve accuracy? Is

this as important as found in binary sentiment analysis?
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Spec High Dropout Default LSTM Low Dropout

Sequence Length 300 300 300

Batch Size 24 24 24

Hidden Units 32 32 32

Dropout 0.75 0.5 0.25

Vector Representation Word2Vec300 Word2Vec300 Word2Vec300

Optimizer Adam Adam Adam

String Operations None None None

Table 3.7: Dropout Wrapper Experiment Parameters

Spec Glove300d Default LSTM Glove50d

Sequence Length 300 300 300

Batch Size 24 24 24

Hidden Units 32 32 32

Dropout 0.5 0.5 0.5

Vector Representation Glove300d Word2Vec300 Glove50d

Optimizer Adam Adam Adam

String Operations None None None

Table 3.8: Vector Representation Experiment Parameters

3.5.7 Vector Representation Experiment

Vector representations offer a way of giving context rather than a bag of words

approach. However there is choice within the type of vector representation used.

Here three different representations are considered. A 50 dimensional Global Vectors

(Pennington et al., 2014) representation, a 300 dimensional Word2vec (Mikolov et al.,

2013) representation and finally a 300 dimensional Global Vectors representation. In-

tuition suggests that these will be in increasing computational cost: the 50d option

being the cheapest and the 300 GloVe the most expensive (Word2Vec stores only win-
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dow contexts wheras GloVe takes from elsewhere in the paragraph). The question

that can be answered by this experiment is: can we afford to use a lower dimension

representation for the uplift in computational speed, or does this cost too greatly in

accuracy? Is the choice of vector represntation as important here as found in binary

sentiment analysis?

3.5.8 String Operations Experiment

Spec Remove Stop Words Lemmatize ProperNoun

Sequence Length 300 300 300

Batch Size 24 24 24

Hidden Units 32 32 32

Dropout 0.5 0.5 0.5

Vector Representation Word2Vec300 Word2Vec300 Word2Vec300

Optimizer Adam Adam Adam

String Operations RemStop Lemmas ProperNoun

Table 3.9: String Operations Experiment Parameters

In keeping with (Clark, 2003) and (Haddi et al., 2013), text preprocessing methods

are experimented with. Removing stop words may lead to efficiency gains as sequences

are made shorter and potentially unnecessary terms are lost. However one intuition

suggests that longer reviews that are more verbose and use more stop words may be

more technical in nature and therefore be more likely to be non fiction. Replacing

terms with their lemmas will shorten the dictionary of terms as similar terms are

compressed to a root term. This lessens the dimensionality of the feature space and

may improve model fit and may improve training speed. An intuition found from the

original examination of the dataset was that names of authors, places and characters

often occur in reviews. As these names are unique to each book they will extend the

dictionary of terms significantly without giving great indication as to whether the re-

view is fiction or non fiction. By replacing these names with a ProperNoun marker, it
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should be possible to reduce dimensionality that may improve fit and increase train-

ing speed. The question that can be answered by this experiment is: which string

operations improve the fit and function of the model in this case?

3.6 Hardware. Coding and Platform

Models will be built using Tensorflow for python version 3.6 with GPU support. The

hardware platform will be a domestic GeForce GTX 1050 Ti card with Nvidia cuda

settings, with 4gb of VRAM. Initial models run on CPU took 220 seconds to run 100

steps of the default LSTM architecture. The GPU supported platform sped this up to

120 seconds. Code is written in python with settings parsed from a JSON dictionary

object.

3.7 Chapter Summary

In this chapter we have presented the full methodology by which models are built,

the variables for experimentation and the dataset specification. The following chapter

details the full results of each experiment. Discussion and analysis of results are offered

in the analysis chapter.



Chapter 4

IMPLEMENTATION & RESULTS

Results are presented in two formats. First as tables and secondly as graphics. The

first set of tables displayed correspond to the blue bar charts e.g. table 4.18 & 4.26.

The second set of tables displayed correspond to the violin plots e.g. table 4.10 & 4.3.

The tensorboards do not have accompanying tables.

Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

CNN 72.1 73.5 73.6 74.8 74.8

Table 4.1: Architecture Experiment Test Accuracy %

Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

SGD 51.2 48.5 50.6 49.8 49.0

Table 4.2: Optimizer Experiment Test Accuracy %

43
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Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

HighLSTMUnits 73.4 78.3 76.8 66.3 82.375

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

LowLSTMUnits 59.6 72.9 70.1 69.9 69.5

Table 4.3: Hidden Units Test Accuracy %

Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

SequenceLong 72.6 82.4 83.8 85.4 85.8

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

SequenceShort 49.5 49.5 78.8 78.4 78.4

Table 4.4: Sequence Length Test Accuracy %

Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

HighBatch 59.6 77.9 75.1 77.8 78.5

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

LowBatch 56.6 64.8 72.0 86.5 90.5

Table 4.5: Batch Size Test Accuracy %

Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

HighDropout 60.9 81.0 80.2 86.0 89.3

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

LowDropout 49.4 48.0 51.6 49.1 52.2

Table 4.6: Dropout Test Accuracy %
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Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

Glove 50d 49.0 72.0 46.4 51.4 48.7

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

Glove 300d 77.5 86.0 85.5 88.7 91.1

Table 4.7: Vector Test Accuracy %

Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

Remstop 69.2 76.6 82.4 86.3 85.0

lemmatize 64.8 80.6 79.4 81.3 82.0

Propernoun 69.2 80.6 88.4 86.3 88.0

Table 4.8: String Ops Test Accuracy %

Spec 1000 Steps 2000 Steps 3000 Steps 4000 Steps 5000 Steps

DefaultLSTM 47.9 81.0 84.2 84.0 87.3

FinalLSTM 72.7 86.0 88.5 87.7 89.0

Table 4.9: Final Settings Test Accuracy %

Spec Min Max Mean Variance

DefaultLSTM 28.2 33.4 28.5 0.4

CNN 12.6 16.7 13.0 0.2

Table 4.10: Architecture Experiment 50 Step Speeds Seconds

Spec Min Max Mean Variance

DefaultLSTM 28.2 33.4 28.5 0.41

SGDOptimizerLSTM 28.1 31.3 28.2 0.1

Table 4.11: Optimizer Experiment 50 Step Speeds Seconds
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Spec Min Max Mean Variance

HighLSTMUnits 30.1 33.1 30.2 0.1

DefaultLSTM 28.2 33.4 28.5 0.41

LowLSTMUnits 27.3 30.5 27.4 0.1

Table 4.12: Hidden Units 50 Step Speeds Seconds

Spec Min Max Mean Variance

SequenceLong 32.9 36.6 33.0 0.2

DefaultLSTM 28.2 33.4 28.5 0.41

SequenceShort 11.4 20.1 11.8 1.0

Table 4.13: Sequence Length 50 Step Speeds Seconds

Spec Min Max Mean Variance

HighBatch 30.2 33.7 30.4 0.2

DefaultLSTM 28.2 33.4 28.5 0.41

LowBatch 27.6 31.3 27.8 0.2

Table 4.14: Batch Size 50 Step Speeds Seconds

Spec Min Max Mean Variance

HighDropout 28.1 32.4 28.3 0.3

DefaultLSTM 28.2 33.4 28.5 0.4

LowDropout 28.2 32.6 28.4 0.3

Table 4.15: Dropout 50 Step Speeds Seconds
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Spec Min Max Mean Variance

Glove 50d 24.9 28.6 25.3 0.2

DefaultLSTM 28.2 33.4 28.5 0.41

Glove 300d 26.7 30.6 26.9 0.2

Table 4.16: Vector Test 50 Step Speeds Seconds

Spec Min Max Mean Variance

DefaultLSTM 28.2 33.4 28.5 0.41

Remstop 26.7 29.9 26.9 0.1

lemmatize 26.8 29.7 26.8 0.1

Propernoun 27.7 30.9 27.9 0.1

Table 4.17: String Ops 50 Step Speeds Seconds

Spec Min Max Mean Variance

DefaultLSTM 28.2 33.4 28.5 0.41

FinalLSTM 14.1 20.1 14.7 0.46

Table 4.18: Final Settings 50 Step Speeds Seconds

Figure 4.1: Architecture Experiment Tensorboard Showing Accuracy of the Model

during Training Against the Training Data
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Figure 4.2: Architecture Size Experiment Test Accuracy

Figure 4.3: Architecture Size Experiment Violin Plot
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Figure 4.4: Optimizer Experiment Tensorboard Showing Accuracy of the Model during

Training Against the Training Data

Figure 4.5: Optimizer Experiment Test Accuracy
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Figure 4.6: Optimizer Experiment Violin Plot

