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Dark solitons of the Qiao’s hierarchy

Rossen I. Ivanov 1 and Tony Lyons 2

School of Mathematical Sciences, Dublin Institute of Technology,
Kevin Street, Dublin 8, Ireland

Abstract

We obtain a class of soliton solutions of the integrable hierarchy which

has been put forward in a series of works by Z. Qiao. The soliton

solutions are in the class of real functions approaching constant value

fast enough at infinity, the so-called ’dark solitons’.

PACS: 05.45.Yv, 02.30.Ik, 02.30.Zz

Key Words: Inverse Scattering Method, Nonlinear Evolution Equa-

tions, Solitons.

1 Introduction

The interest inspired by the Camassa-Holm (CH) equation and its singular
peakon solutions [1] prompted search for other integrable equations with
similar properties. An integrable peakon equation with cubic nonlinearities
has been discovered first by Qiao [11] and studied further e.g. in [12, 13].
Another equation with cubic nonlinearities has been found by V. Novikov [9].
The Lax pair for the Novikov’s equation is given in [7], (see also a remark on
the peakons of Qiao’s equation in [7]). Actually the Qiao’s equation

mt + (m(u2 − u2x))x = 0, m = u− uxx (1)

together with the CH equation

mt + 2uxm+ umx = 0, m = u− uxx (2)

belong to the bi-Hamiltonian hierarchy of equations described by Fokas and
Fuchssteiner [4]. The Qiao’s equation has a distinctiveW/M-shape travelling

1E-mail: Rossen.Ivanov@dit.ie
2E-mail: Tony.Lyons@mydit.ie
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wave solutions [11, 12]. The peakons of Novikov’s equation have been studied
in [8]. 2 + 1 dimensional generalizations of Qiao’s hierarchy are studied in
[3]. Single peakon, mutil-peakon dynamics, weak kink, kink-peakon, and
stability analysis of the Qiao’s equation were studied in [14] and [5]. For the
CH and related equations one can consult the monographs [6, 2, 10] and the
references therein.

Equation (1) can also be written as

mt + (u2 − u2x)mx + 2uxm
2 = 0. (3)

Qiao presented a 2 × 2 Lax pair for this equation given by the linear
system Ψx = UΨ, Ψt = VΨ with

U =

(

−1
2

1
2
mλ

−1
2
mλ 1

2

)

,

V =

(

λ−2 + 1
2
(u2 − u2x) −λ−1(u− ux)−

1
2
mλ(u2 − u2x)

λ−1(u+ ux) +
1
2
mλ(u2 − u2x) −λ−2 − 1

2
(u2 − u2x)

)

.
(4)

There is another equation from the same hierarchy,

mt +

(

1

m2

)

x

−

(

1

m2

)

xxx

= 0, (5)

for which the V-operator is Ψt = V2Ψ where

V2 =
λ

2

(

− λ
m

λ2 + m(mx−mxx)+3m2
x

m4

−λ2 + m(mx+mxx)−3m2
x

m4

λ
m

)

. (6)

The (white) soliton solutions of (1) and (5) have been found previously
[15, 17]. These studies rely on the fact that the spectral problem for (1) is
gauge-equivalent to the one for the mKdV equation. In this study we will
present soliton solutions approaching a constant value for |x| → ∞ (dark
solitons). To this end we are going to formulate the spectral problem in the
form of a Schrödinger operator, which is the same spectral problem as for
the KdV equation.

2 Reformulation of the spectral problem

Let us consider solutions such as

m(x, t) > 0, lim
x→±∞

m(x, t) = m0, (7)
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where m0 is a positive constant. Let us assume also that m(x, ·)−m0 ∈ S(R)
for any value of t. One can reformulate the spectral problem into a scalar
one as follows. Introducing Ψ = (ψ, φ)T the matrix Lax pair written in
components is

2ψx = −ψ +mλφ

2φx = −mλψ + φ.

With a change of coordinates

∂y =
2

m
∂x, ψ =

1

λ

[

φ

m
− φy

]

(8)

we obtain the following scalar spectral problem for φ(y, λ) (sometimes we do
not write the argument t which is an external parameter for the considered
spectral problem)

− φyy +

[

(

1

m

)

y

+
1

m2

]

φ = λ2φ. (9)

Note that this is a Schrödinger’s operator with a potential

U(y, t) =

(

1

m

)

y

+
1

m2
(10)

It is well known how to recover U(y, t) from the scattering data of (9), how-
ever the solution is m(y, t) and its recovery from U(y, t) necessitates solving
a nonlinear (Riccati) equation. We can express m(y, t) in terms of the eigen-
functions of the Schrödinger’s operator. We introduce ρ(y, λ) = φy

φ
from

which we immediately obtain

ρy + ρ2 =
φyy

φ
= U(y)− λ2.

