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Abstract

EEG (Electroencephalogram) signal is a biological signal in BCI (Brain-Computer Inter-

face) systems to realise the information exchange between the brain and the external

environment. It is characterised by a poor signal-to-noise ratio, is time-varying, is inter-

mittent and contains multiple frequency components. This research work has developed

a new parameterised time-frequency method called the Linear Predictive Coding Pole

Processing (LPCPP) method which can be used for identifying and tracking the domi-

nant frequency components of an EEG signal. The LPCPP method further processes

LPC (Linear Predictive Coding) poles to produce a series of reduced-order filter transfer

functions to estimate the dominant frequencies. It is suited for processing high-noise

multi-component signals and can directly give the corresponding frequency estimates

unlike transform-based methods. Furthermore, a new EEG spectral analysis framework

involving the LPCPP method is proposed to describe the EEG spectral activity. The EEG

signal has been divided into different frequency bands (i.e. Delta, Theta, Alpha, Beta and

Gamma). However, there is no consensus on the definitions of these band boundaries. A

series of EEG centre frequencies are proposed in this thesis instead of fixed frequency

boundaries, as they are better suited to describe the dominant EEG spectral activity.
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Chapter 1

Introduction

1.1 Problem Statement

Brain-Computer Interfaces (BCI) based on the electroencephalogram (EEG) signal can

facilitate information exchange between the brain and the external environment. The EEG

signal is a high-complexity time series bioelectric signal that is characterized by a poor

signal-to-noise ratio. In addition, EEG signals are time-varying and intermittent and they

contain multiple frequency components. Specifically, the acquisition of an EEG signal is

always accompanied by noise. The spectral components of EEG signals are intermittent

because the appearance and disappearance of some brain activities are dynamic. EEG

signal is a multi-component signal where the frequency components reflect various brain

electrical activities. A robust and time-resolved spectral analysis method for EEG signals

is required for its use in BCI systems. In addition, many biomedical researchers are

interested in establishing significant levels of electrical activity across defined frequency

bands. They have divided the EEG spectrum into a number of fixed frequency bands
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(i.e. Delta, Theta, Alpha, Beta and Gamma) to investigate the various brain functions.

However, there is little consensus among researchers in terms of the frequency ranges of

these bands. Different publications have used different definitions for the boundaries of

these frequency bands. The spectral activity of the EEG depends on the activity being

performed by the subject and is not restricted to a series of fixed frequency bands.

1.2 Objective and Contributions

The objective of the thesis is to improve the analysis of continuous EEG signals. The

method pursued involved the development of a new method called the Linear Predictive

Coding Pole Processing (LPCPP) method which is a new parameterised time-frequency

method. The LPCPP method is based on the Linear Predictive Coding (LPC) method.

The standard LPC method suffers from a sensitivity to the choice of filter order and has a

poor tolerance of high noise environments. The LPCPP method further processes the LPC

poles to produce a series of reduced-order filter transform functions to perform dominant

frequency estimation. The LPCPP method can identify the dominant spectral features and

it can directly provide the corresponding frequency estimates instead of spectral wave-

forms. Waveform time-frequency methods can tell whether a certain frequency compo-

nent exists or not at any given time interval. However, a challenge in analysing multi-

component signals is to separate the spectrum components when they are overlapped in

the time-frequency plane. The LPCPP method is a parameterised time-frequency method

that can produce numerical dominant frequency estimates and it is suitable for multi-

component signal processing (i.e. EEG signals). Furthermore, it significantly improves
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the performance in terms of a robustness in the presence of noise when compared to the

LPC method. The LPCPP method has a higher spectral resolution than that of the LPC

method and it has a reduced time-bandwidth product. The LPCPP method can be used

to track the dynamics of the dominant frequency of time-varying signals. Therefore, it is

particularly suitable for EEG spectral analysis. The LPCPP method can help us observe

the spectral changes of EEG signals in real-time. In this thesis, there are three public EEG

datasets used for the EEG spectral analysis. The three datasets comprise EEG signals

collected from 173 subjects and the total EEG acquisition duration exceeds 100 hours.

A new EEG spectral analysis framework that involves the LPCPP method will be devel-

oped for the analysis of the EEG signals based upon nominal centre frequencies. Instead

of fixed EEG frequency boundaries, the EEG waves are classified in terms of nominal

band centre frequencies to describe the dominant EEG spectral activity. They have the

following advantages:

1. Instead of artificially fixed wave frequency boundaries, the distribution of the domi-

nant EEG spectral activity in the full frequency domain can be described by the

normal centre frequency rather than a specific frequency band.

2. Better suited to describe the dynamic and variable EEG frequencies. Because of

the individual differences, gender, age etc., there is still no consensus on the classi-

fication of EEG bands and there exist undefined gaps between the different bands.

The central frequencies are more suited expression of this dynamic variable EEG

spectral activity and there are no gaps between bands.
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3. Three common central frequencies (i.e. 1.75 Hz, 6.75 Hz and 10.75 Hz) are identi-

fied on three different EEG datasets corresponding to EEG spectral activity in the

Delta, Theta, and Alpha bands of the EEG.

In addition, since the LPCPP method can be incorporated into a machine learning or

AI system, the LPCPP method will be of significant benefit in the development of BCI

applications to help in pushing BCI techniques out of the laboratory and into addressing

real-world problems.

1.3 Publications

As a result of the research work in this thesis, there were 5 academic papers published.

Specifically, two of these papers were published in the prestigious journal IET Electronic

Letters and one of the papers was selected as the “Featured Paper” in the May 2021 issue.

The Publications arising from this thesis are as follows:

1. Jin Xu, Mark Davis, and Ruairí de Fréin. “An LPC Pole Processing Method for

Enhancing the Identification of Dominant Spectral Features." Electronics Letters

(2021).

∗ This paper was selected as a “Featured Paper” in the issue of Electronics Letters.

2. Jin Xu, Mark Davis, and Ruairí de Fréin. “A Linear Predictive Coding Filtering

Method for the Time-resolved Morphology of EEG Activity." 32nd Irish Signals

and Systems Conference. IEEE, 2021.
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3. Jin Xu, Mark Davis, and Ruairí de Fréin. “Dominant Frequency Component Tracking

of Noisy Time-varying Signals using the Linear Predictive Coding Pole Processing

Method." Electronics Letters (2022).

4. Jin Xu, Mark Davis, and Ruairí de Fréin. “New Robust LPC-Based Method for

Time-resolved Morphology of High-noise Multiple Frequency Signals." 31st Irish

Signals and Systems Conference. IEEE, 2020.

5. Jin Xu, Mark Davis, and Ruairí de Fréin. “A Robust LPC Filtering Method for

Time-Resolved Morphology of EEG Activity Analysis." 26th Annual Conference

of the Section of Bioengineering of the Royal Academy of Medicine in Ireland

(2020).

6. Jin Xu, Mark Davis, and Ruairí de Fréin. “An Uncertainty Principle Analysis for

Parameterisation Time-frequency Method." IEEE Transactions on Signal Processing

(In Preparation, 2022).

7. Jin Xu, Mark Davis, and Ruairí de Fréin. “Analysis of the Estimation Bias and

Time-Bandwidth Product for a Linear Predictive Coding Pole Processing Algo-

rithm" IEEE/ACM Transactions on Computational Biology and Bioinformatics (In

Preparation, 2022).

8. Jin Xu, Mark Davis, and Ruairí de Fréin. “ EEG Centre Frequency Analysis using

Linear Predictive Coding Pole Processing Method" IEEE Transactions on Biomed-

ical Circuits and Systems (In Preparation, 2022).
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1.4 Organisation

This thesis is organised as follows:

Chapter 2 describes the main technologies that are used through the course of this research

by introducing the general technical background regarding the spectral analysis of the

EEG signals. First, an overview of EEG signals is presented, including EEG acquisition,

EEG artifacts and definitions of EEG frequency bands. In addition, the three public EEG

datasets used in this thesis are described in detail. Second, the time-frequency analysis

method and the Heisenberg-Gabor uncertainty principle are introduced. Finally, the LPC

method is introduced in detail, including the mathematical derivation of the LPC method

and some of its limitations are discussed.

Chapter 3 describes the design and the development of the LPCPP method. The first

section presents a fundamental analysis of the LPC poles and the LPC spectra under the

different parameters, i.e. filter order, signal duration, sampling frequency, signal noise

and window function. The definitions of the dominant pole and non-dominant pole are

proposed and defined. The second section analyses the relationship between the dominant

pole and non-dominant pole in a series of second-order transform functions. The defini-

tion of the associated pole is proposed to determine the final location of the spectral peak.

Finally, the details of the LPCPP method are presented.

Chapter 4 presents the experimental results of the analysis of the LPCPP method. The

first section shows that the LPCPP method can achieve the enhancement of frequency

estimation when compared to the LPC method. The second section demonstrates that

the LPCPP method can track the change of dominant frequency in real-time and it can
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significantly reduce the invalid frequency estimates of the LPC method. The third section

presents the time-bandwidth product analysis of the LPCPP method and shows that the

LPCPP method can significantly improve the spectral resolution compared to the LPC

method. The LPCPP method is well suited for processing poor signal-to-noise ratio, time-

varying, intermittent and multi-component signals. It is suited for the analysis of EEG

signals.

Chapter 5 presents a new EEG spectral analysis framework involving the LPCPP method.

The LPCPP method can realise real-time tracking of the dominant frequencies of EEG

signals. Furthermore, a series of EEG centre frequencies are proposed in place of the

fixed frequency bands to describe dominant EEG spectral activities. Compared to fixed

EEG bands, the EEG centre frequencies can be better suited to describe the dynamic

changes of the dominant spectrum components in the EEG signal.

Chapter 6 provides the summary of the main findings and conclusions from the research

work carried out in this thesis. Furthermore, it also gives some suggestions for future

research in the area. Finally, the skills acquired during this research work are summarised.
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Chapter 2

Technical Background

In this chapter, the technical background of this thesis will be presented. The first section

will present the properties of EEG signals. The core component of the Brain-Computer

Interface (BCI) system is to translate the subject’s EEG signals into control commands or

instructions for external devices. However, the EEG signal is a high-complexity bioelec-

tric signal, typically characterized by a poor signal-to-noise ratio whose frequency is time-

varying, intermittent and contains multiple frequency components. Therefore, a robust

and time-resolved spectral analysis method for EEG signals is required for its use in BCI

systems. The second section discusses popular time-frequency methods and the limita-

tions imposed by the Heisenberg-Gabor uncertainty principle on time-frequency analysis

methods. The time-frequency methods give a view of a signal represented over both

time and frequency. Furthermore, many time-frequency methods are waveform methods

and are useful for demonstrating whether a certain frequency component exists or not by

showing how the energy of the signal is distributed across the time-frequency domain.

Linear Predictive Coding (LPC) provides a parameterised time-frequency method that
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can directly provide the signal frequencies in the form of numerical frequency estimates.

These numerical frequency estimates are well suited to frequency estimation and frequency

tracking of multi-component signals (e.g. EEG signals). The third section will present

the details of the foundation of the basis of the LPC method. Furthermore, the shortcom-

ings of the LPC method are also analysed. Finally, the last section is the summary of the

chapter.

2.1 Electroencephalography

EEG signal can record the electrical activity of the brain to reflect the states of the brain

in real-time which can support its use in BCI applications. In this section, the first part

introduces the development of the EEG signals and the international EEG acquisition

standard. The second part presents the EEG artifacts which are divided into biological

noise and environmental noise. The third part presents the different definitions of EEG

frequency bands (i.e. Delta, Theta, Alpha, Beta and Gamma) introduced by different

researchers. The fourth part introduces the details of the three EEG public datasets that

will be used in this thesis. Finally, a summary of this section is presented.

2.1.1 Introduction to EEG

The BCI system can convert the subject’s EEG signals into control commands or instruc-

tions for external devices [1, 2, 3, 4, 5, 6]. EEG signals are an efficient means to acquire

brain signals corresponding to various electrical activities on the scalp surface area. It was

first recorded by Richard Caton from an animal brain in 1875. In 1924, the first human
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EEG was recorded by a German psychiatrist Hans Berger [7, 8]. EEG records electrical

activity arising from the human brain. The average human brain has about 100 billion

neurons and ten times more glial cells and the communication between them is the key

brain activity [9]. The EEG signal provides a view of the evaluation of dynamic cere-

bral functioning. The continuous EEG signal is used to monitor and track the state of a

patient’s brain, for example it has been used in ICU units to track a patient’s response to

treatment for seizures and status epilepticus [10].

Fig. 2.1 EEG international 10-20 system.

EEG signals are acquired by electrodes placed on the scalp surface. There are some

internationally recognised methods to specify the location of scalp electrodes in the EEG

collection [11, 12, 13, 14, 15, 16, 17]. In 1958, Jasper defined the international 10-20 elec-

trode system to provide a standardised EEG electrode placement [11]. The 10-20 system

provides a reproducible method to maintain a standardized testing method ensuring that

different studies could be reproduced and effectively analysed and compared. The inter-
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national 10-20 system is shown in Fig. 2.1. The “10” and “20” denote the fact that the

actual distance between adjacent electrodes is either 10% or 20% of the total front-back or

right-left distance of the skull, typically the number of the electrodes in the 10-20 system

is 21. With the development of hardware and the demands posed by researchers, there

was an increased need for extending the 10-20 system to higher density electrode settings.

Chatrian et al. proposed the 10-10 system based on the 10-20 system with supplemen-

tary electrodes applied midway between leads of the 10-20 system or electrodes in turn

situated between 10-20 leads [12, 13, 14]. Oostenveld et al. further proposed the high-

resolution 10-5 system which has 345 electrode locations [15]. In the work of Jurcak et

al., they revisited the 10-20, 10-10 and 10-5 systems and analysed the validity as a rela-

tive head-surface-based positioning system, they found the 10-10 positions could be well

separated on a scalp without overlapping [16, 17]. Therefore, all EEG datasets in this

thesis use the 10-10 system to acquire EEG signals and the details about the topographic

of these datasets will be introduced in Section 2.1.4.

2.1.2 EEG Artifacts

An unfortunate reality of EEG is that cerebral activity may be overwhelmed by other

electrical activity generated by the body or in the environment. The noise in an EEG

signal can be divided into biological noise and environmental noise often termed artifacts.

The most common types of biological artifacts include a cardiac signal (ECG), movement

artifacts caused by muscle (EMG) and eye signals caused by eyeball movement (EOG).

ECG artifacts are quite common and are unavoidable in recorded EEG signals, but it has

the smallest impact [18]. EMG and EOG can be avoided or reduced by asking the subjects
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to close their eyes and to stay relaxed when they are doing EEG collection. There are some

works that try to remove the artifacts from EEG signals, these methods include blind

source separation, empirical-mode decomposition, wavelet transform and independent

component analysis [19, 20, 21, 22, 23]. The other sources of the noise come from the

outside of the body, they include the steps of collecting and processing EEG signals. The

most common source of environmental noise is the local power system’s frequency, either

50 Hz or 60 Hz (according to which country you are in) [24, 25, 26]. When the electrode

contact is poor, the collected EEG signal cannot reflect genuine brain activity. In addition,

some of these differences are due to the hardware configuration which applies different

filtering to the signal during the EEG preprocessing, such as the notch filters are often

applied at 50 Hz or 60 Hz to filter out AC line noise [26]. As a result of the artifacts on

the EEG records, a robust signal processing method is required for processing noisy EEG

signals.

EEG signals have a low SNR and their recordings are always accompanied by a variety

of noise. There is a considerable part of the EEG dataset that is invalid data corrupted

by noise contamination. In the work of Cho et al., they collected EEG datasets from

52 subjects for motor imagery brain-computer interface, but only 73% of datasets (38

subjects) included reasonably discriminative information [27]. The artifacts are to be

detected and removed in order to improve the interpretation of EEG signals. There are

some de-noising methods for EEG signals. Majmudar Charvi et al. proposed a hybrid

method to detect and remove artifacts from single-channel EEG signal [28]. Asaduz-

zaman et al. applied the discrete wavelet transform for removing noise from the raw EEG

signals of healthy patients [29]. Zhou Weidong et al. used a combination of wavelet
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threshold de-noising and independent component analysis to remove the EMG and ECG

artifacts in EEG signals[19]. Rohál’ová Martina et al. proposed an extended Kalman

filter approach and a neural network instead of the autoregressive model for the detection

of EEG artifacts [30]. Therefore, the EEG signal is a high-noise signal and data cleaning

is required for EEG signal analysis. In this thesis, the autocorrelation method will be used

to clean the EEG datasets and the specific experiment analysis will be shown in section

5.2.

2.1.3 EEG Frequency Bands

The spectrum of EEG has been divided into a number of fixed frequency bands by many

biomedical researchers to investigate the corresponding brain functions. However, different

researchers have defined different frequencies for these bands with little consensus between

them which has significant consequences for EEG interpretation. These EEG frequency

bands are based on their frequency range using Greek letters which are Delta, Theta,

Alpha, Beta and Gamma. For the different EEG waves, their corresponding brain activi-

ties have also been analysed. Specifically,

• The Delta wave is a type of high amplitude brain wave with a frequency of oscilla-

tion. It is physiologically seen in deep sleep and is prominent in the frontocentral

head regions [31, 32, 33]. Tinguely et al. described fundamental aspects in relation

to the functional significance of Delta oscillations in cognitive processing, their

work showed that the power of the Delta oscillations increases during mental tasks

and has the role of inhibiting all the interferences that may affect the performance

of the task [32].
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• The Theta waves were first reported by Walter and Dovey in 1944, who observed

their occurrence in cases of sub-cortical tumour [34]. Different functional rela-

tionships were observed between Theta-activity and attention as well as memory

processes [35, 36].

• The Alpha wave was discovered by the German neurologist Hans Berger, the inventor

of the EEG itself. The best-known and most extensively studied rhythm of the

human brain is the normal Alpha rhythm. Alpha activity is induced by closing the

eyes and by relaxation [37, 38].

• The Sigma wave is seen most prominently in the frontocentral head regions and

its activity includes brief but powerful bursts of synchronous neuronal firing during

the second stage of sleep in mammals [39]. It is also a slow-wave activity were

positively correlated with the pre–post-sleep consolidation of declarative (word list)

and procedural (mirror-tracing) memories [40].

• The Beta wave is the most frequently seen rhythm in normal adults and children.

It is most prominent in the frontal and central head regions and attenuates as it

extends posteriorly. The studies of Beta activity are mostly in relation to sensori-

motor behavior [41, 42].

• The Gamma wave is a fast oscillation and is usually found during conscious percep-

tion. The Gamma activity has also been detected and studied across parietal, temporal

and frontal cortical regions [43]. The work from Li Mu and Lu Bao-Liang inves-

tigates emotion classification based on Gamma waves, their work shows that the

Gamma band is suited for EEG-based emotion classification [44].
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However, the definitions of EEG waves (i.e. Delta, Theta, Alpha, Beta and Gamma)

vary between different publications. Specifically, Deuschl et al. defined four EEG bands:

Delta (0-4 Hz), Theta (4-8 Hz), Alpha (8-14 Hz) and Beta (≥14 Hz) [45]. Adeli et al.

decomposed EEG into five EEG bands: Delta (0-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz),

Beta (13-30 Hz) and Gamma (30-60 Hz) [46]. Ferri et al. separated the EEG signal into

five bands in their work: Delta (0.25-2.5 Hz), Theta (4.0-7.0 Hz), Alpha (7.0-11.0 Hz),

Sigma (11.0-15.0 Hz) and Beta (15.0-30.0 Hz) [47]. de Munck et al. defined the EEG

bands as: Delta (0.1-4 Hz), Theta (4.5-8 Hz), Alpha (8.5-12 Hz), Beta (12.5-36 Hz) and

Gamma (36.5-100 Hz) [48]. Zheng et al. used the five EEG bands as Delta (1-3 Hz),

Theta (4-7 Hz), Alpha (8-13 Hz), Beta (14-30 Hz) and Gamma (31-50 Hz) [49]. Abo-

Zahhad et al. used the EEG frequency bands are that Delta (0.5-4 Hz), Theta (4-8 Hz),

Alpha (8-14 Hz), Beta (14-30 Hz) and Gamma (>30 Hz) [50]. Fig. 2.2 summarises the

Fig. 2.2 The different EEG band definitions used by various researchers.

different frequency band definitions of the EEG bands. As shown there are many different

definitions used for the different EEG frequency bands and the researchers have not yet
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reached a unified approach. Many definitions have gaps between frequency bands and

these gaps represent undefined frequency segment. Furthermore, Table 2.1 demonstrates

Table 2.1 Summary of frequency band parameters.

EEG band % of Publications Typical range (Hz) Minimum start

value (Hz)

Maximum end

value (Hz)

Delta 70 1.3-3.5 0 6

Theta 84 4-7.5 2.5 8

Alpha 85 8-13 6 14

Beta 80 12.5-30 12 50

Gamma 18 30-40 20 100

the work of Newson et al. who investigated the differences in EEG frequency bands in

the resting state condition from 184 EEG studies [26]. There is no consensus among

researchers regarding the frequency boundaries. There are a number of factors that may

cause this lack of a unified consensus on the classification of EEG bands, such as

1. Some EEG characteristics are unique between individuals. EEG signals still vary

between individuals [51] and these different characteristics have been successfully

used for authentication [52, 53].