Figure 4.7: Hidden Units Experiment Tensorboard Showing Accuracy of the Model

during Training Against the Training Data
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Figure 4.8: Hidden Units Experiment Test Accuracy

Figure 4.9: Hidden Units Experiment Violin Plot
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Figure 4.10: Sequence Length Experiment Tensorboard Showing Accuracy of the

Model during Training Against the Training Data

Figure 4.11: Sequence Length Experiment Test Accuracy
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Figure 4.12: Sequence Length Experiment Violin Plot

Figure 4.13: Batch Size Experiment Tensorboard Showing Accuracy of the Model

during Training Against the Training Data
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Figure 4.14: Batch Size Experiment Test Accuracy

Figure 4.15: Batch Size Experiment Violin Plot
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Figure 4.16: Dropout Experiment Tensorboard Showing Accuracy of the Model during

Training Against the Training Data

Figure 4.17: Dropout Experiment Test Accuracy
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Figure 4.18: Dropout Experiment Violin Plot

Figure 4.19: Vector Representation Experiment Tensorboard Showing Accuracy of the

Model during Training Against the Training Data
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Figure 4.20: Vector Representation Experiment Test Accuracy

Figure 4.21: Vector Representation Experiment Violin Plot
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Figure 4.22: String Operations Experiment Tensorboard Showing Accuracy of the

Model during Training Against the Training Data

Figure 4.23: String Operations Representation Experiment Test Accuracy



CHAPTER 4. IMPLEMENTATION & RESULTS 59

Figure 4.24: String Operations Representation Experiment Violin Plot

Figure 4.25: Optimal Settings Tensorboard Showing Accuracy of the Model during

Training Against the Training Data
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Figure 4.26: Optimal Settings Test Accuracy

Figure 4.27: Optimal Settings Violin Plot



Chapter 5

ANALYSIS, EVALUATION &

DISCUSSION

Analysis is presented in three formats. First, relevant observations are offered that

became apparent during the practice of experimentation. Second, each experiment is

considered in turn with comment given as to the results of each in terms of training,

accuracy and speed. Finally each of the three research questions are reflected on in

the light of these results.

5.1 General Observations

”Difficult” Batches and Stability

As mentioned in section 1.7, there are irregularities in training. For example the default

LSTM suffered at the 1000 step mark (4.1). This might be explained by models facing

”Difficult” batches, in which there is greater ambiguity amongst terms or a term is

used in a way that counters previous weightings. This randomness amongst batches

gives rise to blips in which a converged model may drop out of 100% accuracy amongst

the training set (4.1, 4.7, 4.16).

How vulnerable a model is to ’difficult’ batches gives rise to a new way of judging

models; how stable they are over the course of training. Figure 4.25 shows the default

61
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LSTM model with the final optimized model for comparision, showing a much more

stable training profile.

Convergence

The majority of models have converged by 2k steps and increases in accuracy are

marginal after this point. Overtraining does not seem to be an issue. Only the

LowLSTM (4.8) and Glove 50d (4.20) models peak at earlier training iterations.

Convergence in a model does not mean the model isnt updating, it simply means

it has arrived at weights that can give correct predictions for all the training sample

it has currently been exposed to. A given model is unlikely to have been exposed to

all of the training data by 1000 iterations but this tends to very likely by 5000 steps.

All models see change in test accuracy between points of convergence (4000 vs 5000

steps for example).

Further, convergence doesnt mean accuracy. The CNN architecture converges

quickly (by around 700 steps) but doesnt manage to get higher than 75% accuracy.

Converged models with low test accuracy may be examples of overfitting the data

which can be suggested intuitively; for example low dropout causes overfit because

model weights are enforced more rigidly.

Training Time Irregularities

As mentioned in section 1.7, there are some irregularities in training times. For exam-

ple, the Final LSTM has no reason to be slower than the short sequence LSTM (all

of the parameter changes are seen in previous experiments to be speed accelerating)

and yet it is (4.27 and 4.12). A possible explanation is that the Final LSTM ran on a

GPU that had been freshly restarted whilst other models were ran alongside one and

other in a row of 16. If this is the case then a confounding variable is introduced by

the hardware state. Section 1.7 suggests a possible control for this but putting this

into practice is outside the scope of this thesis.
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5.2 Experiment Results

5.2.1 Architecture Experiment Analysis

Figures: 4.1, 4.2, 4.3

The CNN is quick to train and quick to converge, however it has a low accuracy

ceiling of 74.8% compared to the default lstm at 87.3%. The LSTM continues to

improve test accuracy up into the 4000+ wheras the CNN doesnt seem to have much

uplift after the 2000 mark. From the CNN miss rate it looks like around 25% of texts

have long term dependancies that are difficult to capture using n grams. Whilst it

might be possible to improve on the CNN by optimising around hyperparameters,

for the means of this thesis and in order to match the 96.5% accuracy achieved by

(Barry, 2017), a 12.5% difference between the two architectures is enough to justify

abandoning the CNN architecture and moving to experiment with just the LSTM

model.

