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Expecting the Unexpected: Measure the
Uncertainties for Mobile Robot Path Planning

in Dynamic Environment

Yan Li and Brian Mac Namee and John Kelleher

Applied Intelligence Research Center, School of Computing,
Dublin Institute of Technology, Dublin, Ireland

http://www.comp.dit.ie/aigroup/

Abstract. Unexpected obstacles pose significant challenges to mobile
robot navigation. In this paper we investigate how, based on the as-
sumption that unexpected obstacles really follow patterns that can be
exploited, a mobile robot can learn the locations within an environment
that are likely to contain obstacles, and so plan optimal paths by avoiding
these locations in subsequent navigation tasks. We propose the DUNC
(Dynamically Updating Navigational Confidence) method to do this. We
evaluate the performance of the DUNC method by comparing it with ex-
isting methods in a large number of randomly generated simulated test
environments. Our evaluations show that, by learning the likely locations
of unexpected obstacles, the DUNC method can plan more efficient paths
than existing approaches to this problem.

Keywords: Mobile robot navigation, dynamic environments, learning

1 Introduction

A basic requirement for a mobile robot is the ability to plan and execute a
path to a goal destination [1, 2]. Unexpected obstacles, however, pose significant
challenges to autonomous mobile robot navigation. For the purposes of this work
we define unexpected obstacles as obstacles that may block corridors during
robot navigation, but are not permanent features of the environment and hence
do not appear on maps of the environment. For example, in a school building a
robot may be trying to navigate a corridor and find that the corridor is blocked
by a group of students who have just spilled out of a classroom. In situations
where an unexpected obstacle blocks a path a robot may be forced to replan
the route to the goal and take a detour, resulting in extra navigational costs in
terms of time and energy.

Often, however, there is a regularity to the appearance of unexpected obsta-
cles. For example, students may block a path at regular intervals (before and
after their scheduled classes) or particular doors may be closed at particular
times for security reasons. If a robot could learn the pattern of unexpected ob-
stacles and annotate the map used for planning with this information then more
efficient paths could be planned.
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Contributions: The main goal of this paper is to investigate how a mobile
robot can learn features of unexpected obstacles in dynamic environments, so
that optimal shortest paths can be planned. In particular, we will develop and
evaluate a method for annotating topological maps with information regarding
the probability of a corridor being blocked based on the robot’s prior experiences
in the environment.

Overview: This paper is organised as follows: In Section 2, we review back-
ground work. In Section 3, we describe our method for dynamically updating and
maintaining the navigational confidence associated with an edge in a topological
map, which we name DUNC. In Section 4, we present experiments and results
on evaluating DUNC method. Finally, in Section 5, we discuss the performance
of the DUNC method and suggest directions for future work.

2 Background

Path planning is a process of planning a collision-free path between a start
position and a goal position [3]. It is a critical problem in mobile robot navigation.
There are generally two types of robot path planning: static path planning and
dynamic path planning [4, 5]. Static path planning finds optimal passable paths
based on a full knowledge of the environment [6–8]. However, static path planning
cannot be used to deal with unexpected obstacles in dynamic environments.

Dynamic path planning generates passable paths based on environment changes
(i.e, unexpected closed doors). There are existing methods that deal with un-
expected obstacles locally. Examples include potential field methods [11], the
dynamic window approach [12] and vector field histograms [13]. However, these
local planning techniques focus on real time local efficiency instead of global
optimal path planning [14] and suffer from the problem of local minima [15]. As
a result they have no mechanism for retaining the information gleaned from one
navigation (for example the fact that the robot encountered an unexpected ob-
stacle at a particular location) and using it to improve subsequent navigations.
Some other existing approaches deal with uncertainties based on probabilistic
methods for improving robot localisation, but they are not proved to be appli-
cable to dynamic path planning problems [9, 10].

One existing dynamic global approach is proposed by Yamauchi and Beer [2].
They use the term topological change to describe variations in the environment
that effect the decisions of a robot path planner. In their topological represen-
tation, a confidence value, defined as a “robot’s certainty that a topological link
can be traversed”, is associated with every link. In their approach, if a robot
successfully navigates from a topological node A to a topological node B, the
navigational confidence associated with the link between A and B, CAB , in the
map is increased. If, however, the robot fails to reach B from A then CAB is
decreased. During path planning the cost of each candidate path is the sum of
the costs associated with each link in the plan and the cost of each link C is
a function of the navigational confidence associated with that link. One of the
strengths of Yamauchi and Beer’s method is that successful navigation tasks are
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recorded. But their method suffers from the fact that path cost is solely based
on confidence and neglects other criteria such as path length. As such, their ap-
proach would preference a very long path over a much shorter path if the longer
path had a slightly higher confidence associated with it. In our approach, we
take the length of path into account to measure the uncertainty cost of each
link.