If we define
ρ0(y) = ρ(y, 0)

then we have
U(y) = ρ0,y + ρ20.

However, due to (10) we now have 1
m

= ρ0 or

m(y, t) =
1

ρ0(y, t)
=

φ(y, t, λ)

φy(y, t, λ)

∣

∣

∣

∣

λ=0

(11)
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So far we treated y as a new variable instead of x. However we can treat
y as a parameter, and then (11) represents the solution in parametric form,
where the original variable x is given due to (8), (11) by:

x(y, t) = 2 lnφ(y, t, 0) + const. (12)

Assuming that φ(y, t, 0) is everywhere positive, we have a solution in para-
metric form (11), (12) given entirely in terms of the eigenfunctions φ(y, t, 0).
One can write formally the solution (neglecting the constant in the last for-
mula) as

m(x, t) = 2

ˆ ∞

−∞

δ (x− 2 lnφ(y, t, 0))dy. (13)

3 Inverse scattering and Soliton solutions

From (7) and (10) it follows that U(y) does not decay to 0 when y → ±∞.
To this end we introduce the modified potential

Ũ(y) = U(y)−
1

m2
0

, (14)

for which lim|y|→∞ Ũ(y) = 0. So we have

−φyy +

[

U(y)−
1

m2
0

]

φ =

(

λ2 −
1

m2
0

)

φ,

or, introducing a new spectral parameter

k2 = λ2 −
1

m2
0

(15)

we have a standard spectral problem

− φyy + Ũ(y)φ(k, y) = k2φ(k, y), Ũ(y) ∈ S(R). (16)

When λ = 0 however we find k = ± i
m0

for k. This means that if one takes
an eigenfunction φ(k, y) of (16) analytic in the upper (lower) half complex
k-plane, one should evaluate it at k = i

m0
(k = − i

m0
):

m(y, t) =
φ(y, t, k)

φy(y, t, k)

∣

∣

∣

∣

k=± i
m0

(17)

x(y, t) = 2 lnφ

(

y, t,±
i

m0

)

. (18)
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The spectral theory for the problem (16) is well developed, e.g. [16]. We
are going to use these results to construct the soliton solutions of (1), (5).
One can introduce scattering data as usual. For the time-dependence of the
scattering data one needs the time-evolution of the eigenfunction φ(k, x).
The Lax-pair in x and t variables for (1) has the form

φxx =
mx

m
φx +

(

1

4
−
mx

2m
−
m2

4
λ2
)

φ, (19)

φt =
1

λ2

[

ux + uxx
m

]

φ−

[

u+ ux
λ2m

+
u2 − u2x

2

]

φx + γφ, (20)

where γ is an arbitrary constant. The second equation, (20) in asymptotic
form x→ ±∞ is

φt → −

[

1

λ2
+
m2

0

2

]

φx + γφ,

or, in terms of k, y-variables when y → ±∞,

φt → −
m3

0

2

[

k2m2
0 + 3

k2m2
0 + 1

]

φy + γφ, (21)

since
lim

|y|→∞
m = lim

|y|→∞
u = m0.

Defining Jost solutions by

lim
y→±∞

ϕ±(y, k)e
iky = 1, (22)

such that

ϕ−(y, k) = a(k)ϕ+(y, k) + b(k)ϕ̄+(y, k), k ∈ R (23)

and noting that ϕ− → ae−iky + beiky when y → ∞ we find from (21)

at =
m3

0

4

[

k2m2
0 + 3

k2m2
0 + 1

]

(ika) + γa (24)

bt = −
m3

0

4

[

k2m2
0 + 3

k2m2
0 + 1

]

(ikb) + γb. (25)

Requiring at = 0, we find

bt = −ik
m3

0

2

(

k2m2
0 + 3

k2m2
0 + 1

)

b(k, t)
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and thus for the scattering coefficient r ≡ b/a we have

r(k, t) = r(k, 0) exp

[

−ik
m3

0

2

(

k2m2
0 + 3

k2m2
0 + 1

)

t

]

, (26)

and for the analogue on the discrete spectrum k = iκn,

Rn(t) ≡
b(iκn)

ia′(iκn)
= Rn(0) exp

[

κnm
3
0(3− κ2nm

2
0)

2(1− κ2nm
2
0)

t

]

. (27)

For the equation (5) the time evolution of the spectral eigenfunctions is
given by

φt =
v

m
φ+

(

λ2 − v
) 2

m
φx + γφ, v =

m(mx +mxx)− 3m2
x

m4
(28)

and analogous considerations give

r(k, t) = r(k, 0) exp

[

−2ik

(

1

m2
0

+ k2
)

t

]

, (29)

Rn(t) = Rn(0) exp

[

2κn

(

1

m2
0

− κ2n

)

t

]

. (30)

It is convenient to introduce a dispersion law for the hierarchy, which for
the considered two members is

f(κ) =

{

κm3

0
(3−κ2m2

0
)

2(1−κ2m2

0
)

for eq. (1) ,
2κ
m2

0

(1−m2
0κ

2) for eq. (5).