Optimal Decision - LSTM Architecture

5.2.2 Optimizer Experiment Analysis

Figures: 4.25, 4.26, 4.27

The SGD optimizer never converges where the adam optimizer does despite both

being set at the same learning rate (0.01). One possible explanation of this is that the

learning rate is too high for SGD and so fails to find a minimum. A further possibility

is that the SGD has arrived at a local minimum and so weight updates are too small

to fit the information found in new batches. There is no uplift in speed and the SGD

does not get above 50.6% accurate. In keeping with (Reimers & Gurevych, 2017) this

factor has a high impact on performance.

Optimal Decision - Adam Optimizer
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5.2.3 Hidden Units Experiment Analysis

Figures: 4.7, 4.8, 4.9

The experiment produced some interesting results. Low lstm units had less effective

results, losing 3.4% between 2000 and 5000 steps. This is likely due to underfit. The

higher lstm unit spec cost on average 1.7 seconds longer to perform 50 steps, without

convincing evidence of an uplift in accuracy. Conversely to low lstm this is likely due

to overfit. (Reimers & Gurevych, 2017) state that this is of medium importance but

it appears in this instance to be highly important to strike a balance.

Optimal Decision - Default Hidden Units

5.2.4 Sequence Length Experiment Analysis

Figures: 4.10, 4.11, 4.12

The experiment produce interesting results. Longer sequences are slower to con-

verge, whilst shorter converges very quickly and is subsequently stable. As expected,

truncated sequences are much quicker to run but with high cost to accuracy. The

inverse is true of longer sequences, however an uplift in accuracy vs default is only

the case at 1000, 2000 and 4000 steps. At 5000 steps the default outperforms long

sequences by 1.5%. Truncated sequences cost 8.9% in peak accuracy but save 16.7

seconds.

Sequence length, more than any other hyper parameter, offers the greatest oppor-

tunity for accelerating training. For more discussion on this see section 5.3 optimal

model.

5.2.5 Batch Size Experiment Analysis

Figures: 4.13, 4.14, 4.15

Smaller batches converge quickly (by 1000 steps) but overfits at earlier times. Higher

batches also has a difficult batch around the 1000 step mark.

Smaller batches are both quicker to train and reach higher accuracies at 5000
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iterations. Intuitively small batches would take longer to be exposed to the entire

sample, which would account for the steadily increasing accuracy. Larger batches take

longer to train and then produce lower accuracies. Batch sizes are important in and

this is in keeping with (Reimers & Gurevych, 2017), who also recommend smaller

batch sizes.

Optimal Decision - Small Batches

5.2.6 Dropout Experiment Analysis

Figures: 4.16, 4.17, 4.18

The experiment produced clear results. High dropout is much more effective at pro-

ducing stable high results. Low dropout is both slower to converge and causes overfit.

Furthermore, high dropout converges more quickly, gives stability to training and

boosts accuracy at the highest iterations. High dropout is 2% more accurate than

the default at 5000 steps. Neither high nor low changes training speed (0.1 seconds

difference with the default). This parameter gives us a way of boosting accuracy and

stability without costing accuracy.

Optimal Decision - High Dropout

5.2.7 Vector Representation Experiment Analysis

Figures: 4.19, 4.20, 4.21

The 50 and 300d glove vector representations are on average faster to train, by 3.2

and 1.6 seconds respectively. This might be explained by size of the file that the

program must search through for a representation (the glove300d is 1.1gb, 50d is

260mb, the google word2vec is 3.7gb). The Glove 300d vector representation with

default other settings achieves highest accuracy overall with 91.1% at 5000steps. The

glove 50d representation struggles to converge, only managing by around 3400 steps.