2. The effect of differences in clinical equipment on EEG acquisition. The acquisition

of EEG signals can be affected by the hardware and software of the acquisition

equipment, such as sensor accuracy, contact with the brain (i.e. poor contact or good

contact), parameter settings (sampling frequency, electrode position, filter selection

etc.), acquisition software (Natus, ANT Neuro etc.).

3. The effect of gender differences on EEG. Gender-related EEG studies have shown

that the brain’s EEG activity is related to gender differences, for example, men have
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less Theta band EEG activity and more Alpha band EEG activity than women and

there is a developmental lag in EEG in females compared to males [54].

4. The effect of age differences on EEG. The activity of the EEG varies with age, for

example, the coherence of the theta and alpha bands decreases significantly with

age, while the coherence with the beta band continues to increase [55]. Further-

more, in a study of EEG development from 5 months to 4 years of age a significant

developmental change in the frequency of peak power spectra in the 6-9 Hz range

was found in infants and the relative amplitude of the central rhythm peaked in the

second year of life when significant changes in motor behavior were occurring [56].

Therefore, there is a great deal of variability and difference in opinion as to the specific

frequency range that defines each band. A new spectral analysis tool will be proposed in

this thesis that can analyse spectral information in different EEG bands and is not limited

to fixed boundaries. In addition, instead of fixed band boundaries, a series of EEG centre

frequencies will be proposed to describe the dominant spectral activity of the EEG. These

EEG centre frequencies can describe the spectral activity of EEG without being restricted

by boundaries and the specific experimental analysis will be presented in Section 5.4.

2.1.4 EEG Datasets

Three public EEG datasets were used in this thesis and their acquisitions are all based on

the international 10-10 system. Fig. 2.3(a) demonstrates the topographic map of inter-

national 10-10 system. The three EEG datasets are called BCI109, MI52 and GAL12

and they are public datasets. Furthermore, they were published in 2004, 2017 and 2014,
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(a) EEG 10-10 System. (b) BCI109 Dataset

(c) MI52 Dataset (d) GAL12 Dataset

Fig. 2.3 Topographic maps of different EEG datasets.

respectively. Fig. 2.3(b), Fig. 2.3(c) and Fig. 2.3(d) respectively show the topographic

maps of the three datasets. Each sampling point is represented by a solid circle.

The first dataset is called BCI109 from PhysioNet [57]. The dataset was created by the

developers of the BCI2000 instrumentation system [2]. The BCI109 dataset contains 109

subjects from 64 electrodes and its topographic map is shown in Fig. 2.3(b). Each subject
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Table 2.2 The details of BCI109 Dataset.

Task Number Task Content Collection

Times

Collection

Duration (s)

Tb1 Resting state (eyes open) 1 60

Tb2 Resting state (eyes closed) 1 60

Tb3 Open and close left or right fist 3 120

Tb4 Imagine opening and closing left or right fist 3 120

Tb5 Open and close both fists or both feet 3 120

Tb6 Imagine opening and closing both fists or both

feet

3 120

performed 14 experimental runs, the sampling frequency is 160 Hz and the details of the

BCI109 dataset are in Table 2.2.

Table 2.3 The details of MI52 Dataset.

Task Number Task Content Collection

times

Collection

Duration (s)

Tm1 Resting state (eyes open) 1 60

Tm2 Movement of left hand 1 140

Tm3 Movement of right hand 1 140

Tm4 Imagery of left hand 1 700

Tm5 Imagery of right hand 1 700

The second dataset was collected through the Motor Imagery (MI) based brain-computer

interface and is called MI52 [27]. The MI52 dataset was recorded from 52 subjects using

64 electrodes and the topographic map of the MI52 is shown in Fig. 2.3(c). Each subject

performed 5 experimental runs, the sampling frequency is 512 Hz and the details of the

dataset are in Table 2.3.

The third dataset was used to detect Grasp-and-Lift (GAL) ability and is called GAL12

[58]. The GAL12 dataset contains 12 subjects using 32 electrodes to record EEG signals

and the topographic map of GAL12 is shown in Fig. 2.3(d). The GAL12 collection

method is different for the first two datasets, each collection has 6 events (hand start, first

19



2.2 Time-frequency Analysis Method

digit touch, both start load phase, lift off, replace and both released). These events always

occur in the same order, the number of trials varies for each collection. Each subject

performed 10 collection experiments and the sampling frequency is 500 Hz.

2.1.5 Conclusions

In this section, the relevant background of EEG signals is presented. The EEG signal is a

high-complexity bioelectric signal, typically characterized by a poor signal-to-noise ratio

whose frequency is time-varying, intermittent and contains multiple frequency compo-

nents. Furthermore, analysis of the EEG spectrum is divided into a series of fixed frequency

bands (Delta, Theta, Alpha, Beta and Gamma). However, there is no consensus among

researchers regarding the boundaries of these bands. Furthermore, the EEG frequency

features should not be restricted by an arbitrary classification. Finally, the three EEG

datasets that will be used in this thesis are introduced in detail. In the next section, the

time-frequency methods will be introduced which provide a way to estimate the signal

frequency components and reveal their time-varying features.

2.2 Time-frequency Analysis Method

The EEG signal records fast-changing neuronal signaling and communication and thus

can offer a understanding of cognitive processes. The ability to track the dominant

frequency changes in real-time is important for studying EEG signals to observe the

dynamics of brain activities. Time-frequency methods provide a way to analyse the

frequency dynamics in EEG signals [59, 60, 61, 62, 63, 64]. The first part of this section
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presents an overview of time-frequency methods. Specifically, the Short-Time Fourier

Transform (STFT) is introduced which is a typical waveform time-frequency method

[65, 66, 67, 68, 69, 70]. The second part presents the Heisenberg-Gabor uncertainty

principle which highlights that the time-frequency methods need to consider the balance

between the time and frequency resolution and there is a trade-off between the time and

frequency resolution.

2.2.1 Introduction to Time-frequency Analysis

For the time-frequency analysis, the motivation is that the time t or the frequency f

descriptions of a signal alone cannot provide comprehensive information for feature extrac-

tion and classification. Each representation of the signal is non-localized, i.e. the frequency

representation is essentially averaged over time. In other words, it shows what frequencies

are present in the signal but it gives no information regarding at what time these spectral

components appear. The time-frequency method provides a solution to seek a represen-

tation of the signal in a two-dimensional (t, f ) space. The time-frequency analysis can

depict how the spectra of the signal changes with time.

Any signal can be described as a function of time s(t) and any signal can be represented

in the frequency domain by its Fourier transform S( f ), given by

S( f ) =
∫ ∞

−∞
s(t) · e−2 jπ f tdt (2.1)
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The representation S( f ) is a function of frequency only with time having been “integrated

out”. The inverse Fourier transform of S( f ) is

s(t) =
∫ ∞

−∞
S( f ) · e2 jπ f td f (2.2)

In practice, many signals have a time-varying frequency and here the frequency has been

averaged out. In the Eq. 2.1, the information provided by the integral, corresponds to

all-time instances, since the integration is from minus infinity to plus infinity over time.

In other words, the Fourier transform tells whether a certain frequency component exists

or not, it gives no information about the time for which the frequency component exists.

However, some portion of a non-stationary signal can be assumed to be stationary. The

Fourier transform can provide information about the frequency components occurring in

a given time window. Shifting this window to a new location in order to get the spectral

content of the signal changes with time. This method is a typical time-frequency analysis

method known as the STFT. The basic goal of time-frequency methods is to provide a

distribution that represents the energy or intensity of a signal simultaneously in time and

frequency.

The traditional methods of calculating the time-frequency relationship for a signal are

based on the Fourier transform. The Fourier transform can give the spectral content of the

signal. The Fourier transform may be applied to a short time interval (or window) of the

signal resulting in an estimate of the frequency content of the signal over that time interval.

In this case, a signal s(t) originally measured in the time domain can be converted into

a signal in the frequency domain. The STFT for signal s(t) windowed by a fixed-length
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function w(τ − t) at time t where τ is a time variable.

ST FTs(t, f ) =
∫ +∞

−∞
s(τ)w(τ − t)exp(− j2π f τ)dτ (2.3)

The STFT power is defined as the modulus squared of the STFT,

Ps(t, f )ST FT = |ST FTs(t, f )|2 (2.4)

In general, the time and frequency resolutions are determined by the width of the analysis

window. In Fig. 2.4(a), each box represents a value in the time-frequency plane, the size

of the box is fixed due to the time and frequency resolutions of STFT being constant. The

STFT requires a trade-off between frequency and temporal resolution. Short windows

improve temporal resolution but reduce frequency resolution. The STFT gives a fixed

resolution at all times whereas the wavelet transform gives a variable resolution which is

why researchers have proposed the wavelet transform.

The Continuous Wavelet Transform (CWT) method allows the length of the wavelet to

vary, the temporal and spectral resolution is no longer fixed but is matched to the spectral

components of the signal. The illustration in Fig. 2.4(b) is commonly used to explain how

time and frequency resolutions should be interpreted. It can be seen that each box repre-

sents an equal portion of the time-frequency plane, but gives different proportions to time

and frequency. At low frequencies, the heights of the boxes decrease (i.e. the frequency

resolution gets better), but their widths increase (i.e. the time resolution gets poorer). At

high frequencies, the widths of the boxes decrease, (i.e. the time resolution gets better)

and the heights of the boxes increase (i.e. the frequency resolution gets poorer). Regard-
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less of the dimensions of the boxes, the areas of all boxes also are the same as determined

by the Heisenberg-Gabor uncertainty principle [71, 72, 73, 74, 75, 76]. In this thesis,

the STFT method will be used as a benchmark waveform time-frequency method in the

experimental analysis.

(a) STFT (b) CWT

Fig. 2.4 Time-frequency plane of STFT and CWT.

2.2.2 Heisenberg-Gabor Uncertainty Principle

The Heisenberg-Gabor uncertainty principle theory was proposed by Gabor in 1946 [71,

77, 78, 79, 80]. The principle describes how the product of the uncertainties in frequency

and time are lower bounded. With the time-frequency method, it is not possible to have

arbitrary time and frequency resolution. Consequently, the accuracy with which one of

them can be measured limits the accuracy with which the other can be measured. Given f

and t, the uncertainty principle refers to a product of errors in determining simultaneously

f and t.

Δ f Δt = K (2.5)
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where Δt is a measure of the time resolution, Δ f is a measure of the frequency resolution

and K is a constant.

Here is a demonstration of how to calculate the Time-bandwidth Product (TBP) of the

STFT which can be used to measure the ability of the STFT to discriminate between two

sinusoids [77, 78, 79, 80, 81, 82]. The Δ f of the filter as

Δ f =

√∫
f 2|G( f )|2d f∫ |G( f )|2d f

(2.6)

where g(t) represent a window function and G( f ) represents its corresponding Fourier

transform. The frequency resolution of the STFT is given by Δ f . The spread in time is

given by Δt as

Δt =

√∫
t2|g(t)|2dt∫ |g(t)|2dt

(2.7)

Since the time resolution Δt and the frequency resolution Δ f cannot be arbitrarily small,

their product is lower bounded:

TBP =�t� f ≥ 1

4π
(2.8)

The implications of the Heisenberg-Gabor principle are easier to understand by looking

at it in the time-frequency plane in Fig. 2.4(a). The time and frequency resolutions are

determined by the width of the analysis window which is selected once for the entire

analysis, i.e. both time and frequency resolutions are constant. Furthermore, Gaussian

windows are often used since they satisfy the bound with equality where �t� f = (4π)−1.

They provide a good compromise between time resolution and frequency resolution of the
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signal [77, 78, 79, 80, 81, 82]. It should be noted that wavelet functions are subject to the

same uncertainty principle applicable to STFT windows. Furthermore, the resolution is

fixed for each window function (STFT) or mother wavelet (CWT), they are all subject to

the Heisenberg-Gabor uncertainty principle. However, since the LPC-based method (i.e.

LPCPP or LPC) directly gives us the numerical frequency estimates, a new definition of

the TBP for the LPC-based method will be presented and the experiments show that the

Heisenberg-Gabor uncertainty principle still applies to the LPC and LPCPP methods.

2.2.3 Conclusions

In this section, an overview of time-frequency analysis methods was presented. The time-

frequency methods give a view of a signal represented over both time and frequency and

many time-frequency methods are waveform (not parameterised) methods that indicate

how the energy of the signal is distributed over the two-dimensional time-frequency plane.

However, it is still a challenge in analysing multi-component signals (i.e. EEG signals)

to realise the separation of the spectrum components when they are overlapped in the

time-frequency plane. Furthermore, these time-frequency methods need to balance the

relationship between the time and frequency resolution subject to the Heisenberg-Gabor

uncertainty principle. Time-frequency analysis methods with a higher spectral resolution

are necessary to observe the dominant spectra of dynamic EEG in real-time. In the next

section, a parameterised time-frequency method (i.e. the LPC method) will be presented

which can directly give us numerical estimation frequency results.
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2.3 Linear Predictive Coding Method

The LPC method is a parameterised time-frequency method that can be used to observe

the change of spectral information of dynamic signals over time. In this section, the details

of the LPC method are introduced. The first part introduces the development of the LPC

method and its applications. The second part introduces the mathematical derivation of

the LPC method. The third part describes the solutions of the LPC coefficients. The fourth

part describes how to obtain the frequency estimates from the LPC method. Finally, some

limitations of the LPC method are discussed.

2.3.1 Introduction to LPC Method

The LPC method was initially proposed for speech coding and audio compression. It

has been influential in the field of speech coding for the past 40 years [83, 84, 85, 86,

87, 88, 89, 90, 91]. The origin of LPC began in the 1970s with the development of the

first LPC method [88]. The LPC method is defined as a method for encoding an analog

signal in which a particular value is predicted by a linear function of the past values of

the signal. There are many variants of the basic scheme: In 1974, Magill and Chong-

Kwan proposed the residual excited LPC, the method has a relatively low bit rate and

the method is simple for hardware implementation [83]. In 1982, Tremain and Thomas

proposed the LPC-10 method, the method based on the 10th order lattice filter to create

the prediction parameters [84]. In 1985, Schroeder and Atal proposed the code excited

linear predictive method, the vocoder used a codebook to obtain the best matches for the

LPC residual signal and it provided significantly better quality than LPC vocoder [85]. In
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1994, a low-delay code excited linear prediction method was proposed. The method used

backward linear prediction instead of forwarding prediction used in LPC and can produce

good quality of speech at 8kb/s [86]. In 1995, McCree et al. proposed mixed excitation

linear prediction. The method is based on the traditional LPC vocoder with either a peri-

odic impulse train or white noise. It can produce high-quality speech at low bit rates [87].

In 2001, Harma proposed an LPC method with modified filter structures. The method is

based on modified inverse filters and synthesis filters. It significantly increases the number

of free parameters [92]. In short, the early studies of the LPC method are mainly used

in speech coding and audio compression. It is the basis of the speech encoder used in

the digital 2G GSM mobile phone standard [93]. However, the LPC method is a parame-

terised method that generates a numerical estimate of the dominant frequency components

and is therefore ideally suited to its integration into machine learning-based systems. The

LPC method has been applied to some applications of pattern recognition and biolog-

ical signal processing. For example, Min and Tewfik realised the automatic detection of

behavioral patterns of patients with autism using the LPC method and the clusters of the

LPC poles locations are used for behavioral classification [94]. Javier and Kim used the

LPC method to achieve the human activity classification based on micro-Doppler signa-

tures and the LPC method is used to represent the frequency characteristic of the Doppler

signal and the resulting classification accuracy is found to be over 85% [95]. Anjum et al.

used the LPC method to distinguish spectral EEG features of Parkinson’s disease and the

LPC method enables real-time encoding of EEG time series into features that can detect

Parkinson’s disease [96]. Although the LPC method has already had some applications

in EEG research, the LPC method still has some limitations that can be improved. In
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this thesis, a modification to the LPC method will make it more suitable for EEG signal

processing.

2.3.2 Mathematical Derivation of LPC Method

The basic idea of the linear predictive coding is that the current signal sample s(n) can be

closely approximated as a linear combination of past samples, i.e.

s(n)≈ a1s(n−1)+a2s(n−2)+ · · ·+aPs(n−P) (2.9)

where P is the LPC filter order and a1, · · · ,aP are the constant coefficients. The above

equation can be transformed, by including an excitation term Gu(n)

s(n) =
P

∑
k=1

aks(n− k)+Gu(n) (2.10)

where G is the gain and u(n) is the normalised excitation. Transforming Eq. 2.10 into the

z-plane we have

S(z) =
P

∑
k=1

akz−kS(z)+GU(z) (2.11)

and consequently, the transform function H(z) becomes

H(z) =
S(z)

GU(z)
=

1

1−∑P
k=1 akz−k

=
1

A(z)
(2.12)
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This corresponds to the transfer function of a digital time-varying filter. An estimate of

the signal value s(n) at time index n, is denoted as s̃(n). This estimate is computed using

s̃(n) =
P

∑
k=1

αks(n− k) (2.13)

where αk are the coefficients of the predictor. The prediction error e(n) is defined as

e(n) = s(n)− s̃(n) = s(n)−
P

∑
k=1

αks(n− k) (2.14)

which is the output of the system with the transfer function

A(z) = 1−
P

∑
k=1

αkz−k (2.15)

if the signal s(n) obeys the prediction model exactly and if ak = αk,1 ≤ k ≤ P, then

H(z) =
1

A(z)
(2.16)

The basic problem of linear prediction analysis is to determine the set of predictor coeffi-

cients αk that minimises the square of the prediction error from a short segment of a signal.

The resulting αk is assumed to be the actual ak in the prediction model. The short-time

average prediction squared-error is defined as

En̂ = ∑
m

e2
n̂(m) = ∑

m
[sn̂(m)− s̃n̂(m)]

= ∑
m
[sn̂(m)−

P

∑
k=1

αksn̂(m− k)]2
(2.17)

30



2.3 Linear Predictive Coding Method

where sn̂(m) is a segment of a signal sn̂(m) = s(m+ n̂) in the vicinity of sample n̂. The

coefficients αk can be obtained that minimise En̂ by setting

∂En̂

∂αi
= 0, i = 1,2, · · · ,P (2.18)

giving the set of equations

∑
m

sn̂(m− i)sn̂(m− k) =
P

∑
k=1

α̂k ∑
m

sn̂(m− i)sn̂(m− k), 1 ≤ i ≤ P (2.19)

where α̂k are the values of αk that minimise En̂. Defining

φn̂(i,k) = Σmsn̂(m− i)sn̂(m− k) (2.20)

then, get

Σp
k=1αkφn̂(i,k) = φn̂(i,0), i = 1,2, · · · ,P (2.21)

leading to a set of P equations in P unknowns that can be solved in an efficient manner

for the αk. Minimum mean-squared prediction error has the form

En̂ = Σms2
n̂(m)−ΣP

k=1αk ∑
m

sn̂(m)sn̂(m− k) (2.22)

which can be written in the form

En̂ = φn̂(0,0)−
P

∑
k=1

αkφn̂(0,k) (2.23)
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Now, the values φn̂(i,k) have to be obtained for 1 ≤ i ≤ P and 1 ≤ k ≤ P and the αk

coefficients are obtained by solving Eq. 2.21. The following describes in detail how to

calculate the LPC coefficients.

2.3.3 Solving for the LPC Coefficients

The basic problem of the linear prediction analysis is to determine the set of predictor

coefficients [92, 97, 98, 99]. There are two main ways of solving for the LPC coefficients

αk namely the autocorrelation method and the covariance method. For the autocorrela-

tion method, it requires a window that will suppress the side lobes, the window shape

affects the values of the predictor coefficients obtained and the appearance of the spec-

trum envelop. For the covariance method, it is a slightly misleading term as it is not

a covariance in the usual probability sense here and it has the benefit that every point

in the time series makes an equal contribution to the predictors. The choice of method

depends on the assumptions made about the input signal. The autocorrelation method has

the additional useful practical advantage that the linear filters it produces are stable, while

the covariance method may produce unstable filters. Furthermore, the autocorrelation

method requires less computation than the covariance methods [98]. So for these reasons

the autocorrelation method will be used to solve the LPC equation in this thesis.

The autocorrelation method considers the segment sn̂(m) exits for 0 ≤ n ≤ L− 1 and is

exactly zero everywhere else that can be expressed as

sn̂(m) = s(m+ n̂)w(m), 0 ≤ m ≤ L−1 (2.24)
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where w(m) is a finite length window of length L samples. If sn̂(m) is non-zero for 0 ≤

m ≤ L−1 then the corresponding prediction error en̂(m) will be non-zero over the interval

0 ≤ m ≤ L−1+P. Thus, for this case En̂ giving

En̂ =
∞

∑
m=−∞

e2
n̂(m) =

L−1+P

∑
m=0

e2
n̂(m) (2.25)

However, the prediction error en̂(m) is relatively large at the beginning and at the end of

the interval. The reason is that when m near 0, m = 0,1, · · · ,P−1, the prediction signal is

obtained from zero-valued samples outside the window range, the en̂(m) will be relatively

large. At same time, the m near L, m = L,L+ 1, · · · ,P+L− 1, the zero-valued samples

are predicted from non-zero samples, the en̂(m) also will be relatively large. Thus, one

should normally use windows that taper the segment to zero (e.g. a Hamming window).