Stentz and Hebert [16] propose an autonomous navigation system that deals
with the cost of potential obstacle positions based on a predefined coefficient
value (a scalar value σ). In their system, potential obstacle positions are marked
with high scalar values, so that the path planner will avoid planning paths across
those positions. Then a graph search method is used to find an optimal path with
the least cost. The scalar method suffers from the problem that since the cost of
all the edges are updated based on the same σ, the cost update process has little
effect on potential obstacle positions with low static cost and therefore a marked
potential block position will be considered as unmarked by the path planner. In
our approach, unexpected obstacles are measured separately for different edges
and the measurements are normalised with maximum edge length.

Briggs et al. [17] propose a ratio method that deals with unexpected ob-
stacles in dynamic environments based on a topological representation. In their
approach, each topological edge is associated with a ratio value R. R is calcu-
lated as the ratio of the number of detections of unexpected obstacles and total
number of traverses on the topological edge. After every edge traversal, the ratio
value is updated based on whether an unexpected obstacle is detected or not.
If the robot successfully traverses an edge, the ratio of the edge is decreased,
otherwise R is increased. Hu and Brady [1] propose a similar method to Briggs
et al’s. They classify uncertainties as three types on a predefined path: obstacles
that partially block the robot path, obstacles that fully block the robot path and
moving obstacles that cross the robot path. They measure three types of uncer-
tainties based on a ratio value R. Interestingly a decay process is used in Hu and
Brady’s approach to release edges with high R based on an exponential function
for the subsequent navigation tasks. Essentially this decay process allows the
system to forget that the robot encountered an obstacle on a particular edge
and makes the edge viable during subsequent path planning. In contrast to Hu
and Brady’s approach, our approach uses a dynamic confidence scoring method
with a confidence decay component to measure the uncertainties in dynamic
environments.

3 The DUNC Method

In this section we present our method for dynamically updating the naviga-
tional confidence associated with edges in a topological map, which we will refer
to as the DUNC method. The DUNC method is part of our Dynamic Confidence
Topological Map Approach (DCTMA). DCTMA is an approach for solving dy-
namic robot path planning problems based on a topological representation of the
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world. It is built on top of our landmark-based robot localisation and navigation
system [18], with corridor following and obstacle avoidance behaviours.

A Dynamic Confidence Topological Map DCTM =< N,E > is a topo-
logical map that can be maintained and updated dynamically based on the
sensor data of the robot as it moves through the environment. A DCTM con-
tains a set of nodes N = {N1, N2, ..., Nn} , which represent landmarks (i.e,
T-junctions, X-junctions) in the environment. And it contains a set of edges
E = {E1, E2, ..., En}, which are passable edges between landmark positions.
Each edge has a 3-tuple data structure {D,L,C}, where: D is the static cost of
the edge (i.e, the length of an edge); L is running score that is increased by a
fixed amount, δ+, each time the edge is successfully navigated (see Equation 1)
and decreased by a fixed amount, δ−, each time the robot encounters an obsta-
cle on the edge (see Equation 2); and C is the confidence that an edge can be
traversed by the robot and is always calculated from L using Equation 3. In the
DCTM system L is initialised to 0 and C is consequently initialised to 0.5.

L = L+ δ+ (1)

L = L− δ− (2)

C = 1− 1

1 + eL
(3)

During path planning the cost of each edge Ex is calculated based on D and C
via a weighted sum aggregation function given WD and WC as the corresponding
weight for D and C. In this system the values of WD and WC are constrained
such that the sum of the weights, WD +WC , always equals 1. Then Ex is used
to feed the Dijkstra graph search method [19] to find optimal paths.

As stated in Equation 3, the confidence score of an edge is a function of the
L score of the edge which has the value range from −∞ to ∞. This has the
potential to cause problems as the L score for a particular edge may become so
low that paths including the edge are never considered for navigation or so high
that paths including the edge are always selected even if the robot encountered
an obstacle on that edge very recently.

One way of addressing this issue is to impose a bounds on the range of values
that L can take. We have found that bound the range of L between −4 and +4
permits a confidence range (0.018 to 0.982) that is large enough to reflect the
naviation results (encounter an obstacle or successful traverse) while at the same
improving the chance that a low confidence edge will be reused at limit points.