Then for the whole hierarchy we can write in general

Rn(t) = Rn(0) exp (f(κn)t) . (31)

For further convenience we introduce

ξn ≡ y −
f(κn)

2κn
t−

1

2κn
ln
Rn(0)

2κn
.

The eigenfunctions of the spectral problem (16) are well known, see e.g.
[16]. In the purely N -soliton case the eigenfunction, analytic in the lower
complex k-plane is the Jost solution ϕ+(y, k) defined in (22) which has the
form
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ϕ+(y, t, k) = eiky

(

1 +
N
∑

n=1

Γn(y, t)

k − iκn

)

(32)

with the residues Γn(y, t) satisfying a linear system

Γn(y, t) = iRn(t)e
−2κny

(

1 + i
N
∑

m=1

Γm(y, t)

κn + κm

)

.

The time-dependence of the scattering data is given by (31). The N - soliton
solution then is given in parametric form by (17) and (18) for the eigenfunc-
tion (32). The condition 0 < κn < m−1

0 is sufficient to ensure smoothness of
the solitons.

4 Example: One-Soliton Solution

The one-soliton solution corresponds to one discrete eigenvalue k1 = iκ1,
where κ1 is real, positive and κ1 < m−1

0 . The eigenfunction in this case is
(32)

ϕ+(y, t, k) = eiky

(

1 +
1

k − iκ1
·
iR1(t)e

−2κ1y

1 + R1(t)
2κ1

e−2κ1y

)

. (33)

Evaluated at k = −i
m0

we find

ϕ+(y, t,
−i

m0

) = e
y

m0

(

1−
1

1
m0

+ κ1
·
R1(t)e

−2κ1y

1 + R1(t)
2κ1

e−2κ1y

)

.

From (17) and (18) we obtain the one-soliton solutions

x(y, t) =
2y

m0
+ 2 ln

(

1−
κ1m0e

−κ1ξ1

(1 + κ1m0) cosh κ1ξ1

)

, (34)

m(y, t) =
m0

1 +
κ2

1
m2

0
sech2κ1ξ1

1−m0κ1 tanh κ1ξ1

. (35)

The extremum (minimum) of m occurs when

ξ1 =
1

4κ1
ln

(

1−m0κ1
1 +m0κ1

)

.

This is a constant value, e.g. the soliton moves with a velocity f(κ1)
2κ1

that
depends on the dispersion law (i.e. the chosen equation from the hierarchy).
The profile of the dark soliton is given on Fig. 1.
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Figure 1: One soliton profile, m0 = 2, κ1 = 0.2.

5 Example: Two soliton solution

In the case of two discrete eigenvalues we compute

ϕ+(y, t,
−i

m0
) = e

y

m0

1 + ν1e
−2κ1ξ1 + ν2e

−2κ2ξ2 +
(

κ1−κ2

κ1+κ2

)2

ν1ν2e
−2κ1ξ1−2κ2ξ2

1 + e−2κ1ξ1 + e−2κ2ξ2 +
(

κ1−κ2

κ1+κ2

)2

e−2κ1ξ1−2κ2ξ2

(36)
where the following notation is utilized:

νj =
1
m0

− κj
1
m0

+ κj
, j = 1, 2.

From (17) and (18) we obtain the two-soliton solutions:
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Figure 2: Snapshots of the two (dark) soliton solution of the Qiao equation
(1), for three values of t : −30, −12 and 30. The other parameters are
m0 = 2, κ1 = 0.1, κ2 = 0.25.

x(y, t) =
2y

m0
+ 2 ln

∆1

∆2
(37)

m(y, t) =
m0

1 + m0∆3

∆1∆2

. (38)

where the following notations are used:

∆1(y, t) = 1 + e−2κ1ξ1 + e−2κ2ξ2 +

(

κ1 − κ2
κ1 + κ2

)2

e−2κ1ξ1−2κ2ξ2

∆2(y, t) = 1 + ν1e
−2κ1ξ1 + ν2e

−2κ2ξ2 +

(

κ1 − κ2
κ1 + κ2

)2

ν1ν2e
−2κ1ξ1−2κ2ξ2 .