Considering that sn̂(m) = 0 outside the range 0 ≤ m ≤ L−1, then

φn̂(i,k) =
L−1+P

∑
m=0

sn̂(m− i)sn̂(m− k), 1 ≤ i ≤ P,0 ≤ k ≤ P (2.26)

which can be rewritten as

φn̂(i,k) =
L−1+(i−k)

∑
m=0

sn̂(m)sn̂(n+ i− k), 1 ≤ i ≤ P,0 ≤ k ≤ P (2.27)

In this case, φn̂(i,k) is related the short-time autocorrelation function valued for i − k

where

φn̂(i,k) = Rn̂(i− k), 1 ≤ i ≤ P,0 ≤ k ≤ P (2.28)
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where

Rn̂(k) =
L−1−k

∑
m=0

sn̂(m)sn̂(m+ k) (2.29)

Therefore

φn̂(i,k) = Rn̂(|i− k|), 1 ≤ i ≤ P,0 ≤ k ≤ P (2.30)

Thus, the basic equation becomes

P

∑
k=1

αkφn̂(i− k) = φn̂(i,0), 1 ≤ i ≤ P

P

∑
k=1

αkRn̂(|i− k|) = Rn̂(i), 1 ≤ i ≤ P

(2.31)

with the minimum mean-squared prediction error of the from

En̂ = φn̂(0,0)−
P

∑
k=1

αkφn̂(0,k)

= Rn̂(0)−
P

∑
k=1

αkRn̂(k)

(2.32)

The system of equations can be expressed in the following matrix vector form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rn̂(0) Rn̂(1) · · · Rn̂(P−1)

Rn̂(0) Rn̂(1) · · · Rn̂(P−1)

. . · · · .

. . · · · .

Rn̂(0) Rn̂(1) · · · Rn̂(P−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

.

.

αP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rn̂(1)

Rn̂(2)

.

.

Rn̂(P)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.33)
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Furthermore, it can be simplified as

ℜα = r (2.34)

The matrix ℜ is a P×P Toeplitz matrix which is symmetric with all diagonal elements

equal. Finally, the LPC coefficients αk can be obtain though a matrix inversion

α = ℜ−1r (2.35)

In the next part, the calculation of the frequency estimation of LPC will be presented.

2.3.4 Frequency Estimation using the LPC Method

The LPC method gives a good point of departure for obtaining formant frequencies, the

transfer function |H(z)| = 1/|A(z)| is the envelope of the speech signal and its maxima

correspond to the resonances of the vocal track, e.g. the formants [100]. The term

“formant” is used for speech signal analysis, here the term “dominant frequency” will be

used in the following description. Most researchers to date have used the poles of H(z) to

directly estimate the dominant frequencies of the response [101, 102, 103, 104, 105, 100].

The fundamental theorem of algebra tells us that H(z) has P complex poles which are the

values of z for which H(z) = ∞. Therefore the poles of H(z) can be expressed as

zk = γke jωk (2.36)
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where

ωk = tan−1[Im(zk)/Re(zk)] (2.37)

is the angle corresponding to the pole. The magnitude of the pole is represented as mk =

|zk| and the corresponding pole frequency is represented as

f̀k = ωk/(2πT ) (2.38)

where T is the sample period. The poles occur in complex conjugate pairs which are

mirrored in the real axis of the z-plane. Fig. 2.5 shows the LPC poles of a pure sinusoidal

Fig. 2.5 LPC poles/roots of the z-plane.

signal in the z-plane. The parameters are the sampling frequency fs = 100 Hz, the signal

duration t = 1 s, the LPC filter order P = 15 and the sinusoid frequency is 10 Hz. Here,

the poles with non-negative imaginary parts Im(zi) ≥ 0 are considered as the outputs of

the LPC method. The frequencies estimated by LPC are { ḟ1, ḟ2, · · ·}.
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2.3.5 The Limitations of the LPC Method for Frequency Estimation

There are some limitations of the LPC method discussed here. The first one is that the

LPC method suffers from a sensitivity to the filter order and the number of the frequency

estimates depends on the number of the filter order. Furthermore, the LPC method exhibits

a poor tolerance of high noise environments.

The LPC method requires a model whose filter order P must correspond to the signal for

best results [101, 106, 88, 107, 108]. The choice of the filter order for the LPC method is

a compromise between spectral accuracy, the length of signal and the sampling frequency.

In the speech signal analysis, the choice of LPC order P depends on the analysis band-

width which in turn depends on the sampling frequency fs. The rule of thumb is

P =
fs

1000
+K (2.39)

The K is a constant, empirically determined and is typically between 2 and 3 [101].

However, the rule only applies to speech signals, not to other signals and it is essentially

just a rule of thumb. Furthermore, this rule does not apply to the selection of filter order for

other types of signals. In addition, the different LPC filter orders will have different effects

on the LPC spectrum. Models which are of too low an order tend to provide poor spectral

separation in the frequency domain whereas too high an order causes deterioration of the

noise immunity of the spectral estimator by creating a profusion of candidate peaks in

the estimated vocal tract frequency response [106]. The filter orders P correspond to the

length of the inverse filter which is used to model the LPC spectrum. Furthermore, the

number of the frequency estimates of the LPC method depends on the filter order rather
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than the real number of frequencies of the signal. Typically, the number of frequency

estimates is half the filter order. Therefore, the LPC method is sensitive to the choice of

LPC order.

Another restriction is the LPC method has poor tolerance of high noise environments

and the outputs of LPC coefficients are sensitive due to noise [101, 109, 110, 111, 112,

113, 114]. When the signal is corrupted by noise, the assumptions of the all-pole model

have been violated and its accuracy in modeling the signal suffers. Low signal-to-noise

ratios (e.g. below 5 to 10 dB) can cause serious distortion of the model spectral density

[101]. Furthermore, a small quantization error also may cause an unstable synthesis filter

[109, 110]. There have been numerous methods proposed to investigate this problem,

such as Kay Steven discussed a large LPC order model to combat the effects of the noise

[110]. However, this technique cannot guarantee the stability of the AR filter. Joseph

Tierney increased the LPC filter order to model both speech and noise spectral features

[111]. Unfortunately, the LPC spectral overestimates the underlying speech spectrum

when the filter order increases. Shimamura Tetsuya et al. proposed a method to improve

the performance of the LPC method, in which the autocorrelation function of the noisy

speech is transformed into its noiseless autocorrelation function [112]. However, the

method cannot guarantee the stability of the all-pole filter. Liu Liqing et al. proposed

a noise compensation LPC method to attenuate the influence of the noise by an a priori

estimate of the noise [114]. However, this method is only constrained to its use in white

noise environments. In summary, the LPC method suffers from sensitivity to the choice

of model order and it has poor tolerance of high noise environments.
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2.3.6 Conclusions

In this section, the details of the LPC method are introduced. First, the origin and develop-

ment of LPC are introduced. Furthermore, the details of the mathematical expression of

the LPC method are also introduced. Finally, some limitations of the LPC method are also

discussed. The LPC method was initially proposed for speech coding and audio compres-

sion. Since the LPC method is a parameterised time-frequency method, a new modified

LPC method that overcomes the shortcomings of the LPC method will be proposed in the

next chapter and it will be used for the processing of EEG signals.

2.4 Chapter Summary

In this chapter, the details of the technical background were presented. The first section

introduced the details of the EEG signals. First of all, EEG collection is always accom-

panied by a variety of noise corruption. The EEG signal may be overwhelmed by other

electrical activity generated by the body or in the environment. Furthermore, EEG is a

dynamic signal response to human brain activity (emotion, cognitive, etc.), these activ-

ities change over time and are not continuous. In addition, EEG signals often have

multiple frequency components. The spectrum of EEG has been divided into a number of

fixed frequency bands by many biomedical researchers to investigate the corresponding

brain functions However, different researchers have defined different frequencies for these

bands with little consensus between them which has significant consequences for EEG

interpretation. The second section presented an overview of time-frequency analysis

methods that provide a way to analyse the frequency dynamics in EEG signals. Many
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time-frequency methods are spectral waveform (not parameterised) methods, they can tell

whether a certain frequency component exists or not at any given time interval. However,

it is still a challenge in analysing multi-component signals to realise the separation of

the spectrum components when they are overlapped in the time-frequency plane. Further-

more, the Heisenberg-Gabor Uncertainty Principle indicates that there is a trade-off rela-

tionship between time resolution and frequency resolution. When the time-frequency

analysis method has a smaller TBP value, it can provide a higher frequency resolution at

the same time duration (i.e. time resolution). Similarly, it can provide a higher time resolu-

tion at the same frequency resolution. In summary, some requirements for time-frequency

analysis methods for EEG signal analysis need to be considered:

• The method should be a parameterised method. The parameterised time-frequency

method can produce numerical dominant frequency estimates and it is well suited

to multi-components signal processing (i.e. EEG signals).

• The method should provide higher spectral resolution and enable real-time observa-

tion of dynamic EEG dominant spectra. The time-frequency analysis methods with

a smaller TBP value are required for real-time analysis of dynamic EEG frequen-

cies.

• The method requires a high tolerance for noise. It needs to have a robust perfor-

mance in high noise environments.

Finally, the LPC method was presented which is a parameterised time-frequency method.

However, the LPC method suffers from a sensitivity to the filter order and it has poor toler-

ance to noisy environments. In the next chapter, a detailed analysis of the LPC method
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2.4 Chapter Summary

will be presented and a new modified LPC method called the LPCPP method will be

introduced which will be better suited to the spectral analysis of EEG.
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Chapter 3

Technical Detail of the LPCPP Method

In this chapter, the full technical details of the LPCPP method are presented. The proposed

LPCPP method will be applied to EEG signal processing. The first section presents an

analysis of the LPC poles and the LPC spectra. The definitions of the dominant pole

and the non-dominant pole are first proposed. Furthermore, the effect of different exper-

imental parameters (i.e. the filter order, the signal duration, the sampling frequency, the

signal noise and the different window functions) are analysed for distinguishing the domi-

nant and non-dominant poles. The second section demonstrates the effect of the relation-

ship between the dominant pole and non-dominant pole on the spectrum. Furthermore, the

associated pole is first proposed and introduced. The third section introduces the technical

details of the proposed LPCPP method. It has three steps to realise the frequency estima-

tion. The first step classifies the LPC poles into dominant and non-dominant poles. The

second step identifies the associated poles corresponding to each dominant pole. Finally,

the dominant poles and their corresponding associated pole(s) form a series of reduced-
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3.1 The Fundamental Analysis of the LPC Method

order transfer functions to obtain the frequency estimates. The last section is the summary

of the chapter.

3.1 The Fundamental Analysis of the LPC Method

In this section, the definitions of the dominant pole and non-dominant pole are introduced

to classify the LPC poles. These definitions were originally introduced in [115, 116, 117,

118]. Furthermore, the effects of different experimental parameters on distinguishing

the dominant pole and the non-dominant pole are analysed. These experimental param-

eters include filter order, signal duration, sampling frequency, signal noise and different

window functions. At the same time, the effect of these parameters on the LPC spectral

peaks is also analysed.

3.1.1 The Classification of the LPC Poles
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Fig. 3.1 LPC spectrum of all-pole model.
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3.1 The Fundamental Analysis of the LPC Method

The LPC all-pole models are most often used in practical applications. The LPC all-pole

model is given by

H(z) =
1

1−∑P
k=1 αkz−k

=
1

∏P
k=1(1− pkz−1)

(3.1)

where P is the LPC filter order. Fig. 3.1 shows the LPC spectrum of an all-pole model.

The experimental parameters in this figure are the same as those in Fig. 2.5. The LPC

poles occur in the filter as complex conjugate pole pairs and the LPC poles have mirror

symmetry in the real axis of the z-plane. Again, only poles with positive imaginary parts

Im(zi)> 0 are considered. For example, the Fig. 3.2 shows the LPC poles {p1, p2, · · · , p6}

in the positive part of the z-domain and the LPC poles in the frequency domain respec-

tively. The magnitude of the pole in the frequency domain corresponds to its distance

from the origin in the z-domain. In the following analysis, only the LPC poles in the

frequency domain will be shown.

(a) LPC poles in the z-domain. (b) LPC poles in the frequency domain.

Fig. 3.2 LPC poles in the frequency domain.

The signal analysed here is a noise-free single-component sinusoidal signal. The signal

frequency is 10 Hz, the sampling frequency is fs = 100 Hz, the signal duration is t = 1

s and the filter order is P = 15. Fig. 3.2 shows that not all the LPC poles correspond to
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3.1 The Fundamental Analysis of the LPC Method

(a) Pole p1 (b) Pole p2

(c) Pole p3 (d) p4

(e) Pole p5 (f) Pole p6

Fig. 3.3 LPC spectra of each single-pole model.

a signal frequency. Only the pole whose magnitude is close to 1 (i.e. the radius in the z

domain closest to the unit circle) p1 can correspond to the dominant frequency component

of 10 Hz. It can be observed that the magnitude of the LPC pole is an important feature

to find the pole which can correspond to a signal component. Furthermore, the pole p1 is

termed the dominant pole and the other poles are termed non-dominant poles. The domi-

nant pole has a higher magnitude than that of the non-dominant pole and it can represent

the dominant frequency component of the signal. The reason is that the magnitude of

the pole can be used as an indicator of the size of the spectral peak in the classical filter

45



3.1 The Fundamental Analysis of the LPC Method

analysis. Therefore, each single pole at z = pi can be represented by

Ĥi(z) =
1

1− piz−1
. (3.2)

Fig. 3.3(a)-(f) show the LPC spectra of each single-pole model which correspond to

the poles {p1, p2, · · · , p6} respectively. It is easy to see only the LPC spectral peak of

pole p1 in Fig. 3.3a has the narrowest and highest LPC spectral peak and the peak can

correspond to the signal’s dominant frequency component at 10 Hz. The higher spectral

peak means that the associated frequency component has a higher amplitude. On the other

hand, Fig. 3.2 shows that the dominant pole p1 has the highest magnitude in the frequency

domain. The magnitude of the pole can be used as an indicator of the size of the spec-

tral peak. Furthermore, Fig. 3.3(a) shows the single-pole model of the dominant pole

and it is termed the dominant spectrum. Otherwise, the magnitude of the non-dominant

poles is much lower than that of the dominant pole and they cannot represent the domi-

nant frequency component of the signal. Figs. 3.3(b)-(f) show a series of the single-pole

models of the non-dominant poles and they are termed non-dominant spectra. The magni-

tudes of these non-dominant spectra are lower than that of the dominant spectra and their

spectral widths are wider than that of the dominant spectra.

The signal analysed above is a single component signal, but these categories of LPC

poles are also applicable to multiple components signal analysis. For example, Fig.

3.4(a) and (b) show the analysis of two multi-component signals. The first one is a two-

component signal whose signal frequencies are 10 Hz and 35 Hz. The second one is a

three-component signal whose signal frequencies are 10 Hz, 20 Hz and 35 Hz. The other
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3.1 The Fundamental Analysis of the LPC Method

(a) LPC poles of a two-component signal. (b) LPC poles of a three-component signal.

Fig. 3.4 LPC poles of multiple components signals in the frequency domain.

parameters are the same as the above single component signal analysis. The poles p1

and p2 in Fig. 3.4(a) are dominant poles for the two-component signal and the others

are non-dominant poles. The poles p1, p2 and p3 in Fig. 3.4(b) are dominant poles for

three-component signal and the other poles are non-dominant poles. It can be observed

that the magnitude of the pole still can be used as an indicator to distinguish between the

dominant pole and the non-dominant pole. In the following analysis, the LPC poles under

the different parameters are analysed. In order to facilitate the analysis of the performance

of the LPC method under different parameters, the following analysis will use a simple

scenario where the single-component signals are analysed.

3.1.2 Filter Order Analysis of LPC

The first experiment is to analyse the effect of the filter order on the LPC pole. A sinu-

soidal signal with a frequency of 10 Hz is used here, the sampling frequency of the signal

is fs = 100 Hz and the signal duration is t = 1 s. The filter order P is increased from 5 to

20 in steps of 5. Fig. 3.5 shows that the LPC poles in the frequency domain under different

filter orders. It can be seen that the dominant pole represents the signal frequency compo-

nent at 10 Hz under different filter orders. The number of non-dominant poles is increased
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3.1 The Fundamental Analysis of the LPC Method

(a) P = 5 (b) P = 10

(c) P = 15 (d) P = 20

Fig. 3.5 LPC poles of LPC method with different filter orders.

with the increase of the filter order. For the magnitude of LPC poles, the dominant pole has

the highest magnitude and its magnitude is closest to 1. For the non-dominant poles, their

magnitudes are increased with the increase in the filter order. Furthermore, the change

of filter order cannot increase the number of dominant poles but will increase the number

of non-dominant poles. When the filter order is 5, the magnitude difference between the

dominant and non-dominant poles is the most obvious and the number of non-dominant

poles is the least. Therefore, the number of the non-dominant poles is sensitive to the

choice of filter order.

The LPC spectra under the different filter orders are shown in Fig. 3.6. These LPC spectra

are normalised to the range of 0 to 1 and the frequency axis is fixed from 9 to 11 Hz to

zoom in on the LPC spectra to make it easier to observe the difference between these LPC

spectra. Furthermore, these LPC spectral peak does not change under the different filter
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Fig. 3.6 LPC spectra for different filter orders.

orders. However, the width of the spectral increases as the filter order increases. The

reason is that the dominant pole and non-dominant pole jointly determine the position

and width of the LPC spectrum peak. When the filter order increases, the number of non-

dominant poles also increases while these non-dominant poles cannot correspond to the

dominant signal frequency component of 10 Hz. This is the reason why when the filter

order is 5, the LPC spectra provide the narrowest spectral peak.

In summary, the number of the LPC poles depends on the choice of the filter order.

However, not all of the LPC poles can correspond to the dominant frequency compo-

nent of the signal. Furthermore, when the filter order increases, the number of dominant

poles will not change, while the number of non-dominant poles will increase. Moreover,

the width of the spectral peak is affected by the number of non-dominant poles. Therefore,

the performance of the LPC method is sensitive to the choice of the filter order.

3.1.3 Signal Duration Analysis of LPC

Here, the effects of different duration signals on the LPC method are analysed. The

experimental signal is a noise-free sinusoidal signal of 10 Hz. The sampling frequency is
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3.1 The Fundamental Analysis of the LPC Method

(a) t = 0.5 s (b) t = 1 s

(c) t = 2 s (d) t = 4 s

Fig. 3.7 LPC poles for signals of different durations.

fs = 100 Hz and the filter order is P = 15. The signal duration is 0.5 s, 1 s, 2 s and 4 s.

Fig. 3.7 shows the LPC poles under the different signal lengths. The length of the pure

sinusoidal signal has little effect on the positions of the LPC poles on the frequency axis.

However, the signal length affects the magnitude of non-dominant poles. The magni-

tude of the non-dominant poles in the frequency domain decreases as the signal length

increases. The magnitude of the dominant pole is always closest to 1 and correctly corre-

sponds to the signal frequency component under the different signal lengths. Therefore,

increasing the length of the signal can increase the magnitude difference between the

dominant pole and the non-dominant poles to better distinguish between them.

The LPC spectra under different signal lengths are shown in Fig. 3.8. These LPC spectra

are normalized to the range of 0 to 1 and the frequency axis is fixed from 9 to 11 Hz

to zoom in on the LPC spectra. It can be seen that as the signal length increases, the
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Fig. 3.8 LPC spectra for different signal durations.

LPC spectra can provide a narrower spectral peak for spectral separation of frequencies.

This result is a consequence of the Heisenberg-Gabor uncertainty principle. Long signals

reduce the temporal resolution but improve the frequency resolution. In addition, as the

signal length increases, the LPC spectra have a narrower spectral peak to correspond to

the signal frequency component. In Fig. 3.8, when the signal length is 4 s, the spectral

peak provides the narrowest spectral peak which is identified accurately at 10 Hz.

This result has shown that increasing the signal duration can reduce the magnitude of the

non-dominant poles, so as to better distinguish between the dominant pole and the non-

dominant pole. Moreover, the increase in signal duration can provide richer spectral infor-

mation and produce narrower LPC spectral peaks. However, increasing the signal duration

will cause a decrease in temporal resolution, this is a trade-off relationship between the

temporal resolution and spectral resolution.

3.1.4 Signal Sampling Frequency Analysis of LPC

The effects of different sampling frequencies are analysed here. Furthermore, this part

will have two scenarios to consider: the first one is that the number of samples of the
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3.1 The Fundamental Analysis of the LPC Method

signal is fixed and the second one is that the length of duration of the signal is fixed.

Furthermore, the sampling frequency is changed from 50 Hz to 400 Hz in steps of 50 Hz.

The signals with the fixed number of samples

(a) fs = 50 Hz (b) fs = 100 Hz

(c) fs = 200 Hz (d) fs = 400 Hz

Fig. 3.9 LPC poles at different sampling frequencies for a signal with a fixed number of

samples.
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Fig. 3.10 LPC spectra at different sampling frequencies for a signal with a fixed number

of samples.