Another extension that could be made to the basic confidence representa-
tion is inspired by Hu and Brady’s decay process [1]. In the DUNC method the
proposed memory decay process implements a regression towards the initial a
confidence value of 0.5 on the edges in the DCTM . The memory decay compo-
nent makes the robot periodically regress the L score of an edge (and hence the
edge confidence) towards the initial value of 0; essentially, allowing the robot
to forget the obstacles it has encountered on the edge or its previous successful
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navigations of the edge. The motivation for proposing this extension is similar
to the motivation for imposing a bounds on the range of L namely that as the
robot navigates through the environment some edges in the DCTM may be
marked with a low confidence, due to the robot failing to navigate through them
successfully. The effect of marking an edge with a low confidence is that that
edge has a low probability of being used for subsequent navigation tasks. The
memory decay component releases these edges to make them accessible again to
the robot. Also, it decreases L on high confidence edges to avoid persistent usage
of high confidence edges. The memory decay component updates the log odds L
on each edge based on a parameter ν, which is the frequency of activating the
memory decay component. In our system, memory decay component is switched
on every ν robot navigation tasks. When the memory decay process is run it
increase the L value of every edge with a confidence value lower than 0.5 by a
constant value, ρ+, in the range 0:1, (see Equation 4) and decreases the L value
of every edge with a confidence value greater than 0.5 by a constant value, ρ−,
in the range 0:1, (see Equation 5).

L = L+ ρ+ (4)

L = L− ρ− (5)

In summary, the DUNC method dynamically updates the navigation con-
fidence associated with an edge in a topological map representation based on
the robots experiences in navigating along the edge. The basic component of
the method is a logistic confidence model. There are two proposed extensions to
this model and bounding of the L values and a memory decay process. In the
next section we present a series of experiments that evaluate the contribution of
each of these components to the method and compare the method to the current
state-of-the-art methods.

4 Evaluation

This section describes experiments performed in order to evaluate the perfor-
mance of the DUNC method. First the test environment used and the procedure
used to generate unexpected obstacles within this environment will be described.
Then we will describe 3 different experiments that evaluate the DUNC method
and compare it to existing methods discussed in Section 2.

4.1 Generating Test Environments

All of the experiments that we describe take place in simulated environments
with simulated robots (any type of robot can be used). In order to run exper-
iments evaluating the performance of the DUNC method we generate random
indoor environments (represented as topological maps) in which robot naviga-
tions are simulated. The simulated robot actually jumps between topological
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nodes and the navigation distance is measured as the actual distance between
the start node and the end node along topological edges. Each random environ-
ment is composed of 20 to 40 nodes connected by 40 to 80 edges. The nodes to be
connected to each other are randomly selected. Figure 1 shows a representation
of one such environment.

Fig. 1. An example of a randomly generated simulated test environment. Potential
obstacle positions are marked with yellow bars.

To determine which edges in a map will periodically become blocked by
obstacles, we first simulate 1, 000 journeys from random start nodes to random
end nodes within this map without any unexpected obstacles being present.
For each journey, the Dijkstra algorithm is applied given its start node and end
node. The result of the Dijkstra algorithm is a path consist of a set of topological
nodes. Navigations are simulated based on the results of Dijkstra algorithm to
count the number of times each edge in the map is used in these journeys.
Then, the edges that are used most frequently (the top 25% in our experiments)
are selected as potential obstacle positions. In this way we introduced obstacles
into the most important edges within the environment. In Figure 1 the potential
blockage positions are marked as yellow rectangles. Each of the potential blockage
positions has a randomly selected obstacle appearance rate associated with it.
This is the probability (from 0 to 1) that an obstacle will appear on an edge
when a robot tries to navigate it. Obstacle appearance rates remained constant
throughout each experiment in the corresponding environmental unit.

4.2 Experimental Method

Each experimental unit consisted of a robot performing 1, 000 journeys between
randomly selected start and end nodes in a test environment. Based on the
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obstacle appearance rates associated with each edge in the map different edges
would become blocked by obstacles during each of these journeys. When multiple
techniques are compared, the same 1, 000 journeys are always performed, during
which the same edges are blocked. In this way different techniques are fairly
compared.

When an unexpected obstacle is encountered during a navigation task, the
robot will be forced to re-plan the route to the goal and detour to avoid the
obstacle. As a result, each unexpected obstacle encountered will result in extra
travel cost (extra travel distance in our experiments). For each journey a robot
takes from a start node to an end node we record the length of the actual path
it navigates, which is the summation of lengths of edges the robot traversed.
We also record the length the optimal path would have been if the robot had
known in advance where all the unexpected obstacles would occur. The key
metric used in our experiments is the difference between the actual path length
and the optimal path length. The average difference between these two measures
is calculated across 1000 journeys for each experimental unit.