The glove 300d produces a more stable convergence, facing only minor blips at 2500

and 3000 steps. Use of the glove 300d representation should result in a more accurate

and stable model whilst also raising speeds. The selection of vector representation is
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very important in keeping with (Reimers & Gurevych, 2017), who also find a Glove

representation the most effective in their instance.

Optimal Decision - Glove 300d Vector Representation

5.2.8 String Operations Experiment Analysis

Figures: 4.22, 4.23, 4.24

String operations are all found to have significant results. There is slight acceleration

with all string methods, with lemmatizing speeding up the most on average at 1.7

seconds. Propernoun is the only spec to give convincing accuracy increase, of 0.7%

at 5000 steps compared with the default. All 3 train fairly similarly, converge by the

1000 step mark and are stable. The concern with using string operations is that the

wealth of the text is lessened in some way that damages the accuracy of the model,

this does not appear to be the case with the three operations experimented on.

Optimal Decision - Use all String Methods Considered

5.3 Optimal Model Selection

• Architecture : LSTM

• Optimizer : Adam

• LSTM Hidden Units : 32

• Dropout : 0.75

• Sequence Length : 250

• Batch Size : 12

• Vector Representation : Glove300d

• String Operations : Removed Stop Words, lemmatizing and use of Propernoun

Markers
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A note on sequence length

Using default length sequences still could not improve on the accuracy of the default

model with 300d glove vector representation. The optimal model uses truncated se-

quences as it was found there was an accuracy ceiling at around 91% that could not

be exceeded even with average sequence lengths.

5.3.1 Optimal Model Results

Use of small batches, high dropout and Glove 300d representations make the model less

vulnerable to ’blips’. Use of truncated sequences rapidly improves training time. The

optimal model is 1.7% more accurate at 5000 steps than the default and trains 13.8

seconds faster for 50 steps. Further, the model is quicker to converge (by 400 steps)

and more stable after point of convergence. Smaller test batches mean the optimal

model overfits at 1000 steps but this is soon corrected with much higher accuracy by

2000 steps. 5.2 shows the optimum model compared with other models, showing the

improvement in the two dimensional space of speed and accuracy.

5.4 Research Question 1 Revisited

Can deep learning models be made to assign a label of fiction or non fiction to a book

review text with the same accuracy as state of the art accuracies in long sequence

binary sentiment analysis?

Kim (2014): 81.5%

Thesis accuracy: 91.1%

Barry (2017): 96.5%

Peak accuracy exceeds that of (Kim, 2014), but does not match those of (Barry, 2017).

Experimenting with architecture, hyper-parameters and text preprocessing could not

give a correct prediction of the final 8.9%. The next step for further research is in

depth error analysis so see if there are commonalities amongst the errors that might

be accounted for in future modelling. Full accuracy comparison can be seen in figure
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5.1.

Figure 5.1: Peak performance of each model with (Kim, 2014) and (Barry, 2017)

results for comparison, green models exceed performance of (Kim, 2014)

5.5 Research Question 2 Revisited

Are the hyper-parameters found by (Reimers & Gurevych, 2017) to be most important

for accuracy in long sequence sentiment analysis the same as those in assigning a label

of fiction or non fiction?

Contrary to (Reimers & Gurevych, 2017), every variable for experimentation was

important to accuracy. There are two main differences between the findings of this

thesis and those of (Reimers & Gurevych, 2017). First, (Reimers & Gurevych, 2017)

find the number of LSTM hidden units to be of low importance. The results of this

thesis show a 16.8% range in accuracy for this parameter, which we argue is significant

and therefore of at least medium impact. Second the results of the thesis show the

lowest range in accuracy to be in the batch experiment. (Reimers & Gurevych, 2017)
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found this to be more important than other factors including the optimizer and the

number of LSTM units. The results of this thesis suggest that the fiction or non fiction

domain suggest that batching is less important than the optimizer or number of lstm

units. Full results of comparative t-tests between accuracies are displayed in table 5.1.

Variable MinAccuracy MaxAccuracy Z Score p-Value

LSTM Hidden Units 0.6953 0.8729 18.56 0.000

Optimizer 0.4904 0.8729 35.31 0.000

Batch Size 0.7853 0.9053 14.27 0.000

Dropout 0.5221 0.9029 36.18 0.000

Vector Representation 0.4871 0.9110 39.74 0.000

Table 5.1: Proportion t-test performed on each comparable Hyperparameter n=3699

5.6 Research Question 3 Revisited

Does computational speed necessarily come at a cost to a accuracy?