52



3.1 The Fundamental Analysis of the LPC Method

The first experiment of this part shows the LPC poles at a fixed 100 signal samples at

different sampling frequencies in Fig. 3.9. The signal is a noise-free 10 Hz sinusoidal

signal and the filter order is P = 15. It can be seen that there is still a dominant pole that

can represent the dominant frequency component of 10 Hz at different sampling frequen-

cies. However, the non-dominant poles are scattered across the frequency domain. And

as the sampling frequency increases, the non-dominant poles are further spaced out in

the frequency domain. Furthermore, under the same number of samples of the signal,

the increase of the sampling frequency has little effect on distinguishing the dominant

pole and the non-dominant pole by magnitude. Fig. 3.10 shows the LPC spectra for

the different sampling frequencies at the signals that have the same number of samples.

These LPC spectra are normalised to the range of 0 to 1 and the frequency axis only

shows the frequency domain from 7 to 13 Hz. It can be seen the LPC spectra with the

sampling frequency of 50 Hz have the narrowest spectral peak to correspond to the domi-

nant frequency. The reason is that under the same number of signal samples, the signal

with the 50 Hz sampling frequency has the longest duration of 2 s. Longer signal duration

results in narrower spectral peaks.

The signals with the fixed duration

The second experiment shows the LPC poles at different sampling frequencies for a fixed

duration signal of 1 s in Fig. 3.9. The signal is a noise-free 10 Hz sinusoidal signal

and the filter order is P = 10. As can be seen, increasing the sampling frequency can

more significantly distinguish dominant and non-dominant poles from amplitude when

the signal duration is fixed. Furthermore, as the sampling frequency increases, the magni-
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3.1 The Fundamental Analysis of the LPC Method

(a) fs = 50 Hz (b) fs = 100 Hz

(c) fs = 200 Hz (d) fs = 400 Hz

Fig. 3.11 LPC poles at different sampling frequencies for a signal with a fixed duration.
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Fig. 3.12 LPC spectra at different sampling frequencies for a signal with a fixed duration.

tude of the non-dominant poles decreases. The reason is that when the signal duration is

fixed, the increase in the sampling frequency will increase the number of samples of the

signal. Increasing the number of samples can more significantly identify dominant and

non-dominant poles. Fig. 3.10 shows the LPC spectra for the different sampling frequen-

cies at the signals that have the same duration. These LPC spectra are still normalised to

the range of 0 to 1 and the frequency axis only shows the frequency domain from 9 to
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11 Hz to better observe the LPC spectra. It can be seen that these positions of the LPC

spectral peak have little difference under the different sampling frequencies. The reason is

that the signal duration at different sampling frequencies is fixed and the time resolution is

constant, the LPC spectra are still limited by the Heisenberg-Gabor uncertainty principle,

so different sampling frequencies have little effect on the width of the spectral peak.

The effect of different sampling frequencies on the LPC method is analysed here. It

can be seen that under a fixed number of signal samples, different sampling frequencies

have little effect on distinguishing the dominant and non-dominant poles. However, the

increase in sampling frequency will shorten the duration of the signal, thus resulting in

a wider spectral peak. At a fixed signal duration, the increase of the signal sampling

frequency can effectively reduce the amplitude of the non-dominant pole which will

significantly distinguish the dominant pole from the non-dominant poles. In summary,

factors that affect the LPC method come from the signal duration and the number of

signal samples. Specifically, longer signal durations can result in narrower spectral peaks.

Furthermore, a larger number of signal samples can better identify the dominant pole.

3.1.5 Signal Noise Analysis of LPC

The influence of different levels of noise on the LPC method is analysed here. Additive

White Gaussian Noise (AWGN) is used to corrupt the pure sinusoidal signal and the power

spectral density of AWGN is uniform across all frequencies. The Signal-to-Noise Ratio

(SNR) is expressed in dB.

SNR(dB) = 10log10(
P̃signal

P̃noise
) (3.3)
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(a) SNR= 3 dB (b) SNR= 6 dB

(c) SNR= 9 dB (d) No Noise

Fig. 3.13 LPC poles of signal with different noise levels.

where P̃ is the average power. The noise of this experiment has four cases: 3 dB, 6

dB, 9 dB and no noise. The signal duration here is 1 s and the other parameters of this

experiment are the same as the above experiment. Fig. 3.13 shows the LPC poles of the

signal with different noise levels in the frequency domain. It can be seen that the dominant

pole still has the highest magnitude and it can correspond to a dominant signal frequency

component of 10 Hz. In addition, the noise causes a change in the positions of the non-

dominant poles and the magnitudes of non-dominant poles are increased when the signal

is corrupted by noise. Noise is not conducive to distinguishing between dominant pole

and non-dominant poles from an analysis of their magnitudes.

The LPC spectra under different noise levels are shown in Fig. 3.14 and they are normalised

to the range of 0 to 1. The shapes of these LPC spectra are similar, the LPC spectral

peak of the noise-free signal can correspond to a signal frequency component of 10 Hz.
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Fig. 3.14 LPC spectra of signal under different noise levels.

However, the spectral peaks of the signal corrupted by noise are all slightly shifted around

10 Hz. The reason is that the dominant pole has a dominant effect on the position of the

LPC spectral peak, but the non-dominant pole also affects the position of the LPC spectral

peak, especially when the non-dominant pole is closer to the dominant pole. The effect of

the dominant pole and non-dominant pole on the LPC spectra will be analysed in detail

in the section 3.2. Therefore, the spectral peaks of the corresponding dominant signal

component under different noise levels have different deviations and these deviations will

not increase with the increase of the noise level. Specifically, the maximum deviation of

the spectral peak in the Fig. 3.14 is in the case of a SNR=6 dB, not in the case of a SNR=3

dB where the noise level is higher.

In summary, the signal corruption by noise will be reflected in the changes in the position

of the LPC poles and the position of the LPC poles is sensitive to noise. In addition, the

noise can cause the magnitudes of the non-dominant pole to increase. For the LPC spectra

analysis, the ability of the LPC spectral peak to correspond to the signal frequency is still

related to the position of the dominant pole and non-dominant poles. Therefore, the LPC

method is sensitive to noise and has poor tolerance to a noise environment.
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3.1.6 Window Function Analysis

(a) Rectangular Window (b) Gaussian Window

(c) Hamming Window (d) Hann Window

Fig. 3.15 Four window functions.

(a) LPC poles without window. (b) LPC poles with Gaussian window.

(c) LPC poles with Hamming window. (d) LPC poles with Hann window.

Fig. 3.16 LPC poles of no noise signal using different window functions.
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Fig. 3.17 LPC spectra of no noise signals using different window functions.

A window function that tapers the signal segment to zero is required for the autocorre-

lation method to solve for the LPC coefficients. In this section, three typical window

functions for the LPC method are analysed: Gaussian window, Hamming window and

Hann window. A rectangular window is used as a benchmark case which means that it

is a non-windowed signal. These window functions are shown in Fig. 3.15. It should

be noted that the term window functions refers to the last three window functions in Fig.

3.15 (i.e. Gaussian window, Hamming window and Hann window) except the rectan-

gular window in the following description. In this section, there are two conditions to

demonstrate the effect of window functions: noise-free environment and noise environ-

ment. The first experimental signal is a pure f = 10 Hz sinusoidal signal without noise.

The sampling frequency fs = 100 Hz, the filter order is P = 15 and the duration of the

signal is t = 1 s. Fig. 3.16 shows the LPC poles in the frequency domain. In this noise-

free environment, the number of the dominant poles under the different window functions

is increased compared to the case of a non-windowed signal. The magnitude of the domi-

nant poles is close to 1. However, the magnitude of the non-dominant poles is increased

when the signal is windowed by the window functions. In addition, Fig. 3.17 demon-
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strates the LPC spectra in the frequency domain. These LPC spectra are normalised to

the range of 0 to 1. The LPC spectra that use window functions have more than one peak

around 10 Hz. Only the LPC spectra without the window functions can produce one peak

that correctly corresponds to the signal frequency component of 10 Hz. The reason is that

the number of the dominant poles is increased when the signal is windowed. Furthermore,

the dominant poles cause the LPC spectra to generate more than one peak around the

position of the signal frequency component at around 10 Hz.

(a) LPC poles without window. (b) LPC poles with Gaussian window.

(c) LPC poles with Hamming window. (d) LPC poles with Hann window.

Fig. 3.18 LPC poles of noise signal using different window functions.

The above experiment is conducted in a noise-free environment. Here, a noise environ-

ment is also considered for the analysis of the effect of the window functions. The SNR

under AWGN is 10 dB and the other parameters are the same as in the above experiment.

Fig. 3.18 shows the LPC poles under this noisy environment in the frequency domain. It

can be seen that the window functions have little effect on the position of LPC poles. The
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Fig. 3.19 LPC spectra of noise signals using different window functions.

magnitudes of the non-dominant pole are slightly higher under different window functions

than that of the non-window function. Fig. 3.19 shows the LPC spectra in this noise envi-

ronment and they are normalised to the range of 0 to 1. The LPC spectra with different

window functions have a single peak at 10 Hz with little difference between the spectral

peaks.

This section demonstrates the effect of window functions on the LPC pole and LPC

spectra. For the noise-free environment, the number of dominant poles is increased when

the signal is windowed and the dominant poles can represent the dominant frequency

components. However, the increase in the number of the dominant poles will cause the

LPC spectra to have more than one peak which is not conducive to identifying the signal

frequency component. Furthermore, the magnitude of non-dominant poles is increased

when the signal is windowed which makes the magnitude difference between the domi-

nant pole and non-dominant pole less obvious. For a noisy environment, the window

functions have little effect on the position of LPC poles and the LPC spectra. Considering

that the scenario used in this thesis is EEG signal processing which is characterised by the
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presence of high noise, therefore, the window function is not used for the LPC method in

the following analysis.

3.1.7 Conclusions

In this section, the concept of the definition of the dominant pole and non-dominant poles

were introduced. The magnitude of the LPC poles can be used to classify them into

dominant poles and non-dominant poles. Furthermore, the experimental parameters (i.e.

filter order, signal duration, noise level and the window functions) of the LPC method

are analysed. The effects of these parameters on the LPC poles and LPC spectra are

summarised as follows:

• The analysis of filter order further verified that the LPC method is sensitive to it.

The number of LPC poles depends on the filter order. The increase in filter order is

not conducive to distinguishing between dominant poles and non-dominant poles.

Furthermore, the dominant pole is used in conjunction with the non-dominant poles

to determine the final position of the spectral peak.

• The analysis of the signal duration shows that the LPC method is still subject to the

Heisenberg-Gabor uncertainty principle. Increasing the signal duration can better

distinguish between the dominant pole and non-dominant pole. In addition, the

increase in signal duration can provide richer spectral information and produce

narrower LPC spectral peaks.

• The analysis of the sampling frequency shows that the signal duration and the

number of signal samples can affect the LPC method. Specifically, longer signal
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durations result in narrower spectral peaks. Furthermore, a larger number of signal

samples can better identify the dominant pole.

• The LPC poles are sensitive to noise. A noisy environment is not conducive to

distinguishing between the dominant pole and the non-dominant pole. The noise

will give a wider spectral peak than a noise-free environment.

• The analysis of different window functions shows that the impact of window func-

tions on the LPC method is limited. In a noise-free environment, the window func-

tion is not conducive to the peak selection of LPC spectra and it is not conducive

to distinguishing between the dominant pole and non-dominant poles. In a noisy

environment, the window functions have little effect on the position of LPC poles

and LPC spectral peak.

In the next section, the effects of dominant and non-dominant poles on spectral peaks are

analysed. Furthermore, the associated poles from non-dominant poles will be defined.

3.2 Analysis of the Impact of the Poles on the Spectra

The previous section presented the analysis of the effects of different parameters on the

LPC poles and the LPC spectra. It can be observed that the dominant pole and non-

dominant poles serve to define the bandwidth of the signal component in the LPC spectra.

The magnitude of the poles can be used as an indicator of the size of the spectral peak.

The magnitude of the dominant pole is higher than that of the non-dominant pole. Thus,

the dominant pole has a major effect on the LPC spectra. However, the non-dominant

pole still can affect the final position of the peak in the LPC spectra and the bandwidth of
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the LPC spectra. In this section, the effect of the dominant pole and non-dominant poles

on the spectra through a simulation experiment will be introduced. Furthermore, a new

definition of the associated pole will be proposed which together with the dominant pole

can determine the final location of the spectral peak.

Table 3.1 Mathematical notation of the dominant pole and non-dominant pole.

Poles Categories Dominant Pole Non-dominant Pole
Pole p̃ p̄ j

Magnitude m̃ m̄ j
Frequency f̃ f̄ j

The simulation experiment will generate a series of artificial poles and these poles still

have two categories: dominant poles and non-dominant poles. The effect of the poles

on the spectra will be investigated by fixing the dominant pole and changing the non-

dominant poles (i.e. the magnitude and frequency of the LPC pole). Thus, there is one

dominant pole p̃ and a series of the non-dominant poles {p̄1, p̄2, · · ·} in the artificial simu-

lation experiments. The dominant pole p̃ will form a series of second-order transform

functions H̃ j with each individual non-dominant pole p̄ j where j is the index of the non-

dominant pole. The H̃ j is given by

H̃ j(z) =
1

(1− p̂z−1)
× 1

(1− p̄ jz−1)
(3.4)

It should be noted that all the poles here only consider the poles with non-negative imag-

inary parts. Furthermore, the details of the mathematical representation of the dominant

pole and non-dominant pole are given in Table 3.1. The following experiments are all

second-order transfer functions that have one dominant pole and one non-dominant pole.

These second-order functions will only produce one spectra peak which is expressed as
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3.2 Analysis of the Impact of the Poles on the Spectra

f́ . In order to measure the effectiveness of the poles on the spectra, the frequency error

between the peak of the single-pole model of the dominant pole f̃ and the peak of the

second-order model spectra f́ is measured using the Relative Frequency Error Percentage

(RFEP):

RFEP =
| f́ − f̃ |

f̃
×100% (3.5)

The RFEP value is used to analyse the effect of the relationship between the dominant pole

and non-dominant pole on the second-order spectra. In the following analysis, an artificial

simulation experiment is designed. The effect of the magnitude of the artificial poles on

the second-order spectra and the effect of the frequency separation between the artificial

dominant pole and non-dominant pole on the second-order spectra is demonstrated.

3.2.1 Analysis of the Pole Magnitude on the Spectra
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Fig. 3.20 The artificial poles where the non-dominant poles have different magnitudes.

In this part, the effect of the magnitude of the dominant pole and non-dominant pole

on the spectra is analysed in a simulation experiment. The sampling frequency of the

experimental signal is chosen as 100 Hz and the signal duration is 1 s. The dominant pole

is fixed, the magnitude of the dominant pole is 0.9 and its frequency is 25 Hz. For the non-
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Fig. 3.21 The second-pole model spectra with the different magnitude non-dominant

poles.
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Fig. 3.22 The RFEP values under the different magnitude non-dominant poles.

dominant poles, their frequencies are all 20 Hz and their magnitudes change from 0.8 to

0.1 and the step is −0.1. Fig. 3.20 shows the artificial dominant pole p̃ and non-dominant

poles { p̄1, p̄2, · · · , p̄8}. The dominant pole will form a series of second-order transform

functions with every single non-dominant pole. These second-order transform functions

are {H̃1(z), H̃2(z), · · · , H̃8(z)} which are shown in Fig. 3.21. It can be seen that the spectra

of H̃1(z) which is composed of a non-dominant pole p̄1 and dominant pole p̃ have the

highest magnitude than others. The reason is that the p̄1 has the highest magnitude among

all non-dominant poles. Furthermore, the RFEP value is analysed in Fig. 3.22. The y-

axis is the RFEP value and the x-axis represents the ratio of the magnitude of each non-

dominant pole m̄ j to the magnitude of the dominant pole m̃ which was called Relative
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3.2 Analysis of the Impact of the Poles on the Spectra

Magnitude Percentage (RMP) and it is expressed as

RMP =
m̄ j

m̃
×100% (3.6)

As can be seen, the RFEP value will increase as the magnitude of the non-dominant

pole increases. In other words, as the magnitude of the non-dominant pole increases, the

deviation between the spectral peak and the dominant pole will also increase. On the other

hand, the magnitude is an important indicator that distinguishes the dominant pole and

the non-dominant pole. The dominant pole determines the approximate position of the

spectral peak, while the non-dominant pole can further adjust the position and bandwidth

of the spectral peak.

3.2.2 Analysis of the Pole Frequency Separation on the Spectra
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Fig. 3.23 The artificial poles where the non-dominant poles have different frequency sepa-

rations from the dominant pole.

In this part, the effect of the frequency separation between the dominant pole and non-

dominant pole on the spectra is analysed. This experiment is still a simulation experiment.

The signal is 100 Hz sampling rate and 1 s signal duration. The artificial dominant pole
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Fig. 3.24 The second-order model spectra where the non-dominant poles have different

frequency separation from the dominant pole.

is 25 Hz and its magnitude is 0.9. The magnitudes of the non-dominant poles all are

0.8. In order to be able to see more details about the impact of non-dominant poles near

the dominant pole on the spectra, the step size of the non-dominant poles from 25 Hz to

30 Hz is 1 Hz and the step size from 30 Hz to 45 Hz is 5 Hz. As shown in Fig. 3.23,

the dominant pole is represented as p̃ and non-dominant poles are {p̄1, p̄2, · · · , p̄9}. Fig.

3.24 shows the second-order transform functions {H̃1(z), H̃2(z), · · · , H̃9(z)}. Each second-

order transform function is composed of a dominant pole and a non-dominant pole. It

can be seen that the spectra H̃1(z) has the highest magnitude which is composed of the

dominant pole p̃ and the non-dominant pole p̄1. The two poles are in the same frequency

position 25 Hz and their separation is 0. As the separation between the dominant pole and

non-dominant pole increases, the magnitude of their corresponding spectra will decrease.

In order to analyse the shift of the spectral peak corresponding to each second-order trans-

form function under different non-dominant poles, the RFEP value is still used. Here

a new metric Relative Frequency Distance Percentage (RFDP) is proposed to represent

the ratio of the frequency separation between the dominant pole and non-dominant pole
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Fig. 3.25 The RFEP values under the different frequency separation between the dominant

pole and non-dominant pole.

relative to the frequency of the dominant pole f̂ which is defined as

RFDP =
f̄ j − f̃

f̃
×100% (3.7)

Fig. 3.25 shows the results of REFP value under the different frequency distances between

the dominant pole and non-dominant pole. It can be seen that the RFEP value first

increases rapidly and then decreases slowly with the increase of RFDP. The highest RFEP

value is a critical point. The RFEP before the critical point increases as the RFDP increase.

In other words, the frequency separation between the spectral peak and the dominant pole

increase as the frequency separation between the non-dominant pole and the dominant

pole increases. However, when RFDP exceeds the critical point, the RFEP decreases as

the RFDP increases. In other words, the frequency separation between the spectral peak

and the dominant pole gradually decreases as the frequency separation between the non-

dominant pole and the dominant pole increases. However, this case is only applicable

when the magnitude of the dominant pole is 0.9 and the magnitude of the non-dominant

pole is 0.8. The location of the critical point will change with the magnitude of the domi-
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3.2 Analysis of the Impact of the Poles on the Spectra

nant pole and non-dominant pole change. Therefore, the effect of artificial non-dominant

poles of different magnitudes on spectral peaks will be analysed in the next part.

3.2.3 Analysis of the Poles Magnitude and Separation on the Spectra
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Fig. 3.26 The second-order model spectra where the non-dominant poles have different

frequency distances from the dominant pole.

Fig. 3.27 The second-order model spectra where the non-dominant poles have different

frequency distances from the dominant pole.

The artificial dominant pole frequency for Fig. 3.26 still is 25 Hz and its magnitude is 0.9.

The artificial non-dominant poles are divided into 8 groups according to their magnitude

and the magnitude m̄ of each group is from 0.1 to 0.8 and the step size is 0.1. Furthermore,

the frequency of each group of non-dominant poles are varied from 1 Hz to 49 Hz and

the step size is 1 Hz. In Fig. 3.26, the square point lines of different colors represent
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3.2 Analysis of the Impact of the Poles on the Spectra

the REFP values generated by the second-order model spectra with different magnitudes

of non-dominant poles. The blue dashed line indicates the change of the critical point

(i.e. the highest RFEP value for each square point line) under different non-dominant

pole magnitudes and the non-dominant poles corresponding to these critical points are

shown in Fig. 3.27. It can be seen that these critical points in Fig. 3.26 are symmetrical

about the position where RFDP is 0% and their corresponding non-dominant poles are

also symmetrical about the position of the dominant pole in Fig. 3.26. Furthermore, the

absolute value of RFDP of the critical points will increase as the magnitude of the non-

dominant pole decreases in Fig. 3.26. Although these poles are artificially simulated,

some rules about the effect of the dominant pole and non-dominant pole on the second-

order model spectra can still be summarised:

• When the magnitude of the dominant pole and non-dominant pole is fixed, RFEP

first increases and then decreases with the increase of the absolute value of RFDP

and here has a critical point.