In the remainder of this section, we present 3 experiments that (1) fine tune
the DUNC method, (2) find the best parameter values to use for the existing
methods described in Section 2, and (3) compare the performance of the DUNC
method with these existing methods.

4.3 Experiment 1: Fine Tuning the DUNC Method

The DUNC method is composed of three components: (1) the confidence repre-
sentation itself, (2) the bounds component, and (3) the memory decay compo-
nent. Thus, there are four candidate combinations of these components:

– confidence representation (confidence)
– confidence representation + bounds component (confidence+B)
– confidence representation + memory decay component (confidence+D)
– confidence representation + bounds component + memory decay component

(confidence+B +D)

Each of the component parts of the DUNC method uses an associated set
of parameters. Table 1 lists these parameters and, for each, the set of potential
values they can assume. Table 2 shows parameter values that are used by each
of the candidate combinations of the components of the DUNC method.

The first experiment sought to determine which was the most effective out of
the four combinations of DUNC components, i.e. confidence, confidence + B,
confidence+D and confidence+B+D. In these experiments the best parameter
values shown in Table 2 were used. Robots using each of the four combinations of
DUNC components were simulated performing 1, 000 navigations each across 50
randomly generated environments (in all each robot performed 50, 000 naviga-
tions). For each of the 50 environments the average difference between actual and
optimal path lengths was recorded for each combination of DUNC components.
The DUNC component combinations were then ranked based on their average
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Parameter Description Values

ω the weight of the distance component used
by the weighted sum cost function

10, 20, 30, 40, 50, 60,
70, 80, 90

ν the frequency at which the memory decay
component is invoked

10, 20, 30, 40, 50, 60,
70, 80, 90, 100

δ+ the amount by which the running score is
increased after a successful navigation

0.5, 1

δ− the amount by which the running score
value is decreased after an unsuccessful
navigation

0.5, 1

ρ+ the amount by which to update the run-
ning score value by the memory decay com-
ponent on low log odds edges

0,0.5,1.0

ρ− the amount by which to update the run-
ning score value by the memory decay com-
ponent on high log odds edges

0.5, 1

Table 1. The parameters used by the DUNC method and the possible values they can
assume

Combinations ω ν δ+ δ− ρ+ ρ−
confidence 50 0.5 1

confidence+B 40 0.5 1

confidence+D 50 50 0.5 1 0 0.5

confidence+B +D 40 100 0.5 1 0.5 0.5
Table 2. Best parameter values for DUNC component combinations

difference between actual and optimal path lengths on each environment (ranks
ranged from 1 (best) to 4 (worst) ). Table 3 shows the average rank achieved
across the 50 test environments by each DUNC component combination. From
this it is clear that the confidence+B+D combination appears to perform the
best, closely followed by confidence+B combination.

To test these results for statistical significance, we applied the Friedman test
[20] followed by the Holm step-down procedure [21] as a post-hoc test on the
average ranks. The results of the Friedman test show that there is a statistically
significant difference in robot performance depending on which combination of
DUNC components was used, X2

F (3) = 24.1446, p =< 0.0001.

confidence confidence+B confidence+D confidence+B +D

Avg Rank 2.84 2.12 3.04 2
Table 3. Average ranks of candidate DUNC component combinations calculated for
the Friedman test.
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In order to investigate significant differences between the best DUNC com-
ponent combination, confidence+B+D, and the others we applied the Holm’s
step-down procedure as a post-hoc test to the Friedman test. Table 4 shows the
result of this test. By comparing the p values in the second column to the crit-
ical values in the third column1 we can see a statistically significant difference
exists between the confidence+B+D and the confidence and confidence+D
combinations but not the confidence + B combination. This is not surprising
given that the average ranks of the confidence + B + D and confidence + B
combinations were so close.

Approaches z p α/(k − i)

confidence+D 4.0279 0.00056 0.017

confidence 3.2533 0.001 0.025

confidence+B 0.4648 0.642 0.05
Table 4. Results of the Holm step-down procedure.

Based on these experiment results, we see that the memory decay component
does not really help the performance of the DUNC method. We believe that the
reason for this is that, as long as the likelihood of an edge being blocked by an
obstacle remains constant (as is the case in our experiments), forgetting about
the existence of obstacles lends advantage. This is also evident in the very poor
performance of the confidence+D combination. The bounds component, how-
ever, has a significant impact on performance. We surmise that this is because
it allows the update procedure remain agile and respond to successful and un-
successful edge navigations quickly. In the remaining experiments when we refer
to the DUNC method we refer to the confidence + B component combination
as, adopting the principle of parsimony, it makes sense to choose a slightly less
complex method given almost equal performance.