∆3(y, t) =
4κ21

m−1
0 + κ1

e−2κ1ξ1 +
4κ22

m−1
0 + κ2

e−2κ2ξ2

+
8(κ1 − κ2)

2

m0(m
−1
0 + κ1)(m

−1
0 + κ2)

e−2κ1ξ1−2κ2ξ2

+
4κ22ν1

m−1
0 + κ2

(

κ1 − κ2
κ1 + κ2

)2

e−4κ1ξ1−2κ2ξ2

+
4κ21ν2

m−1
0 + κ1

(

κ1 − κ2
κ1 + κ2

)2

e−2κ1ξ1−4κ2ξ2 . (39)

The interaction of two dark solitons is illustrated on Fig. 2.
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6 Conclusions

In this paper we demonstrated how the spectral problem for the Qiao’s hier-
archy can be reduced to the one for the standard Schrödinger operator and
hence the soliton solutions (’dark’ solitons) can be obtained in a straight-
forward manner. This necessitates constant boundary conditions for the
solution and also a restriction on the discrete eigenvalues 0 < κn < m−1

0 .
It is interesting what happens to the solutions if this condition is violated.
Based on the similarity with Camassa-Holm equation it is likely that there
are breaking waves present in this case. Moreover, the equation (1) has a
conservation law in the form

Xx(x, t)m(X, t) = m(x, 0)

where X is the solution of

Xt(x, t) = u2(X, t)− u2x(X, t), X(x, 0) = x.

It is likely that this conservation law will play an essential role in the study
of the wellposedness, existence and breaking of the solutions.
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[3] P.G. Estévez, Generalized Qiao hierarchy in 2+1 dimensions: Reciprocal
transformations, spectral problem and non-isospectrality, Phys.Lett. A
375 (2011) 537–540.

[4] A. Fokas and B. Fuchssteiner, On the structure of symplectic operators
and hereditary symmetries, Lett. Nuovo Cimento 28 (1980) 299–303.

10



[5] G. Gui, Y. Liu, P.J. Olver and C. Qu, Wave-Breaking and Peakons
for a Modified CamassaHolm Equation, Comm. Math. Phys. (2012)
DOI:10.1007/s00220-012-1566-0

[6] D. D. Holm, T. Schmah and C. Stoica, Geometric Mechanics and Sym-

metry (Oxford University Press, Oxford, 2009).

[7] A.N.W. Hone and Jing Ping Wang, Integrable peakon equations with cu-
bic nonlinearity, J. Phys. A: Math and Theor. 41 (2008) 372002 (10pp).

[8] A.N.W. Hone, H. Lundmark, and J. Szmigielski, Explicit multipeakon
solutions of Novikov’s cubically nonlinear integrable Camassa-Holm type
equation, Dynamics of Partial Differential Equations 6 (2009) 253–289.

[9] V. Novikov, Generalizations of the CamassaHolm equation, J. Phys. A:
Math. Theor. 42 (2009) 342002 (14pp)

[10] P. Popivanov, A. Slavova, Nonlinear waves. An Introduction, ISAAC
series on Analysis, Applications and Computation 4 (World Scientific,
NJ, 2011).

[11] Z. Qiao, A new integrable equation with cuspons andW/M-shape-peaks
solitons, J. Math. Phys. 47 (2006) 112701 (9 pp).

[12] Z. Qiao, New integrable hierarchy, its parametric solutions, cuspons,
one-peak solitons, and M/W -shape peak solitons, J. Math. Phys. 48

(2007) 112701 (19 pp).

[13] Z. Qiao and L. Liu, A new integrable equation with no smooth solitons,
Chaos, Solitons and Fractals 41 (2009) 587-593.

[14] Z. Qiao, B. Xia and J. Li, Integrable system with peakon, weak kink and
kink-peakon interactional solutions, arXiv:1205.2028v2 [nlin.SI] (2012)

[15] S. Sakovich, Smooth soliton solutions of a new integrable equation by
Qiao, J. Math. Phys. 52 (2011) 023509 (9 pages).

[16] V.E. Zakharov, S.V. Manakov, S.P. Novikov and L.P. Pitaevskii, Theory
of solitons: the inverse scattering method, (Plenum, New York, 1984).

[17] Zhaqilaoa, Zhijun Qiao, N-soliton solutions of an integrable equation
studied by Qiao, arXiv:1101.5742v1 [nlin.SI].

11

http://arxiv.org/abs/1205.2028
http://arxiv.org/abs/1101.5742

	Dark Solitons of the Qiao's Hierarchy
	Recommended Citation

	1 Introduction
	2 Reformulation of the spectral problem
	3 Inverse scattering and Soliton solutions
	4 Example: One-Soliton Solution
	5 Example: Two soliton solution
	6 Conclusions
	7 Acknowledgments