• The frequency separation between the non-dominant pole and the dominant pole

and their magnitude together determine the value of RFEP.

Although the simulation scenario here (the amplitude of the dominant pole is 0.9) does

not cover all scenarios (i.e. the dominant and non-dominant poles at different amplitudes).

It still can be observed that the position of the spectral peak is more sensitive to the non-

dominant poles around its corresponding dominant pole. Therefore, the non-dominant

poles around the dominant poles in the LPC method are defined as associated poles. The

associated pole and dominant pole together determine the final position of a spectral peak.
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3.3 LPC Pole Processing Method

3.2.4 Conclusions

In this section, a series of second-order transform functions composed of artificial domi-

nant poles and non-dominant poles were analysed. As the magnitude of non-dominant

increases, the RFEP value will increase (i.e. the deviation between the spectral peak and

the dominant pole will increase). For the frequency separation between the dominant

pole and non-dominant pole analysis, there is a critical point here (i.e. the highest RFEP

value). The position of the spectral peak is more sensitive to the non-dominant poles

around its corresponding dominant pole. Therefore, a new term was proposed called

associated poles. The associated poles come from the non-dominant poles close to the

dominant poles. The dominant pole and its corresponding associated poles can determine

the final position of the spectral peak. In the next section, the details of the proposed

LPCPP method will be introduced. The new method will further process the LPC poles

to produce several reduced-order transform functions to estimate the dominant frequen-

cies. Each reduced-order transform function consists of one dominant pole and a series

of associated poles.

3.3 LPC Pole Processing Method

In this section, the details of the LPCPP method will be presented. The LPCPP method

is proposed to further process LPC poles to form a series of reduced-order transform

functions. Specifically, each reduced-order transform function consists of one dominant

pole and a series of associated poles. Furthermore, the reduced-order transform function

has a lower order and it has fewer local maxima which makes it easier to find the peak as
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3.3 LPC Pole Processing Method

Fig. 3.28 The diagram of LPC poles processing of the LPCPP method.

the dominant frequency estimation. The method can be summarised as comprising three

steps:

1. Categorise LPC poles into dominant poles and non-dominant poles.

2. Identify the associated poles of each dominant pole from non-dominant poles.

3. The dominant poles and their corresponding associated non-dominant pole(s) are

used to form a series of reduced-order transform functions.

The diagram of LPC poles processing of the LPCPP method is shown in Fig. 3.28.

However, there are two questions that need to be considered: the first is how to identify

dominant and non-dominant poles and the second is how to classify non-dominant poles

as associated poles corresponding to the dominant pole? Therefore, the LPCPP method

will propose corresponding solutions and the details of each step will be described in the

rest of this section.
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3.3 LPC Pole Processing Method

(a) The original LPC poles. (b) LPC poles with enhanced magnitude.

Fig. 3.29 The processing of LPC poles by the enhanced function.

Fig. 3.30 Flow chart of the method used to identify the dominant poles and non-dominant

poles.
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Fig. 3.31 Identifying dominant poles and non-dominant poles
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3.3 LPC Pole Processing Method

3.3.1 First step: Categorise LPC poles into the dominant pole and

non-dominant poles

The LPC poles are first categorised into dominant poles and non-dominant poles. The

LPC poles here still only consider the poles with non-negative imaginary parts Im(zi) >

0. Since the magnitude of the LPC poles is an important feature to indicate the size of

the spectral peak in the classical filter analysis, the magnitude of the LPC poles will be

used to distinguish between the dominant pole and non-dominant poles. However, the

previous section 3.1 shows that in some cases the difference between the magnitude of

the dominant pole and the non-dominant pole is not obvious, such as in a high-noise

environment, a short sampling time or the number of the LPC filter order is inappropriate.

Therefore, a new discriminating enhancement function D(m) is proposed to increase the

difference in magnitude of LPC poles which is given by

m̂i = D(mi) =
1

1−mi
(3.8)

where mi is the magnitude of the ith LPC poles and the m̂i is the enhanced magnitude

results. Fig. 3.29a shows the original LPC poles and Fig. 3.29b shows the LPC poles

with enhanced magnitude. The input signal of the demonstration experiment in Fig. 3.29

is composed of two sinusoidal signals with frequencies f1 = 12 Hz, f2 = 31 Hz, the

sampling frequency is fs = 100 Hz, the signal duration is 1 s and the signal is corrupted

with AWGN where the SNR= 3 dB and the filter order is P = 30. Then, the LPC poles

with enhanced magnitude are used as the input in Fig. 3.30 to identify dominant and non-

dominant poles. It should be noted that the enhanced magnitude of the LPC poles is only
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3.3 LPC Pole Processing Method

used to identify the dominant pole and non-dominant pole and does not participate in the

next process of the algorithm. The parameter β is a threshold value that has a range from

0 to 1.0, the details for choosing β will be discussed in chapter 4. The dominant poles are

represented as { p̃1, p̃2, · · ·} and the non-dominant poles are represented as {p̄1, p̄2, · · ·}.

An example is shown in Fig. 3.31 and the β in here is 0.5.

3.3.2 Second step: Identify the associated poles of each dominant

pole from non-dominant poles

Fig. 3.32 The dominant poles with their corresponding associated poles.

The second step is to identify the associated poles from the non-dominant poles for

each dominant pole. The non-dominant poles located around the dominant poles will

determine the location of the spectral peaks and these poles are called associated poles.

The associated poles are selected from the non-dominant poles and they depend on the

distance (frequency separation) between the non-dominant poles and the dominant pole.

A frequency threshold parameter λ is defined. When a non-dominant pole whose frequency

distance from a dominant pole is less than λ , it is considered an associated pole p̌k j,

j = {1,2, · · · ,Lk} of the kth dominant pole p̃k where Lk is the number of local poles for

the kth dominant pole. When the sampling frequency and filter order are fixed, increasing
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λ , more non-dominant poles will be considered as associated poles. It should be noted

that the different dominant poles may share common associated poles. In Fig. 3.32, the

value of λ is 10 Hz where the red lines represent the frequency range 2λ = 20 Hz around

each dominant pole where the associated poles of this dominant pole can be identified.

The red circles represent the dominant poles and the blue circles represent the associated

poles of each dominant pole.

3.3.3 Third step: Form a series of reduced-order transfer functions

and output the frequency estimates

Fig. 3.33 The spectral peak of each reduced-order transform function.

Finally, the dominant poles and their corresponding associated pole(s) are used to form a

series of reduced order transfer functions H̃k given by

H̃k(z) =
1

(1− p̃kz−1)
× 1

∏Lk
j=1(1− p̌k jz−1)

(3.9)
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As the new filter transfer function H̃k has a lower order and a single dominant pole, it is

easier to determine the spectral peak. The frequency response is

H̃k(e jω) =
1

(1− p̃ke− jω)
× 1

∏Lk
j=1(1− p̌k je− jω)

=
1

Ãk(e jω)
(3.10)

where Ãk(e jω) is an inverse filter for H̃k(e jω). The spectra calculation of the reduced

order transfer function in MATLAB by performing a series of the inverse of the FFT (Fast

Fourier Transform) spectra and the pseudo-code is as follows:

1: This program calculates the spectra of the reduced order transfer function H̃k.

2: function f f t (x) {

3: Perform the Discrete Fourier Transform (DFT) analysis of x using the FFT

method.

4: return FFT spectra.

5: end

6: }

7: {

8: In the main function, calculate the spectra of H̃k.

9: H̃k = 1./ f f t([1,− p̃k])×1./ f f t([1,− p̌k1]) · · ·×1./ f f t([1,−p̌k j])

10: }

For detailed implementation code please see Section A.3. The maximum spectral peak f̃k

of the H̃k(z) is the kth dominant frequency estimation from LPCPP method. The max()

function in MATLAB is used here to find the maximum spectral peak. So the frequency
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estimation results of the LPCPP method are { f̃1, f̃2, · · ·}. The results of this process are

shown in Fig. 3.33.

3.3.4 Conclusions

In this section, the details of the LPCPP method were presented. The LPCPP method is

based upon further processing of the LPC poles in order to produce a series of reduced-

order filter transfer functions to estimate the dominant frequencies. Here two new param-

eters β and λ were proposed to identify the dominant pole and associated pole respec-

tively. The LPCPP method is a new parameterised time-frequency analysis method and

its detailed experimental comparative analysis will be presented in the next chapter.

3.4 Chapter Summary

This chapter introduced the technical details of the new proposed LPCPP method in this

thesis. The proposed LPCPP method will further process LPC poles to achieve a spectral

estimation of EEG signals. The first section presented the analysis of the LPC poles and

the LPC spectra under the different parameters (i.e. filter order, signal duration, sampling

frequency, signal noise and window function). The definitions of the dominant pole and

non-dominant pole were then proposed. Furthermore, it can be observed that the magni-

tude of the pole still can be used as an indicator to distinguish between the dominant pole

and the non-dominant pole. The second section further analysed the relationship between

the dominant pole and non-dominant pole in a series of second-order transform functions.

It can be observed that the dominant pole and the non-dominant pole jointly determine the
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final position of the second-order spectral peak. Furthermore, the second-order spectral

peak is more sensitive to non-dominant poles around the domain pole. The non-dominant

poles near the dominant pole are defined as the associated poles and these associated poles

can be used to assist the dominant pole to determine the final location of the spectral peak.

The third section presented the details of the LPCPP method. Furthermore, the two param-

eters β and λ of the LPCPP method are used to identify the dominant pole and associated

pole respectively. The LPCPP method produces a series of reduced-order filter transfer

functions to realise the identification of the dominant frequencies. In the next chapter,

a series of experiments will show that LPCPP can overcome the shortcomings of LPC

methods including sensitivity to filter order and low tolerance to noise. Furthermore, the

LPCPP method can satisfy the spectral processing of EEG signals, enabling the tracking

and analysis of the spectral components.
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Chapter 4

Simulation Analysis of the LPCPP

Method

In this chapter, some representative analytical results of the LPCPP method are presented

which show that the LPCPP method can overcome the shortcomings of the LPC method

and is well suited for processing poor signal-to-noise ratio, time-varying, intermittent and

multi-component signals (i.e. EEG signals). The first section analyses the ability of the

LPCPP method to identify the dominant frequency components. A new simulation signal

and a series of new metrics for analysing LPCPP methods are proposed. Furthermore, this

section will analyse the LPCPP method under the different experimental parameters (i.e.

filter order and signal noise). Moreover, the tuning parameters β and λ of the LPCPP will

be analysed. The second section presents the ability of the LPCPP method to track the

dominant frequency in real-time for a signal whose frequency is varying. The third section

presents the analysis of the time-bandwidth product of the LPCPP method. Furthermore,
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the bias of the frequency estimation of the LPCPP method is analysed. The last section is

the summary of the chapter.

4.1 Dominant Frequency Identification of LPCPP

In this section, the ability of the LPCPP method to identify the dominant frequency will be

analysed. A Pseudo-Randomly Varying Frequency (PRVF) signal is used for the exper-

imental analysis and four metrics are used to analyse the performance of the LPCPP

method to identify the dominant frequencies. The LPC method is used as a benchmark

method. Furthermore, the different experimental parameters for the LPCPP method are

analysed. Specifically, the first experiment shows the effect of different filter orders on

the LPCPP method. The second experiment analyses the noise tolerance of the LPCPP

method. Finally, the selection of the two tuning parameters β and λ is analysed from the

perspective of the performance of the LPCPP method.

4.1.1 Experimental Metrics

The LPCPP method is a parameterised time-frequency method that can generate frequency

estimates. However, most signals in the real world have unknown frequency components

and it is difficult for these signals to determine whether the frequency estimate is correct.

Therefore, an artifical signal (i.e. PRVF signal) with known frequency components is

proposed here to assess the ability of the LPCPP method to correspond to the dominant

frequency components. The PRVF signal is a sinusoidal signal where the frequencies are

uniformly distributed in the range 0 to fs/2 and they are evaluated using 10,000 Monte
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Carlo trials. One important advantage of the simulation signals is that the frequency

components of the signal are known. Furthermore, there is one question that needs to

be considered for the frequency estimations of the parameterised time-frequency method:

how to determine if these frequency estimations are valid or invalid? In this section, a new

parameter ν is used to address this question. When the absolute frequency error e between

the real signal frequency and the estimated frequency is less than a frequency threshold

value ν × fs, the estimated value is considered to be valid and the real signal frequency is

considered to be correctly identified. It should be noted that the value of ν is not always

fixed, the choice of its value needs to be considered according to its corresponding appli-

cation scenario. The terms “valid estimate” and “invalid estimate” are used to describe the

validity of the LPCPP method estimates. The terms “correctly identified signal frequency”

and “incorrectly identified signal frequency” are used to describe whether the frequency

of the signal is correctly identified. Moreover, there are four additional questions that

need to be considered:

1. How to measure the frequency errors between the estimated frequencies and the

real signal frequencies?

2. How many frequency components of the signals are identified?

3. How many frequency estimates from the LPC-based method (i.e. LPCPP method

and LPC method) are valid?

4. How many ideal experiments are there in all frequency estimation experiments?

(The term “ideal experiment” refers to situations when the LPCPP method can
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4.1 Dominant Frequency Identification of LPCPP

correctly identify all the frequency components of the signal without producing

redundant invalid estimates.)

Table 4.1 The mathematical symbols used in the analysis.

Parameters Symbol
The total number of all frequency components in simulation signals Nχ
The number of all estimated frequencies in the LPC-based method Nφ

The number of correctly identified frequencies in simulation signals Nψ
The number of valid estimated frequencies Nϕ

The number of ideal experiments Nτ

Therefore, four experimental metrics are proposed to address the four questions above.

Furthermore, there are some mathematical symbols introduced in Table 4.1. The four

metrics are as follows:

1. The Average Error Percentage (AEP) which represents the average of the relative

errors across all the identified frequencies and their corresponding valid estimates.

The relative error at time t is defined as ADPi = ei/ f (t) and the AEP is expressed

as

AEP =
∑

Nψ
i=1 ADPi

Nχ
×100% (4.1)

2. The Identification Frequency Percentage (IFP) which represents the percentage of

the number of identified frequencies from all the number of the frequencies in the

signal and the diagram is shown in Fig. 4.1(a). The mathematical expression for

IFP is

IFP =
Nψ

Nχ
×100% (4.2)

3. The Valid Estimate Percentage (VEP) which represents the proportion of valid esti-

mates from all the estimates and the diagram is shown in Fig. 4.1(b). The mathe-
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matical expression for VEP is

V EP =
Nϕ

Nφ
×100% (4.3)

4. The Ideal Experiment Percentage (IEP) which represents the percentage of experi-

ments that have no invalid estimates and is defined as

IEP =
Nτ
Nχ

×100% (4.4)

(a) IFP (b) VEP

Fig. 4.1 The diagram of two metrics. IFP is used to indicate how many frequencies in

the signal are correctly identified and VEP is used to indicate how many of the LPCPP’s

frequency estimates are valid.

Specifically, the AEP value is used to measure the accuracy of the valid estimates of the

LPCPP method (i.e. the error between all valid estimates and their corresponding real

signal frequencies) The IFP value is used to measure the proportion of valid estimates

among all LPCPP method estimates. The VEP value is used to measure the proportion of

correctly identified frequencies out of the total signal frequencies. The IEP value is used

to express the proportion of ideal experiments among all experiments.
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4.1.2 Filter Order Analysis of LPCPP

This section has two parts to demonstrate the effect of the filter order of the LPC-based

method on frequency identification. One is the single-component PRVF signal and the

other is the multiple-component PRVF signal. The sampling frequency of the PRVF signal

is fs = 100 Hz and the duration of the PRVF signal for each Monte Carlo trial is t = 1 s.

Furthermore, the value of ν used in this simulation experiment is 1% which means when

the absolute frequency error e is less than 1 Hz, the frequency estimate is considered to be

valid and the signal frequency is considered to be correctly identified. In order to simulate

a high noise environment, the PRVF signal is corrupted by Additive White Gaussian Noise

(AWGN) and the SNR is 3 dB. Finally, the filter order P is increased from 5 to 40 in steps

of 5.
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Fig. 4.2 Performance analysis for single-component PRVF signals for various filter orders.
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The first experiment demonstrates the performance of both LPC-based methods on the

single-component PRVF signals under the different filter orders. The parameters of the

LPCPP method are β = 0.3 and λ = 10 Hz. Fig. 4.2 shows the results of the four

metrics. For the different filter orders considered, the IFP values of the LPCPP method

and the LPC method are all above 88%. Consequently, both methods can identify the

dominant frequency component in most of the experiments. The VEP value of the LPCPP

method is much greater than the VEP value of the LPC method for different filter orders.

Furthermore, the VEP value of the LPCPP method initially increases and then decreases.

The LPCPP method can achieve the highest VEP values when the filter order is P = 20

under β = 0.3. In addition, the VEP value of the LPC method decreases as the filter order

increases. This is because as the filter order increases, the LPC method will produce

many invalid frequency estimates which leads to a decrease in the value of VEP. For the

AEP analysis, the value of the LPCPP method is less than that of the LPC method under

different filter orders and the LPCPP method can give more accurate frequency estimates

than that of the LPC method. Furthermore, the AEP value of the LPCPP method first

decreases and then increases. The AEP value of the LPCPP method achieves the minimal

AEP value when the filter order P = 20. For the IEP analysis, the value of the LPCPP

method is much higher than that of the LPC method and the difference between the IEP

of the two methods is up to 98.3% when P = 20. The IEP value still increases initially

and then decreases and this result corresponds to the result of the IFP value of the LPCPP

method. Furthermore, the IEP values of the LPC method are low (i.e. close to 0) for

different filter orders. The LPCPP method can provide a higher IEP value than that of

the LPC method when the filter order is in a specific interval (here from 5 to 35). The
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4.1 Dominant Frequency Identification of LPCPP

reason is that the performance of the LPCPP method depends on the choice of the filter

order and β . When the filter order is increased, the smaller β is required to filter out the

non-dominant poles and to identify the dominant poles. However, the parameter β in this

experiment is fixed. This is also the reason why the LPCPP method initially increases and

then decreases in the analysis of IFP and VEP values. And it initially decreases and then

increases in the analysis of AEP values. In short, the LPCPP method can reliably identify

the dominant frequency in single-component PRVF signals.
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Fig. 4.3 Performance for multiple-component PRVF signals for different filter orders.

The second experiment shows the performance of both LPC-based methods on the multiple-

component PRVF signal which has three frequency components. The parameters of the

LPCPP method are β = 0.7 and λ = 10 Hz. Since the PRVF signal here is the multiple-

component signal, the β value is increased in order to identify more dominant frequencies.

As shown in Fig. 4.3, the IFP value of the LPCPP method is slightly lower than that of
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the LPC method when the filter order is less than 15 and the IFP values of the two LPC-

based methods show little difference when the filter order is greater than 15. Even the IFP

value of the LPCPP method is slightly lower than the LPC method when the filter order

is 15, a slight sacrifice in IFP is worthwhile to get a better performance to estimate the

frequencies and this feature of the LPCPP method is particularly attractive for scenarios

where the number of frequency components in the signal is unknown. Furthermore, the

performance of the LPCPP method still needs to consider the choice of the filter order and

β . The LPCPP method can provide higher VEP values and lower AEP values than the

LPC method at the different filter orders. Furthermore, the LPCPP method can achieve

the highest VEP value, lowest AEP value and highest IEP value when the filter order is

15 and β is 0.7. In short, the LPCPP method is still good at identifying the dominant

frequency for the multiple-component PRVF signals under the different filter orders.

In this section, the single-component and multiple-component PRVF signals are used to

analyse the effect of the filter order on the LPCPP method. For both PRVF signals, the

LPCPP method can significantly improve the VEP values and reduce the AEP compared

to the LPC method under the different filter orders. In other words, the LPCPP method

can provide more valid frequency estimates and can provide more accurate frequency

estimates. These are useful for frequency estimation of signals whose frequency compo-

nents are unknown. Furthermore, the LPCPP method can significantly improve the IEP

value compared to the LPC method within a certain filter order interval. The range of this

filter order interval depends on the number of frequency components in the signal and

the choice of parameters β . In conclusion, the LPCPP method can provide better perfor-
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mance to identify the dominant frequencies in the unknown signal compared to the LPC

method.

4.1.3 Signal Noise Analysis of LPCPP

This section will analyse the performance of the LPCPP method under different SNRs.

It is still divided into two parts for the experimental analysis: single-component PRVF

signal analysis and multiple-component PRVF signal analysis. The SNR is expressed in

dB from 0 to 18 and is increased in steps of 3 dB. The filter order for the two LPC-based

methods is P = 20 and all other experimental parameters are the same as those above.
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Fig. 4.4 Performance analysis for single-component PRVF signals under various SNRs.

The first experiment of this section demonstrates the performance of the LPCPP method

and the LPC method on the single-component PRVF signals under the different SNRs.