4.4 Experiment 2: Fine Tuning Existing Methods

So as the comparison between existing methods and the DUNC method will
be fair, we perform the same fine tuning experiment for the existing methods
described in Section 2: the ratio method (Ratio), the ratio method with decay
process (RatioDecay), the scalar method (Scalar) and the Yamauchi method
(Y amauchi). Each of these methods (excluding the ratio method) has a set
of parameters for which optimal values must be discovered. Table 5 shows the
candidate methods and their corresponding parameters and possible values that
are considered. Table 6 shows the resulting best parameter values and these are
used in the final experiment described in this section.

1 In a Holms step-down procedure a statistically significant difference exists when the
p value is less than the critical value.
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Method Name Parameters Possible Values

Ratio No parameter used

RatioDecay Decay rate µ 0.005,0.025,0.05,0.1,0.5,1,2,5
Decay Frequency ∆ 1,2,3,4,5,10,20,50,100

Scalar Scalar value σ 2,3,4,5,10,15,20,50,100

Y amauchi Link learning rate λ 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9
Table 5. Existing methods and their corresponding parameter and possible values.

Method Name Parameter Values

RatioDecay Decay rate µ = 0.005
Decay Frequency ∆ = 100

Scalar Scalar value σ = 5

Y amauchi Link learning rate λ = 0.1
Table 6. Best parameter values for the RatioDecay, Scalar and Y amauchi methods.

4.5 Experiment 3: Comparing the DUNC Method to Existing
Approaches

The aim of this experiment is to compare the DUNC method to existing ap-
proaches that deal with unexpected obstacles in robot navigation across dy-
namic indoor environments. In this experiment we compare the performance of
the DUNC method, the ratio method, the ratio method with decay process, the
scalar method and the Yamauchi method. In this experiment robots using each of
these methods were simulated performing the same 1, 000 journeys across 50 ran-
domly generated environments (50, 000 journeys in total per robot). The average
differences between actual and optimal paths for each of these sets of journeys
were recorded. the performance of the 5 different methods were ranked (from 1
(best) to 5 (worst)) across the different random environments and the average
ranks are shown in Table 7. It is clear from these ranks that the DUNC approach
appears to choose more efficient routes than any of the other approaches.

DUNC Scalar Ratio RatioDecay Y amauchi

Avg Rank 1.18 2.4 3.66 4.32 3.44
Table 7. Average rank values of candidate methods calculated for the Friedman test.

In order to test for statistically significant differences in these results a Frei-
dman test was used again. The results of the Friedman test show that there is
a statistically significant difference in robot performance depending on which
approach is used, X2

F (4) = 120.88, p =< 0.0001.
In order to further investigate this result we applied the Holms step-down

procedure again. Table 8 shows the result of this analysis comparing the DUNC
method with the other approaches. Again, by comparing the p-values in the
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second column with the critical values in the third column we can see that a
statistically significant difference exists between the performance of the DUNC
method and all of the other approaches. This result shows that, under our test
conditions, a robot using the DUNC method to navigate within an indoor en-
vironment selects more efficient paths than a robot navigating using any of the
other methods under test.

Methods z p α/(k − i)

RatioDecay 9.93 < 0.0001 0.125

Ratio 7.842 < 0.0001 0.0167

Scalar 7.148 < 0.0001 0.025

Y amauchi 3.858 0.00011 0.05
Table 8. Results of the Holm step-down procedure.

5 Conclusion

In this paper we presented the DUNC method that a mobile robot can use to
learn likely positions of unexpected obstacles in dynamic environments, so that
optimal shortest paths can be planned. This is built on the assumption that
most unexpected obstacles are not really unexpected at all and follow a pattern
occurring in similar places over time and that such patterns can be exploited.
The DUNC method is composed of three key components: the confidence com-
ponent and a set of bounds on running outcome scores (a forgetting mechanism
was considered for inclusions but tests showed that it did not improve overall
performance).

The DUNC method was compared against the most important existing meth-
ods for addressing this problem - the ratio method, the ratio method with decay
process, the scalar method and the Yamauchi method. The DUNC method was
found to consistently plan more efficient paths than all of these other approaches
across a large number of test runs in different environments.

There are a range of ways in which we could improve the DUNC method. In
particular, in the future we plan to examine how the approach can be modified
to handle partial blockages of routes (currently all obstacles completely block
an edge on the map), different ways the decay mechanism could be adjusted to
make it more effective, ways in which the approach could be modified to handle
moving obstacles and the introduction of a time dimension in which different
routes are assumed to be more likely to be blocked at different times of the day.
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