As mentioned in section 5.3, there appears to be an accuracy ceiling that the

thesis experimentation could not breach at around 91%. As a result it is possible to

accelerate training without accuracy suffering too much, this forms the basis of the

optimized model offered in section 5.2. We argue that computational speed does not

necessarily come at a cost to accuracy and it is in fact more readily achievable to speed

up a model of reasonable accuracy than to reach toward the higher 90 percentiles in

accuracy. 5.2 shows the optimal model in comparison to other specifications.

5.7 Chapter Summary

In this chapter we have examined the experimental results for meaningful insight,

revisited the research questions to measure the successes of the thesis and built an

optimized model. The following chapter concludes the thesis by assessing the contri-

butions of the thesis and offering suggestions for further work.
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Figure 5.2: ScatterPlot with FinalLSTM



Chapter 6

CONCLUSION

6.1 Research Overview

The thesis aimed to apply machine learning techniques to book reviews to take the

first step towards automated extraction of the information found in these reviews, by

assigning a label of fiction or non fiction to the text. The thesis made use of neural

networks and performed experiments around architecture, hyper-parameters and text

processing from which an optimized model was produced. The thesis enjoyed certain

successes; it was possible to match the state of the art achieved by (Kim, 2014) and

computation was sped up considerably from the default to the optimized model by 13.8

seconds per 50 steps. Further it was confirmed by the thesis that labelling a sequence

as fiction or non fiction can be performed most accurately with LSTM architectures

and that contrary to (Reimers & Gurevych, 2017) every considered hyper parameter

had a considerable impact on results.

6.2 Problem Definition

The problem faced by the thesis was efficient binary classification of a long sequence (a

review text). The suitability of the model solution was judged in terms of the absolute

accuracy a model can achieve on the test set and on the average time taken to perform

50 training iterations.
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6.3 Design/Experimentation, Evaluation & Results

The thesis experiment design took the form of a series of neural network models built

in Tensorflow, altering hyper-parameters whilst holding others constant to measure

the effect of a given hyper parameter. Results were largely intuitive and could be put

to use building an optimized model that ran both faster and more accurately than

the default settings. For continuous parameters, experiments were performed between

three arbitrary High, Mid & Low settings. This might be a flawed approach if there is

a nonlinear relationship between the continuous parameter and accuracy or speed. We

hypothesise further that two confounding variables introduce bias into the study; the

difficulty of a batch and the state of the hardware in which models are run. Potential

controls are suggested in section 6.5

6.4 Contributions and Impact

The chief contribution of this thesis is an optimized model for binary classification of a

long sequence, that achieves 89% accuracy and is trained to 5000 steps in 24 minutes.

The thesis has suggested several means by which models may be trained more quickly,

increasing the feasibility for such models in a commercial envirionment where time is

a constraint. This thesis has helped to shed light on the review text dataset and has

added further experimental data to long sequence binary classification. Assigning a

fiction or non fiction label to texts will allow the next stage of sentence level classifica-

tion to be modelled; from which point genuine insights can be drawn from modelling as

to the aggregate value of opinions on a given book. The research is potentially relevant

across different fields as it suggests that binary sentiment classification techniques can

be used outside of sentiment classification.

6.5 Future Work & Recommendations

• K-fold cross validation of the models would help to confirm the validity of each

model.
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• Performing the same set of experiments on a larger sample size would allow us

to see if the sample size changes the results.

• Building on the work of the thesis the next step is to proceed to sentence level

classification, for which a large labelled dataset and similar experiments around

architecture, hyper parameters and text preprocessing would be needed. Intu-

ition might suggest that the CNN architecture would be more suitable as sentence

level is a shorter sequence.

• Further to this the work of the thesis might be verified by examining continuous

parameters at more points than simply High, Mid Low points.

• Testing the hypothesis that instability is introduced by random batching. If

confirmed, this might be controlled by stratifying batches based on an ambiguity

rating, thereby ensuring that models face a certain proportion of ambiguous

examples per iteration. However this would require the labelling procedure to

be yet more time consuming.

• Testing the hypothesis that instability is introduced by model order and GPU

state. If confirmed, this might be controlled in one of two ways; training models

simultaneously on the same GPU with equal prioritising, which whilst it would

slow training down would do so equally across all models. The second way

involves training all models in every possible order and taking each model from

the same state, i.e the end of the chain of 17 models.
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