The parameters of the LPCPP method are β = 0.3 and λ = 10 Hz. In Fig. 4.4, the
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IFP values of both LPC-based methods are greater than 99.3% and both methods can

identify all dominant frequencies after SNR is greater than 6 dB. Furthermore, the VEP

values of both LPC-based methods increase with the increase of SNR and the VEP value

of LPCPP is up to 86.3% higher than that of the LPC method which indicates that the

LPCPP method improves the validity of the frequency estimates. The AEP values of both

methods decrease with the increase of SNR and the AEP value of the LPCPP method is

significantly lower than that of the LPC method. Furthermore, the IEP values of the LPC

method are 0 and the LPCPP method can effectively improve the IEP values which are

at least higher than 85% at the different SNRs. In other words, the LPCPP method can

identify the dominant frequency in the single-component signal under the different SNRs.
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Fig. 4.5 Performance analysis for multiple-component PRVF signals under various SNRs.

The second experiment shows the performance of the LPCPP method and the LPC methods

on the multiple-component signal for the different SNRs. The parameters of the LPCPP
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method are β = 0.7 and λ = 10 Hz. Fig. 4.5 shows the four results. As can be seen, the

IFP values of the LPCPP method are slightly lower than those of the LPC method under

the different SNRs. However, the IFP values of the LPCPP method are still higher than

98.2% which means the LPCPP method still can identify most of the signal frequencies.

In addition, the LPCPP method can get much higher VEP values and much lower AEP

values than the LPC method under the different SNRs. The LPCPP method can signifi-

cantly improve the IEP value of the LPC method after the SNR is greater than 3 dB. In

short, the LPCPP still can identify most of the dominant signal frequencies and provide

more valid and more accurate frequency estimates under this multi-component signal.

This section analysed the performance of both LPC-based methods to identify the domi-

nant frequency under the different SNRs. Although the LPCPP method has a slight loss

in IFP value, its significant advantage over the LPC method in terms of the VEP, AEP

and IEP values is attractive for frequency estimation of unknown signals. The signal

noise is detrimental to the frequency estimation performance of both LPC-based methods

and both LPC-based methods have better performance in frequency identification as SNR

increases. In conclusion, the LPCPP method exhibits a stronger tolerance to noise than

the LPC method and it can provide better performance in the VEP, AEP and IEP at the

different SNR scenarios.

4.1.4 LPCPP Parameters Analysis

This section will present the analysis of the parameters of the LPCPP method on frequency

identification. The first part is to analyse the impact of the β value which is used to

identify the dominant pole(s) for the LPCPP method. In the analysis of the β value, there
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is an optimal point (βopt) that can make the IEP achieve the maximum value. This is useful

for signals whose spectral information is unknown. Finally, the impact of the λ value is

analysed and the λ value is used to identify the associated pole(s) for each dominant pole.

Analysis of the parameter β value

In order to analyse the parameter β , there are two PRVF signals used for analysis: single-

component PRVF signal and multi-component PRVF signal. The sampling frequency is

fs = 100 Hz and the duration of the signal for each Monte Carlo trial is t = 1 s. Further-

more, each PRVF signal is corrupted by 3 dB AWGN and the filter order of both LPC-

based methods is 20. The β value is increased from 0.1 to 1 in steps of 0.1. The value of

β is not set to 0 because when β is 0 this means that no poles are selected as the dominant

poles. Moreover, when the β = 1.0 all of the poles will be selected as the dominant poles.
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Fig. 4.6 The analysis of β for LPCPP method on the single-component PRVF signals.

The first experiment shows the analysis of the parameter β for the LPCPP method on the

single-component signals and the results are shown in Fig. 4.6. As can be seen, the IFP

values are always 100% for all values of β . The reason is that the signal here has only one

frequency component and there is always a dominant pole corresponding to this frequency

component. Furthermore, the values of VEP and IEP decrease as the value of β increases.
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The reason is that when the β value increases, the number of dominant poles will also

increase which will lead to an increase in the number of invalid estimates in the LPCPP

results. Finally, the value of AEP increases with the value of β . When the β increases, the

number of invalid estimates increases and the error between the signal frequency and the

frequency estimate also increases. Therefore, under the single-component signal, when

the value of β is smaller, the LPCPP method can obtain a better performance to identify

the dominant frequency (a larger VEP and IEP value and a smaller AEP value) and the

change of β value has a negligible effect on IFP.
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Fig. 4.7 The analysis of β for LPCPP method on the multi-component PRVF signals.

In addition, the multi-component PRVF signals are analysed and it contains three frequency

components. Fig. 4.7 shows the results of the analysis of β . It can be seen that there is a

trade-off between the IFP and the VEP here. The β value is used to achieve an acceptable

trade-off between the two metrics. Furthermore, the AEP value increases as the value

of β increases. The IEP value has a maximum at the intersection of the IFP and VEP

curves when β is 0.6. The β value corresponding to the intersection point of the IFP

and VEP curves is optimal for LPCPP in order to produce the maximum number of ideal

experiments with all-valid estimates (i.e. a max IEP value). The β value with the highest

IEP value is called the βopt . It should be observed that the βopt is only applicable to the
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multi-component PRVF signal analysis. Furthermore, the βopt value of 0.6 here is only

applicable under the current parameters (i.e. 3 frequencies components, 3 dB AWGN and

the LPCPP method filter order is 20). Therefore, the next experiment will further analyse

the βopt value under different parameters.

The LPCPP method has an βopt value which has the highest IEP value under the multi-

component PRVF signal analysis. However, the multi-component PRVF signal above

contains three frequency components. In order to see the effect of multi-component

PRVF signals with the different number of frequencies on the LPCPP method, here the

multi-component PRVF signals are divided into two-frequency, three-frequency and four-

frequency PRVF signals, they are represented as PRVF-2, PRVF-3 and PRVF-4 in Fig.

4.8. The other parameters of those PRVF signals are the same as in the above experiment.
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Fig. 4.8 The analysis of β for LPCPP method on the multi-component PRVF signals.

The experiment in Fig. 4.8 shows the relationship between the βopt and the filter order.

The SNR is 3 dB and the λ of the LPCPP is 10 Hz. It can be seen that except for the case

where the filter order is 5, the greater β value is required when the number of frequency

components of the PRVF signal is increased under the same filter order. When the filter

order is 5, the number of the LPC poles is not sufficient for LPCPP to classify the poles

into dominant and non-dominant poles to further identify the dominant frequencies of the
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PRVF-3 and PRVF-4 signals. And the LPCPP method fails to identify the dominant pole

when the filter order is too small for the number of frequencies that need to be identified

(typically, the value of filter order should be greater than twice the number of frequencies

that need to be identified). As a result, the βopt values cannot be found under the PRVF-3

and PRVF-4 signals. However, the βopt is 0.8 under the PRVF-2 signal. Furthermore,

when the filter order is greater than 5, there is a trade-off between the filter order and the

βopt value. When the filter order is greater than twice the number of signal frequencies,

the smaller β value is required when the filter order increases.
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Fig. 4.9 The analysis of β for LPCPP method on the multi-component PRVF signals.

The second experiment in Fig. 4.9 shows the relationship between the βopt and the SNR

value. The filter order of the LPCPP method is 20 and the λ is 10 Hz. As can be seen, the

βopt value is increased when the number of the frequencies of the PRVF signal is increased

under the same SNR value. Furthermore, the βopt value increases with increasing SNR.

The reason is that when the SNR value increases, the higher β value is required to find

more dominant poles.

Most of the signals in the real world whose frequency components will be unknown.

Therefore, it is useful to find the βopt value for the frequency estimation of the signals.

It can give us the maximum IEP value which means the maximum number of ideal exper-
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iments in all Monte Carlo iterations. The choice of the β value is a challenge because

the number of dominant frequencies in the signal cannot be known in advance. There-

fore, through the simulation experiments in this part, it can be observed that when the

filter order is greater than twice the number of signal frequencies, the selection of the βopt

value decreases with the increase of the filter order and there is a trade-off relationship.

Furthermore, the greater the intensity of the noise, the smaller the value of β required to

filter out the non-dominant poles by the noise and identify the dominant poles.

Analysis of the parameter λ value

The value of λ is used to find the associated poles for each dominant pole and the unit of

the λ is Hz. In this part, there are two kinds of PRVF signals (i.e. single-component PRVF

signal and multi-component PRVF signal) that are analysed to investigate the effect of the

λ value on the LPCPP method. The sampling frequency of the PRVF signal is fs = 100

Hz and the duration of the PRVF signal for each Monte Carlo trial is t = 1 s. The PRVF

signals here are corrupted by 3 dB AWGN and the filter order of the LPCPP method is

P = 20. The β value is 0.3 in single-component PRVF signal analysis and 0.7 in the

multi-component PRVF signal analysis. The λ value is increased from 5 to 25 Hz in steps

of 5 Hz.

It can be seen that Fig. 4.10 and Fig. 4.11 show the four metrics of the LPCPP method

on the single-component PRVF signal analysis and the multi-component PRVF signal

analysis respectively. When the value of λ is greater than 10 Hz, the values of IFP, VEP

and AEP decrease with the increase of λ in both single-frequency and multi-component

signals. In addition, the value of AEP increases with the increase of λ when the value of
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Fig. 4.10 The analysis of λ for LPCPP method on the single-component PRVF signals.
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Fig. 4.11 The analysis of λ for LPCPP method on the multi-component PRVF signals.

λ is greater than 10 Hz. The reason is that when the value of λ increases, the frequency

separation of the selected associated pole from the corresponding dominant pole also

increases. This will cause a larger error between the peak of the reduced-order filter and

the real signal frequency. However, when the λ value is between 5 and 10 Hz, the results

of the four metrics of the LPCPP method have little difference between them. Further-

more, in the analysis in Section 3.2.3, the pole(s) near the dominant pole had a greater

impact on the reduced-order filter. Therefore, the choice of the λ value is recommended

to be between 5 and 10 Hz.
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4.1.5 Conclusions

In this section, a series of 10,000 Monte Carlo trials on the single-component and multi-

component signals are used to analyse the ability of the LPCPP method to identify the

dominant frequencies. The results show that the LPCPP method can significantly improve

the values of VEP and IEP and reduce the value of AEP compared to the LPC method

at the same filter order. Furthermore, the LPCPP method has a high noise tolerance for

frequency identification. In addition, the parameters β and λ of the LPCPP method are

analysed. There is a βopt value where the LPCPP method can obtain the maximum IEP

value. The choice of the βopt value is related to the filter order and the SNR value. There

is a trade-off relationship between the βopt and the filter order. Furthermore, the choice

of βopt value increases with the increase of SNR. Therefore, the choice of β value will be

selected according to the actual situation of the application scenario. Moreover, increasing

the value of λ will degrade the performance of the LPCPP method and it is recommended

to be chosen in the range of 5 to 10 Hz. In summary, the LPCPP method outperforms the

LPC method by accurately identifying the dominant frequency components in a high noise

environment and it is a useful tool for spectral analysis of signals of unknown frequency.

4.2 Dominant Frequency Tracking of LPCPP

In this section, the ability of the LPCPP method to track the dominant frequency changes

in real-time is further analysed. The term “real-time” in this section means that the LPC-

based methods can estimate the frequency at every sampling instant. Linear Chirped

Frequency Modulation (LCFM) signals are used to simulate signals with different frequency
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change rates. Furthermore, a new definition is given on how to determine whether the

LPCPP frequency estimate is valid or invalid in an LCFM signal at each sampling instant.

4.2.1 Experimental Metrics

Fig. 4.12 The sampling window and the frequency estimation acceptance criterion.

Linear Chirped Frequency Modulation (LCFM) signals are used to facilitate the analysis

of the frequency tracking performance of the LPCPP method under different rates of

frequency change. The LCFM signal has an instantaneous frequency sweep f (t) given by

f (t) = f (0)+κt (4.5)

The coefficient κ = Δ f/Δt represents the rate of the frequency change where Δ f repre-

sents the frequency change over the interval Δt. The frequency of the LCFM signal

increases linearly with time. Since the LCFM signal is a time-varying signal, the instan-

taneous frequency at a time t is estimated from a narrow sample window of the signal

which is composed of w samples on either side of the instant t and the window size for

each instantaneous frequency estimation is (2w+ 1) samples. A diagram of the sample

100



4.2 Dominant Frequency Tracking of LPCPP

window is shown in Fig. 4.12(a). As the instantaneous frequency f (t) of the LCFM signal

is known, the frequency error e between the instantaneous frequency and the estimated

frequency of the LPC-based method can be calculated. When the frequency error e is

less than ν × fs, the frequency estimate is considered to be valid and the signal frequency

is considered to be correctly identified as shown in Fig. 4.12(b). Furthermore, the four

metrics (i.e. AEP, IFP, VEP and IEP) are used to analyse the ability of frequency tracking

of the LPCPP method.

4.2.2 Frequency Change Rate Analysis

Table 4.2 The four metrics for LPC and LPCPP methods.

Method IFP(100%) VEP(100%) AEP(100%) IEP(100%)
LPC 81.9 9.28 0.19 0

LPCPP 85.53 78.47 0.18 78.54

The first experiment demonstrates the simple scenario of an LCFM signal with an SNR of

10 dB where the frequency of the signal changes from 100 Hz to 400 Hz and the duration

of the signal is 2 s (i.e. κ = 150 Hz/s). The sampling frequency of the LCFM signal is

fs = 1000 Hz and the window size is 21 samples (i.e. w = 10 samples). The ν value in

this section is chosen as 0.1% this mean the frequency threshold is ν × fs = 1 Hz. In other

words, when the absolute frequency error e is less than 1 Hz, the frequency estimate of

the LPC-based methods is considered to be valid and the signal frequency is considered

to be correctly identified. The filter order is P = 5 for both LPC and LPCPP methods. For

the LPCPP method, the parameters are β = 0.5 and λ = 10 Hz. The real-time frequency

estimation of the LCFM signal by the LPC-based methods is shown in Fig. 4.13 and the

values of the four metrics are shown in Table 4.2. As can be seen, the LPCPP method
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Fig. 4.13 The estimated frequency results from LPC and LPCPP method for a LCFM

signal. The red points are the estimates from the LPC method and the black trace is the

instantaneous frequency f (t) which is a reference trace.

outperforms the LPC method in all four metrics. Specifically, the VEP and IEP values

of the LPCPP method are significantly improved compared to the LPC method. In other

words, not all the estimates from the LPC method correspond to the dominant frequency.

The LPCPP method can produce more valid dominant frequency estimates over time to

achieve real-time tracking of the dominant frequency changes and it can significantly

reduce the generation of invalid estimates.

Table 4.3 The starting frequencies of the LCFM signal with different δ .

κ 50 100 150 200 250
f (0) (Hz) 200 150 100 50 0
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Fig. 4.14 LCFM signals with different frequency change rates in the time-frequency plane.
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Fig. 4.15 Performance analysis of the LPC and LPCPP method for LCFM signals with

different rates of frequency change.

The second experiment demonstrates the performance of the LPC and LPCPP methods

for LCFM signals with different frequency change rates (i.e. κ values). The duration of

all the LCFM signals is 2 s, the sampling frequency is fs = 1000 Hz and the signals are

corrupted by AWGN where SNR= 10 dB. The LCFM signals with the different κ values
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are shown in Fig. 4.14. The start and end frequencies corresponding to the different rates

κ are detailed in Table 4.3. The other experimental parameters are the same as the above

experiment. Fig. 4.15 presents the results of the four metrics. In the IFP analysis, the

values of the two LPC-based methods decrease with an increase in κ . The IFP value

of the LPCPP method is slightly larger than that of the LPC method and this difference

increases with the increase of the κ value. Furthermore, the VEP values of both methods

still decrease when the rate of frequency changes κ increases. However, the VEP of the

LPCPP method is always much higher than that of the LPC method under the same κ

value. Specifically, the VEP value of LPCPP is up to 85.9% higher than that of the LPC

method which indicates that the LPCPP method significantly improves the validity of

estimates. Moreover, the AEP value of the LPCPP method is always slightly smaller than

that of the LPC method at the same κ , so the LPCPP method can produce more accurate

frequency estimates. Finally, the IEP value of the LPC method is always 0 which means

the LPC method always produces invalid frequency estimates in the frequency estima-

tion experiment at every sampling instant. However, the LPCPP method can achieve

IEP values up to 96.84%. Although the ability of both LPC-based methods to track the

frequency of the LCFM signal decreases as the frequency change rate κ increases, the

LPCPP method demonstrates its improvement in the four metrics compared to the LPC

method. Specifically, the LPCPP method significantly improves the IFP value and VEP

value. In short, the LPCPP method has a greater ability to track the frequency of the

LCFM signal than LPC under the different frequency change rates.
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4.2.3 Conclusions

This section focused on analysing the ability of the LPCPP method to track the dominant

frequency changes of a noisy time-varying LCFM signal in real-time. The results show

that the LPCPP method can achieve real-time dominant frequency tracking and it signif-

icantly reduces the redundant frequency estimates of LPC. In short, the LPCPP method

outperforms the LPC method under fast frequency changes to track real-time changes in

frequency.

4.3 Time-bandwidth Product Analysis of LPCPP

Time-frequency methods enable us to study the time-frequency characteristics of signals

which exhibit transient oscillatory behavior. One crucial question for the time-frequency

method is how accurately one can measure the temporal and spectral events simultane-

ously. The limit on the accuracy is established by the Heisenberg-Gabor uncertainty prin-

ciple [71] which shows that there is a trade-off between the time and frequency resolution.

There are many different definitions used to measure the time and frequency resolution

[78, 119]. However, these definitions are mainly applicable to waveform time-frequency

methods (i.e. STFT). The LPCPP method is a parameterised time-frequency method.

10,000 Monte Carlo experiment trials are used to generate an Error Probability Density

Function (EPDF) of the error associated with the frequency estimate. The mean and stan-

dard deviation of the EPDF are used to define the bias μ and frequency resolution Δ f

of the LPC-based method. Therefore, a new method to calculate the Time-Bandwidth

Product (TBP) of the LPC-based method is proposed here. In this section, the experi-
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ments in this section are divided into three parts: The first part gives the definition of TBP

and presents the EPDF results of the LPCPP method and the LPC method. The second

part analyzes the performance of bias μ and TBP at different time resolutions Δt (i.e.

window duration). Finally, the effect of the different frequency ranges on the bias μ and

TBP analysis is investigated.

4.3.1 Definition of the Time-bandwidth Product

The probability distribution function is used to describe the probability of a random vari-

able. Here, an EPDF is defined by using the error between the estimation frequency

and the real frequency. 10,000 Monte Carlo trials are used to obtain the EPDF for the

frequency estimates. The single-component PRVF signal is used for Monte Carlo trials.

The sampling frequency is fs = 100 Hz and the SNR value is 3 dB. Since the LPC method

is used as a comparison method, only the estimates which have an error of less than 5 Hz

are used in order to ensure that the LPC method is not unfairly penalised. A histogram

of the frequency errors is generated where the error e range is from -5 Hz to +5 Hz and

the bin size Δe = 0.1 Hz. For each histogram bin, the median value of each bin e is first

multiplied and the height of each histogram bin is expressed as a probability P(e) (i.e. to

ensure ∑P(e) = 1). The bias is defined as

μ = ∑eP(e), (4.6)

where μ is the bias of the all estimates.
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Furthermore, the standard deviation σ of the EPDF is used to measure the frequency

resolution of the LPC-based method. The frequency resolution Δ f is defined as

Δ f = σ =
√

Σ(e−μ)2P(e) (4.7)

The Heisenberg-Gabor uncertainty principle tells us what can be achieved with regard

to time-frequency localization for the short-time Fourier transform [71], by referring to

the dimensions of the tiles (Δt ×Δ f ) in the time-frequency plane. Therefore, the Time-

Bandwidth Product (TBP) of the parameterised time-frequency method is

T BP = Δ f ×Δt (4.8)

where Δt represents the time resolution (i.e. the duration of the PRVF signal).

Table 4.4 The details of the EPDFs for the both LPC-based methods.

Method Mean(μ) Frequency Resolution(Δ f ) TBP
LPCPP 0.0095 0.0769 0.0769

LPC -0.0338 1.7792 1.7792

The two EPDFs of the LPCPP method and the LPC method are shown in Fig. 4.16. The

filter order of both LPC-based methods is P = 20 and the Δt = 1 s. The parameters of the

LPCPP method are β = 0.4 and λ = 10 Hz. Table 4.4 provides the detailed information of

the EDPF. As can be seen, the EPDF of the LPC method is broader than that of the LPCPP

method, the reason is that the LPCPP method can produce more accurate frequency esti-

mates and the LPC method produces more invalid frequency estimates (an error greater

than 1 Hz). It can be seen that the μ value of the LPCPP method is closer to 0 than that of
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Fig. 4.16 The EPDFs of the both LPC-based methods.

the LPC method which means the LPCPP method can produce more accurate frequency

estimates. Furthermore, the TBP of the LPCPP method is much smaller than that of the

LPC method. Therefore, the LPCPP method can provide a lower time-bandwidth product

and a lower absolute μ than the LPC method. In other words, the LPCPP method can

significantly improve spectral resolution and greatly improve the accuracy of the signal

frequency estimation.

4.3.2 Time Resolution Analysis

Table 4.5 LPCPP vs LPC: The TBP corresponding to different Δt.

Δt (s) 0.5 1 1.5 2 2.5 3 3.5 4
LPCPP 0.0880 0.0949 0.1047 0.1318 0.1410 0.1565 0.1638 0.1735

LPC 1.0263 1.7700 1.9117 2.0731 1.8615 1.9800 1.3417 1.3231
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Fig. 4.17 The μ value analysis of EPDF for different Δt.
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Fig. 4.18 The Δ f value analysis for different Δt.

These experiments show the μ and Δ f values under the different values of Δt. The Δt

is increased from 0.5 s to 4 s as an independent variable and the step size is 0.5 s. This

is still a Monte Carlo experiment where 1,000 experiments were run for each Δt. Other

experimental parameters are the same as in the first experiment. Fig. 4.17 shows the μ

analysis and Fig. 4.18 shows the Δ f analysis. Furthermore, the calculation results of

TBP are provided in Table 4.5. In Fig. 4.17, the μ value of the LPCPP method shows

little change under the different Δt and they are all around 0. However, the μ value of the

LPC method varies greatly and the absolute value of μ is greater than that of the LPCPP

method under the same Δt. This shows that the LPCPP method has a robust performance

to estimate the signal frequency and it can produce more accurate frequency estimates. In

Fig. 4.18, it can be seen that the Δ f values of both the LPC-based methods decrease with
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the increase of Δt. Therefore, the time resolution Δt and the frequency resolution Δ f of

the LPC-based method is a trade-off relationship. Furthermore, the LPCPP method can

provide a smaller frequency resolution than the LPC method at the same time resolution.

In Table 4.5, it can be seen that the TBP value of LPCPP is much smaller than that of the

LPC method for the same Δt. They all indicate that the LPCPP method can provide a finer

spectral resolution than that of the LPC method.

4.3.3 Frequency Interval Analysis

Table 4.6 The frequency range of different frequency intervals.

Label B1 B2 B3 B4 B5
Frequency Range (Hz) 0-10 10-20 20-30 30-40 40-50

The frequencies of the PRVF signal used in the above experiments are uniformly distributed

over the entire frequency domain in the range 0 to fs/2. Therefore, a question is consid-

ered here, whether the signals from different frequency ranges in the frequency domain

will have an impact on the performance of the LPCPP method. Therefore, the single-

component PRVF signal is used to analyse the performance of the LPCPP method in

different frequency intervals and their frequencies are uniformly distributed for each

frequency interval. Specifically, the sampling frequency of the PRVF signal is fs = 100

Hz and the frequency domain is equally divided into 5 frequency bands (i.e. B1, B2,

B3, B4 and B5). The details of the frequency bands are shown in Table 4.6. It should

be noted that the frequency interval classification here is not related to the frequency

bands (i.e. Delta, Theta, Alpha, Beta and Gamma, etc.) of EEG. This frequency interval

classification is only used for the simulation of PRVF signals and is used to analyse the
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effect of different frequency intervals on the frequency estimation performance of the

LPCPP method. Specifically, frequency interval B1 corresponds to low frequencies and

frequency interval B5 corresponds to high frequencies. The frequency intervals B2, B3

and B4 correspond to middle frequencies. There are 10,000 Monte Carlo trials in each

frequency interval. In addition, the PRVF signal is corrupted by 3 dB AWGN and the

duration of the PRVF signal for each Monte Carlo trial is 1 s. Other parameters are the

same as the above experiment.

Fig. 4.19 The EPDFs of both LPC-based methods for the different frequency intervals.
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Fig. 4.20 The bias of both LPC-based methods for the different frequency intervals.

The EPDFs of the LPCPP method and the LPC method in the different frequency intervals

are shown in Fig. 4.19. It can be seen that the spread of EPDF of the LPC method is
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greater than that of the LPCPP method within each frequency interval. For the μ analysis

in Fig. 4.20, the μ of the LPC method is greater than 0 in the low-frequency interval (i.e.

B1) and is less than 0 in the high-frequency interval (i.e. B5). This indicates that the LPC

method overestimates the frequency in the low-frequency interval and underestimates the

frequency in the high-frequency interval. The reason is that the EPDF of the LPC method

is biased toward a positive error in the low-frequency interval (i.e. B1), i.e. some of

the LPC estimates are too large. Similarly, the error is biased toward negative error in

the high-frequency interval, i.e. some of the LPC estimates are too small. However, the

LPCPP method can significantly reduce this bias of the LPC method.
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 f 
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Fig. 4.21 The frequency resolution of both LPC-based methods for the different frequency

intervals.

Table 4.7 LPCPP vs LPC: The TBP for the different frequency intervals.

Frequency Interval B1 B2 B3 B4 B5
LPCPP 0.1783 0.0672 0.0642 0.0655 0.0968

LPC 2.3148 2.5775 2.6077 2.6418 2.2886

For the frequency resolution analysis in Fig. 4.21, the LPC method has a lower value of

Δ f in the low and high-frequency intervals. The reason is that the estimates of the LPC

method in the high-frequency interval and the low-frequency interval are always biased

to one side, while the EPDFs in the middle frequency intervals (i.e. B2, B3 and B4)
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have little bias (distributed on both sides), thus causing the Δ f in the middle frequency

interval is higher than other frequency intervals (i.e. B1 and B5). This result is consistent

with that observed in Fig. 4.20. For the LPCPP method, the values of Δ f in low and

high-frequency intervals are slightly higher than that of other frequency intervals. This is

because the LPCPP method further processes the LPC pole where the associated pole is

combined with the dominant pole to determine the final frequency estimate. In the low-

frequency interval or high-frequency interval, the associated poles of the LPCPP method

are close to the middle frequency. Therefore, the LPCPP method has slightly higher

values of Δ f in the low and high-frequency intervals. However, the different reasons

cause the performance of the two methods to be different in different frequency intervals,

but the Δ f of the LPCPP method is always much smaller than that of the LPC method

in each frequency interval. In other words, the LPCPP method can provide a higher

frequency resolution than that of the LPC method at different frequency intervals. In

addition, the details of TBP are shown in Table 4.7. Since Δt is fixed in this experiment,

the TBP value of the LPCPP method is much lower than that of the LPC method at the

same frequency interval. In short, the LPCPP method can significantly reduce the bias of

the LPC method in the low-frequency interval and high-frequency interval. Furthermore,

the LPCPP method still can provide finer spectral resolution than that of the LPC method

under the different frequency intervals.

4.3.4 Filter Order Analysis for TBP

In this experiment, the effect of the filter order on the bias μ and frequency resolution

Δ f of both LPC-based methods (i.e. LPCPP and LPC) is analysed. The filter order P is
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Fig. 4.22 The bias of the LPCPP and the LPC methods for different filter orders.

Fig. 4.23 The frequency resolution of the LPCPP and LPC methods for different filter

orders.

changed from 5 to 25 and the step size is 5. The single-component PRVF signal is still

used for 10,000 Monte Carlo trials and the time duration of each PRVF signal is Δt =1

s. The SNR value is 3 dB and other parameters are the same as in the above experiment.

Furthermore, it will focus on selecting three representative frequency bands for detailed
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Table 4.8 LPCPP vs LPC: The TBP for different filter orders.

Filter Order 5 10 15 20 25

B1(TBP) LPCPP 0.7398 0.2702 0.1945 0.1529 0.4639

LPC 0.7399 0.2707 0.5647 1.1282 1.9428

B3(TBP) LPCPP 0.3036 0.1065 0.0756 0.0624 0.0588

LPC 0.3049 0.2426 0.5803 1.3860 2.1785

B5(TBP) LPCPP 0.7558 0.2712 0.3370 0.3677 0.4467

LPC 0.7559 0.3650 0.5968 1.0877 1.9075

analysis, namely, B1 represents the high-frequency interval, B3 represents the middle-

frequency interval and B5 represents the high-frequency interval. Fig. 4.22 and Fig. 4.23

show the bias analysis and the frequency resolution of LPCPP and LPC for different filter

orders. In Fig. 4.22, the bias μ of the LPC method in the low-frequency interval is greater

than 0 and in the high-frequency interval is less than 0. This indicates the LPC method has

a larger bias in the low and high-frequency intervals than in the middle frequency interval.

The bias μ (Fig. 4.22) and the Δ f (Fig. 4.23) of the LPC method first decrease and then

increase with the increase of filter order. The LPC method has the smallest bias value at

P = 15 and it has the smallest Δ f at P = 10. These results indicate the performance of

the LPC method is dependent on the filter order. For the LPCPP method, it can provide

a smaller bias than the LPC method after P is greater than 10. The reason is that the

filter order is too low to provide sufficient spectral information when P = 5. In Fig. 4.23,

the LPCPP method has a high-frequency resolution under different filter orders and is

not much affected by the filter order. So the performance of the LPCPP method is less

sensitive to the filter order than that of the LPC method. Table 4.8 shows the TBP results

of this experiment in which the LPCPP values are less than the LPC for all cases.
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Fig. 4.24 The bias of the LPCPP and LPC methods under different SNRs.

Fig. 4.25 The frequency resolution of the LPCPP and LPC methods under different SNRs.

4.3.5 Signal Noise Analysis for TBP

In this experiment, the effect of different SNRs on the two methods is analysed. The filter

order P =15 and the time duration of each PRVF signal is Δt =1 s. Other experimental

parameters are the same as the above experiment. Fig. 4.24 and Fig. 4.25 demonstrate the
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bias μ and Δ f of LPCPP and LPC under different SNRs. It can be seen that the LPCPP

method has a smaller μ than the LPC method under the same SNR and the LPCPP method

can provide a higher frequency resolution than that of LPC for the same SNR. In Fig. 4.25,

the Δ f of the LPC method becomes larger as the SNR is increased. The reason is that the

range of EPDF only analyses frequency errors less than 5 Hz. But the error of estimates

of the LPC method is over 5 Hz when the signal has a low SNR. So only the errors

between the -5 and 5 Hz are counted which is why the μ and Δ f of the LPC method

become greater as the SNR increases. Fig. 4.26 and Fig. 4.27 show the results when

Fig. 4.26 The bias of the LPCPP and LPC methods under different SNRs where the error

range extends from -15 to 15 Hz.

the error range extends from -15 to 15 Hz. Fig. 4.26 shows that the bias of both methods

is decreased as the SNR increases and Fig. 4.27 shows that the Δ f of both methods is

decreased as the SNR increases. The bias of the LPCPP method still is much lower than

that of LPC and the frequency resolution is much lower than that of LPC at B3. These

results show that the LPCPP method has a higher tolerance to noise than LPC. Table 4.9
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Fig. 4.27 The frequency resolution of the LPCPP and LPC methods under different SNRs

where the error range extends from -15 to 15 Hz.

shows the TBP values of LPC and LPCPP where the error range of EPDF is from -5 to

5 Hz. In short, the TBP value of LPCPP is lower than the LPC method for the different

SNRs.

Table 4.9 LPCPP vs LPC: The TBP under different SNR levels.

SNR(dB) 0 3 6 9 12

B1(TBP) LPCPP 0.3195 0.2497 0.1385 0.2779 0.2681

LPC 0.5363 0.6414 0.7316 0.8568 1.3547

B3(TBP) LPCPP 0.1200 0.0734 0.0527 0.0388 0.0202

LPC 0.6966 0.7367 0.9320 1.3950 1.6848

B5(TBP) LPCPP 0.2223 0.1892 0.3631 0.1957 0.1790

LPC 0.5469 0.4649 0.7195 0.9631 1.2289

4.3.6 Conclusions

In this section, the time-bandwidth product for the parameterised time-frequency method

was analysed. Specifically, a new method for measuring the frequency resolution of para-

metric time-frequency methods was presented. The TBP value of the EPDF was used
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to analyse the performance of the LPCPP method. Furthermore, the μ value was used

to measure the bias of the frequency estimates and the Δ f value was used to represent

the frequency resolution of the LPC-based method. The experiment of the TBP analysis

shows that the LPCPP method can significantly improve the spectral resolution compared

to the LPC method. Furthermore, the μ value of the LPCPP method is closer to 0 than that

of the LPC method which means the LPCPP method can provide more accurate frequency

estimates. In addition, the performance of the LPCPP method and the LPC method in

different frequency intervals is also analysed. It can be found that the LPCPP method can

significantly reduce the bias of the LPC method in the low and high-frequency intervals.

It can provide a higher frequency resolution than LPC in different frequency intervals.

Furthermore, the LPCPP method is less sensitive to the filter order and has a higher toler-

ance of noise than LPC. In short, the LPCPP method has a much smaller TBP value than

the LPC method under the same experimental conditions.

4.4 Chapter Summary

This chapter presented some representative simulation analyses of the LPCPP method and

the results show that it is particularly suited for EEG signal processing. The first section

presented the LPCPP method can realise the enhancement of frequency estimation and

it has a high noise tolerance. Furthermore, the results showed that the LPCPP method

is particularly useful for the dominant frequency estimation of an unknown signal. The

second section demonstrated that the LPCPP method can realise the real-time dominant

frequency tacking and it can significantly reduce the invalid frequency estimates of the
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LPC method. Moreover, the LPCPP method outperforms the LPC method under fast

frequency changes. The third section presented the TPB analysis of the LPCPP method,

the results showed that the LPCPP method can significantly improve the spectral resolu-

tion compared to the LPC method. Furthermore, the LPCPP method can reduce the bias

of the LPC method for the frequency estimation in the low and high-frequency intervals.

In short, the LPCPP method is well suited for processing poor signal-to-noise ratio, time-

varying, intermittent and multi-component signals (i.e. EEG signals). In conclusion, the

LPCPP method has obvious advantages in frequency identification and frequency tracking

compared with the LPC method and the LPCPP method is well suited to the analysis of

EEG signals. It is believed that the LPCPP method has the potential to be a useful tool in

the field of signal processing.
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Chapter 5

EEG Spectra Activity Analysis

Framework

In this chapter, an EEG spectral analysis framework involving the LPCPP method will

be presented and it can realise two benefits for EEG spectra analysis: The first one is the

framework that can realise real-time tracking of the dominant frequencies of EEG signals.

The second is to propose a number of EEG centre frequencies to describe the dominant

EEG spectral activity which respectively corresponds to different EEG waves (i.e. Delta,

Theta, Alpha, Beta and Gamma). This chapter has five sections: The first section gives

the introduction to the proposed EEG spectral framework. The second section cleans the

EEG dataset using the autocorrelation method. The third section presents an example of

real-time tracking of EEG dominant frequencies using the LPCPP method. The fourth

section presents the spectral analysis results of the proposed framework on three different

EEG datasets. The last section is the summary of the chapter.
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5.1 Introduction to the EEG Spectra Analysis Framework

From the previous analysis, it can be seen that the LPCPP method is a parameterised

time-frequency method that has a high noise tolerance and can provide a lower time-

bandwidth product than the LPC method. The LPCPP method is excellent at processing

multi-component signals and has the ability to track the instantaneous-frequency change

in the form of numerical estimates. Moreover, the EEG signal is a high noise, time-

varying, intermittent signal which contains multiple frequency components. The LPCPP

method is particularly suited to EEG processing.

Fig. 5.1 The overview of the EEG spectra analysis framework.

EEG acquisition usually has many different electrode positions to record electrical signals

simultaneously. However, not all electrical signals can genuinely correspond to human

brain activity. Some failed collections may come from poor electrode contact or some

other collected EEG may come from the brain cortex areas with no brain activity at a

given time. Poor grounding of the EEG electrodes can cause a significant 50 Hz or 60

Hz artifact which depends on the local power system’s frequency. Whether the artifacts

are caused by biological or environmental noise, the required EEG signal should contain

rich spectral information and not be heavily corrupted by artifacts, i.e. the collected EEG
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signal should capture genuine brain spectral activity rather than random noise information.

Therefore, EEG datasets need to be cleaned up using autocorrelation methods in order to

find correlated EEG signals within a given time. These correlated EEG signals should

contain richer spectral information. The LPCPP method provides a numerical estimate

of the dominant frequency that can be used to realise EEG dominant frequency tracking.

Furthermore, the LPCPP method can generate a histogram that is a distribution of the

dominant frequencies in the frequency domain, namely a Discrete Probability Density

Function (DPDF). The peaks of the DPDF will be considered as the centre frequency of

the EEG activity to describe the dominant EEG spectral activity instead of these fixed

frequency boundaries. The overview of the EEG spectra analysis framework is shown in

Fig. 5.1. It can be seen that the first step is to clean up the EEG datasets using autocorrela-

tion methods. The second step is to slide a window duration over the EEG signal samples

and apply the LPCPP method to each window duration EEG signal to estimate the domi-

nant frequency. For the last step of this EEG spectral framework, there are two objectives

to achieve. One is to realise real-time tracking of the dominant frequency of EEG signals.

The term ’real-time’ is the same as the previous definition for LCFM signal analysis in

Section 4.2 which means the LPCPP method can achieve the dominant frequency estima-

tion for each sampling instant. The other is to propose a series of new centre frequencies

to describe the EEG spectra activity by analysing EPDF. The following will provide a

detailed analysis of each step of the proposed EEG spectral framework.
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Table 5.1 Interpretation of the correlation coefficient.

ω Interpretation

0.9 to 1.0 Very high correlation

0.7 to 0.9 High correlation

0.5 to 0.7 Moderate correlation

0.3 to 0.5 Low correlation

0.0 to 0.3 Negligible correlation

5.2 EEG Dataset Cleanup Analysis

The autocorrelation method is used here first to select EEG signals and to reject EEG

signals that are excessively noisy. In statistics, the correlation coefficient measures the

strength and direction of a linear relationship between two variables [120]. One of the

basic assumptions in the linear regression model is that the random error components

or disturbances are identically and independently distributed. For a time series si, the

autocorrelation for lag k is given by

yk =
ck

c0
, k = 1,2, · · · (5.1)

where

ck =
1

N

N−k

∑
i=1

(si − s̄)(si+k − s̄) (5.2)

The N represents the effective sample size of s and c0 is the sample variance of the time

series. Autocorrelation is a correlation coefficient that can be used for finding correlated

EEG signals at a lag time. Time-frequency analysis of EEG signals usually has a duration

of seconds. For example, Xu, Shanzhi et al. used an adaptive graph spectral analysis

method to extract features of the EEG signals and they used an EEG window duration
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is 2 s [121]. Kim, Hyun-Ji et al. evaluated a hybrid BCI system by comparing features

from spatial, spectral and temporal domains and the EEG window duration they used is

3 s [122]. Amin, Md Shahedul et al. performed a spectral analysis of human sleep EEG

signals with a window duration of 1 s [123]. In this thesis, the window duration of the

EEG signal was chosen to be 1 s, i.e. the autocorrelation coefficient of the EEG signal at a

lag time of 1 s is analysed here. Furthermore, the autocorrelation coefficients of the EEG

signal whose magnitude should be greater than a threshold value ω at a lag time indicate

that the EEG signal is considered which has rich spectral activity information.

rk > ω (5.3)

where the interpretation of the threshold value ω in the Table 5.1 [124]. The autocorrela-

tion method is used here to detect non-randomness in EEG and find the EEG signals with

high autocorrelation at a lag time of 1 s. In other words, the correlation coefficient of the

EEG signal at a lag time of 1 s should be greater than ω = 0.7.

Table 5.2 The details of the EEG datasets.

Dataset Subjects Fs (Hz) Channels Times Number of Signals Year
BCI109 109 160 64 14 97,664 2004

MI52 52 512 64 5 16,640 2017

GAL12 12 500 32 8 3,072 2014

Table 5.3 The EEG datasets with autocorrelation coefficients greater than 0.7 at 1 s lag

time.

Dataset BCI109 MI52) GAL12
Percentage (100%) 19.98 93.99 25.42

Number of signals 19,513 15,640 781
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Fig. 5.2 Autocorrelation coefficient analysis of different EEG datasets at lag time 1 s.

Three public EEG datasets are used here, they are BCI109 [2], MI52 [27] and GAL12 [58].

The details of the three datasets are introduced in Chapter 2.1.4. These three datasets were

chosen for several factors:

1. They are all open source datasets that are publicly available and easily accessible.

2. They use the same EEG topographic standard (i.e. the international 10-10 system).

3. They all use a non-invasive approach to EEG signals acquisition and they all use

the BCI2000 system [2] to collect and store EEG signals.

Table 5.2 summarises the three datasets. It can be seen that BCI109 has the largest number

of EEG signals and the earliest acquisition year. Fig. 5.2 shows the results of the analysis

of the autocorrelation coefficients for the three EEG datasets. The x-axis represents the

threshold of the autocorrelation coefficient and the y-axis represents the percentage of the

number of EEG signals that has a correlation coefficient greater than the corresponding

x-axis threshold ω at lag time 1 s. It can be seen that as the threshold of the correlation

coefficient increases, the number of eligible EEG signals for all three datasets decreases.

Furthermore, the percentage of the BCI109 dataset is lower than the percentage of the

other two datasets (i.e. MI52 and GAL12) under different ω . The reason is that with
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the progress of EEG acquisition equipment over time, the acquisition equipment of the

other two datasets can obtain the EEG signals with higher autocorrelation coefficients at

the same lag time. In other words, the acquisition equipment of the other two datasets

can collect EEG signals containing more non-random information and richer spectrum

information. In addition, when the autocorrelation coefficient of the signal is greater than

0.7, the signal has a high correlation at its corresponding lag time [124]. The details of

EEG signals with high correlation at a lag time of 1 s in the three datasets are shown in

Table 5.3. These selected EEG signals will be used in the following experiments.

5.3 EEG Dominant Frequency Tracking

Fig. 5.3 The time-frequency analysis of the LPCPP method and the STFT method for an

EEG signal.

An example is presented to achieve real-time tracking of dominant frequencies in an EEG

signal by using the proposed EEG spectral analysis framework. Fig. 5.3 shows the time-

frequency analysis of a 10 s EEG signal. This EEG signal is from the 104th subject

in the dataset BCI109. The sampling frequency of the BCI109 is 160 Hz, the duration
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of the window signal is 1 s and the step size is 1 sample (i.e. the length of overlap is

159 samples). The LPCPP method and the STFT method are used in this example. The

parameters of the LPCPP method are P = 40, β = 0.4 and λ = 5 Hz. In Fig. 5.3, the

red dots represent the frequency estimates of the LPCPP method at each sampling instant.

For the STFT method, the window function is the Hanning window and the number of

DFT (Discrete Fourier Transform) points is 256. It can be seen that the LPCPP method

can directly give the dominant frequency estimations at each sample instant. In addition,

since the frequency estimations of the LPCPP method are in numerical form, the LPCPP

method is ideally suited to observe the EEG dominant frequency change in real-time. The

STFT method is an example of a waveform time-frequency method that can indicate how

the energy of the signal is distributed over the time-frequency plane. Furthermore, both

the LPCPP method and the STFT method can identify the AC power supply frequency

of 60 Hz. Moreover, it can be seen that most of the EEG spectrum activity is between 0

and 50 Hz which is also one of the reasons why the analysis of the EEG centre frequency

in section 5.4 focuses on the range between 0 and 50 Hz. In short, the LPCPP method

is a parameterised time-frequency method that can realise the real-time tracking of the

spectrum features of dynamic EEG signals.

5.4 EEG Centre Frequency Analysis

The EEG signal is divided into a number of fixed frequency bands (i.e. Delta, Theta,

Alpha, Beta and Gamma). However, different researchers have defined different frequen-

cies for these bands with little consensus between them which has significant conse-
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quences for EEG interpretation [45, 46, 47, 48, 49, 50]. Furthermore, the EEG spectral

activity should not be limited by fixed frequency boundaries. In this section, a new frame-

work of centre frequencies will be proposed to replace the fixed EEG frequency bands.

Fig. 5.4 DPDF of the BCI09 dataset at the different β values.

Fig. 5.5 DPDF of the MI52 dataset at the different β values.

Since the LPCPP method is a parameterised time-frequency method that can provide

a series of numerical dominant frequency estimates, the method can generate a DPDF

(Discrete Probability Density Function) which is a distribution of the dominant frequen-

cies in the frequency domain. The duration of the window is 1 s and the overlap is 0.
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Fig. 5.6 DPDF of the GAL12 dataset at the different β values.

In addition, the three datasets (i.e. CI109, MI52 and GAL12) have different sampling

frequencies. Due to the maximum frequency determined by the Nyquist limit, the different

EEG datasets have different frequency domain ranges. Furthermore, clinical medicine

shows that conventional EEG spectra activity exists between 0.5-30 Hz [39]. Moreover,

the experiments in the latter Section 5.3 show that the EEG spectral activity range is

mainly between 0 and 50 Hz and this frequency range can also meet the experimental

requirements. Therefore, the frequency range of the DPDF of the three EEG datasets is

0-50 Hz. For a more detailed frequency distribution of DPDF from 0 to 15 Hz, the bin

size is 0.5 Hz. From 15 to 50 Hz, the bin size is 1 Hz. Moreover, in order to reduce

the effect of different sampling frequencies on the LPCPP method, the filter order of the

LPCPP method on different datasets is different. The filter order of BCI109 is 40 and the

filter order of the other two datasets is 100. Fig. 5.4,Fig. 5.5 and Fig. 5.6 show the DPDF

results of the three EEG datasets at different β values (i.e. 0.2, 0.4 and 0.6), respectively.

The mean values for different β values for each dataset are calculated and they are repre-

sented by black dashed lines. As can be seen, the DPDFs of the three datasets have three

130



5.4 EEG Centre Frequency Analysis

significant peaks between 0 and 15 Hz and the peaks of the mean values are considered as

a series of EEG centre frequencies. The median value of the bin corresponding to the three

peaks of the mean value is the corresponding centre frequency. For the BCI109 dataset,

the first three peaks of the mean values are 1.25 Hz, 5.75 Hz and 10.75 Hz. For the MI52

dataset, the first three peaks are 1.75 Hz, 6.25 Hz and 10.75 Hz. It is particularly notice-

able that the DPDFs of the MI52 dataset have a distinct peak at the bin 49-50 Hz. The

reason is that the AC power supply frequency of the MI52 dataset is 50 Hz. Furthermore,

the first three peaks of the GAL 12 dataset are 1.75 Hz, 6.75 Hz and 10.75 Hz. Although

the three peaks in the different datasets are not exactly the same, their third peaks are all

at 10.75 Hz. Moreover, the difference between the first peaks of the three datasets and the

difference between the second peaks of the three datasets does not exceed the bin size (i.e.

0.5 Hz).

The above experiments independently analyse the DPDFs of the three EEG datasets.

Furthermore, Fig. 5.7(a) shows the DPDFs for three EEG dataset. The β value of the

LPCPP method for the BCI09 dataset is 0.4 and the β of the other two datasets is selected

as 0.2. The reason for choosing these β values is that these β values can produce more

significant peaks in the DPDF of the corresponding EEG dataset. Furthermore, the mean

value of the DPDFs for the three datasets is calculated. The three peaks for these DPDFs

are 1.75 Hz, 6.75 Hz and 10.75 Hz. Fig. 5.7(b) shows the maximum frequency range of

different EEG waves (i.e. Delta, Theta, Alpha, Beta and Gamma) from 108 EEG studies

[26]. It can be seen that the first peak 1.75 Hz corresponds to the EEG spectral activity

in the Delta band, the second peak 6.75 Hz corresponds to the EEG activity in the Theta

band and the third peak 10.75 Hz corresponds to the EEG spectral activity in the Alpha
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Fig. 5.7 Centre frequency analysis of DPDF for different the EEG datasets.

band. Furthermore, the rest of the frequency bands (i.e. 15 to 50 Hz) in the DPDF anal-

ysis without significant peaks correspond to EEG spectral activity in the Beta and Gamma

bands.

5.5 Chapter Summary

In this section, a new EEG spectral analysis framework involving the LPCPP method was

proposed and three EEG datasets were used for analysis. The first step of this frame-

work is to use the autocorrelation method to eliminate excessively noisy signals from the

signal sets. It can be observed that compared with the BCI109 dataset, the latest two
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datasets (i.e. MI52 and GAL12) have larger autocorrelation coefficients at the same lag

time. Furthermore, EEG signals with autocorrelation coefficients greater than 0.7 at a lag

time of 1 s were selected for the further EEG spectra analysis. In addition, this frame-

work presents an example of real-time tracking of EEG dominant frequencies. Compared

with the transform-based time-frequency analysis method of STFT, the LPCPP method

can provide parameterised frequency estimation and this method can more intuitively

observe the dynamic change of the dominant frequency. Furthermore, the dominant spec-

tral activity of the EEG can be found in the range of 0 to 50 Hz. Finally, the DPDFs

of the three EEG datasets were analysed separately and three significant peaks between

0 and 15 Hz were found. There is a great deal of variability and difference in opinion

as to the specific EEG frequency range that defines each band. The DPDFs of the three

datasets can identify three common peaks (i.e. 1.75 Hz, 6.75 Hz and 10.75 Hz) as the

three centre frequencies to describe the EEG dominant spectral activity. Furthermore,

these three centre frequencies correspond to the EEG activity in the EEG Delta, Theta

and Alpha bands, respectively. Compared to fixed EEG bands, EEG centre frequencies

can describe the statistical distribution of the wave frequencies. The spectral activity of

the EEG depends on the activity being performed by the subject and is not restricted by a

series of fixed frequency bands.
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Chapter 6

Summary and Future Work

This chapter will summarise the research work of this thesis and propose a series of future

research topics. This chapter is organised as follows. The contributions and achievements

of this thesis are summarised in the first section. As already discussed, the EEG signal is a

high-complexity bioelectric signal, typically characterized by a poor signal-to-noise ratio,

whose frequency is time-varying, intermittent and contains multiple frequency compo-

nents. A robust and time-resolved spectral analysis method for EEG signals is required

for its use in BCI systems. The objective of the thesis is to improve the analysis of EEG

signals. A new method called Linear Predictive Coding Pole Processing (LPCPP) method

was developed which is particularly suited to EEG signal analysis. The LPCPP method

can enhance frequency estimation and realise real-time dominant frequency tracking. Further-

more, it has a high noise tolerance and can greatly improve upon spectral resolution of the

LPC method. Furthermore, a new EEG spectra analysis framework was proposed using

the LPCPP method and this framework has two benefits for EEG spectra analysis. The

first one is to observe the dynamic changes in the EEG signal spectra activity in real-time.
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The second one is to propose a new spectral analysis framework to describe the dominant

spectral activity region of the EEG instead of the fixed EEG frequency bands. In short, this

thesis focused on analysing the spectral information of EEG signals and proposed a new

parameterised time-frequency analysis LPCPP method which can realise enhanced iden-

tification and real-time tracking of the dominant frequencies of the signal. In the second

section, some open questions are raised about the LPCPP method and the EEG analysis.

The LPCPP method still has some limitations that need to be considered in future work,

such as adaptive tuning of the LPCPP parameters (i.e. β and λ ). Furthermore, the LPCPP

method is ideally suited to its integration into machine learning-based systems and some

BCI applications incorporating the LPCPP method can be developed in the future. Finally,

details of the publications and other publicly available materials resulting from this work

are listed.

6.1 Summary of Contributions and Achievements

The EEG signal can be used to track and record brain wave patterns. It has been widely

used in various BCI applications, such as medical rehabilitation, smart home, education

and training, etc. However, EEG signals exhibit many of the typical characteristics of

biological signals:

• EEG is a high-noise signal. Its acquisition is always accompanied by various kinds

of noise, including biological noise and environmental noise.
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• EEG is a time-varying signal. EEG signal responds to human brain activity (emotion,

cognitive, etc.) and these brain activities depend on the activity of the subject and

they vary over time.

• EEG is an intermittent signal. The spectral components of EEG signals are intermit-

tent because the appearance and disappearance of certain brain activities is dynamic.

• EEG is a multi-component signal. EEG signal has been divided into different

frequency components (i.e. Delta, Theta, Alpha, Beta and Gamma) to reflect their

corresponding brain activities.

Therefore, the ability to track the dominant frequency changes in real-time is important

for studying EEG signals to observe the dynamics of brain activities. Time-frequency

methods provide a way to analyse the frequency dynamics in EEG signals. Furthermore,

there are some requirements for time-frequency analysis methods to analyse EEG signals:

• The method should be a parameterised method. Biomedical researchers are more

interested in establishing significant levels of electrical activity across the defined

wave bands (i.e. Delta, Theta, Alpha, Beta and Gamma). Many time-frequency

methods are spectrum waveform (not parameterised) methods, they can tell whether

a certain frequency component exists or not at any given time interval. However,

it is still a challenge in analysing multi-component signals to realise the separa-

tion of the spectrum components when they are overlapped in the time-frequency

plane. The parameterised time-frequency method can produce numerical dominant

frequency estimates and it is well suited to multi-components signal processing (i.e.

EEG signals).
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• The method should provide higher spectral resolution and enable real-time observa-

tion of dynamic EEG dominant spectra. The Heisenberg-Gabor Uncertainty Prin-

ciple indicates that there is a trade-off relationship between time resolution and

frequency resolution. When the time-frequency analysis method has a smaller TBP

(Time-bandwidth Product) value, it can provide a higher frequency resolution at the

same time duration (i.e. time resolution). Similarly, it can provide a higher time

resolution at the same frequency resolution. Therefore, the time-frequency analysis

methods with a smaller TBP value are required for real-time analysis of dynamic

EEG frequencies.

• The method requires a high tolerance for noise. It needs to have a robust perfor-

mance in high noise environments.

Therefore, in this thesis, a new parameterised time-frequency method called the LPCPP

method has been proposed which can be used for identifying and tracking the dominant

frequency components of an EEG signal.

In the previous chapters, the ability of the LPCPP method to identify and track the

dominant frequency of a signal was analysed in detail. It is well suited to EEG signal

processing. Furthermore, a new definition of TBP (Time-bandwidth Product) for the

parameterised time-frequency methods was proposed and the results showed that the

LPCPP method can provide a higher spectral resolution in signal analysis. In addition,

a new EEG spectrum analysis framework including the LPCPP method was proposed.

The LPCPP method can realise real-time tracking of the dominant frequencies of EEG

signals which helps us to observe the dynamic changes of the EEG spectra over time.
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Furthermore, a series of new EEG centre frequencies have been proposed which can

more accurately represent the spectral activity of EEG without being restricted to the

boundaries of fixed frequency bands. Specifically, the detailed contributions of this thesis

are summarised as follows:

1. The LPCPP method can achieve enhanced identification of the dominant frequency.

A PRVF (Pseudo-Randomly Varying Frequency) signal was used for the experi-

mental analysis and four metrics (i.e. AEP, IFP, VEP and IEP) were used to analyse

the performance of the LPCPP method to identify the dominant frequencies. The

results showed that the majority of the frequency estimates of LPCPP are valid and

are more accurate than the estimates of LPC. This is particularly useful for applica-

tions where it is required to identify the dominant frequencies of an unknown signal

(e.g. EEG). Furthermore, the LPCPP method is more robust to noise.

2. The LPCPP method can achieve real-time dominant frequency tracking. An LCFM

(Linear Chirped Frequency Modulation) signal was used to simulate signals with

different frequency change rates. The results showed that the LPCPP method outper-

forms LPC under time-varying signals and it significantly reduces the redundant

frequency estimates of LPC.

3. The LPCPP method can provide a higher spectra resolution than that of LPC. A

series of 10,000 Monte Carlo experiment trials were used to generate an EPDF

(Error Probability Density Function) of the error associated with the frequency esti-

mate. The mean and standard deviation of the EPDF were used to define the bias μ

and frequency resolution Δ f for the parameterised time-frequency method (i.e. LPC
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and LPCPP). This resulted in a new definition of TBP (Time-bandwidth Product) for

the LPC-based method was proposed. The results showed that the LPCPP method

can provide a lower time-bandwidth product than the LPC method and it can signif-

icantly reduce the bias of the LPC method in the low and high-frequency intervals.

4. Real-time EEG dominant frequency tracking. Compared with the waveform time-

frequency analysis method of STFT, the LPCPP method can provide parameterised

frequency estimation and it can directly observe the dynamic change of the domi-

nant frequency.

5. EEG centre frequency analysis. Three public EEG datasets (i.e., BCI109, MI52 and

GAL12) collected from 173 subjects with a total EEG acquisition duration of more

than 100 hours were used here. The autocorrelation method was used to eliminate

excessively noisy signals from the signal sets. Furthermore, a series of new EEG

centre frequencies were proposed to describe the concentrated frequency of EEG

activity from a statistical point of view. Specifically, the first three centre frequen-

cies 1.75 Hz, 6.75 Hz and 10.75 Hz correspond to EEG spectral activity in the

Delta, Theta and Alpha frequency bands, respectively. These EEG frequencies are

not confined to a fixed band and they should not be restricted by the classification

of frequency bands. The EEG centre frequencies can more accurately describe the

spectral activity of EEG and they can highlight the dynamic changes of the domi-

nant spectrum components in the EEG signal.

In the next section, some open problems and the future work for this thesis will be

discussed.
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6.2 Open Problems and Future Work

The LPCPP method is particularly suited to EEG processing. However, there are still a

number of shortcomings associated with the LPCPP method. For example, the parameters

(i.e. β and λ ) of the LPCPP method need to be manually adjusted which can be time-

consuming and can result in ambiguous results. Furthermore, the EEG signal is a dynamic

signal whose spectral activity changes with time, an adaptive automatic EEG processing

method is required for the BCI application. Therefore, this section introduces some of

the research directions which are closely related to the work in this thesis and appear

promising for future work.

Fig. 6.1 The feedback control loop system for the ELPCPP method.

A. The Enhanced LPCPP (ELPCPP) Method. With the continuous popularity of BCI

applications, an automated method is necessary for large-scale EEG data processing, espe-

cially automated methods that are more efficient and are less error-prone than manual

methods in dealing with big data. The Enhanced LPCPP (ELPCPP) method could be

considered in future work to overcome these current limitations to realise the automated

setting of these parameters. An algorithm capable of adaptively tuning the LPCPP param-

eters is required in order to fully automate the settings of these parameters [125, 126]. The

ELPCPP method could initially consider using a classic feedback control loop system to
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realise the automatic setting of the LPCPP parameters. The diagram of the ELPCPP

method is shown in Fig. 6.1. There are two steps in this system: The first step is to

analyse the parameters of the LPCPP method (i.e. β and λ ). The second step is the

tuning algorithm to automatically set the parameters which are indicated by the red box

in Fig. 6.1. The choice of the parameters depends on the filter order, the noise level and

the application scenarios (e.g. the EEG signals). The behaviors of these parameters are as

follows:

• If the value of β is too large, it will cause the number of dominant poles to increase

which may cause the LPCPP method to produce too many redundant frequency

estimates. Conversely, if the value of β is too small, the number of dominant poles

will decrease and the LPCPP method may not be able to identify all of the dominant

signal frequencies. This is a trade-off required in the choice of the β parameter

value.

• If the value of λ is too large, it will lead to an associated pole whose frequency is too

far away from the dominant pole and it will cause a deviation in the frequency esti-

mation. Conversely, if the value of λ is too small, it will cause some non-dominant

poles not to be considered in the final frequency estimates and it will cause some

loss of spectral information.

In addition, the greater the noise level and the filter order, the smaller the value of β

required to filter out the non-dominant poles to identify the dominant poles and the value

of λ needs to be increased to avoid loss of spectral information. Similarly, when the

number of frequencies that are needed to be identified increases, the value of β needs to
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increase to find more dominant poles. The frequency estimates generated by this ELPCPP

method could be more consistent and could be generated in a timely manner to enable its

use in BCI applications. In summary, the ELPCPP method can be a highly adaptive

automatic method that can automatically set the experimental parameters and realise real-

time EEG dominant frequency tracking.

Fig. 6.2 The overview of the EEG applications for EEG-based human activity recognition.

B. Demonstration in EEG Applications. An EEG application involving the LPCPP

method can be developed in future work to realise the EEG-based human activity recogni-

tion. A real-world EEG application to realise EEG-based human activity recognition that

can help in delivering the BCI technique out of the laboratory and into the real world. Fig.

6.2 shows an overview of the framework to achieve EEG-based human activity recogni-

tion. There are three steps for this EEG analysis framework: The first step is EEG pre-

processing. The autocorrelation method is used to select the EEG signals which contain

rich spectral information. The second step is EEG dominant frequency estimation. The

raw EEG signal will be separated into a fixed-length window signal and each window

signal is processed by the LPCPP method to estimate the dominant frequencies which

will be considered as the frequency features of the EEG signals. The last step is to realise
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the EEG matching. A deep learning algorithm called Long Short-Term Memory (LSTM)

method could be used to achieve EEG-based activity recognition. Machine and deep

learning-based algorithms are the emerging approaches to addressing prediction prob-

lems in time series. The LSTM algorithm is a special type of Recurrent Neural Networks

(RNN) model which is suitable for modeling time-series data [127, 128, 129, 130, 131].

Therefore, the LSTM method could be considered to realise the EEG-based activity recog-

nition. The proposed new LPCPP method can be used for continuous EEG signal moni-

toring to observe and track changes in EEG signals to support clinical diagnosis. For

example, EEG signals can be used for real-time emotion [132] and attention [133, 134]

monitoring. The LPCPP method can directly give robust numerical frequency estimates

compared to the waveform time-frequency analysis method (e.g. short-time Fourier trans-

form and continuous wavelet transform) and these frequency estimates can be used to

monitor changes in the EEG signal to observe its real-time spectral activity. In addition,

EEG still has many applications in BCI systems, such as medical rehabilitation [135,

136, 137, 138, 139], smart home [140, 141, 142, 143], education [144, 145, 146, 147]

and training [148, 149, 150, 151, 152], etc. It has the potential to become a potentially

powerful tool in the field of EEG research and BCI applications.

C. Other Potential Applications for LPCPP. The LPCPP method was proposed for

the spectral analysis of EEG and it shows excellent performance in the processing of

time-varying, high-noise and multi-component data. Furthermore, spectral features are

important for the study of many applications, such as speech analysis [153, 154, 155,

156, 157, 158], mechanical vibration analysis [159, 160, 161, 162], seismographic anal-
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ysis [163, 164, 165, 166, 167, 168, 169] and image analysis [170, 171, 172, 173]. The

LPCPP method is a parameterised time-frequency method that can provide the numerical

dominant spectral features and is therefore ideally suited to its integration into machine

learning-based systems. It has the potential to become a useful general tool in the field of

signal processing.
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